Datasets:

ArXiv:
License:
File size: 6,216 Bytes
b670bb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List, Tuple

import datasets

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

# Keep blank; dataset has no associated paper
_CITATION = """\
@article{,
  author    = {},
  title     = {},
  journal   = {},
  volume    = {},
  year      = {},
  url       = {},
  doi       = {},
  biburl    = {},
  bibsource = {}
}
"""

_LOCAL = False
_LANGUAGES = ["mya", "ceb", "gor", "hil", "ilo", "ind", "jav", "khm", "lao", "zlm", "nia", "tgl", "tha", "vie"]

_DATASETNAME = "mozilla_pontoon"
_DESCRIPTION = """
This dataset contains crowdsource translations of more than 200 languages for
different Mozilla open-source projects from Mozilla's Pontoon localization platform.
Source sentences are in English.
"""

_HOMEPAGE = "https://huggingface.co/datasets/ayymen/Pontoon-Translations"
_LICENSE = Licenses.BSD_3_CLAUSE.value
_URL = "https://huggingface.co/datasets/ayymen/Pontoon-Translations"

_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"


class MozillaPontoonDataset(datasets.GeneratorBasedBuilder):
    """Dataset of translations from Mozilla's Pontoon platform."""

    # Two-letter ISO code is used when available
    # otherwise 3-letter one is used
    LANG_CODE_MAPPER = {"mya": "my", "ceb": "ceb", "gor": "gor", "hil": "hil", "ilo": "ilo", "ind": "id", "jav": "jv", "khm": "km", "lao": "lo", "zlm": "ms", "nia": "nia", "tgl": "tl", "tha": "th", "vie": "vi"}

    # Config to load individual datasets per language
    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_eng_{lang}_source",
            version=datasets.Version(_SOURCE_VERSION),
            description=f"{_DATASETNAME} source schema for {lang} language",
            schema="source",
            subset_id=f"{_DATASETNAME}_eng_{lang}",
        )
        for lang in _LANGUAGES
    ] + [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_eng_{lang}_seacrowd_t2t",
            version=datasets.Version(_SEACROWD_VERSION),
            description=f"{_DATASETNAME} SEACrowd schema for {lang} language",
            schema="seacrowd_t2t",
            subset_id=f"{_DATASETNAME}_eng_{lang}",
        )
        for lang in _LANGUAGES
    ]

    # Config to load all datasets
    BUILDER_CONFIGS.extend(
        [
            SEACrowdConfig(
                name=f"{_DATASETNAME}_source",
                version=datasets.Version(_SOURCE_VERSION),
                description=f"{_DATASETNAME} source schema for all languages",
                schema="source",
                subset_id=_DATASETNAME,
            ),
            SEACrowdConfig(
                name=f"{_DATASETNAME}_seacrowd_t2t",
                version=datasets.Version(_SEACROWD_VERSION),
                description=f"{_DATASETNAME} SEACrowd schema for all languages",
                schema="seacrowd_t2t",
                subset_id=_DATASETNAME,
            ),
        ]
    )

    DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "source_string": datasets.Value("string"),
                    "target_string": datasets.Value("string"),
                }
            )
        elif self.config.schema == "seacrowd_t2t":
            features = schemas.text2text_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        # dl_manager not used since dataloader uses HF 'load_dataset'
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"split": "train"},
            ),
        ]

    def _load_hf_data_from_remote(self, language: str) -> datasets.DatasetDict:
        """Load dataset from HuggingFace."""
        hf_lang_code = self.LANG_CODE_MAPPER[language]
        hf_remote_ref = "/".join(_URL.split("/")[-2:])
        return datasets.load_dataset(hf_remote_ref, f"en-{hf_lang_code}", split="train")

    def _generate_examples(self, split: str) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""
        languages = []
        pontoon_datasets = []

        lang = self.config.subset_id.split("_")[-1]
        if lang in _LANGUAGES:
            languages.append(lang)
            pontoon_datasets.append(self._load_hf_data_from_remote(lang))
        else:
            for lang in _LANGUAGES:
                languages.append(lang)
                pontoon_datasets.append(self._load_hf_data_from_remote(lang))

        index = 0
        for lang, lang_subset in zip(languages, pontoon_datasets):
            for row in lang_subset:
                if self.config.schema == "source":
                    example = row

                elif self.config.schema == "seacrowd_t2t":
                    example = {
                        "id": str(index),
                        "text_1": row["source_string"],
                        "text_2": row["target_string"],
                        "text_1_name": "eng",
                        "text_2_name": lang,
                    }
                yield index, example
                index += 1