Datasets:

Languages:
Vietnamese
ArXiv:
License:
File size: 12,435 Bytes
5b19c86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# Some code referenced from https://huggingface.co/datasets/Babelscape/SREDFM/blob/main/SREDFM.py

from pathlib import Path
from typing import Dict, List, Tuple

import datasets
import jsonlines

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

_CITATION = """\
@inproceedings{huguet-cabot-et-al-2023-redfm-dataset,
    title = "RED$^{\rm FM}$: a Filtered and Multilingual Relation Extraction Dataset",
    author = "Huguet Cabot, Pere-Lluís  and Tedeschi, Simone and Ngonga Ngomo, Axel-Cyrille and
      Navigli, Roberto",
    booktitle = "Proc. of the 61st Annual Meeting of the Association for Computational Linguistics: ACL 2023",
    month = jul,
    year = "2023",
    address = "Toronto, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2306.09802",
}
"""

_DATASETNAME = "sredfm"


_DESCRIPTION = """\
SREDFM is an automatically annotated dataset for relation extraction task covering 18 languages, 400 relation types, 13 entity types, totaling more than 40 million triplet instances. SREDFM includes Vietnamnese.
"""

_HOMEPAGE = "https://github.com/babelscape/rebel"

_LANGUAGES = ["vie"]

_LICENSE = Licenses.CC_BY_SA_4_0.value

_LOCAL = False

_URLS = {
    "train": "https://huggingface.co/datasets/Babelscape/SREDFM/resolve/main/data/train.vi.jsonl",
    "dev": "https://huggingface.co/datasets/Babelscape/SREDFM/resolve/main/data/dev.vi.jsonl",
    "test": "https://huggingface.co/datasets/Babelscape/SREDFM/resolve/main/data/test.vi.jsonl",
    "relations_url": "https://huggingface.co/datasets/Babelscape/SREDFM/raw/main/relations.tsv",
}

_SUPPORTED_TASKS = [Tasks.RELATION_EXTRACTION]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "2024.06.20"


class SREDFMDataset(datasets.GeneratorBasedBuilder):
    """SREDFM is an automatically annotated dataset for relation extraction task.
    Relation Extraction (RE) is a task that identifies relationships between entities in a text,
    enabling the acquisition of relational facts and bridging the gap between natural language
    and structured knowledge. SREDFM covers 400 relation types, 13 entity types,
    totaling more than 40 million triplet instances."""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_source",
            version=SOURCE_VERSION,
            description=f"{_DATASETNAME} source schema",
            schema="source",
            subset_id=f"{_DATASETNAME}",
        ),
        SEACrowdConfig(
            name=f"{_DATASETNAME}_seacrowd_kb",
            version=SEACROWD_VERSION,
            description=f"{_DATASETNAME} SEACrowd schema",
            schema="seacrowd_kb",
            subset_id=f"{_DATASETNAME}",
        ),
    ]

    DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "docid": datasets.Value("string"),
                    "title": datasets.Value("string"),
                    "uri": datasets.Value("string"),
                    "text": datasets.Value("string"),
                    "entities": [
                        {
                            "uri": datasets.Value(dtype="string"),
                            "surfaceform": datasets.Value(dtype="string"),
                            "type": datasets.Value(dtype="string"),
                            "start": datasets.Value(dtype="int32"),
                            "end": datasets.Value(dtype="int32"),
                        }
                    ],
                    "relations": [
                        {
                            "subject": datasets.Value(dtype="int32"),
                            "predicate": datasets.Value(dtype="string"),
                            "object": datasets.Value(dtype="int32"),
                        }
                    ],
                }
            )

        elif self.config.schema == "seacrowd_kb":
            features = schemas.kb_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        data_dir = dl_manager.download_and_extract(_URLS)

        relation_names = dict()
        relation_path = data_dir["relations_url"]
        with open(relation_path, encoding="utf-8") as f:
            for row in f:
                rel_code, rel_name, _, _ = row.strip().split("\t")
                relation_names[rel_code] = rel_name

