from pathlib import Path from typing import Dict, List, Tuple import datasets from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Tasks _CITATION = """\ @inproceedings{multilexnorm, title= {MultiLexNorm: A Shared Task on Multilingual Lexical Normalization, author = "van der Goot, Rob and Ramponi et al.", booktitle = "Proceedings of the 7th Workshop on Noisy User-generated Text (W-NUT 2021)", year = "2021", publisher = "Association for Computational Linguistics", address = "Punta Cana, Dominican Republic" } """ _DATASETNAME = "multilexnorm" _DESCRIPTION = """\ MULTILEXNPRM is a new benchmark dataset for multilingual lexical normalization including 12 language variants, we here specifically work on the Indonisian-english language. """ _HOMEPAGE = "https://bitbucket.org/robvanderg/multilexnorm/src/master/" _LOCAL = False _LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data) _LICENSE = "CC-BY-NC-SA 4.0" _URLS = { "train": "https://bitbucket.org/robvanderg/multilexnorm/raw/e92e5b8f111fea15c7c88aebd4c058f6a1ca8d74/data/iden/train.norm", "validation": "https://bitbucket.org/robvanderg/multilexnorm/raw/e92e5b8f111fea15c7c88aebd4c058f6a1ca8d74/data/iden/dev.norm", "test": "https://bitbucket.org/robvanderg/multilexnorm/raw/e92e5b8f111fea15c7c88aebd4c058f6a1ca8d74/data/iden/test.norm", } _SUPPORTED_TASKS = [Tasks.MULTILEXNORM] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" class MultiLexNorm(datasets.GeneratorBasedBuilder): """MultiLexNorm is a new benchmark dataset for lexical normalization for indonisian English language. which is the translation of social media text to canonical text: new pix comming tomoroe new pictures coming tomorrow """ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) BUILDER_CONFIGS = [ SEACrowdConfig( name="multilexnorm_source", version=_SOURCE_VERSION, description="multilexnorm source schema", schema="source", subset_id="multilexnorm", ), SEACrowdConfig( name="multilexnorm_seacrowd_t2t", version=_SEACROWD_VERSION, description="multilexnorm Nusantara schema", schema="seacrowd_t2t", subset_id="multilexnorm", ), ] DEFAULT_CONFIG_NAME = "multilexnorm_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "src_sent": datasets.Value("string"), "id": datasets.Value("string"), "norm_sent": datasets.Value("string"), } ) elif self.config.schema == "seacrowd_t2t": features = schemas.text2text_features return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: train_path = Path(dl_manager.download_and_extract(_URLS["train"])) validation_path = Path(dl_manager.download_and_extract(_URLS["validation"])) test_path = Path(dl_manager.download_and_extract(_URLS["test"])) data_files = { "train": train_path, "validation": validation_path, "test": test_path, } return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": data_files["train"], "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": data_files["test"], "split": "test", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": data_files["validation"], "split": "dev", }, ), ] def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: curSent = [] print(filepath) if self.config.schema == "source": i = 0 for line in open(filepath): tok = line.strip("\n").split("\t") if tok == [""] or tok == []: ex = {"id": str(i), "src_sent": " ".join([x[0] for x in curSent]), "norm_sent": " ".join([x[1] for x in curSent])} yield i, ex i += 1 curSent = [] else: if len(tok) > 2: print("erroneous input, line:\n" + line + "\n in file " + filepath + " contains more then two elements") if len(tok) == 1: tok.append("") curSent.append(tok) elif self.config.schema == "seacrowd_t2t": i = 0 for line in open(filepath): tok = line.strip("\n").split("\t") if tok == [""] or tok == []: ex = {"id": str(i), "text_1": " ".join([x[0] for x in curSent]), "text_2": " ".join([x[1] for x in curSent]), "text_1_name": "src_sent", "text_2_name": "norm_sent"} yield i, ex i += 1 curSent = [] else: if len(tok) > 2: print("erroneous input, line:\n" + line + "\n in file " + filepath + " contains more then two elements") if len(tok) == 1: tok.append("") curSent.append(tok)