holylovenia
commited on
Upload uit_viic.py with huggingface_hub
Browse files- uit_viic.py +150 -0
uit_viic.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
import json
|
3 |
+
import os.path
|
4 |
+
|
5 |
+
import datasets
|
6 |
+
|
7 |
+
from seacrowd.utils import schemas
|
8 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
9 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
10 |
+
|
11 |
+
_DATASETNAME = "uit_viic"
|
12 |
+
_CITATION = """\
|
13 |
+
@InProceedings{10.1007/978-3-030-63007-2_57,
|
14 |
+
author="Lam, Quan Hoang
|
15 |
+
and Le, Quang Duy
|
16 |
+
and Nguyen, Van Kiet
|
17 |
+
and Nguyen, Ngan Luu-Thuy",
|
18 |
+
editor="Nguyen, Ngoc Thanh
|
19 |
+
and Hoang, Bao Hung
|
20 |
+
and Huynh, Cong Phap
|
21 |
+
and Hwang, Dosam
|
22 |
+
and Trawi{\'{n}}ski, Bogdan
|
23 |
+
and Vossen, Gottfried",
|
24 |
+
title="UIT-ViIC: A Dataset for the First Evaluation on Vietnamese Image Captioning",
|
25 |
+
booktitle="Computational Collective Intelligence",
|
26 |
+
year="2020",
|
27 |
+
publisher="Springer International Publishing",
|
28 |
+
address="Cham",
|
29 |
+
pages="730--742",
|
30 |
+
abstract="Image Captioning (IC), the task of automatic generation of image captions, has attracted
|
31 |
+
attentions from researchers in many fields of computer science, being computer vision, natural language
|
32 |
+
processing and machine learning in recent years. This paper contributes to research on Image Captioning
|
33 |
+
task in terms of extending dataset to a different language - Vietnamese. So far, there has been no existed
|
34 |
+
Image Captioning dataset for Vietnamese language, so this is the foremost fundamental step for developing
|
35 |
+
Vietnamese Image Captioning. In this scope, we first built a dataset which contains manually written
|
36 |
+
captions for images from Microsoft COCO dataset relating to sports played with balls, we called this dataset
|
37 |
+
UIT-ViIC (University Of Information Technology - Vietnamese Image Captions). UIT-ViIC consists of 19,250
|
38 |
+
Vietnamese captions for 3,850 images. Following that, we evaluated our dataset on deep neural network models
|
39 |
+
and did comparisons with English dataset and two Vietnamese datasets built by different methods. UIT-ViIC
|
40 |
+
is published on our lab website (https://sites.google.com/uit.edu.vn/uit-nlp/) for research purposes.",
|
41 |
+
isbn="978-3-030-63007-2"
|
42 |
+
}
|
43 |
+
"""
|
44 |
+
|
45 |
+
_DESCRIPTION = """
|
46 |
+
UIT-ViIC contains manually written captions for images from Microsoft COCO dataset relating to sports
|
47 |
+
played with ball. UIT-ViIC consists of 19,250 Vietnamese captions for 3,850 images. For each image,
|
48 |
+
UIT-ViIC provides five Vietnamese captions annotated by five annotators.
|
49 |
+
"""
|
50 |
+
|
51 |
+
_HOMEPAGE = "https://drive.google.com/file/d/1YexKrE6o0UiJhFWpE8M5LKoe6-k3AiM4"
|
52 |
+
_PAPER_URL = "https://arxiv.org/abs/2002.00175"
|
53 |
+
_LICENSE = Licenses.UNKNOWN.value
|
54 |
+
_HF_URL = ""
|
55 |
+
_LANGUAGES = ["vi"]
|
56 |
+
_LOCAL = False
|
57 |
+
_SUPPORTED_TASKS = [Tasks.IMAGE_CAPTIONING]
|
58 |
+
_SOURCE_VERSION = "1.0.0"
|
59 |
+
_SEACROWD_VERSION = "2024.06.20"
|
60 |
+
|
61 |
+
_URLS = "https://drive.google.com/uc?export=download&id=1YexKrE6o0UiJhFWpE8M5LKoe6-k3AiM4"
|
62 |
+
_Split_Path = {
|
63 |
+
"train": "UIT-ViIC/uitviic_captions_train2017.json",
|
64 |
+
"validation": "UIT-ViIC/uitviic_captions_val2017.json",
