File size: 10,056 Bytes
d28d188 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
"""
SEA Crowd Data Loader for SEA MADLAD.
"""
import gzip
import json
from typing import Dict, List, Tuple
import datasets
from datasets.download.download_manager import DownloadManager
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks
_CITATION = r"""
@misc{kudugunta2023madlad400,
title={MADLAD-400: A Multilingual And Document-Level Large Audited Dataset},
author={Sneha Kudugunta and Isaac Caswell and Biao Zhang and Xavier Garcia and Christopher A. Choquette-Choo and Katherine Lee and Derrick Xin and Aditya Kusupati and Romi Stella and Ankur Bapna and Orhan Firat},
year={2023},
eprint={2309.04662},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
logger = datasets.logging.get_logger(__name__)
# this config is created for SEACrowd Dataloader
_LANG_CONFIG = {
"ace": {"name": "Aceh", "source_subset": "ace"},
"akb": {"name": "Batak Angkola", "source_subset": "akb"},
"ban": {"name": "Bali", "source_subset": "ban"},
"bbc": {"name": "Batak Toba", "source_subset": "bbc"},
"bew": {"name": "Betawi", "source_subset": "bew"},
"btx": {"name": "Batak Karo", "source_subset": "btx"},
"ceb": {"name": "Cebuano", "source_subset": "ceb"},
"fil": {"name": "Filipino", "source_subset": "fil"},
"gor": {"name": "Gorontalo", "source_subset": "gor"},
"hil": {"name": "Hiligaynon", "source_subset": "hil"},
"iba": {"name": "Iban", "source_subset": "iba"},
"ilo": {"name": "Ilocano", "source_subset": "ilo"},
"ind": {"name": "Indonesian", "source_subset": "id"},
"jav": {"name": "Javanese", "source_subset": "jv"},
"kac": {"name": "Jingpho", "source_subset": "kac"},
"khm": {"name": "Khmer", "source_subset": "km"},
"kxd": {"name": "Brunei", "source_subset": "ms_Arab_BN"},
"lao": {"name": "Lao", "source_subset": "lo"},
"mad": {"name": "Madura", "source_subset": "mad"},
"mak": {"name": "Makasar", "source_subset": "mak"},
"meo": {"name": "Kedah Malay", "source_subset": "meo"},
"min": {"name": "Minangkabau", "source_subset": "min"},
"mkn": {"name": "Kupang Malay", "source_subset": "mkn"},
"msa": {"name": "Malay", "source_subset": "ms"},
"msi": {"name": "Sabah Malay", "source_subset": "msi"},
"mya": {"name": "Burmese", "source_subset": "my"},
"nij": {"name": "Ngaju", "source_subset": "nij"},
"nut": {"name": "Nung", "source_subset": "nut"},
"pag": {"name": "Pangasinan", "source_subset": "pag"},
"shn": {"name": "Shan", "source_subset": "shn"},
"sun": {"name": "Sunda", "source_subset": "su"},
"tet": {"name": "Tetun", "source_subset": "tet"},
"tha": {"name": "Thai", "source_subset": "th"},
"vie": {"name": "Vietnamese", "source_subset": "vi"},
"war": {"name": "Waray-Waray", "source_subset": "war"},
}
# this config is copied and added from source dataloader
# only using the `clean` values
_N_SHARDS_PER_SPLIT = {
"ace": 1,
"akb": 1,
"ban": 1,
"bbc": 1,
"bew": 1,
"btx": 1,
"ceb": 1,
"fil": 1,
"gor": 1,
"hil": 1,
"iba": 1,
"id": 18,
"ilo": 1,
"jv": 1,
"kac": 1,
"km": 1,
"lo": 1,
"mad": 1,
"mak": 1,
"meo": 1,
"min": 1,
"mkn": 1,
"ms": 2,
"ms_Arab_BN": 1,
"msi": 1,
"my": 1,
"nij": 1,
"nut": 1,
"pag": 1,
"shn": 1,
"su": 1,
"tet": 1,
"th": 21,
"vi": 32,
"war": 1,
}
_LOCAL = False
_LANGUAGES = list(_LANG_CONFIG.keys())
_DATASETNAME = "sea_madlad"
_DESCRIPTION = r"""
SEA MADLAD is a subset of MADLAD-400 (Multilingual Audited Dataset: Low-resource And Document-level), which is a document-level multilingual dataset based on Common Crawl.
SEA MADLAD only filters the language of the "clean" subset, which covers 36 languages indigenous to SEA from 419 languages in total.
As a result, some of SEA lang codes aren't available in this version because those belongs to the languages whose decision was to "remove from its clean version" based on MADLAD auditing process.
MADLAD uses all snapshots of CommonCrawl available as of August 1, 2022.
The primary advantage of this dataset over similar datasets is that it is more multilingual, it is audited and more highly filtered, and it is document-level.
The main disadvantage is also its strength -- being more filtered, it may lack the recall needed for some applications.
