news_en_id / news_en_id.py
holylovenia's picture
Upload news_en_id.py with huggingface_hub
770d214
raw
history blame
5.02 kB
from pathlib import Path
from typing import List
import datasets
import json
from nusacrowd.utils import schemas
from nusacrowd.utils.configs import NusantaraConfig
from nusacrowd.utils.constants import Tasks, DEFAULT_SOURCE_VIEW_NAME, DEFAULT_NUSANTARA_VIEW_NAME
_DATASETNAME = "news_en_id"
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
_UNIFIED_VIEW_NAME = DEFAULT_NUSANTARA_VIEW_NAME
_LANGUAGES = ["ind", "eng"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LOCAL = False
_CITATION = """\
@inproceedings{guntara-etal-2020-benchmarking,
title = "Benchmarking Multidomain {E}nglish-{I}ndonesian Machine Translation",
author = "Guntara, Tri Wahyu and
Aji, Alham Fikri and
Prasojo, Radityo Eko",
booktitle = "Proceedings of the 13th Workshop on Building and Using Comparable Corpora",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.bucc-1.6",
pages = "35--43",
language = "English",
ISBN = "979-10-95546-42-9",
}
"""
_DESCRIPTION = """\
News En-Id is a machine translation dataset containing Indonesian-English parallel sentences collected from the news. The news dataset is collected from multiple sources: Pan Asia Networking Localization (PANL), Bilingual BBC news articles, Berita Jakarta, and GlobalVoices. We split the dataset and use 75% as the training set, 10% as the validation set, and 15% as the test set. Each of the datasets is evaluated in both directions, i.e., English to Indonesian (En → Id) and Indonesian to English (Id → En) translations.
"""
_HOMEPAGE = "https://github.com/gunnxx/indonesian-mt-data"
_LICENSE = "Creative Commons Attribution Share-Alike 4.0 International"
_URLs = {"indonlg": "https://storage.googleapis.com/babert-pretraining/IndoNLG_finals/downstream_task/downstream_task_datasets.zip"}
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION]
_SOURCE_VERSION = "1.0.0"
_NUSANTARA_VERSION = "1.0.0"
class NewsEnId(datasets.GeneratorBasedBuilder):
"""Bible Su-Id is a machine translation dataset containing Indonesian-Sundanese parallel sentences collected from the bible.."""
BUILDER_CONFIGS = [
NusantaraConfig(
name="news_en_id_source",
version=datasets.Version(_SOURCE_VERSION),
description="News En-Id source schema",
schema="source",
subset_id="news_en_id",
),
NusantaraConfig(
name="news_en_id_nusantara_t2t",
version=datasets.Version(_NUSANTARA_VERSION),
description="News En-Id Nusantara schema",
schema="nusantara_t2t",
subset_id="news_en_id",
),
]
DEFAULT_CONFIG_NAME = "news_en_id_source"
def _info(self):
if self.config.schema == "source":
features = datasets.Features({"id": datasets.Value("string"), "text": datasets.Value("string"), "label": datasets.Value("string")})
elif self.config.schema == "nusantara_t2t":
features = schemas.text2text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
base_path = Path(dl_manager.download_and_extract(_URLs["indonlg"])) / "IndoNLG_downstream_tasks" / "MT_IMD_NEWS"
data_files = {
"train": base_path / "train_preprocess.json",
"validation": base_path / "valid_preprocess.json",
"test": base_path / "test_preprocess.json",
}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": data_files["train"]},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": data_files["validation"]},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": data_files["test"]},
),
]
def _generate_examples(self, filepath: Path):
data = json.load(open(filepath, "r"))
if self.config.schema == "source":
for row in data:
ex = {"id": row["id"], "text": row["text"], "label": row["label"]}
yield row["id"], ex
elif self.config.schema == "nusantara_t2t":
for row in data:
ex = {
"id": row["id"],
"text_1": row["text"],
"text_2": row["label"],
"text_1_name": "eng",
"text_2_name": "ind",
}
yield row["id"], ex
else:
raise ValueError(f"Invalid config: {self.config.name}")