Commit
·
9f2a498
1
Parent(s):
b5379a5
Upload term_a.py with huggingface_hub
Browse files
term_a.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
|
6 |
+
from nusacrowd.utils import schemas
|
7 |
+
from nusacrowd.utils.common_parser import load_conll_data
|
8 |
+
from nusacrowd.utils.configs import NusantaraConfig
|
9 |
+
from nusacrowd.utils.constants import (DEFAULT_NUSANTARA_VIEW_NAME,
|
10 |
+
DEFAULT_SOURCE_VIEW_NAME, Tasks)
|
11 |
+
|
12 |
+
_DATASETNAME = "term_a"
|
13 |
+
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
|
14 |
+
_UNIFIED_VIEW_NAME = DEFAULT_NUSANTARA_VIEW_NAME
|
15 |
+
|
16 |
+
_LANGUAGES = ["ind"]
|
17 |
+
_LOCAL = False
|
18 |
+
_CITATION = """\
|
19 |
+
@article{winatmoko2019aspect,
|
20 |
+
title={Aspect and opinion term extraction for hotel reviews using transfer learning and auxiliary labels},
|
21 |
+
author={Winatmoko, Yosef Ardhito and Septiandri, Ali Akbar and Sutiono, Arie Pratama},
|
22 |
+
journal={arXiv preprint arXiv:1909.11879},
|
23 |
+
year={2019}
|
24 |
+
}
|
25 |
+
@inproceedings{fernando2019aspect,
|
26 |
+
title={Aspect and opinion terms extraction using double embeddings and attention mechanism for indonesian hotel reviews},
|
27 |
+
author={Fernando, Jordhy and Khodra, Masayu Leylia and Septiandri, Ali Akbar},
|
28 |
+
booktitle={2019 International Conference of Advanced Informatics: Concepts, Theory and Applications (ICAICTA)},
|
29 |
+
pages={1--6},
|
30 |
+
year={2019},
|
31 |
+
organization={IEEE}
|
32 |
+
}
|
33 |
+
"""
|
34 |
+
|
35 |
+
_DESCRIPTION = """\
|
36 |
+
TermA is a span-extraction dataset collected from the hotel aggregator platform, AiryRooms
|
37 |
+
(Septiandri and Sutiono, 2019; Fernando et al.,
|
38 |
+
2019) consisting of thousands of hotel reviews,each containing a span label for aspect
|
39 |
+
and sentiment words representing the opinion of the reviewer on the corresponding aspect.
|
40 |
+
The labels use Inside-Outside-Beginning tagging (IOB) with two kinds of tags, aspect and
|
41 |
+
sentiment.
|
42 |
+
"""
|
43 |
+
|
44 |
+
_HOMEPAGE = "https://github.com/IndoNLP/indonlu"
|
45 |
+
|
46 |
+
_LICENSE = "Creative Common Attribution Share-Alike 4.0 International"
|
47 |
+
|
48 |
+
_URLs = {
|
49 |
+
"train": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/terma_term-extraction-airy/train_preprocess.txt",
|
50 |
+
"validation": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/terma_term-extraction-airy/valid_preprocess.txt",
|
51 |
+
"test": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/terma_term-extraction-airy/test_preprocess_masked_label.txt",
|
52 |
+
}
|
53 |
+
|
54 |
+
_SUPPORTED_TASKS = [Tasks.KEYWORD_TAGGING]
|
55 |
+
|
56 |
+
_SOURCE_VERSION = "1.0.0"
|
57 |
+
_NUSANTARA_VERSION = "1.0.0"
|
58 |
+
|
59 |
+
|
60 |
+
class BaPOSDataset(datasets.GeneratorBasedBuilder):
|
61 |
+
"""TermA is a span-extraction dataset containing 3k, 1k, 1k colloquial sentences in train, valid & test respectively of hotel domain with a total of 5 tags."""
