File size: 6,481 Bytes
162f337 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
ViCon, comprises pairs of synonyms and antonymys across \
noun, verb, and adjective classes, offerring data to \
distinguish between similarity and dissimilarity.
"""
import os
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import pandas as pd
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@inproceedings{nguyen-etal-2018-introducing,
title = "Introducing Two {V}ietnamese Datasets for Evaluating Semantic Models of (Dis-)Similarity and Relatedness",
author = "Nguyen, Kim Anh and
Schulte im Walde, Sabine and
Vu, Ngoc Thang",
editor = "Walker, Marilyn and
Ji, Heng and
Stent, Amanda",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-2032",
doi = "10.18653/v1/N18-2032",
pages = "199--205",
}
"""
_DATASETNAME = "vicon"
_DESCRIPTION = """\
ViCon, comprises pairs of synonyms and antonymys across \
noun, verb, and adjective classes, offerring data to \
distinguish between similarity and dissimilarity.
"""
_HOMEPAGE = "https://www.ims.uni-stuttgart.de/forschung/ressourcen/experiment-daten/vnese-sem-datasets/"
_LANGUAGES = ["vie"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LICENSE = Licenses.CC_BY_NC_SA_2_0.value # example: Licenses.MIT.value, Licenses.CC_BY_NC_SA_4_0.value, Licenses.UNLICENSE.value, Licenses.UNKNOWN.value
_LOCAL = False
_URLS = {
"noun": "https://www.ims.uni-stuttgart.de/documents/ressourcen/experiment-daten/ViData.zip",
"adj": "https://www.ims.uni-stuttgart.de/documents/ressourcen/experiment-daten/ViData.zip",
"verb": "https://www.ims.uni-stuttgart.de/documents/ressourcen/experiment-daten/ViData.zip",
}
# This task is more suitable for TEXTUAL_ENTAILMENT
# because the labels (antonym, synonym) roughly correlates to (contradiction, entailment)
_SUPPORTED_TASKS = [Tasks.TEXTUAL_ENTAILMENT]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class ViConDataset(datasets.GeneratorBasedBuilder):
"""
ViCon, comprises pairs of synonyms and antonymys across \
noun, verb, and adjective classes, offerring data to \
distinguish between similarity and dissimilarity.
"""
POS_TAGS = ["noun", "adj", "verb"]
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [SEACrowdConfig(name=f"{_DATASETNAME}_{POS_TAG}_source", version=_SOURCE_VERSION, description=f"{_DATASETNAME}_{POS_TAG} source schema", schema="source", subset_id=f"{_DATASETNAME}_{POS_TAG}",) for POS_TAG in POS_TAGS] + [
SEACrowdConfig(
name=f"{_DATASETNAME}_{POS_TAG}_seacrowd_pairs",
version=_SEACROWD_VERSION,
description=f"{_DATASETNAME}_{POS_TAG} SEACrowd schema",
schema="seacrowd_pairs",
subset_id=f"{_DATASETNAME}_{POS_TAG}",
)
for POS_TAG in POS_TAGS
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_noun_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"Word1": datasets.Value("string"),
"Word2": datasets.Value("string"),
"Relation": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_pairs":
features = schemas.pairs_features(["ANT", "SYN"])
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
POS_TAG = self.config.name.split("_")[1]
if POS_TAG == "noun" or POS_TAG == "verb":
number = 400
elif POS_TAG == "adj":
number = 600
if POS_TAG in self.POS_TAGS:
data_dir = dl_manager.download_and_extract(_URLS[POS_TAG])
else:
data_dir = [dl_manager.download_and_extract(_URLS[POS_TAG]) for POS_TAG in self.POS_TAGS]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, f"ViData/ViCon/{number}_{POS_TAG}_pairs.txt"),
"split": "train",
},
)
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
with open(filepath, "r", encoding="utf-8") as file:
lines = file.readlines()
data = []
for line in lines:
columns = line.strip().split("\t")
data.append(columns)
df = pd.DataFrame(data[1:], columns=data[0])
for index, row in df.iterrows():
if self.config.schema == "source":
example = row.to_dict()
elif self.config.schema == "seacrowd_pairs":
example = {
"id": str(index),
"text_1": str(row["Word1"]),
"text_2": str(row["Word2"]),
"label": str(row["Relation"]),
}
yield index, example
|