from pathlib import Path from typing import Dict, List, Tuple import datasets import pandas as pd from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Licenses, Tasks _CITATION = """\ @incollection{nguyen2021vietnamese, title={Vietnamese Complaint Detection on E-Commerce Websites}, author={Nguyen, Nhung Thi-Hong and Ha, Phuong Phan-Dieu and Nguyen, Luan Thanh and Nguyen, Kiet Van and Nguyen, Ngan Luu-Thuy}, booktitle={New Trends in Intelligent Software Methodologies, Tools and Techniques}, pages={618--629}, year={2021}, publisher={IOS Press} } """ _DATASETNAME = "uit_viocd" _DESCRIPTION = """\ The UIT-ViOCD dataset includes 5,485 reviews e-commerce sites across four categories: fashion, cosmetics, applications, and phones. Each review is annotated by humans, assigning a label of 1 for complaints and 0 for non-complaints. The dataset is divided into training, validation, and test sets, distributed approximately in an 80:10:10 ratio. """ _HOMEPAGE = "https://huggingface.co/datasets/tarudesu/ViOCD" _LANGUAGES = ["vie"] _LICENSE = Licenses.UNKNOWN.value _LOCAL = False _URLS = { "train": "https://huggingface.co/datasets/tarudesu/ViOCD/resolve/main/train.csv?download=true", "val": "https://huggingface.co/datasets/tarudesu/ViOCD/resolve/main/val.csv?download=true", "test": "https://huggingface.co/datasets/tarudesu/ViOCD/resolve/main/test.csv?download=true", } _SUPPORTED_TASKS = [Tasks.COMPLAINT_DETECTION] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" class UITVIOCDDataset(datasets.GeneratorBasedBuilder): """The UIT-ViOCD dataset includes 5,485 reviews e-commerce sites across four categories: fashion, cosmetics, applications, and phones.""" SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) LABEL_CLASSES = [1, 0] SEACROWD_SCHEMA_NAME = "text" BUILDER_CONFIGS = [ SEACrowdConfig( name=f"{_DATASETNAME}_source", version=SOURCE_VERSION, description=f"{_DATASETNAME} source schema", schema="source", subset_id=_DATASETNAME, ), SEACrowdConfig( name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", version=SEACROWD_VERSION, description=f"{_DATASETNAME} SEACrowd schema", schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", subset_id=_DATASETNAME, ), ] DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "review": datasets.Value("string"), "review_tokenize": datasets.Value("string"), "label": datasets.ClassLabel(names=self.LABEL_CLASSES), "domain": datasets.Value("string"), } ) elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": features = schemas.text_features(self.LABEL_CLASSES) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: data_dir = dl_manager.download_and_extract(_URLS) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": data_dir["train"], }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": data_dir["test"], }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": data_dir["val"], }, ), ] def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: df = pd.read_csv(filepath) if self.config.schema == "source": for key, example in df.iterrows(): yield key, { "review": example["review"], "review_tokenize": example["review_tokenize"], "label": example["label"], "domain": example["domain"], } elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": for key, example in df.iterrows(): yield key, {"id": str(key), "text": str(example["review"]), "label": int(example["label"])}