File size: 7,060 Bytes
b3b9b01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
UIT-ViSFD is the Vietnamese Smartphone Feedback Dataset.
It is an aspect-based sentiment analysis dataset.
It consists of 11,122 human-annotated comments for mobile e-commerce.
"""
import os
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import pandas as pd
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@InProceedings{10.1007/978-3-030-82147-0_53,
author="Luc Phan, Luong
and Huynh Pham, Phuc
and Thi-Thanh Nguyen, Kim
and Khai Huynh, Sieu
and Thi Nguyen, Tham
and Thanh Nguyen, Luan
and Van Huynh, Tin
and Van Nguyen, Kiet",
editor="Qiu, Han
and Zhang, Cheng
and Fei, Zongming
and Qiu, Meikang
and Kung, Sun-Yuan",
title="SA2SL: From Aspect-Based Sentiment Analysis to Social Listening System for Business Intelligence",
booktitle="Knowledge Science, Engineering and Management ",
year="2021",
publisher="Springer International Publishing",
address="Cham",
pages="647--658",
isbn="978-3-030-82147-0"
}
"""
_DATASETNAME = "uit_visfd"
_DESCRIPTION = """
UIT-ViSFD is the Vietnamese Smartphone Feedback Dataset.
It is an aspect-based sentiment analysis dataset.
It consists of 11,122 human-annotated comments for mobile e-commerce.
"""
_HOMEPAGE = "https://github.com/LuongPhan/UIT-ViSFD"
_LANGUAGES = ["vie"]
_LICENSE = Licenses.UNKNOWN.value
_LOCAL = False
_URLS = {_DATASETNAME: "https://github.com/LuongPhan/UIT-ViSFD/raw/main/UIT-ViSFD.zip"}
_SUPPORTED_TASKS = [Tasks.ASPECT_BASED_SENTIMENT_ANALYSIS]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class UITViSFDDataset(datasets.GeneratorBasedBuilder):
"""
Crawled textual feedback from customers about smartphones on a large e-commerce website in Vietnam.
The label of the dataset is ten aspects and three polarities.
Please read the guidelines in the paper for more information.
We randomly divide the dataset into three sets:
- Train: 7,786.
- Dev: 1,112.
- Test: 2,224.
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_text_multi",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema="seacrowd_text_multi",
subset_id=f"{_DATASETNAME}",
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
_LABELS = [
"BATTERY#Positive",
"BATTERY#Neutral",
"BATTERY#Negative",
"GENERAL#Positive",
"GENERAL#Neutral",
"GENERAL#Negative",
"CAMERA#Positive",
"CAMERA#Neutral",
"CAMERA#Negative",
"FEATURES#Positive",
"FEATURES#Neutral",
"FEATURES#Negative",
"PRICE#Positive",
"PRICE#Neutral",
"PRICE#Negative",
"SER&ACC#Positive",
"SER&ACC#Neutral",
"SER&ACC#Negative",
"PERFORMANCE#Positive",
"PERFORMANCE#Neutral",
"PERFORMANCE#Negative",
"SCREEN#Positive",
"SCREEN#Neutral",
"SCREEN#Negative",
"DESIGN#Positive",
"DESIGN#Neutral",
"DESIGN#Negative",
"STORAGE#Positive",
"STORAGE#Neutral",
"STORAGE#Negative",
"OTHERS",
]
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{"index": datasets.Value("int64"), "comment": datasets.Value("string"), "n_star": datasets.Value("int64"), "date_time": datasets.Value("string"), "label": datasets.Sequence(feature=datasets.ClassLabel(names=self._LABELS))}
)
elif self.config.schema == "seacrowd_text_multi":
features = schemas.text_multi_features(self._LABELS)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
data_dir = dl_manager.download_and_extract(_URLS[_DATASETNAME])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, "Train.csv"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, "Test.csv"),
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(data_dir, "Dev.csv"),
"split": "dev",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
df = pd.read_csv(filepath, index_col=None)
def transform_label(label_string):
label_string = label_string.strip("{}")
label_pairs = label_string.split(";")
label_array = []
for pair in label_pairs:
pair = pair.strip("{}")
if pair:
label_array.append(pair)
return label_array
df["label"] = df["label"].apply(transform_label)
for index, row in df.iterrows():
if self.config.schema == "source":
example = row.to_dict()
elif self.config.schema == "seacrowd_text_multi":
example = {
"id": str(row["index"]),
"text": str(row["comment"]),
"labels": row["label"],
}
yield index, example
|