File size: 6,237 Bytes
ca564e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from pathlib import Path
from typing import Dict, List, Tuple

import datasets

from nusacrowd.utils import schemas
from nusacrowd.utils.configs import NusantaraConfig
from nusacrowd.utils.constants import Tasks

_CITATION = """\
@inproceedings{multilexnorm,
  title= {MultiLexNorm: A Shared Task on Multilingual Lexical Normalization,
  author = "van der Goot, Rob and Ramponi et al.",
  booktitle = "Proceedings of the 7th Workshop on Noisy User-generated Text (W-NUT 2021)",
  year = "2021",
  publisher = "Association for Computational Linguistics",
  address = "Punta Cana, Dominican Republic"
}
"""

_DATASETNAME = "multilexnorm"

_DESCRIPTION = """\
MULTILEXNPRM is a new benchmark dataset for multilingual lexical normalization
including 12 language variants,
we here specifically work on the Indonisian-english language.
"""

_HOMEPAGE = "https://bitbucket.org/robvanderg/multilexnorm/src/master/"

_LOCAL = False
_LANGUAGES = ["ind"]  # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LICENSE = "CC-BY-NC-SA 4.0"

_URLS = {
    "train": "https://bitbucket.org/robvanderg/multilexnorm/raw/e92e5b8f111fea15c7c88aebd4c058f6a1ca8d74/data/iden/train.norm",
    "validation": "https://bitbucket.org/robvanderg/multilexnorm/raw/e92e5b8f111fea15c7c88aebd4c058f6a1ca8d74/data/iden/dev.norm",
    "test": "https://bitbucket.org/robvanderg/multilexnorm/raw/e92e5b8f111fea15c7c88aebd4c058f6a1ca8d74/data/iden/test.norm",
}

_SUPPORTED_TASKS = [Tasks.MULTILEXNORM]

_SOURCE_VERSION = "1.0.0"

_NUSANTARA_VERSION = "1.0.0"


class MultiLexNorm(datasets.GeneratorBasedBuilder):
    """MultiLexNorm is a new benchmark dataset for lexical normalization for indonisian English language. which is the translation
     of social media text to canonical text:
    new pix      comming tomoroe
    new pictures coming  tomorrow
    """

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION)

    BUILDER_CONFIGS = [
        NusantaraConfig(
            name="multilexnorm_source",
            version=_SOURCE_VERSION,
            description="multilexnorm source schema",
            schema="source",
            subset_id="multilexnorm",
        ),
        NusantaraConfig(
            name="multilexnorm_nusantara_t2t",
            version=_NUSANTARA_VERSION,
            description="multilexnorm Nusantara schema",
            schema="nusantara_t2t",
            subset_id="multilexnorm",
        ),
    ]

    DEFAULT_CONFIG_NAME = "multilexnorm_source"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":

            features = datasets.Features(
                {
                    "src_sent": datasets.Value("string"),
                    "id": datasets.Value("string"),
                    "norm_sent": datasets.Value("string"),
                }
            )

        elif self.config.schema == "nusantara_t2t":
            features = schemas.text2text_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:

        train_path = Path(dl_manager.download_and_extract(_URLS["train"]))
        validation_path = Path(dl_manager.download_and_extract(_URLS["validation"]))
        test_path = Path(dl_manager.download_and_extract(_URLS["test"]))
        data_files = {
            "train": train_path,
            "validation": validation_path,
            "test": test_path,
        }

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": data_files["train"],
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": data_files["test"],
                    "split": "test",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": data_files["validation"],
                    "split": "dev",
                },
            ),
        ]

    def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:

        curSent = []
        print(filepath)
        if self.config.schema == "source":
            i = 0
            for line in open(filepath):
                tok = line.strip("\n").split("\t")

                if tok == [""] or tok == []:
                    ex = {"id": str(i), 
                          "src_sent": " ".join([x[0] for x in curSent]), 
                          "norm_sent": " ".join([x[1] for x in curSent])}
                    yield i, ex
                    i += 1
                    curSent = []

                else:
                    if len(tok) > 2:
                        print("erroneous input, line:\n" + line + "\n in file " + filepath + " contains more then two elements")
                    if len(tok) == 1:
                        tok.append("")
                    curSent.append(tok)

        elif self.config.schema == "nusantara_t2t":
            i = 0
            for line in open(filepath):
                tok = line.strip("\n").split("\t")

                if tok == [""] or tok == []:
                    ex = {"id": str(i), 
                          "text_1": " ".join([x[0] for x in curSent]), 
                          "text_2": " ".join([x[1] for x in curSent]), 
                          "text_1_name": "src_sent", 
                          "text_2_name": "norm_sent"}
                    yield i, ex
                    i += 1
                    curSent = []

                else:
                    if len(tok) > 2:
                        print("erroneous input, line:\n" + line + "\n in file " + filepath + " contains more then two elements")
                    if len(tok) == 1:
                        tok.append("")
                    curSent.append(tok)