import os from pathlib import Path from typing import Dict, List, Tuple import datasets from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Licenses, Tasks _CITATION = """\ @inproceedings{PhoMT, title = {{PhoMT: A High-Quality and Large-Scale Benchmark Dataset for Vietnamese-English Machine Translation}}, author = {Long Doan and Linh The Nguyen and Nguyen Luong Tran and Thai Hoang and Dat Quoc Nguyen}, booktitle = {Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing}, year = {2021}, pages = {4495--4503} } """ _DATASETNAME = "phomt" _DESCRIPTION = """\ PhoMT is a high-quality and large-scale Vietnamese-English parallel dataset of 3.02M sentence pairs, which is 2.9M pairs larger than the benchmark Vietnamese-English machine translation corpus IWSLT15. This is the first large-scale Vietnamese-English machine translation study. """ _LANGUAGES = ["vie", "eng"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data) _LOCAL = True _HOMEPAGE = "https://github.com/VinAIResearch/PhoMT" _LICENSE = Licenses.MIT.value _SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" MAP_LANG = {"eng": "en", "vie": "vi"} def seacrowd_config_constructor(src_lang, tgt_lang, schema, version): if src_lang == "" or tgt_lang == "": raise ValueError(f"Invalid src_lang {src_lang} or tgt_lang {tgt_lang}") if schema not in ["source", "seacrowd_t2t"]: raise ValueError(f"Invalid schema: {schema}") return SEACrowdConfig( name="phomt_{src}_{tgt}_{schema}".format(src=src_lang, tgt=tgt_lang, schema=schema), version=datasets.Version(version), description="phomt schema for {schema} from {src} to {tgt}".format(schema=schema, src=src_lang, tgt=tgt_lang), schema=schema, subset_id="phomt_{src}_{tgt}".format(src=src_lang, tgt=tgt_lang), ) class PhoMT(datasets.GeneratorBasedBuilder): """ PhoMT is a high-quality and large-scale Vietnamese-English parallel dataset of 3.02M sentence pairs, which is 2.9M pairs larger than the benchmark Vietnamese-English machine translation corpus IWSLT15. """ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) BUILDER_CONFIGS = [ seacrowd_config_constructor("eng", "vie", "source", _SOURCE_VERSION), seacrowd_config_constructor("eng", "vie", "seacrowd_t2t", _SEACROWD_VERSION), ] DEFAULT_CONFIG_NAME = "phomt_eng_vie_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema in ("source", "seacrowd_t2t"): features = schemas.text2text_features else: raise ValueError(f"Invalid config schema: {self.config.schema}") return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: """Returns SplitGenerators.""" if self.config.data_dir is None: raise ValueError("This is a local dataset. Please pass the data_dir kwarg to load_dataset.") else: data_dir = self.config.data_dir return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(data_dir, "detokenization", "train", "train.{lang}")}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(data_dir, "detokenization", "dev", "dev.{lang}")}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, "detokenization", "test", "test.{lang}")}, ), ] def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: config_names_split = self.config.name.split("_") src_lang = config_names_split[1] tgt_lang = config_names_split[2] src_path = filepath.format(lang=MAP_LANG[src_lang]) tgt_path = filepath.format(lang=MAP_LANG[tgt_lang]) with open(src_path, "r", encoding="utf8") as f: src_lines = f.readlines() with open(tgt_path, "r", encoding="utf8") as f: tgt_lines = f.readlines() if self.config.schema in ("source", "seacrowd_t2t"): for idx, (src_line, tgt_line) in enumerate(zip(src_lines, tgt_lines)): ex = { "id": str(idx), "text_1": src_line.strip(), "text_2": tgt_line.strip(), "text_1_name": src_lang, "text_2_name": tgt_lang, } yield idx, ex else: raise NotImplementedError(f"Schema '{self.config.schema}' is not defined.")