Datasets:

Languages:
Thai
ArXiv:
License:
File size: 4,393 Bytes
f3b1af6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
from pathlib import Path
from typing import Dict, List, Tuple

import datasets
import pandas as pd
from datasets.download.download_manager import DownloadManager

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

# No paper citation found.
_CITATION = ""

_LOCAL = False
_LANGUAGES = ["tha"]
_DATASETNAME = "thai_databricks_dolly"
_DESCRIPTION = """\
This is a Thai-instructed dataset translated from databricks-dolly-15k using
Google Cloud Translation. databricks-dolly-15k is an open-source dataset of
instruction-following records generated by thousands of Databricks employees in
several behavioral categories outlined in the InstructGPT paper, including
brainstorming, classification, closed QA, generation, information extraction,
open QA, and summarization.
"""

_HOMEPAGE = "https://huggingface.co/datasets/Thaweewat/databricks-dolly-15k-th"
_LICENSE = Licenses.CC_BY_SA_3_0.value
_URL = "https://huggingface.co/datasets/Thaweewat/databricks-dolly-15k-th/resolve/main/databricks-dolly-15k-th.parquet"
_SUPPORTED_TASKS = [Tasks.INSTRUCTION_TUNING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"


class ThaiDatabricksDollyDataset(datasets.GeneratorBasedBuilder):
    """Thai Databricks Dolly Dataset"""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

    SEACROWD_SCHEMA_NAME = "t2t"

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_source",
            version=SOURCE_VERSION,
            description=f"{_DATASETNAME} source schema",
            schema="source",
            subset_id=_DATASETNAME,
        ),
        SEACrowdConfig(
            name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}",
            version=SEACROWD_VERSION,
            description=f"{_DATASETNAME} SEACrowd schema",
            schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
            subset_id=_DATASETNAME,
        ),
    ]

    DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "instruction": datasets.Value("string"),
                    "context": datasets.Value("string"),
                    "response": datasets.Value("string"),
                    "category": datasets.Value("string"),
                }
            )
        elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
            features = schemas.text2text_features
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        data_file = Path(dl_manager.download_and_extract(_URL))
        return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_file})]

    def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
        """Yield examples as (key, example) tuples"""
        # pyarrow is an implicit dependency to load the parquet files
        df = pd.read_parquet(filepath, engine="pyarrow")
        for idx, row in df.iterrows():
            instruction = row.get("instruction").strip()
            context = row.get("context").strip()
            response = row.get("response").strip()
            category = row.get("category").strip()
            if self.config.schema == "source":
                example = {
                    "instruction": instruction,
                    "context": context,
                    "response": response,
                    "category": category,
                }
            elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
                text_1 = f"Context: {context}\n\n{instruction}" if context else instruction
                text_2 = response
                example = {
                    "id": str(idx),
                    "text_1": text_1,
                    "text_2": text_2,
                    "text_1_name": "context_and_instruction",
                    "text_2_name": "response",
                }

            yield idx, example