|
65 |
+
"test": "UIT-ViIC/uitviic_captions_test2017.json",
|
66 |
+
}
|
67 |
+
|
68 |
+
|
69 |
+
class UITViICDataset(datasets.GeneratorBasedBuilder):
|
70 |
+
BUILDER_CONFIGS = [
|
71 |
+
SEACrowdConfig(name=f"{_DATASETNAME}_source", version=datasets.Version(_SOURCE_VERSION), description=_DESCRIPTION, subset_id=f"{_DATASETNAME}", schema="source"),
|
72 |
+
SEACrowdConfig(name=f"{_DATASETNAME}_seacrowd_imtext", version=datasets.Version(_SEACROWD_VERSION), description=_DESCRIPTION, subset_id=f"{_DATASETNAME}", schema="seacrowd_imtext"),
|
73 |
+
]
|
74 |
+
|
75 |
+
def _info(self):
|
76 |
+
if self.config.schema == "source":
|
77 |
+
features = datasets.Features(
|
78 |
+
{
|
79 |
+
"license": datasets.Value("int32"),
|
80 |
+
"file_name": datasets.Value("string"),
|
81 |
+
"coco_url": datasets.Value("string"),
|
82 |
+
"flickr_url": datasets.Value("string"),
|
83 |
+
"height": datasets.Value("int32"),
|
84 |
+
"width": datasets.Value("int32"),
|
85 |
+
"date_captured": datasets.Value("string"),
|
86 |
+
"image_id": datasets.Value("int32"),
|
87 |
+
"caption": datasets.Value("string"),
|
88 |
+
"cap_id": datasets.Value("int32"),
|
89 |
+
}
|
90 |
+
)
|
91 |
+
elif self.config.schema == "seacrowd_imtext":
|
92 |
+
features = schemas.image_text_features()
|
93 |
+
return datasets.DatasetInfo(
|
94 |
+
description=_DESCRIPTION,
|
95 |
+
features=features,
|
96 |
+
license=_LICENSE,
|
97 |
+
homepage=_HOMEPAGE,
|
98 |
+
citation=_CITATION,
|
99 |
+
)
|
100 |
+
|
101 |
+
def _split_generators(self, dl_manager):
|
102 |
+
file_paths = dl_manager.download_and_extract(_URLS)
|
103 |
+
|
104 |
+
return [
|
105 |
+
datasets.SplitGenerator(
|
106 |
+
name=datasets.Split.TRAIN,
|
107 |
+
gen_kwargs={"filepath": os.path.join(file_paths, _Split_Path["train"])},
|
108 |
+
),
|
109 |
+
datasets.SplitGenerator(
|
110 |
+
name=datasets.Split.VALIDATION,
|
111 |
+
gen_kwargs={"filepath": os.path.join(file_paths, _Split_Path["validation"])},
|
112 |
+
),
|
113 |
+
datasets.SplitGenerator(
|
114 |
+
name=datasets.Split.TEST,
|
115 |
+
gen_kwargs={"filepath": os.path.join(file_paths, _Split_Path["test"])},
|
116 |
+
),
|
117 |
+
]
|
118 |
+
|
119 |
+
def _generate_examples(self, filepath):
|
120 |
+
"""Yields examples."""
|
121 |
+
with open(filepath, encoding="utf-8") as f:
|
122 |
+
json_dict = json.load(f)
|
123 |
+
images = {itm["id"]: itm for itm in json_dict["images"]}
|
124 |
+
captns = json_dict["annotations"]
|
125 |
+
|
126 |
+
for idx, capt in enumerate(captns):
|
127 |
+
image_id = capt["image_id"]
|
128 |
+
if self.config.schema == "source":
|
129 |
+
yield idx, {
|
130 |
+
"license": images[image_id]["license"],
|
131 |
+
"file_name": images[image_id]["file_name"],
|
132 |
+
"coco_url": images[image_id]["coco_url"],
|
133 |
+
"flickr_url": images[image_id]["flickr_url"],
|
134 |
+
"height": images[image_id]["height"],
|
135 |
+
"width": images[image_id]["width"],
|
136 |
+
"date_captured": images[image_id]["date_captured"],
|
137 |
+
"image_id": capt["image_id"],
|
138 |
+
"caption": capt["caption"],
|
139 |
+
"cap_id": capt["id"],
|
140 |
+
}
|
141 |
+
elif self.config.schema == "seacrowd_imtext":
|
142 |
+
yield idx, {
|
143 |
+
"id": capt["id"],
|
144 |
+
"image_paths": [images[image_id]["coco_url"], images[image_id]["flickr_url"]],
|
145 |
+
"texts": capt["caption"],
|
146 |
+
"metadata": {
|
147 |
+
"context": "",
|
148 |
+
"labels": ["Yes"],
|
149 |
+
},
|
150 |
+
}
|