File size: 6,584 Bytes
354643b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
MULTISPIDER, the largest multilingual text-to-SQL dataset which covers \
seven languages (English, German, French, Spanish, Japanese, \
Chinese, and Vietnamese). Upon MULTISPIDER, we further identify \
the lexical and structural challenges of text-to-SQL (caused by \
specific language properties and dialect sayings) and their \
intensity across different languages.
"""
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import pandas as pd
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks, Licenses
_CITATION = """\
@inproceedings{Dou2022MultiSpiderTB,
title={MultiSpider: Towards Benchmarking Multilingual Text-to-SQL Semantic Parsing},
author={Longxu Dou and Yan Gao and Mingyang Pan and Dingzirui Wang and Wanxiang Che and Dechen Zhan and Jian-Guang Lou},
booktitle={AAAI Conference on Artificial Intelligence},
year={2023},
url={https://ojs.aaai.org/index.php/AAAI/article/view/26499/26271}
}
"""
_DATASETNAME = "multispider"
_DESCRIPTION = """\
MULTISPIDER, the largest multilingual text-to-SQL dataset which covers \
seven languages (English, German, French, Spanish, Japanese, \
Chinese, and Vietnamese). Upon MULTISPIDER, we further identify \
the lexical and structural challenges of text-to-SQL (caused by \
specific language properties and dialect sayings) and their \
intensity across different languages.
"""
_HOMEPAGE = "https://github.com/longxudou/multispider"
_LANGUAGES = ["vie"]
_LICENSE = Licenses.CC_BY_4_0.value
_LOCAL = False
_URLS = {
"train": "https://huggingface.co/datasets/dreamerdeo/multispider/resolve/main/dataset/multispider/with_original_value/train_vi.json?download=true",
"dev": "https://huggingface.co/datasets/dreamerdeo/multispider/raw/main/dataset/multispider/with_original_value/dev_vi.json",
}
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class MultispiderDataset(datasets.GeneratorBasedBuilder):
"""
MULTISPIDER, the largest multilingual text-to-SQL dataset which covers \
seven languages (English, German, French, Spanish, Japanese, \
Chinese, and Vietnamese). Upon MULTISPIDER, we further identify \
the lexical and structural challenges of text-to-SQL (caused by \
specific language properties and dialect sayings) and their \
intensity across different languages.
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
SEACROWD_SCHEMA_NAME = "t2t"
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
subset_id=f"{_DATASETNAME}",
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"db_id": datasets.Value("string"),
"query": datasets.Value("string"),
"question": datasets.Value("string"),
"query_toks": datasets.Sequence(feature=datasets.Value("string")),
"query_toks_no_value": datasets.Sequence(feature=datasets.Value("string")),
"question_toks": datasets.Sequence(feature=datasets.Value("string")),
"sql": datasets.Value("string"),
}
)
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
features = schemas.text2text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
data_path_train = Path(dl_manager.download_and_extract(_URLS["train"]))
data_path_dev = Path(dl_manager.download_and_extract(_URLS["dev"]))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_path_train,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": data_path_dev,
"split": "dev",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
df = pd.read_json(filepath)
for index, row in df.iterrows():
if self.config.schema == "source":
example = row.to_dict()
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
example = {
"id": str(index),
"text_1": str(row["question"]),
"text_2": str(row["query"]),
"text_1_name": "question",
"text_2_name": "query",
}
yield index, example
# This template is based on the following template from the datasets package:
# https://github.com/huggingface/datasets/blob/master/templates/new_dataset_script.py
|