|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@incollection{nguyen2021vietnamese, |
|
title={Vietnamese Complaint Detection on E-Commerce Websites}, |
|
author={Nguyen, Nhung Thi-Hong and Ha, Phuong Phan-Dieu and Nguyen, Luan Thanh and Nguyen, Kiet Van and Nguyen, Ngan Luu-Thuy}, |
|
booktitle={New Trends in Intelligent Software Methodologies, Tools and Techniques}, |
|
pages={618--629}, |
|
year={2021}, |
|
publisher={IOS Press} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "uit_viocd" |
|
|
|
_DESCRIPTION = """\ |
|
The UIT-ViOCD dataset includes 5,485 reviews e-commerce sites across four categories: fashion, cosmetics, applications, |
|
and phones. Each review is annotated by humans, assigning a label of 1 for complaints and 0 for non-complaints. |
|
The dataset is divided into training, validation, and test sets, distributed approximately in an 80:10:10 ratio. |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/tarudesu/ViOCD" |
|
|
|
_LANGUAGES = ["vie"] |
|
|
|
_LICENSE = Licenses.UNKNOWN.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = { |
|
"train": "https://huggingface.co/datasets/tarudesu/ViOCD/resolve/main/train.csv?download=true", |
|
"val": "https://huggingface.co/datasets/tarudesu/ViOCD/resolve/main/val.csv?download=true", |
|
"test": "https://huggingface.co/datasets/tarudesu/ViOCD/resolve/main/test.csv?download=true", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.COMPLAINT_DETECTION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class UITVIOCDDataset(datasets.GeneratorBasedBuilder): |
|
"""The UIT-ViOCD dataset includes 5,485 reviews e-commerce sites across four categories: fashion, cosmetics, applications, and phones.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
LABEL_CLASSES = [1, 0] |
|
|
|
SEACROWD_SCHEMA_NAME = "text" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"review": datasets.Value("string"), |
|
"review_tokenize": datasets.Value("string"), |
|
"label": datasets.ClassLabel(names=self.LABEL_CLASSES), |
|
"domain": datasets.Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
features = schemas.text_features(self.LABEL_CLASSES) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
data_dir = dl_manager.download_and_extract(_URLS) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir["train"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": data_dir["test"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": data_dir["val"], |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: |
|
df = pd.read_csv(filepath) |
|
|
|
if self.config.schema == "source": |
|
for key, example in df.iterrows(): |
|
yield key, { |
|
"review": example["review"], |
|
"review_tokenize": example["review_tokenize"], |
|
"label": example["label"], |
|
"domain": example["domain"], |
|
} |
|
|
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
for key, example in df.iterrows(): |
|
yield key, {"id": str(key), "text": str(example["review"]), "label": int(example["label"])} |
|
|