Datasets:

ArXiv:
License:
File size: 10,348 Bytes
199aa31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import re
from pathlib import Path
from typing import Dict, List, Tuple

import datasets

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

_CITATION = """\
@inproceedings{kjartansson18_sltu,
  author={Oddur Kjartansson and Supheakmungkol Sarin and Knot Pipatsrisawat and Martin Jansche and Linne Ha},
  title={{Crowd-Sourced Speech Corpora for Javanese, Sundanese, Sinhala, Nepali, and Bangladeshi Bengali}},
  year=2018,
  booktitle={Proc. 6th Workshop on Spoken Language Technologies for Under-Resourced Languages (SLTU 2018)},
  pages={52--55},
  doi={10.21437/SLTU.2018-11}
}
"""

_DATASETNAME = "openslr"

_DESCRIPTION = """\
This data set contains transcribed high-quality audio of Javanese, Sundanese, Burmese, Khmer. This data set\
come from 3 different projects under OpenSLR initiative
"""

_HOMEPAGE = "https://www.openslr.org/resources.php"

_LANGUAGES = ["mya", "jav", "sun", "khm"]

_LICENSE = Licenses.CC_BY_SA_4_0.value

_LOCAL = False

_RESOURCES = {
    "SLR35": {
        "language": "jav",
        "files": [
            "asr_javanese_0.zip",
            "asr_javanese_1.zip",
            "asr_javanese_2.zip",
            "asr_javanese_3.zip",
            "asr_javanese_4.zip",
            "asr_javanese_5.zip",
            "asr_javanese_6.zip",
            "asr_javanese_7.zip",
            "asr_javanese_8.zip",
            "asr_javanese_9.zip",
            "asr_javanese_a.zip",
            "asr_javanese_b.zip",
            "asr_javanese_c.zip",
            "asr_javanese_d.zip",
            "asr_javanese_e.zip",
            "asr_javanese_f.zip",
        ],
        "index_files": ["asr_javanese/utt_spk_text.tsv"] * 16,
        "data_dirs": ["asr_javanese/data"] * 16,
    },
    "SLR36": {
        "language": "sun",
        "files": [
            "asr_sundanese_0.zip",
            "asr_sundanese_1.zip",
            "asr_sundanese_2.zip",
            "asr_sundanese_3.zip",
            "asr_sundanese_4.zip",
            "asr_sundanese_5.zip",
            "asr_sundanese_6.zip",
            "asr_sundanese_7.zip",
            "asr_sundanese_8.zip",
            "asr_sundanese_9.zip",
            "asr_sundanese_a.zip",
            "asr_sundanese_b.zip",
            "asr_sundanese_c.zip",
            "asr_sundanese_d.zip",
            "asr_sundanese_e.zip",
            "asr_sundanese_f.zip",
        ],
        "index_files": ["asr_sundanese/utt_spk_text.tsv"] * 16,
        "data_dirs": ["asr_sundanese/data"] * 16,
    },
    "SLR41": {
        "language": "jav",
        "files": ["jv_id_female.zip", "jv_id_male.zip"],
        "index_files": ["jv_id_female/line_index.tsv", "jv_id_male/line_index.tsv"],
        "data_dirs": ["jv_id_female/wavs", "jv_id_male/wavs"],
    },
    "SLR42": {
        "language": "khm",
        "files": ["km_kh_male.zip"],
        "index_files": ["km_kh_male/line_index.tsv"],
        "data_dirs": ["km_kh_male/wavs"],
    },
    "SLR44": {
        "language": "sun",
        "files": ["su_id_female.zip", "su_id_male.zip"],
        "index_files": ["su_id_female/line_index.tsv", "su_id_male/line_index.tsv"],
        "data_dirs": ["su_id_female/wavs", "su_id_male/wavs"],
    },
    "SLR80": {
        "language": "mya",
        "files": ["my_mm_female.zip"],
        "index_files": ["line_index.tsv"],
        "data_dirs": [""],
    },
}
_URLS = {_DATASETNAME: "https://openslr.org/resources/{subset}"}

