Datasets:

ArXiv:
License:
File size: 8,245 Bytes
92d03b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# coding=utf-8
# Copyright 2024 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
SIB-200 is the largest publicly available topic classification dataset based on Flores-200 covering 205 languages and dialects.
The train/validation/test sets are available for all the 205 languages.
"""

import os
from pathlib import Path
from typing import List, Tuple, Dict

import datasets
import pandas as pd

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks, Licenses

_CITATION = """\
@misc{adelani2023sib200,
      title={SIB-200: A Simple, Inclusive, and Big Evaluation Dataset for Topic Classification in 200+ Languages and Dialects},
      author={David Ifeoluwa Adelani and Hannah Liu and Xiaoyu Shen and Nikita Vassilyev and Jesujoba O. Alabi and Yanke Mao and Haonan Gao and Annie En-Shiun Lee},
      year={2023},
      eprint={2309.07445},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
"""

_DATASETNAME = "sib_200"

_DESCRIPTION = """\
SIB-200 is the largest publicly available topic classification dataset based on Flores-200 covering 205 languages and dialects.
The train/validation/test sets are available for all the 205 languages.
"""

_HOMEPAGE = "https://github.com/dadelani/sib-200"

_LANGUAGES = [
    "ace",
    "ban",
    "bjn",
    "bug",
    "ceb",
    "ilo",
    "ind",
    "jav",
    "kac",
    "khm",
    "lao",
    "lus",
    "min",
    "mya",
    "pag",
    "shn",
    "sun",
    "tgl",
    "tha",
    "vie",
    "war",
    "zsm",
]

_SUPPORTED_LANGUAGE_CODES = [
    "ace_Arab",
    "ace_Latn",
    "ban_Latn",
    "bjn_Arab",
    "bjn_Latn",
    "bug_Latn",
    "ceb_Latn",
    "ilo_Latn",
    "ind_Latn",
    "jav_Latn",
    "kac_Latn",
    "khm_Khmr",
    "lao_Laoo",
    "lus_Latn",
    "min_Arab",
    "min_Latn",
    "mya_Mymr",
    "pag_Latn",
    "shn_Mymr",
    "sun_Latn",
    "tgl_Latn",
    "tha_Thai",
    "vie_Latn",
    "war_Latn",
    "zsm_Latn",
]

_LICENSE = Licenses.CC_BY_SA_4_0.value

_LOCAL = False

# This can be an arbitrarily nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
    "base_url": "https://huggingface.co/datasets/Davlan/sib200/raw/main/data"
}

_SUPPORTED_TASKS = [Tasks.TOPIC_MODELING]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "2024.06.20"

_SEACROWD_SCHEMA = f"seacrowd_text"


def _sib_config_constructor(lang: str, schema: str = _SEACROWD_SCHEMA, version: str = _SEACROWD_VERSION) -> SEACrowdConfig:
    return SEACrowdConfig(
        name=f"{_DATASETNAME}_{lang}_{schema}",
        version=version,
        description=f"SIB-200 {schema} schema",
        schema=schema,
        subset_id=f"SIB-200 {lang}",
    )


class Sib200Dataset(datasets.GeneratorBasedBuilder):
    """
    SIB-200 is the largest publicly available topic classification dataset based on Flores-200 covering 205 languages and dialects.
    The train/validation/test sets are available for all the 205 languages.
    """

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

    def _populate_configs():
        configs = [_sib_config_constructor(lang, schema="source", version=_SOURCE_VERSION) for lang in _SUPPORTED_LANGUAGE_CODES] + [_sib_config_constructor(lang, schema=_SEACROWD_SCHEMA, version=_SEACROWD_VERSION) for lang in _SUPPORTED_LANGUAGE_CODES]

        all_lang_source_config = SEACrowdConfig(
            name=f"{_DATASETNAME}_source",
            version=_SOURCE_VERSION,
            description=f"SIB-200 source schema",
            schema="source",
            subset_id=f"SIB-200 SEA",
        )

        all_lang_t2t_config = SEACrowdConfig(
            name=f"{_DATASETNAME}_{_SEACROWD_SCHEMA}",
            version=_SEACROWD_VERSION,
            description=f"SIB-200 {_SEACROWD_SCHEMA} schema",
            schema=_SEACROWD_SCHEMA,
            subset_id=f"SIB-200 SEA",
        )

        configs.append(all_lang_source_config)
        configs.append(all_lang_t2t_config)
        return configs

    BUILDER_CONFIGS = _populate_configs()

    DEFAULT_CONFIG_NAME = "sib_200_source"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "index_id": datasets.Value("int64"),
                    "text": datasets.Value("string"),
                    "category": datasets.Value("string"),
                }
            )

        elif self.config.schema == "seacrowd_text":
            features = schemas.text_features(["geography", "science/technology", "health", "travel", "entertainment", "politics", "sports"])

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        # dl_manager not used since dataloader uses HF 'load_dataset'
        lang = self.config.subset_id.split(" ")[-1]
        if lang in _SUPPORTED_LANGUAGE_CODES:
            train_paths = [Path(dl_manager.download_and_extract(f"{_URLS['base_url']}/{lang}/train.tsv"))]
            valid_paths = [Path(dl_manager.download_and_extract(f"{_URLS['base_url']}/{lang}/dev.tsv"))]
            test_paths = [Path(dl_manager.download_and_extract(f"{_URLS['base_url']}/{lang}/test.tsv"))]
            lang_codes = [lang]
        elif lang == "SEA":
            train_paths, valid_paths, test_paths, lang_codes = [], [], [], []
            for lang in _SUPPORTED_LANGUAGE_CODES:                
                train_paths.append(Path(dl_manager.download_and_extract(f"{_URLS['base_url']}/{lang}/train.tsv")))
                valid_paths.append(Path(dl_manager.download_and_extract(f"{_URLS['base_url']}/{lang}/dev.tsv")))
                test_paths.append(Path(dl_manager.download_and_extract(f"{_URLS['base_url']}/{lang}/test.tsv")))
                lang_codes.append(lang)
        else:
            raise ValueError(f"Language {lang} not a SEA language in the dataset")
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, 
                gen_kwargs={"file_paths": train_paths, "lang_codes": lang_codes}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION, 
                gen_kwargs={"file_paths": valid_paths, "lang_codes": lang_codes}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST, 
                gen_kwargs={"file_paths": test_paths, "lang_codes": lang_codes}
            )
        ]

    def _generate_examples(self, file_paths: List[str], lang_codes: List[str]) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""
        index = 0
        for file_path, lang_code in zip(file_paths, lang_codes):
            lang_df = pd.read_csv(file_path, sep='\t')
            for row in lang_df.itertuples():
                if self.config.schema == "source":
                    example = {
                        "index_id": row.index_id,
                        "text": row.text,
                        "category": row.category,
                    }

                elif self.config.schema == "seacrowd_text":
                    example = {
                        "id": f'{lang_code}_{row.index_id}',
                        "text": row.text,
                        "label": row.category,
                    }
                yield index, example
                index += 1