multilexnorm / multilexnorm.py
holylovenia's picture
Upload multilexnorm.py with huggingface_hub
cb8b286 verified
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks
_CITATION = """\
@inproceedings{multilexnorm,
title= {MultiLexNorm: A Shared Task on Multilingual Lexical Normalization,
author = "van der Goot, Rob and Ramponi et al.",
booktitle = "Proceedings of the 7th Workshop on Noisy User-generated Text (W-NUT 2021)",
year = "2021",
publisher = "Association for Computational Linguistics",
address = "Punta Cana, Dominican Republic"
}
"""
_DATASETNAME = "multilexnorm"
_DESCRIPTION = """\
MULTILEXNPRM is a new benchmark dataset for multilingual lexical normalization
including 12 language variants,
we here specifically work on the Indonisian-english language.
"""
_HOMEPAGE = "https://bitbucket.org/robvanderg/multilexnorm/src/master/"
_LOCAL = False
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LICENSE = "CC-BY-NC-SA 4.0"
_URLS = {
"train": "https://bitbucket.org/robvanderg/multilexnorm/raw/e92e5b8f111fea15c7c88aebd4c058f6a1ca8d74/data/iden/train.norm",
"validation": "https://bitbucket.org/robvanderg/multilexnorm/raw/e92e5b8f111fea15c7c88aebd4c058f6a1ca8d74/data/iden/dev.norm",
"test": "https://bitbucket.org/robvanderg/multilexnorm/raw/e92e5b8f111fea15c7c88aebd4c058f6a1ca8d74/data/iden/test.norm",
}
_SUPPORTED_TASKS = [Tasks.MULTILEXNORM]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class MultiLexNorm(datasets.GeneratorBasedBuilder):
"""MultiLexNorm is a new benchmark dataset for lexical normalization for indonisian English language. which is the translation
of social media text to canonical text:
new pix comming tomoroe
new pictures coming tomorrow
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name="multilexnorm_source",
version=_SOURCE_VERSION,
description="multilexnorm source schema",
schema="source",
subset_id="multilexnorm",
),
SEACrowdConfig(
name="multilexnorm_seacrowd_t2t",
version=_SEACROWD_VERSION,
description="multilexnorm Nusantara schema",
schema="seacrowd_t2t",
subset_id="multilexnorm",
),
]
DEFAULT_CONFIG_NAME = "multilexnorm_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"src_sent": datasets.Value("string"),
"id": datasets.Value("string"),
"norm_sent": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_t2t":
features = schemas.text2text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
train_path = Path(dl_manager.download_and_extract(_URLS["train"]))
validation_path = Path(dl_manager.download_and_extract(_URLS["validation"]))
test_path = Path(dl_manager.download_and_extract(_URLS["test"]))
data_files = {
"train": train_path,
"validation": validation_path,
"test": test_path,
}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_files["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_files["test"],
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": data_files["validation"],
"split": "dev",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
curSent = []
print(filepath)
if self.config.schema == "source":
i = 0
for line in open(filepath):
tok = line.strip("\n").split("\t")
if tok == [""] or tok == []:
ex = {"id": str(i),
"src_sent": " ".join([x[0] for x in curSent]),
"norm_sent": " ".join([x[1] for x in curSent])}
yield i, ex
i += 1
curSent = []
else:
if len(tok) > 2:
print("erroneous input, line:\n" + line + "\n in file " + filepath + " contains more then two elements")
if len(tok) == 1:
tok.append("")
curSent.append(tok)
elif self.config.schema == "seacrowd_t2t":
i = 0
for line in open(filepath):
tok = line.strip("\n").split("\t")
if tok == [""] or tok == []:
ex = {"id": str(i),
"text_1": " ".join([x[0] for x in curSent]),
"text_2": " ".join([x[1] for x in curSent]),
"text_1_name": "src_sent",
"text_2_name": "norm_sent"}
yield i, ex
i += 1
curSent = []
else:
if len(tok) > 2:
print("erroneous input, line:\n" + line + "\n in file " + filepath + " contains more then two elements")
if len(tok) == 1:
tok.append("")
curSent.append(tok)