|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = r"""\ |
|
@inproceedings{ |
|
kargaran2023glotlid, |
|
title={{GlotLID}: Language Identification for Low-Resource Languages}, |
|
author={Kargaran, Amir Hossein and Imani, Ayyoob and Yvon, Fran{\c{c}}ois and Sch{\"u}tze, Hinrich}, |
|
booktitle={The 2023 Conference on Empirical Methods in Natural Language Processing}, |
|
year={2023}, |
|
url={https://openreview.net/forum?id=dl4e3EBz5j} |
|
} |
|
""" |
|
|
|
_LANGUAGES = [ |
|
"sun", |
|
"ace", |
|
"mad", |
|
"lao", |
|
"cfm", |
|
"hnj", |
|
"min", |
|
"zlm", |
|
"tha", |
|
"blt", |
|
"hni", |
|
"jav", |
|
"tdt", |
|
"cnh", |
|
"khm", |
|
"ban", |
|
"ind", |
|
"mya", |
|
"ccp", |
|
"duu", |
|
"tet", |
|
"kkh", |
|
"bug", |
|
"vie", |
|
] |
|
_LOCAL = False |
|
|
|
_DATASETNAME = "udhr_lid" |
|
|
|
_DESCRIPTION = """\ |
|
The UDHR-LID dataset is a refined version of the Universal Declaration of Human Rights, tailored for language identification tasks. |
|
It removes filler texts, repeated phrases, and inaccuracies from the original UDHR, focusing only on cleaned paragraphs. |
|
Each entry in the dataset is associated with a specific language, providing long, linguistically rich content. |
|
This dataset is particularly useful for non-parallel, language-specific text analysis in natural language processing. |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/cis-lmu/udhr-lid" |
|
|
|
_LICENSE = Licenses.CC0_1_0.value |
|
|
|
_URL = "https://huggingface.co/datasets/cis-lmu/udhr-lid/raw/main/udhr-lid.csv" |
|
|
|
_SUPPORTED_TASKS = [Tasks.LANGUAGE_IDENTIFICATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class UDHRLID(datasets.GeneratorBasedBuilder): |
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_text", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd Schema", |
|
schema="seacrowd_text", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"sentence": datasets.Value("string"), |
|
"iso639-3": datasets.Value("string"), |
|
"iso15924": datasets.Value("string"), |
|
"language": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_text": |
|
features = schemas.text_features(_LANGUAGES) |
|
|
|
else: |
|
raise NotImplementedError(f"Schema '{self.config.schema}' is not defined.") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
data_path = dl_manager.download(_URL) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": data_path, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: |
|
|
|
datas = pd.read_csv(filepath) |
|
|
|
for i, row in datas.iterrows(): |
|
if row["iso639-3"] in _LANGUAGES: |
|
if self.config.schema == "source": |
|
yield i, {"id": str(i), "sentence": row["sentence"], "iso639-3": row["iso639-3"], "iso15924": row["iso15924"], "language": row["language"]} |
|
elif self.config.schema == "seacrowd_text": |
|
yield i, {"id": str(i), "text": row["sentence"], "label": row["iso639-3"]} |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|