from pathlib import Path from typing import Dict, List, Tuple import datasets import pandas as pd from datasets.download.download_manager import DownloadManager from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Licenses, Tasks # No paper citation found. _CITATION = "" _LOCAL = False _LANGUAGES = ["tha"] _DATASETNAME = "thai_databricks_dolly" _DESCRIPTION = """\ This is a Thai-instructed dataset translated from databricks-dolly-15k using Google Cloud Translation. databricks-dolly-15k is an open-source dataset of instruction-following records generated by thousands of Databricks employees in several behavioral categories outlined in the InstructGPT paper, including brainstorming, classification, closed QA, generation, information extraction, open QA, and summarization. """ _HOMEPAGE = "https://huggingface.co/datasets/Thaweewat/databricks-dolly-15k-th" _LICENSE = Licenses.CC_BY_SA_3_0.value _URL = "https://huggingface.co/datasets/Thaweewat/databricks-dolly-15k-th/resolve/main/databricks-dolly-15k-th.parquet" _SUPPORTED_TASKS = [Tasks.INSTRUCTION_TUNING] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" class ThaiDatabricksDollyDataset(datasets.GeneratorBasedBuilder): """Thai Databricks Dolly Dataset""" SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) SEACROWD_SCHEMA_NAME = "t2t" BUILDER_CONFIGS = [ SEACrowdConfig( name=f"{_DATASETNAME}_source", version=SOURCE_VERSION, description=f"{_DATASETNAME} source schema", schema="source", subset_id=_DATASETNAME, ), SEACrowdConfig( name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", version=SEACROWD_VERSION, description=f"{_DATASETNAME} SEACrowd schema", schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", subset_id=_DATASETNAME, ), ] DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "instruction": datasets.Value("string"), "context": datasets.Value("string"), "response": datasets.Value("string"), "category": datasets.Value("string"), } ) elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": features = schemas.text2text_features return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]: """Returns SplitGenerators.""" data_file = Path(dl_manager.download_and_extract(_URL)) return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_file})] def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: """Yield examples as (key, example) tuples""" # pyarrow is an implicit dependency to load the parquet files df = pd.read_parquet(filepath, engine="pyarrow") for idx, row in df.iterrows(): instruction = row.get("instruction").strip() context = row.get("context").strip() response = row.get("response").strip() category = row.get("category").strip() if self.config.schema == "source": example = { "instruction": instruction, "context": context, "response": response, "category": category, } elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": text_1 = f"Context: {context}\n\n{instruction}" if context else instruction text_2 = response example = { "id": str(idx), "text_1": text_1, "text_2": text_2, "text_1_name": "context_and_instruction", "text_2_name": "response", } yield idx, example