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": data_dir["train"], "relation_names": relation_names},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": data_dir["test"], "relation_names": relation_names},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepath": data_dir["dev"], "relation_names": relation_names},
            ),
        ]

    def _generate_examples(self, filepath: Path, relation_names: dict) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""

        if self.config.schema == "source":
            with jsonlines.open(filepath) as f:
                skip = set()
                for example in f.iter():
                    if example["docid"] in skip:
                        continue
                    skip.add(example["docid"])

                    entities = []
                    for entity in example["entities"]:
                        entities.append(
                            {
                                "uri": entity["uri"],
                                "surfaceform": entity["surfaceform"],
                                "start": entity["boundaries"][0],
                                "end": entity["boundaries"][1],
                                "type": entity["type"],
                            }
                        )

                    relations = []
                    for relation in example["relations"]:
                        if relation["predicate"]["uri"] not in relation_names or relation["confidence"] <= 0.75:
                            continue

                        relations.append(
                            {
                                "subject": entities.index(
                                    {
                                        "uri": relation["subject"]["uri"],
                                        "surfaceform": relation["subject"]["surfaceform"],
                                        "start": relation["subject"]["boundaries"][0],
                                        "end": relation["subject"]["boundaries"][1],
                                        "type": relation["subject"]["type"],
                                    }
                                ),
                                "predicate": relation_names[relation["predicate"]["uri"]],
                                "object": entities.index(
                                    {
                                        "uri": relation["object"]["uri"],
                                        "surfaceform": relation["object"]["surfaceform"],
                                        "start": relation["object"]["boundaries"][0],
                                        "end": relation["object"]["boundaries"][1],
                                        "type": relation["object"]["type"],
                                    }
                                ),
                            }
                        )

                    if len(relations) == 0:
                        continue

                    yield example["docid"], {
                        "docid": example["docid"],
                        "title": example["title"],
                        "uri": example["uri"],
                        "text": example["text"],
                        "entities": entities,
                        "relations": relations,
                    }

        elif self.config.schema == "seacrowd_kb":
            with jsonlines.open(filepath) as f:
                skip = set()
                i = 0
                for example in f.iter():
                    if example["docid"] in skip:
                        continue
                    skip.add(example["docid"])

                    i += 1
                    processed_text = example["text"].replace("\n", " ")
                    passages = [
                        {
                            "id": f"{i}-{example['uri']}",
                            "type": "text",
                            "text": [processed_text],
                            "offsets": [[0, len(processed_text)]],
                        }
                    ]

                    entities = []
                    for entity in example["entities"]:
                        entities.append(
                            {
                                "id": entity["uri"],
                                "type": entity["type"],
                                "text": [entity["surfaceform"]],
                                "offsets": [entity["boundaries"]],
                                "normalized": {"db_name": "", "db_id": ""},
                            }
                        )

                    relations = []
                    for relation in example["relations"]:
                        if relation["predicate"]["uri"] not in relation_names or relation["confidence"] <= 0.75:
                            continue

                        i += 1
                        sub = relation["subject"]
                        pred = relation["predicate"]
                        obj = relation["object"]
                        relations.append(
                            {
                                "id": f"{i}-{sub['uri']}-{pred['uri']}-{obj['uri']}",
                                "type": relation_names[pred["uri"]],
                                "arg1_id": str(
                                    entities.index(
                                        {
                                            "id": sub["uri"],
                                            "type": sub["type"],
                                            "text": [sub["surfaceform"]],
                                            "offsets": [sub["boundaries"]],
                                            "normalized": {"db_name": "", "db_id": ""},
                                        }
                                    )
                                ),
                                "arg2_id": str(
                                    entities.index(
                                        {
                                            "id": obj["uri"],
                                            "type": obj["type"],
                                            "text": [obj["surfaceform"]],
                                            "offsets": [obj["boundaries"]],
                                            "normalized": {"db_name": "", "db_id": ""},
                                        }
                                    )
                                ),
                                "normalized": {"db_name": "", "db_id": ""},
                            }
                        )

                    for entity in entities:
                        i += 1
                        entity["id"] = f"{i}-{entity['id']}"

                    if len(relations) == 0:
                        continue

                    yield example["docid"], {
                        "id": example["docid"],
                        "passages": passages,
                        "entities": entities,
                        "relations": relations,
                        "events": [],
                        "coreferences": [],
                    }