File size: 9,355 Bytes
11dfc88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from pathlib import Path
from typing import Dict, List, Tuple

import datasets
import pandas as pd

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

_CITATION = """\
@article{SeaEval2023,
  title={SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning},
  author={Wang, Bin and Liu, Zhengyuan and Huang, Xin and Jiao, Fangkai and Ding, Yang and Aw, Ai Ti and Chen, Nancy F.},
  journal={arXiv preprint arXiv:2309.04766},
  year={2023},
  url={https://github.com/SeaEval/SeaEval}
}
"""

_DATASETNAME = "seaeval"

_DESCRIPTION = """\
SeaEval is a benchmark toolkit for evaluating multilingual LLMs. The benchmark contains 28 datasets,
covering 7 languages. It contains 2 datasets for cross-lingual consistency, each containing parallel
questions for the 7 represented languages. It alsoc ontains 4 datasets for cultural reasoning
(multiple choice Q&A) that are in English but focused on regions including Singapore and Philipines.

This dataloader provides examples for Indonesia, Vietnamese, Malay, and Filipino.
"""

_HOMEPAGE = "https://github.com/SeaEval/SeaEval"

_LANGUAGES = {"ind": "Indonesian", "vie": "Vietnamese", "zlm": "Malay", "fil": "Filipino"}

_LICENSE = Licenses.CC_BY_NC_4_0.value

_LOCAL = False

_URLS = {
    "cross_mmlu": "https://huggingface.co/datasets/SeaEval/SeaEval_datasets/raw/main/cross_mmlu.json",
    "cross_logiqa": "https://huggingface.co/datasets/SeaEval/SeaEval_datasets/raw/main/cross_logiqa.json",
    "sg_eval": "https://huggingface.co/datasets/SeaEval/SeaEval_datasets/raw/main/sg_eval.json",
    "ph_eval": "https://huggingface.co/datasets/SeaEval/SeaEval_datasets/raw/main/ph_eval.json",
}

_SUPPORTED_TASKS = [Tasks.COMMONSENSE_REASONING, Tasks.QUESTION_ANSWERING]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "2024.06.20"


class SeaEvalDataset(datasets.GeneratorBasedBuilder):
    """
    SeaEval is a benchmark for evaluating multilingual LLMs from https://github.com/SeaEval/SeaEval.
    """

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

    LANGUAGES_EXCHANGED = dict((v, k) for k, v in _LANGUAGES.items())
    SUBSETS_CROSS_MMLU = ["cross_mmlu_" + lang for lang in _LANGUAGES.keys()]
    SUBSETS_CROSS_LOGIQA = ["cross_logiqa_" + lang for lang in _LANGUAGES.keys()]
    SUBSETS = SUBSETS_CROSS_MMLU + SUBSETS_CROSS_LOGIQA + ["sg_eval_eng", "ph_eval_eng"]

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_{subset}_source",
            version=datasets.Version(_SOURCE_VERSION),
            description=f"{_DATASETNAME}_{subset} source schema",
            schema="source",
            subset_id=f"{_DATASETNAME}_{subset}",
        )
        for subset in SUBSETS
    ]

    BUILDER_CONFIGS += [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_{subset}_seacrowd_qa",
            version=datasets.Version(_SOURCE_VERSION),
            description=f"{_DATASETNAME}_{subset} SEACrowd schema",
            schema="seacrowd_qa",
            subset_id=f"{_DATASETNAME}_{subset}",
        )
        for subset in SUBSETS
    ]

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source" and self.config.subset_id not in ["cross_logiqa", "ph_eval"]:
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "question": datasets.Value("string"),
                    "choices": datasets.Sequence(datasets.Value("string")),
                    "answer": datasets.Value("string"),
                }
            )
        elif self.config.schema == "source" and self.config.subset_id == "cross_logiqa":
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "question": datasets.Value("string"),
                    "context": datasets.Value("string"),
                    "choices": datasets.Sequence(datasets.Value("string")),
                    "answer": datasets.Value("string"),
                }
            )
        elif self.config.schema == "source" and self.config.subset_id == "ph_eval":
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "question": datasets.Value("string"),
                    "choices": datasets.Sequence(datasets.Value("string")),
                    "answer": datasets.Value("string"),
                    "category": datasets.Value("string"),
                }
            )
        elif self.config.schema == "seacrowd_qa":
            features = schemas.qa_features
        else:
            raise ValueError(f"Unexpected schema received! {self.config.schema}")

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """
        Returns SplitGenerators.
        """

        data = {key: dl_manager.download_and_extract(value) for key, value in _URLS.items()}

        paths = {}
        file = self.config.subset_id.split("_")
        file = "_".join(file[1:3])
        paths[self.config.subset_id] = data[file]

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "paths": paths,
                    "split": "test",
                },
            ),
        ]

    def _generate_examples(self, paths: Path, split: str) -> Tuple[int, Dict]:
        """
        Yields examples as (key, example) tuples.
        """

        language = self.config.subset_id.split("_")[3]
        examples = None

        for key, path in paths.items():
            if "cross" in key:
                data = pd.read_json(path).rename(columns=self.LANGUAGES_EXCHANGED)
                data = pd.melt(data, id_vars=["id"], value_vars=_LANGUAGES.keys(), var_name="language")
                data_flattened = pd.json_normalize(data["value"])
                data_merged = pd.merge(data, data_flattened, left_index=True, right_index=True)
                data_filtered = data_merged[data_merged["language"] == language].drop(columns=["value", "language"])
                examples = data_filtered.to_records()
            elif "eval" in key:
                data = pd.read_json(path)
                examples = data.to_records()

        idx = 0
        if self.config.schema == "source" and self.config.subset_id not in ["cross_logiqa", "ph_eval"]:
            for row in examples:
                x = {
                    "id": row["id"],
                    "question": row["question"],
                    "choices": row["choices"],
                    "answer": row["answer"],
                }
                yield idx, x
                idx += 1
        elif self.config.schema == "source" and self.config.subset_id == "cross_logiqa":
            for row in examples:
                x = {
                    "id": row["id"],
                    "question": row["question"],
                    "context": row["context"] if "context" in row else None,
                    "choices": row["choices"],
                    "answer": row["answer"],
                }
                yield idx, x
                idx += 1
        elif self.config.schema == "source" and self.config.subset_id == "ph_eval":
            for row in examples:
                x = {
                    "id": row["id"],
                    "question": row["question"],
                    "choices": row["choices"],
                    "answer": row["answer"],
                    "category": row["category"] if "category" in row else None,
                }
                yield idx, x
                idx += 1
        elif self.config.schema == "seacrowd_qa":
            for row in examples:
                x = {
                    "id": idx,
                    "question_id": row["id"],
                    "document_id": row["id"],
                    "question": row["question"],
                    "type": "multiple_choice",
                    "choices": row["choices"],
                    "context": row["context"] if "context" in row else None,
                    "answer": [row["answer"]],
                    "meta": {},
                }
                yield idx, x
                idx += 1
        else:
            raise ValueError(f"Invalid schema: {self.config.schema}")