Datasets:

ArXiv:
License:
File size: 15,497 Bytes
c2da684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
from pathlib import Path
from typing import Any, Dict, List, Tuple

import datasets
from datasets.download.download_manager import DownloadManager

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

_CITATION = """
@misc{batsuren2022unimorph,
      title={UniMorph 4.0: Universal Morphology},
      author={
        Khuyagbaatar Batsuren and Omer Goldman and Salam Khalifa and Nizar
        Habash and Witold Kieraś and Gábor Bella and Brian Leonard and Garrett
        Nicolai and Kyle Gorman and Yustinus Ghanggo Ate and Maria Ryskina and
        Sabrina J. Mielke and Elena Budianskaya and Charbel El-Khaissi and Tiago
        Pimentel and Michael Gasser and William Lane and Mohit Raj and Matt
        Coler and Jaime Rafael Montoya Samame and Delio Siticonatzi Camaiteri
        and Benoît Sagot and Esaú Zumaeta Rojas and Didier López Francis and
        Arturo Oncevay and Juan López Bautista and Gema Celeste Silva Villegas
        and Lucas Torroba Hennigen and Adam Ek and David Guriel and Peter Dirix
        and Jean-Philippe Bernardy and Andrey Scherbakov and Aziyana Bayyr-ool
        and Antonios Anastasopoulos and Roberto Zariquiey and Karina Sheifer and
        Sofya Ganieva and Hilaria Cruz and Ritván Karahóǧa and Stella
        Markantonatou and George Pavlidis and Matvey Plugaryov and Elena
        Klyachko and Ali Salehi and Candy Angulo and Jatayu Baxi and Andrew
        Krizhanovsky and Natalia Krizhanovskaya and Elizabeth Salesky and Clara
        Vania and Sardana Ivanova and Jennifer White and Rowan Hall Maudslay and
        Josef Valvoda and Ran Zmigrod and Paula Czarnowska and Irene Nikkarinen
        and Aelita Salchak and Brijesh Bhatt and Christopher Straughn and Zoey
        Liu and Jonathan North Washington and Yuval Pinter and Duygu Ataman and
        Marcin Wolinski and Totok Suhardijanto and Anna Yablonskaya and Niklas
        Stoehr and Hossep Dolatian and Zahroh Nuriah and Shyam Ratan and Francis
        M. Tyers and Edoardo M. Ponti and Grant Aiton and Aryaman Arora and
        Richard J. Hatcher and Ritesh Kumar and Jeremiah Young and Daria
        Rodionova and Anastasia Yemelina and Taras Andrushko and Igor Marchenko
        and Polina Mashkovtseva and Alexandra Serova and Emily Prud'hommeaux and
        Maria Nepomniashchaya and Fausto Giunchiglia and Eleanor Chodroff and
        Mans Hulden and Miikka Silfverberg and Arya D. McCarthy and David
        Yarowsky and Ryan Cotterell and Reut Tsarfaty and Ekaterina Vylomova},
      year={2022},
      eprint={2205.03608},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
"""

_LOCAL = False
_LANGUAGES = ["ind", "kod", "ceb", "hil", "tgl"]
_DATASETNAME = "unimorph"
_DESCRIPTION = """\
The Universal Morphology (UniMorph) project is a collaborative effort providing
broad-coverage instantiated normalized morphological inflection tables for
undreds of diverse world languages. The project comprises two major thrusts: a
language-independent feature schema for rich morphological annotation, and a
type-level resource of annotated data in diverse languages realizing that
schema. 5 Austronesian languages spoken in Southeast Asia, consisting 2
Malayo-Polynesian languages and 3 Greater Central Philippine languages, become
the part of UniMorph 4.0 release.
"""

_HOMEPAGE = "https://unimorph.github.io"
_LICENSE = Licenses.CC_BY_SA_3_0.value
_URL = "https://raw.githubusercontent.com/unimorph/"

