Upload my_paraphrase.py with huggingface_hub
Browse files- my_paraphrase.py +200 -0
my_paraphrase.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from pathlib import Path
|
17 |
+
from typing import Dict, List, Tuple
|
18 |
+
|
19 |
+
import datasets
|
20 |
+
import pandas as pd
|
21 |
+
|
22 |
+
from seacrowd.utils import schemas
|
23 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
24 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
25 |
+
|
26 |
+
_CITATION = """\
|
27 |
+
@article{htay2022deep,
|
28 |
+
title={Deep Siamese Neural Network Vs Random Forest for Myanmar Language Paraphrase Classification},
|
29 |
+
author={Htay, Myint Myint and Thu, Ye Kyaw and Thant, Hnin Aye and Supnithi, Thepchai},
|
30 |
+
journal={Journal of Intelligent Informatics and Smart Technology},
|
31 |
+
year={2022}
|
32 |
+
}
|
33 |
+
"""
|
34 |
+
|
35 |
+
_DATASETNAME = "my_paraphrase"
|
36 |
+
|
37 |
+
_DESCRIPTION = """\
|
38 |
+
The myParaphrase corpus is intended for the task of assessing whether pairs of Burmese sentences exhibit similar meanings \
|
39 |
+
or are paraphrases. It encompasses 40461 pairs for training, along with 1000 pairs for an open test and an additional 1000 pairs \
|
40 |
+
for a closed test. If a pair of sentences in Burmese is considered a paraphrase, it is labeled with "1"; if not, they receive a label of "0."
|
41 |
+
"""
|
42 |
+
|
43 |
+
_HOMEPAGE = "https://github.com/ye-kyaw-thu/myParaphrase"
|
44 |
+
|
45 |
+
_LANGUAGES = ["mya"]
|
46 |
+
|
47 |
+
_LICENSE = Licenses.CC_BY_NC_SA_4_0.value
|
48 |
+
_LOCAL = False
|
49 |
+
|
50 |
+
_URLS = {
|
51 |
+
_DATASETNAME: [
|
52 |
+
"https://github.com/ye-kyaw-thu/myParaphrase/raw/main/corpus/ver1.0/csv-qqp/train.csv",
|
53 |
+
"https://github.com/ye-kyaw-thu/myParaphrase/raw/main/corpus/ver1.0/csv-qqp/open-test.final.manual.csv",
|
54 |
+
"https://github.com/ye-kyaw-thu/myParaphrase/raw/main/corpus/ver1.0/csv-qqp/closed-test.csv",
|
55 |
+
],
|
56 |
+
}
|
57 |
+
|
58 |
+
_SUPPORTED_TASKS = [Tasks.PARAPHRASING]
|
59 |
+
_SOURCE_VERSION = "1.0.0"
|
60 |
+
_SEACROWD_VERSION = "2024.06.20"
|
61 |
+
_TAGS = [0, 1]
|
62 |
+
|
63 |
+
|
64 |
+
class MyParaphraseDataset(datasets.GeneratorBasedBuilder):
|
65 |
+
"""The "myParaphrase" corpus is a Burmese dataset used for paraphrase identification. \
|
66 |
+
It includes 40,461 training pairs and 2,000 test pairs. Pairs are labeled "1" for paraphrases and "0" otherwise."""
|
67 |
+
|
68 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
69 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
70 |
+
SEACROWD_SCHEMA_NAME = "t2t"
|
71 |
+
|
72 |
+
BUILDER_CONFIGS = [
|
73 |
+
SEACrowdConfig(
|
74 |
+
name=f"{_DATASETNAME}_source", # source
|
75 |
+
version=SOURCE_VERSION,
|
76 |
+
description=f"{_DATASETNAME} source schema",
|
77 |
+
schema="source",
|
78 |
+
subset_id=f"{_DATASETNAME}_paraphrase",
|
79 |
+
),
|
80 |
+
SEACrowdConfig(
|
81 |
+
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", # schema
|
82 |
+
version=SEACROWD_VERSION,
|
83 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
84 |
+
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
|
85 |
+
subset_id=f"{_DATASETNAME}_paraphrase",
|
86 |
+
),
|
87 |
+
SEACrowdConfig(
|
88 |
+
name=f"{_DATASETNAME}_non_paraphrase_source", # source
|
89 |
+
version=SEACROWD_VERSION,
|
90 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
91 |
+
schema="source",
|
92 |
+
subset_id=f"{_DATASETNAME}_non_paraphrase",
|
93 |
+
),
|
94 |
+
SEACrowdConfig(
|
95 |
+
name=f"{_DATASETNAME}_non_paraphrase_seacrowd_{SEACROWD_SCHEMA_NAME}", # schema
|
96 |
+
version=SEACROWD_VERSION,
|
97 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
98 |
+
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
|
99 |
+
subset_id=f"{_DATASETNAME}_non_paraphrase",
|
100 |
+
),
|
101 |
+
SEACrowdConfig(
|
102 |
+
name=f"{_DATASETNAME}_all_source", # source
|
103 |
+
version=SOURCE_VERSION,
|
104 |
+
description=f"{_DATASETNAME} source schema",
