File size: 10,348 Bytes
199aa31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@inproceedings{kjartansson18_sltu,
author={Oddur Kjartansson and Supheakmungkol Sarin and Knot Pipatsrisawat and Martin Jansche and Linne Ha},
title={{Crowd-Sourced Speech Corpora for Javanese, Sundanese, Sinhala, Nepali, and Bangladeshi Bengali}},
year=2018,
booktitle={Proc. 6th Workshop on Spoken Language Technologies for Under-Resourced Languages (SLTU 2018)},
pages={52--55},
doi={10.21437/SLTU.2018-11}
}
"""
_DATASETNAME = "openslr"
_DESCRIPTION = """\
This data set contains transcribed high-quality audio of Javanese, Sundanese, Burmese, Khmer. This data set\
come from 3 different projects under OpenSLR initiative
"""
_HOMEPAGE = "https://www.openslr.org/resources.php"
_LANGUAGES = ["mya", "jav", "sun", "khm"]
_LICENSE = Licenses.CC_BY_SA_4_0.value
_LOCAL = False
_RESOURCES = {
"SLR35": {
"language": "jav",
"files": [
"asr_javanese_0.zip",
"asr_javanese_1.zip",
"asr_javanese_2.zip",
"asr_javanese_3.zip",
"asr_javanese_4.zip",
"asr_javanese_5.zip",
"asr_javanese_6.zip",
"asr_javanese_7.zip",
"asr_javanese_8.zip",
"asr_javanese_9.zip",
"asr_javanese_a.zip",
"asr_javanese_b.zip",
"asr_javanese_c.zip",
"asr_javanese_d.zip",
"asr_javanese_e.zip",
"asr_javanese_f.zip",
],
"index_files": ["asr_javanese/utt_spk_text.tsv"] * 16,
"data_dirs": ["asr_javanese/data"] * 16,
},
"SLR36": {
"language": "sun",
"files": [
"asr_sundanese_0.zip",
"asr_sundanese_1.zip",
"asr_sundanese_2.zip",
"asr_sundanese_3.zip",
"asr_sundanese_4.zip",
"asr_sundanese_5.zip",
"asr_sundanese_6.zip",
"asr_sundanese_7.zip",
"asr_sundanese_8.zip",
"asr_sundanese_9.zip",
"asr_sundanese_a.zip",
"asr_sundanese_b.zip",
"asr_sundanese_c.zip",
"asr_sundanese_d.zip",
"asr_sundanese_e.zip",
"asr_sundanese_f.zip",
],
"index_files": ["asr_sundanese/utt_spk_text.tsv"] * 16,
"data_dirs": ["asr_sundanese/data"] * 16,
},
"SLR41": {
"language": "jav",
"files": ["jv_id_female.zip", "jv_id_male.zip"],
"index_files": ["jv_id_female/line_index.tsv", "jv_id_male/line_index.tsv"],
"data_dirs": ["jv_id_female/wavs", "jv_id_male/wavs"],
},
"SLR42": {
"language": "khm",
"files": ["km_kh_male.zip"],
"index_files": ["km_kh_male/line_index.tsv"],
"data_dirs": ["km_kh_male/wavs"],
},
"SLR44": {
"language": "sun",
"files": ["su_id_female.zip", "su_id_male.zip"],
"index_files": ["su_id_female/line_index.tsv", "su_id_male/line_index.tsv"],
"data_dirs": ["su_id_female/wavs", "su_id_male/wavs"],
},
"SLR80": {
"language": "mya",
"files": ["my_mm_female.zip"],
"index_files": ["line_index.tsv"],
"data_dirs": [""],
},
}
_URLS = {_DATASETNAME: "https://openslr.org/resources/{subset}"}
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class OpenSLRDataset(datasets.GeneratorBasedBuilder):
"""This data set contains transcribed high-quality audio of Javanese, Sundanese, Burmese, Khmer. This data set
come from 3 different projects under OpenSLR initiative"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(name=f"{_DATASETNAME}_{subset}_{_RESOURCES[subset]['language']}_source", version=datasets.Version(_SOURCE_VERSION), description=f"{_DATASETNAME} source schema", schema="source", subset_id=f"{_DATASETNAME}")
for subset in _RESOURCES.keys()
] + [
SEACrowdConfig(
name=f"{_DATASETNAME}_{subset}_{_RESOURCES[subset]['language']}_seacrowd_sptext", version=datasets.Version(_SEACROWD_VERSION), description=f"{_DATASETNAME} SEACrowd schema", schema="seacrowd_sptext", subset_id=f"{_DATASETNAME}"
)
for subset in _RESOURCES.keys()
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_SLR41_jav_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"path": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=48_000),
"sentence": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_sptext":
features = schemas.speech_text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
subset = self.config.name.split("_")[1]
urls = [f"{_URLS[_DATASETNAME].format(subset=subset[3:])}/{file}" for file in _RESOURCES[subset]["files"]]
data_dir = dl_manager.download_and_extract(urls)
path_to_indexs = [os.path.join(path, f"{_RESOURCES[subset]['index_files'][i]}") for i, path in enumerate(data_dir)]
path_to_datas = [os.path.join(path, f"{_RESOURCES[subset]['data_dirs'][i]}") for i, path in enumerate(data_dir)]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": [path_to_indexs, path_to_datas],
"split": "train",
},
)
]
def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
subset = self.config.name.split("_")[1]
path_to_indexs, path_to_datas = filepath[0], filepath[1]
counter = -1
if subset in ["SLR35", "SLR36"]:
sentence_index = {}
for i, path_to_index in enumerate(path_to_indexs):
with open(path_to_index, encoding="utf-8") as f:
lines = f.readlines()
for id_, line in enumerate(lines):
field_values = re.split(r"\t\t?", line.strip())
filename, user_id, sentence = field_values
sentence_index[filename] = sentence
for path_to_data in sorted(Path(path_to_datas[i]).rglob("*.flac")):
filename = path_to_data.stem
if path_to_data.stem not in sentence_index:
continue
path = str(path_to_data.resolve())
sentence = sentence_index[filename]
counter += 1
if self.config.schema == "source":
example = {"path": path, "audio": path, "sentence": sentence}
elif self.config.schema == "seacrowd_sptext":
example = {
"id": counter,
"path": path,
"audio": path,
"text": sentence,
"speaker_id": user_id,
"metadata": {
"speaker_age": None,
"speaker_gender": None,
},
}
yield counter, example
else:
for i, path_to_index in enumerate(path_to_indexs):
geneder = "female" if "female" in path_to_index else "male"
with open(path_to_index, encoding="utf-8") as f:
lines = f.readlines()
for id_, line in enumerate(lines):
# Following regexs are needed to normalise the lines, since the datasets
# are not always consistent and have bugs:
line = re.sub(r"\t[^\t]*\t", "\t", line.strip())
field_values = re.split(r"\t\t?", line)
if len(field_values) != 2:
continue
filename, sentence = field_values
path = os.path.join(path_to_datas[i], f"{filename}.wav")
counter += 1
if self.config.schema == "source":
example = {"path": path, "audio": path, "sentence": sentence}
elif self.config.schema == "seacrowd_sptext":
example = {
"id": counter,
"path": path,
"audio": path,
"text": sentence,
"speaker_id": None,
"metadata": {
"speaker_age": None,
"speaker_gender": geneder,
},
}
yield counter, example
|