|
62 |
+
|
63 |
+
label_classes = ["B-ASPECT", "I-ASPECT", "B-SENTIMENT", "I-SENTIMENT", "O"]
|
64 |
+
|
65 |
+
BUILDER_CONFIGS = [
|
66 |
+
NusantaraConfig(
|
67 |
+
name="term_a_source",
|
68 |
+
version=datasets.Version(_SOURCE_VERSION),
|
69 |
+
description="TermA source schema",
|
70 |
+
schema="source",
|
71 |
+
subset_id="term_a",
|
72 |
+
),
|
73 |
+
NusantaraConfig(
|
74 |
+
name="term_a_nusantara_seq_label",
|
75 |
+
version=datasets.Version(_NUSANTARA_VERSION),
|
76 |
+
description="TermA Nusantara schema",
|
77 |
+
schema="nusantara_seq_label",
|
78 |
+
subset_id="term_a",
|
79 |
+
),
|
80 |
+
]
|
81 |
+
|
82 |
+
DEFAULT_CONFIG_NAME = "term_a_source"
|
83 |
+
|
84 |
+
def _info(self):
|
85 |
+
if self.config.schema == "source":
|
86 |
+
features = datasets.Features({"index": datasets.Value("string"), "tokens": [datasets.Value("string")], "token_tag": [datasets.Value("string")]})
|
87 |
+
elif self.config.schema == "nusantara_seq_label":
|
88 |
+
features = schemas.seq_label_features(self.label_classes)
|
89 |
+
|
90 |
+
return datasets.DatasetInfo(
|
91 |
+
description=_DESCRIPTION,
|
92 |
+
features=features,
|
93 |
+
homepage=_HOMEPAGE,
|
94 |
+
license=_LICENSE,
|
95 |
+
citation=_CITATION,
|
96 |
+
)
|
97 |
+
|
98 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
99 |
+
train_tsv_path = Path(dl_manager.download_and_extract(_URLs["train"]))
|
100 |
+
validation_tsv_path = Path(dl_manager.download_and_extract(_URLs["validation"]))
|
101 |
+
test_tsv_path = Path(dl_manager.download_and_extract(_URLs["test"]))
|
102 |
+
data_files = {
|
103 |
+
"train": train_tsv_path,
|
104 |
+
"validation": validation_tsv_path,
|
105 |
+
"test": test_tsv_path,
|
106 |
+
}
|
107 |
+
|
108 |
+
return [
|
109 |
+
datasets.SplitGenerator(
|
110 |
+
name=datasets.Split.TRAIN,
|
111 |
+
gen_kwargs={"filepath": data_files["train"]},
|
112 |
+
),
|
113 |
+
datasets.SplitGenerator(
|
114 |
+
name=datasets.Split.VALIDATION,
|
115 |
+
gen_kwargs={"filepath": data_files["validation"]},
|
116 |
+
),
|
117 |
+
datasets.SplitGenerator(
|
118 |
+
name=datasets.Split.TEST,
|
119 |
+
gen_kwargs={"filepath": data_files["test"]},
|
120 |
+
),
|
121 |
+
]
|
122 |
+
|
123 |
+
def _generate_examples(self, filepath: Path):
|
124 |
+
conll_dataset = load_conll_data(filepath)
|
125 |
+
|
126 |
+
if self.config.schema == "source":
|
127 |
+
for i, row in enumerate(conll_dataset):
|
128 |
+
ex = {"index": str(i), "tokens": row["sentence"], "token_tag": row["label"]}
|
129 |
+
yield i, ex
|
130 |
+
elif self.config.schema == "nusantara_seq_label":
|
131 |
+
for i, row in enumerate(conll_dataset):
|
132 |
+
ex = {"id": str(i), "tokens": row["sentence"], "labels": row["label"]}
|
133 |
+
yield i, ex
|
134 |
+
else:
|
135 |
+
raise ValueError(f"Invalid config: {self.config.name}")
|