|
from pathlib import Path |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
|
|
_CITATION = """ |
|
@misc{myXNLI2023, |
|
title = "myXNLI", |
|
author = "akhtet", |
|
year = "202", |
|
url = "https://github.com/akhtet/myXNLI", |
|
} |
|
""" |
|
|
|
_DATASETNAME = "myxnli" |
|
|
|
_DESCRIPTION = """ |
|
The myXNLI corpus is a collection of Myanmar language data designed for the Natural Language Inference (NLI) task, which |
|
originated from the XNLI and MultiNLI English datasets. The 7,500 sentence pairs from the XNLI English development and |
|
test sets are human-translated into Myanmar. The 392,702 data from the NLI English training data is translated using |
|
machine translation. In addition, it also extends its scope by adding Myanmar translations to the XNLI 15-language |
|
parallel corpus, to create a 16-language parallel corpus. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/akhtet/myXNLI" |
|
|
|
_LANGUAGES = ["mya"] |
|
|
|
_LICENSE = Licenses.CC_BY_NC_4_0.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = { |
|
_DATASETNAME: { |
|
"train": "https://huggingface.co/datasets/akhtet/myXNLI/resolve/main/data/train-00000-of-00001-2614419e00195781.parquet", |
|
"dev": "https://huggingface.co/datasets/akhtet/myXNLI/resolve/main/data/validation-00000-of-00001-9c168eb31d1d810b.parquet", |
|
"test": "https://huggingface.co/datasets/akhtet/myXNLI/resolve/main/data/test-00000-of-00001-0fd9f93baf8c9cdb.parquet", |
|
}, |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.TEXTUAL_ENTAILMENT] |
|
|
|
_SOURCE_VERSION = "1.1.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class MyXNLIDataset(datasets.GeneratorBasedBuilder): |
|
"""The myXNLI corpus is a collection of Myanmar language data designed for the Natural Language Inference task.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_pairs", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema="seacrowd_pairs", |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"genre": datasets.Value("string"), |
|
"label": datasets.ClassLabel(names=["contradiction", "entailment", "neutral"]), |
|
"sentence1_en": datasets.Value("string"), |
|
"sentence2_en": datasets.Value("string"), |
|
"sentence1_my": datasets.Value("string"), |
|
"sentence2_my": datasets.Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_pairs": |
|
features = schemas.pairs_features(["contradiction", "entailment", "neutral"]) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> list[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": data_dir, "split": "train"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": data_dir, "split": "test"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": data_dir, "split": "dev"}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> tuple[int, dict]: |
|
if self.config.schema == "source": |
|
df = pd.read_parquet(filepath[split]) |
|
for i, row in df.iterrows(): |
|
yield i, { |
|
"genre": row["genre"], |
|
"label": row["label"], |
|
"sentence1_en": row["sentence1_en"], |
|
"sentence2_en": row["sentence2_en"], |
|
"sentence1_my": row["sentence1_my"], |
|
"sentence2_my": row["sentence2_my"], |
|
} |
|
|
|
elif self.config.schema == "seacrowd_pairs": |
|
df = pd.read_parquet(filepath[split]) |
|
for i, row in df.iterrows(): |
|
yield i, { |
|
"id": str(i), |
|
"text_1": row["sentence1_my"], |
|
"text_2": row["sentence2_my"], |
|
"label": row["label"], |
|
} |
|
|