holylovenia
commited on
Upload phomt.py with huggingface_hub
Browse files
phomt.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import Dict, List, Tuple
|
4 |
+
|
5 |
+
import datasets
|
6 |
+
|
7 |
+
from seacrowd.utils import schemas
|
8 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
9 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
10 |
+
|
11 |
+
_CITATION = """\
|
12 |
+
@inproceedings{PhoMT,
|
13 |
+
title = {{PhoMT: A High-Quality and Large-Scale Benchmark Dataset for Vietnamese-English Machine Translation}},
|
14 |
+
author = {Long Doan and Linh The Nguyen and Nguyen Luong Tran and Thai Hoang and Dat Quoc Nguyen},
|
15 |
+
booktitle = {Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing},
|
16 |
+
year = {2021},
|
17 |
+
pages = {4495--4503}
|
18 |
+
}
|
19 |
+
"""
|
20 |
+
|
21 |
+
_DATASETNAME = "phomt"
|
22 |
+
|
23 |
+
|
24 |
+
_DESCRIPTION = """\
|
25 |
+
PhoMT is a high-quality and large-scale Vietnamese-English parallel dataset of 3.02M sentence pairs, which is 2.9M
|
26 |
+
pairs larger than the benchmark Vietnamese-English machine translation corpus IWSLT15. This is the first large-scale
|
27 |
+
Vietnamese-English machine translation study.
|
28 |
+
"""
|
29 |
+
|
30 |
+
_LANGUAGES = ["vie", "eng"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
31 |
+
_LOCAL = True
|
32 |
+
|
33 |
+
_HOMEPAGE = "https://github.com/VinAIResearch/PhoMT"
|
34 |
+
|
35 |
+
_LICENSE = Licenses.MIT.value
|
36 |
+
|
37 |
+
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION]
|
38 |
+
|
39 |
+
_SOURCE_VERSION = "1.0.0"
|
40 |
+
|
41 |
+
_SEACROWD_VERSION = "2024.06.20"
|
42 |
+
|
43 |
+
MAP_LANG = {"eng": "en", "vie": "vi"}
|
44 |
+
|
45 |
+
|
46 |
+
def seacrowd_config_constructor(src_lang, tgt_lang, schema, version):
|
47 |
+
if src_lang == "" or tgt_lang == "":
|
48 |
+
raise ValueError(f"Invalid src_lang {src_lang} or tgt_lang {tgt_lang}")
|
49 |
+
|
50 |
+
if schema not in ["source", "seacrowd_t2t"]:
|
51 |
+
raise ValueError(f"Invalid schema: {schema}")
|
52 |
+
|
53 |
+
return SEACrowdConfig(
|
54 |
+
name="phomt_{src}_{tgt}_{schema}".format(src=src_lang, tgt=tgt_lang, schema=schema),
|
55 |
+
version=datasets.Version(version),
|
56 |
+
description="phomt schema for {schema} from {src} to {tgt}".format(schema=schema, src=src_lang, tgt=tgt_lang),
|
57 |
+
schema=schema,
|
58 |
+
subset_id="phomt_{src}_{tgt}".format(src=src_lang, tgt=tgt_lang),
|
59 |
+
)
|
60 |
+
|
61 |
+
|
62 |
+
class PhoMT(datasets.GeneratorBasedBuilder):
|
63 |
+
"""
|
64 |
+
PhoMT is a high-quality and large-scale Vietnamese-English parallel dataset of 3.02M sentence pairs, which is
|
65 |
+
2.9M pairs larger than the benchmark Vietnamese-English machine translation corpus IWSLT15.
|
66 |
+
"""
|
67 |
+
|
68 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
69 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
70 |
+
|
71 |
+
BUILDER_CONFIGS = [
|
72 |
+
seacrowd_config_constructor("eng", "vie", "source", _SOURCE_VERSION),
|
73 |
+
seacrowd_config_constructor("eng", "vie", "seacrowd_t2t", _SEACROWD_VERSION),
|
74 |
+
]
|
75 |
+
|
76 |
+
DEFAULT_CONFIG_NAME = "phomt_eng_vie_source"
|
77 |
+
|
78 |
+
def _info(self) -> datasets.DatasetInfo:
|
79 |
+
if self.config.schema in ("source", "seacrowd_t2t"):
|
80 |
+
features = schemas.text2text_features
|
81 |
+
else:
|
82 |
+
raise ValueError(f"Invalid config schema: {self.config.schema}")
|
83 |
+
|
84 |
+
return datasets.DatasetInfo(
|
85 |
+
description=_DESCRIPTION,
|
86 |
+
features=features,
|
87 |
+
homepage=_HOMEPAGE,
|
88 |
+
license=_LICENSE,
|
89 |
+
citation=_CITATION,
|
90 |
+
)
|
91 |
+
|
92 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
93 |
+
"""Returns SplitGenerators."""
|
94 |
+
if self.config.data_dir is None:
|
95 |
+
raise ValueError("This is a local dataset. Please pass the data_dir kwarg to load_dataset.")
|
96 |
+
else:
|
97 |
+
data_dir = self.config.data_dir
|
98 |
+
|
99 |
+
return [
|
100 |
+
datasets.SplitGenerator(
|
101 |
+
name=datasets.Split.TRAIN,
|
102 |
+
gen_kwargs={"filepath": os.path.join(data_dir, "detokenization", "train", "train.{lang}")},
|
103 |
+
),
|
104 |
+
datasets.SplitGenerator(
|
105 |
+
name=datasets.Split.VALIDATION,
|
106 |
+
gen_kwargs={"filepath": os.path.join(data_dir, "detokenization", "dev", "dev.{lang}")},
|
107 |
+
),
|
108 |
+
datasets.SplitGenerator(
|
109 |
+
name=datasets.Split.TEST,
|
110 |
+
gen_kwargs={"filepath": os.path.join(data_dir, "detokenization", "test", "test.{lang}")},
|
111 |
+
),
|
112 |
+
]
|
113 |
+
|
114 |
+
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
|
115 |
+
config_names_split = self.config.name.split("_")
|
116 |
+
src_lang = config_names_split[1]
|
117 |
+
tgt_lang = config_names_split[2]
|
118 |
+
|
119 |
+
src_path = filepath.format(lang=MAP_LANG[src_lang])
|
120 |
+
tgt_path = filepath.format(lang=MAP_LANG[tgt_lang])
|
121 |
+
|
122 |
+
with open(src_path, "r", encoding="utf8") as f:
|
123 |
+
src_lines = f.readlines()
|
124 |
+
with open(tgt_path, "r", encoding="utf8") as f:
|
125 |
+
tgt_lines = f.readlines()
|
126 |
+
|
127 |
+
if self.config.schema in ("source", "seacrowd_t2t"):
|
128 |
+
for idx, (src_line, tgt_line) in enumerate(zip(src_lines, tgt_lines)):
|
129 |
+
ex = {
|
130 |
+
"id": str(idx),
|
131 |
+
"text_1": src_line.strip(),
|
132 |
+
"text_2": tgt_line.strip(),
|
133 |
+
"text_1_name": src_lang,
|
134 |
+
"text_2_name": tgt_lang,
|
135 |
+
}
|
136 |
+
yield idx, ex
|
137 |
+
|
138 |
+
else:
|
139 |
+
raise NotImplementedError(f"Schema '{self.config.schema}' is not defined.")
|