_SUPPORTED_TASKS = [Tasks.MORPHOLOGICAL_INFLECTION]
_SOURCE_VERSION = "4.0.0"
_SEACROWD_VERSION = "2024.06.20"


class UnimorphDataset(datasets.GeneratorBasedBuilder):
    """Unimorh 4.0 dataset by Batsuren et al., (2022)"""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

    SEACROWD_SCHEMA_NAME = "pairs_multi"

    dataset_names = sorted([f"{_DATASETNAME}_{lang}" for lang in _LANGUAGES])
    BUILDER_CONFIGS = []
    for name in dataset_names:
        source_config = SEACrowdConfig(
            name=f"{name}_source",
            version=SOURCE_VERSION,
            description=f"{_DATASETNAME} source schema",
            schema="source",
            subset_id=name,
        )
        BUILDER_CONFIGS.append(source_config)
        seacrowd_config = SEACrowdConfig(
            name=f"{name}_seacrowd_{SEACROWD_SCHEMA_NAME}",
            version=SEACROWD_VERSION,
            description=f"{_DATASETNAME} SEACrowd schema",
            schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
            subset_id=name,
        )
        BUILDER_CONFIGS.append(seacrowd_config)

    # Add configuration that allows loading all datasets at once.
    BUILDER_CONFIGS.extend(
        [
            # unimorph_source
            SEACrowdConfig(
                name=f"{_DATASETNAME}_source",
                version=SOURCE_VERSION,
                description=f"{_DATASETNAME} source schema (all)",
                schema="source",
                subset_id=_DATASETNAME,
            ),
            # unimorph_seacrowd_pairs
            SEACrowdConfig(
                name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}",
                version=SEACROWD_VERSION,
                description=f"{_DATASETNAME} SEACrowd schema (all)",
                schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
                subset_id=_DATASETNAME,
            ),
        ]
    )

    DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
    # https://huggingface.co/datasets/universal_morphologies/blob/main/universal_morphologies.py
    CLASS_CATEGORIES = {
        "Aktionsart": ["STAT", "DYN", "TEL", "ATEL", "PCT", "DUR", "ACH", "ACCMP", "SEMEL", "ACTY"],
        "Animacy": ["ANIM", "INAN", "HUM", "NHUM"],
        "Argument_Marking": [
            "ARGNO1S",
            "ARGNO2S",
            "ARGNO3S",
            "ARGNO1P",
            "ARGNO2P",
            "ARGNO3P",
            "ARGAC1S",
            "ARGAC2S",
            "ARGAC3S",
            "ARGAC1P",
            "ARGAC2P",
            "ARGAC3P",
            "ARGAB1S",
            "ARGAB2S",
            "ARGAB3S",
            "ARGAB1P",
            "ARGAB2P",
            "ARGAB3P",
            "ARGER1S",
            "ARGER2S",
            "ARGER3S",
            "ARGER1P",
            "ARGER2P",
            "ARGER3P",
            "ARGDA1S",
            "ARGDA2S",
            "ARGDA3S",
            "ARGDA1P",
            "ARGDA2P",
            "ARGDA3P",
            "ARGBE1S",
            "ARGBE2S",
            "ARGBE3S",
            "ARGBE1P",
            "ARGBE2P",
            "ARGBE3P",
        ],
        "Aspect": ["IPFV", "PFV", "PRF", "PROG", "PROSP", "ITER", "HAB"],
        "Case": [
            "NOM",
            "ACC",
            "ERG",
            "ABS",
            "NOMS",
            "DAT",
            "BEN",
            "PRP",
            "GEN",
            "REL",
            "PRT",
            "INS",
            "COM",
            "VOC",
            "COMPV",
            "EQTV",
            "PRIV",
            "PROPR",
            "AVR",
            "FRML",
            "TRANS",
            "BYWAY",
            "INTER",
            "AT",
            "POST",
            "IN",
            "CIRC",
            "ANTE",
            "APUD",
            "ON",
            "ONHR",
            "ONVR",
            "SUB",
            "REM",
            "PROXM",
            "ESS",
            "ALL",
            "ABL",
            "APPRX",
            "TERM",
        ],
        "Comparison": ["CMPR", "SPRL", "AB", "RL", "EQT"],
        "Definiteness": ["DEF", "INDF", "SPEC", "NSPEC"],
        "Deixis": ["PROX", "MED", "REMT", "REF1", "REF2", "NOREF", "PHOR", "VIS", "NVIS", "ABV", "EVEN", "BEL"],
        "Evidentiality": ["FH", "DRCT", "SEN", "VISU", "NVSEN", "AUD", "NFH", "QUOT", "RPRT", "HRSY", "INFER", "ASSUM"],
        "Finiteness": ["FIN", "NFIN"],
        "Gender": [
            "MASC",
            "FEM",
            "NEUT",
            "NAKH1",
            "NAKH2",
            "NAKH3",
            "NAKH4",
            "NAKH5",
            "NAKH6",
            "NAKH7",
            "NAKH8",
            "BANTU1",
            "BANTU2",
            "BANTU3",
            "BANTU4",
            "BANTU5",
            "BANTU6",
            "BANTU7",
            "BANTU8",
            "BANTU9",
            "BANTU10",
            "BANTU11",
            "BANTU12",
            "BANTU13",
            "BANTU14",
            "BANTU15",
            "BANTU16",
            "BANTU17",
            "BANTU18",
            "BANTU19",
            "BANTU20",
            "BANTU21",
            "BANTU22",
            "BANTU23",
        ],
        "Information_Structure": ["TOP", "FOC"],
        "Interrogativity": ["DECL", "INT"],
        "Language_Specific": [
            "LGSPEC1",
            "LGSPEC2",
            "LGSPEC3",
            "LGSPEC4",
            "LGSPEC5",
            "LGSPEC6",
            "LGSPEC7",
            "LGSPEC8",
            "LGSPEC9",
            "LGSPEC10",
        ],
        "Mood": [
            "IND",
            "SBJV",
            "REAL",
            "IRR",
            "AUPRP",
            "AUNPRP",
            "IMP",
            "COND",
            "PURP",
            "INTEN",
            "POT",
            "LKLY",
            "ADM",
            "OBLIG",
            "DEB",
            "PERM",
            "DED",
            "SIM",
            "OPT",
        ],
        "Number": ["SG", "PL", "GRPL", "DU", "TRI", "PAUC", "GRPAUC", "INVN"],
        "Part_Of_Speech": [
            "N",
            "PROPN",
            "ADJ",
            "PRO",
            "CLF",
            "ART",
            "DET",
            "V",
            "ADV",
            "AUX",
            "V.PTCP",
            "V.MSDR",
            "V.CVB",
            "ADP",
            "COMP",
            "CONJ",
            "NUM",
            "PART",
            "INTJ",
        ],
        "Person": ["0", "1", "2", "3", "4", "INCL", "EXCL", "PRX", "OBV"],
        "Polarity": ["POS", "NEG"],
        "Politeness": [
            "INFM",
            "FORM",
            "ELEV",
            "HUMB",
            "POL",
            "AVOID",
            "LOW",
            "HIGH",
            "STELEV",
            "STSUPR",
            "LIT",
            "FOREG",
            "COL",
        ],
        "Possession": [
            "ALN",
            "NALN",
            "PSS1S",
            "PSS2S",
            "PSS2SF",
            "PSS2SM",
            "PSS2SINFM",
            "PSS2SFORM",
            "PSS3S",
            "PSS3SF",
            "PSS3SM",
            "PSS1D",
            "PSS1DI",
            "PSS1DE",
            "PSS2D",
            "PSS2DM",
            "PSS2DF",
            "PSS3D",
            "PSS3DF",
            "PSS3DM",
            "PSS1P",
            "PSS1PI",
            "PSS1PE",
            "PSS2P",
            "PSS2PF",
            "PSS2PM",
            "PSS3PF",
            "PSS3PM",
        ],
        "Switch_Reference": ["SS", "SSADV", "DS", "DSADV", "OR", "SIMMA", "SEQMA", "LOG"],
        "Tense": ["PRS", "PST", "FUT", "IMMED", "HOD", "1DAY", "RCT", "RMT"],
        "Valency": ["IMPRS", "INTR", "TR", "DITR", "REFL", "RECP", "CAUS", "APPL"],
        "Voice": ["ACT", "MID", "PASS", "ANTIP", "DIR", "INV", "AGFOC", "PFOC", "LFOC", "BFOC", "ACFOC", "IFOC", "CFOC"],
    }

