from pathlib import Path from typing import List import datasets from seacrowd.utils import schemas from seacrowd.utils.common_parser import load_conll_data from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME, DEFAULT_SOURCE_VIEW_NAME, Tasks) _DATASETNAME = "nerp" _SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME _UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME _LANGUAGES = ["ind"] _LOCAL = False _CITATION = """\ @inproceedings{hoesen2018investigating, title={Investigating bi-lstm and crf with pos tag embedding for indonesian named entity tagger}, author={Hoesen, Devin and Purwarianti, Ayu}, booktitle={2018 International Conference on Asian Language Processing (IALP)}, pages={35--38}, year={2018}, organization={IEEE} } """ _DESCRIPTION = """\ The NERP dataset (Hoesen and Purwarianti, 2018) contains texts collected from several Indonesian news websites with five labels - PER (name of person) - LOC (name of location) - IND (name of product or brand) - EVT (name of the event) - FNB (name of food and beverage). NERP makes use of the IOB chunking format, just like the TermA dataset. """ _HOMEPAGE = "https://github.com/IndoNLP/indonlu" _LICENSE = "Creative Common Attribution Share-Alike 4.0 International" _URLs = { "train": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/nerp_ner-prosa/train_preprocess.txt", "validation": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/nerp_ner-prosa/valid_preprocess.txt", "test": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/nerp_ner-prosa/test_preprocess_masked_label.txt", } _SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" class NerpDataset(datasets.GeneratorBasedBuilder): """NERP is an NER tagging dataset contains about (train=6720,valid=840,test=840) sentences, with 11 classes.""" label_classes = ["B-PPL", "B-PLC", "B-EVT", "B-IND", "B-FNB", "I-PPL", "I-PLC", "I-EVT", "I-IND", "I-FNB", "O"] BUILDER_CONFIGS = [ SEACrowdConfig( name="nerp_source", version=datasets.Version(_SOURCE_VERSION), description="NERP source schema", schema="source", subset_id="nerp", ), SEACrowdConfig( name="nerp_seacrowd_seq_label", version=datasets.Version(_SEACROWD_VERSION), description="NERP Nusantara schema", schema="seacrowd_seq_label", subset_id="nerp", ), ] DEFAULT_CONFIG_NAME = "nerp_source" def _info(self): if self.config.schema == "source": features = datasets.Features({"index": datasets.Value("string"), "tokens": [datasets.Value("string")], "ner_tag": [datasets.Value("string")]}) elif self.config.schema == "seacrowd_seq_label": features = schemas.seq_label_features(self.label_classes) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: train_tsv_path = Path(dl_manager.download_and_extract(_URLs["train"])) validation_tsv_path = Path(dl_manager.download_and_extract(_URLs["validation"])) test_tsv_path = Path(dl_manager.download_and_extract(_URLs["test"])) data_files = { "train": train_tsv_path, "validation": validation_tsv_path, "test": test_tsv_path, } return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["validation"]}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}, ), ] def _generate_examples(self, filepath: Path): conll_dataset = load_conll_data(filepath) if self.config.schema == "source": for i, row in enumerate(conll_dataset): ex = {"index": str(i), "tokens": row["sentence"], "ner_tag": row["label"]} yield i, ex elif self.config.schema == "seacrowd_seq_label": for i, row in enumerate(conll_dataset): ex = {"id": str(i), "tokens": row["sentence"], "labels": row["label"]} yield i, ex else: raise ValueError(f"Invalid config: {self.config.name}")