_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "2024.06.20"


class OpenSLRDataset(datasets.GeneratorBasedBuilder):
    """This data set contains transcribed high-quality audio of Javanese, Sundanese, Burmese, Khmer. This data set
    come from 3 different projects under OpenSLR initiative"""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

    BUILDER_CONFIGS = [
        SEACrowdConfig(name=f"{_DATASETNAME}_{subset}_{_RESOURCES[subset]['language']}_source", version=datasets.Version(_SOURCE_VERSION), description=f"{_DATASETNAME} source schema", schema="source", subset_id=f"{_DATASETNAME}")
        for subset in _RESOURCES.keys()
    ] + [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_{subset}_{_RESOURCES[subset]['language']}_seacrowd_sptext", version=datasets.Version(_SEACROWD_VERSION), description=f"{_DATASETNAME} SEACrowd schema", schema="seacrowd_sptext", subset_id=f"{_DATASETNAME}"
        )
        for subset in _RESOURCES.keys()
    ]

    DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_SLR41_jav_source"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "path": datasets.Value("string"),
                    "audio": datasets.Audio(sampling_rate=48_000),
                    "sentence": datasets.Value("string"),
                }
            )
        elif self.config.schema == "seacrowd_sptext":
            features = schemas.speech_text_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        subset = self.config.name.split("_")[1]
        urls = [f"{_URLS[_DATASETNAME].format(subset=subset[3:])}/{file}" for file in _RESOURCES[subset]["files"]]
        data_dir = dl_manager.download_and_extract(urls)

        path_to_indexs = [os.path.join(path, f"{_RESOURCES[subset]['index_files'][i]}") for i, path in enumerate(data_dir)]
        path_to_datas = [os.path.join(path, f"{_RESOURCES[subset]['data_dirs'][i]}") for i, path in enumerate(data_dir)]

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": [path_to_indexs, path_to_datas],
                    "split": "train",
                },
            )
        ]

    def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""
        subset = self.config.name.split("_")[1]
        path_to_indexs, path_to_datas = filepath[0], filepath[1]
        counter = -1
        if subset in ["SLR35", "SLR36"]:
            sentence_index = {}
            for i, path_to_index in enumerate(path_to_indexs):
                with open(path_to_index, encoding="utf-8") as f:
                    lines = f.readlines()
                    for id_, line in enumerate(lines):
                        field_values = re.split(r"\t\t?", line.strip())
                        filename, user_id, sentence = field_values
                        sentence_index[filename] = sentence
                for path_to_data in sorted(Path(path_to_datas[i]).rglob("*.flac")):
                    filename = path_to_data.stem
                    if path_to_data.stem not in sentence_index:
                        continue
                    path = str(path_to_data.resolve())
                    sentence = sentence_index[filename]
                    counter += 1
                    if self.config.schema == "source":
                        example = {"path": path, "audio": path, "sentence": sentence}
                    elif self.config.schema == "seacrowd_sptext":
                        example = {
                            "id": counter,
                            "path": path,
                            "audio": path,
                            "text": sentence,
                            "speaker_id": user_id,
                            "metadata": {
                                "speaker_age": None,
                                "speaker_gender": None,
                            },
                        }
                    yield counter, example
        else:
            for i, path_to_index in enumerate(path_to_indexs):
                geneder = "female" if "female" in path_to_index else "male"
                with open(path_to_index, encoding="utf-8") as f:
                    lines = f.readlines()
                    for id_, line in enumerate(lines):
                        # Following regexs are needed to normalise the lines, since the datasets
                        # are not always consistent and have bugs:
                        line = re.sub(r"\t[^\t]*\t", "\t", line.strip())
                        field_values = re.split(r"\t\t?", line)
                        if len(field_values) != 2:
                            continue
                        filename, sentence = field_values
                        path = os.path.join(path_to_datas[i], f"{filename}.wav")
                        counter += 1
                        if self.config.schema == "source":
                            example = {"path": path, "audio": path, "sentence": sentence}
                        elif self.config.schema == "seacrowd_sptext":
                            example = {
                                "id": counter,
                                "path": path,
                                "audio": path,
                                "text": sentence,
                                "speaker_id": None,
                                "metadata": {
                                    "speaker_age": None,
                                    "speaker_gender": geneder,
                                },
                            }
                        yield counter, example