    TAG_TO_CAT = dict([(tag, cat) for cat, tags in CLASS_CATEGORIES.items() for tag in tags])
    CLASS_LABELS = [feat for _, category in CLASS_CATEGORIES.items() for feat in category]

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "lemma": datasets.Value("string"),
                    "forms": datasets.Sequence(
                        dict(
                            [("word", datasets.Value("string"))]
                            + [(cat, datasets.Sequence(datasets.ClassLabel(names=tasks))) for cat, tasks in self.CLASS_CATEGORIES.items()]
                            + [("Other", datasets.Sequence(datasets.Value("string")))]  # for misspecified tags
                        )
                    ),
                }
            )

        if self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
            all_features = [feat for _, category in self.CLASS_CATEGORIES.items() for feat in category]
            features = schemas.pairs_multi_features(label_names=self.CLASS_LABELS)

        return datasets.DatasetInfo(description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION)

    def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]:
        """Return SplitGenerators."""
        source_data = []

        lang = self.config.name.split("_")[1]
        if lang in _LANGUAGES:
            # Load data per language
            source_data.append(dl_manager.download_and_extract(_URL + f"{lang}/main/{lang}"))
        else:
            # Load examples from all languages at once.
            for lang in _LANGUAGES:
                source_data.append(dl_manager.download_and_extract(_URL + f"{lang}/main/{lang}"))

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepaths": source_data,
                },
            )
        ]

    def _generate_examples(self, filepaths: List[Path]) -> Tuple[int, Dict]:
        """Yield examples as (key, example) tuples"""

        all_forms: Dict[str, List[Dict[str, Any]]] = {}
        for source_file in filepaths:
            with open(source_file, encoding="utf-8") as file:
                for row in file:
                    if row.strip() == "" or row.strip().startswith("#"):
                        continue
                    lemma, word, tags = row.strip().split("\t")
                    all_forms[lemma] = all_forms.get(lemma, [])
                    tag_list = tags.replace("NDEF", "INDF").split(";")
                    form = dict([("word", word), ("Other", [])] + [(cat, []) for cat, tasks in self.CLASS_CATEGORIES.items()])
                    for tag_pre in tag_list:
                        tag = tag_pre.split("+")
                        if tag[0] in self.TAG_TO_CAT:
                            form[self.TAG_TO_CAT[tag[0]]] = tag
                        else:
                            form["Other"] += tag
                    all_forms[lemma] += [form]

        if self.config.schema == "source":
            for id_, (lemma, forms) in enumerate(all_forms.items()):
                res = {"lemma": lemma, "forms": {}}
                for k in ["word", "Other"] + list(self.CLASS_CATEGORIES.keys()):
                    res["forms"][k] = [form[k] for form in forms]
                yield id_, res

        if self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
            idx = 0
            for lemma, forms in all_forms.items():
                for form in forms:
                    inflection = form.pop("word")
                    feats = [feat[0] for feat in list(form.values()) if feat and feat[0] in self.CLASS_LABELS]
                    example = {
                        "id": idx,
                        "text_1": lemma,
                        "text_2": inflection,
                        "label": feats,
                    }
                    idx += 1
                    yield idx, example