|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@misc{rizqullah2023qasina, |
|
title={QASiNa: Religious Domain Question Answering using Sirah Nabawiyah}, |
|
author={Muhammad Razif Rizqullah and Ayu Purwarianti and Alham Fikri Aji}, |
|
year={2023}, |
|
eprint={2310.08102}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "qasina" |
|
|
|
_DESCRIPTION = """\ |
|
Question Answering Sirah Nabawiyah Dataset (QASiNa) is Extractive \ |
|
QA Dataset which build to perform QA task in Sirah Nabawiyah domain. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/rizquuula/QASiNa" |
|
|
|
_LANGUAGES = ["ind"] |
|
|
|
_LICENSE = Licenses.MIT.value |
|
_LOCAL = False |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://github.com/rizquuula/QASiNa/raw/main/QASiNa.json", |
|
} |
|
|
|
|
|
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
|
|
class QasinaDataset(datasets.GeneratorBasedBuilder): |
|
"""Question Answering Sirah Nabawiyah Dataset (QASiNa) is \ |
|
Extractive QA Dataset which build to perform QA task in Sirah Nabawiyah domain.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
SEACROWD_SCHEMA_NAME = "qa" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"context_id": datasets.Value("int32"), |
|
"context": datasets.Value("string"), |
|
"question_answers": datasets.Sequence({"type": datasets.Value("string"), "question": datasets.Value("string"), "answer": datasets.Value("string"), "answer_start": datasets.Value("int32"), "question_id": datasets.Value("int32")}), |
|
"context_length": datasets.Value("int32"), |
|
"context_title": datasets.Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
features = schemas.qa.features |
|
features["meta"] = {"context_title": datasets.Value("string"), "answer_start": datasets.Value("int32"),"context_length": datasets.Value("int32"), "type": datasets.Value("string")} |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
urls = _URLS[_DATASETNAME] |
|
filepath = dl_manager.download(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": filepath, |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
with open(filepath) as file: |
|
dataset = json.load(file) |
|
|
|
if self.config.schema == "source": |
|
for i, line in enumerate(dataset): |
|
yield i, { |
|
"context_id": line["context_id"], |
|
"context": line["context"], |
|
"question_answers": [ |
|
{ |
|
"type": subline["type"], |
|
"question": subline["question"], |
|
"answer": subline["answer"], |
|
"answer_start": subline["answer_start"], |
|
"question_id": subline["question_id"], |
|
} |
|
for subline in line["question_answers"] |
|
], |
|
"context_length": line["context_length"], |
|
"context_title": line["context_title"], |
|
} |
|
|
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
for line in dataset: |
|
for question_answer in line["question_answers"]: |
|
id = question_answer["question_id"] |
|
|
|
yield id, { |
|
"id": id, |
|
"question_id": question_answer["question_id"], |
|
"document_id": line["context_id"], |
|
"question": question_answer["question"], |
|
"type": "extractive", |
|
"choices": [], |
|
"context": line["context"], |
|
"answer": [question_answer["answer"]], |
|
"meta": { |
|
"context_title": line["context_title"], |
|
"answer_start": question_answer["answer_start"], |
|
"context_length": line["context_length"], |
|
"type": question_answer["type"], |
|
}, |
|
} |
|
|