"""
_HOMEPAGE = "https://huggingface.co/datasets/allenai/MADLAD-400"
_LICENSE = Licenses.CC_BY_4_0.value
_URL = "https://huggingface.co/datasets/allenai/MADLAD-400/resolve/ecd71297d60c1eb996cd3d7c44c60ad5b55adfc6/data/{language}/{language}_{split}_{index:04d}.jsonl.gz"
_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
CONFIG_SUFFIXES_FOR_TASK = [TASK_TO_SCHEMA.get(task).lower() for task in _SUPPORTED_TASKS]
def conform_init_config():
"""Assertion Function for Instantiated Configs"""
if len(_LANGUAGES) == 0:
raise AssertionError("No Languages detected from config!")
if len(CONFIG_SUFFIXES_FOR_TASK) != len(_SUPPORTED_TASKS):
raise AssertionError("Config prefixes don't matched in terms of `len` with `_SUPPORTED_TASKS`!")
if len(CONFIG_SUFFIXES_FOR_TASK) == 0:
raise AssertionError("Config prefixes and `_SUPPORTED_TASKS` have `len` of 0!")
conform_init_config()
def construct_configs_on_langs(languages: list = None) -> List[SEACrowdConfig]:
"""
The function `construct_configs` constructs a list of SEACrowdConfig objects based on the provided
languages or a default language, and returns the list.
input:
languages (list, default None): The `languages` parameter is a list that specifies the languages for which the
configurations need to be constructed. If no languages are provided (value=None), the first value in language config
will be used.
output:
a list of `SEACrowdConfig` objects based on instantiated init variables
"""
# set output var
config_list = []
# construct zipped arg for config instantiation
TASKS_AND_CONFIG_SUFFIX_PAIRS = list(zip(_SUPPORTED_TASKS, CONFIG_SUFFIXES_FOR_TASK))
# implement source schema
version, config_name_prefix = _SOURCE_VERSION, "source"
config_list += [
SEACrowdConfig(
name=f"{_DATASETNAME}_{_LANG}_{config_name_prefix}",
version=datasets.Version(version),
description=f"{_DATASETNAME} {config_name_prefix} schema for language code {_LANG}",
schema=f"{config_name_prefix}",
subset_id=_LANG,
)
for _LANG in languages
]
# implement SEACrowd schema
version, config_name_prefix = _SEACROWD_VERSION, "seacrowd"
for task_obj, config_name_suffix in TASKS_AND_CONFIG_SUFFIX_PAIRS:
config_list += [
SEACrowdConfig(
name=f"{_DATASETNAME}_{_LANG}_{config_name_prefix}_{config_name_suffix}",
version=datasets.Version(version),
description=f"{_DATASETNAME} {config_name_prefix} schema for {task_obj.name} and language code {_LANG}",
schema=f"{config_name_prefix}_{config_name_suffix}",
subset_id=_LANG,
)
for _LANG in languages
]
return config_list
class SEAMADLADDataset(datasets.GeneratorBasedBuilder):
"""SEA MADLAD dataset, subsetted from https://huggingface.co/datasets/allenai/MADLAD-400"""
# get all schema w/o lang arg + get all schema w/ lang arg
BUILDER_CONFIGS = construct_configs_on_langs(_LANGUAGES)
def _info(self) -> datasets.DatasetInfo:
_config_schema_name = self.config.schema
logger.info(f"Received schema name: {self.config.schema}")
# self supervised training schema
if _config_schema_name == "source":
features = datasets.Features({"text": datasets.Value("string")})
elif _config_schema_name == "seacrowd_ssp":
features = schemas.ssp_features
else:
raise ValueError(f"Received unexpected config schema of {_config_schema_name}!")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]:
# construct URL from "lang", "split" -> "clean" split, and "index" based on `_N_SHARDS_PER_SPLIT`
_lang = _LANG_CONFIG[self.config.subset_id]["source_subset"]
_split = "clean"
_data_list = [_URL.format(language=_lang, split=_split, index=idx) for idx in range(_N_SHARDS_PER_SPLIT[_lang])]
filepaths = dl_manager.download(_data_list)
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": filepaths})]
def _generate_examples(self, filepaths) -> Tuple[int, Dict]:
_config_schema_name = self.config.schema
# the id_ constructions follows the source Dataloader
id_ = 0
for filepath in filepaths:
logger.info("generating examples from = %s", filepath)
with gzip.open(open(filepath, "rb"), "rt", encoding="utf-8") as f:
for line in f:
if line:
example = json.loads(line)
# for source_schema
if _config_schema_name == "source":
yield id_, {colname: example[colname] for colname in self.info.features}
# for ssp schema
elif _config_schema_name == "seacrowd_ssp":
yield id_, {"id": id_, "text": example["text"]}
else:
raise ValueError(f"Received unexpected config schema of {_config_schema_name}!")
id_ += 1
|