|
105 |
+
schema="source",
|
106 |
+
subset_id=f"{_DATASETNAME}_all",
|
107 |
+
),
|
108 |
+
SEACrowdConfig(
|
109 |
+
name=f"{_DATASETNAME}_all_seacrowd_{SEACROWD_SCHEMA_NAME}", # schema
|
110 |
+
version=SEACROWD_VERSION,
|
111 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
112 |
+
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
|
113 |
+
subset_id=f"{_DATASETNAME}_all",
|
114 |
+
),
|
115 |
+
]
|
116 |
+
|
117 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}"
|
118 |
+
|
119 |
+
def _info(self) -> datasets.DatasetInfo:
|
120 |
+
if self.config.schema.endswith("_source"):
|
121 |
+
features = datasets.Features({"id": datasets.Value("int32"), "paraphrase1": datasets.Value("string"), "paraphrase2": datasets.Value("string"), "is_paraphrase": datasets.Value("int32")})
|
122 |
+
|
123 |
+
elif self.config.schema.endswith(self.SEACROWD_SCHEMA_NAME):
|
124 |
+
features = schemas.text2text_features
|
125 |
+
|
126 |
+
else:
|
127 |
+
raise ValueError
|
128 |
+
|
129 |
+
return datasets.DatasetInfo(
|
130 |
+
description=_DESCRIPTION,
|
131 |
+
features=features,
|
132 |
+
homepage=_HOMEPAGE,
|
133 |
+
license=_LICENSE,
|
134 |
+
citation=_CITATION,
|
135 |
+
)
|
136 |
+
|
137 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
138 |
+
urls = _URLS[_DATASETNAME]
|
139 |
+
train = dl_manager.download(urls[0])
|
140 |
+
open_test = dl_manager.download(urls[1])
|
141 |
+
closed_test = dl_manager.download(urls[2])
|
142 |
+
|
143 |
+
return [
|
144 |
+
datasets.SplitGenerator(
|
145 |
+
name=datasets.Split.TRAIN,
|
146 |
+
# Whatever you put in gen_kwargs will be passed to _generate_examples
|
147 |
+
gen_kwargs={
|
148 |
+
"filepath": train,
|
149 |
+
"split": "train",
|
150 |
+
},
|
151 |
+
),
|
152 |
+
datasets.SplitGenerator(
|
153 |
+
name=datasets.Split.TEST,
|
154 |
+
gen_kwargs={
|
155 |
+
"filepath": closed_test,
|
156 |
+
"split": "test",
|
157 |
+
},
|
158 |
+
),
|
159 |
+
datasets.SplitGenerator(
|
160 |
+
name=datasets.Split.VALIDATION,
|
161 |
+
gen_kwargs={
|
162 |
+
"filepath": open_test,
|
163 |
+
"split": "dev",
|
164 |
+
},
|
165 |
+
),
|
166 |
+
]
|
167 |
+
|
168 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
169 |
+
"""Yields examples as (key, example) tuples."""
|
170 |
+
|
171 |
+
columns = ["id", "paraphrase1", "paraphrase2", "is_paraphrase"]
|
172 |
+
dataset = pd.read_csv(filepath, header=None)
|
173 |
+
dataset.columns = columns
|
174 |
+
dataset = dataset.dropna()
|
175 |
+
|
176 |
+
dataset["is_paraphrase"] = dataset["is_paraphrase"].astype(int)
|
177 |
+
|
178 |
+
if self.config.schema in [
|
179 |
+
"paraphrase_source",
|
180 |
+
"non_paraphrase_source",
|
181 |
+
"all_source",
|
182 |
+
# "source"
|
183 |
+
]:
|
184 |
+
for i, row in dataset.iterrows():
|
185 |
+
yield i, {"id": i, "paraphrase1": row["paraphrase1"], "paraphrase2": row["paraphrase2"], "is_paraphrase": row["is_paraphrase"]}
|
186 |
+
|
187 |
+
elif self.config.schema == f"seacrowd_paraphrase_{self.SEACROWD_SCHEMA_NAME}":
|
188 |
+
for i, row in dataset[dataset["is_paraphrase"] == 1].iterrows():
|
189 |
+
yield i, {"id": i, "text_1": row["paraphrase1"], "text_2": row["paraphrase2"], "text_1_name": "anchor_text", "text_2_name": "paraphrased_text"}
|
190 |
+
|
191 |
+
elif self.config.schema == f"seacrowd_non_paraphrase_{self.SEACROWD_SCHEMA_NAME}":
|
192 |
+
for i, row in dataset[dataset["is_paraphrase"] == 0].iterrows():
|
193 |
+
yield i, {"id": i, "text_1": row["paraphrase1"], "text_2": row["paraphrase2"], "text_1_name": "anchor_text", "text_2_name": "non_paraphrased_text"}
|
194 |
+
|
195 |
+
elif self.config.schema == f"seacrowd_all_{self.SEACROWD_SCHEMA_NAME}":
|
196 |
+
for i, row in dataset.iterrows():
|
197 |
+
yield i, {"id": i, "text_1": row["paraphrase1"], "text_2": row["paraphrase2"], "text_1_name": "anchor_text", "text_2_name": "paraphrased_text" if row["is_paraphrase"] else "non_paraphrased_text"}
|
198 |
+
|
199 |
+
else:
|
200 |
+
raise ValueError
|