holylovenia
commited on
Upload vimqa.py with huggingface_hub
Browse files
vimqa.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import datasets
|
6 |
+
|
7 |
+
from seacrowd.utils import schemas
|
8 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
9 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
10 |
+
|
11 |
+
_CITATION = """
|
12 |
+
@inproceedings{le-etal-2022-vimqa,
|
13 |
+
title = "{VIMQA}: A {V}ietnamese Dataset for Advanced Reasoning and Explainable Multi-hop Question Answering",
|
14 |
+
author = "Le, Khang and
|
15 |
+
Nguyen, Hien and
|
16 |
+
Le Thanh, Tung and
|
17 |
+
Nguyen, Minh",
|
18 |
+
editor = "Calzolari, Nicoletta and
|
19 |
+
B{\'e}chet, Fr{\'e}d{\'e}ric and
|
20 |
+
Blache, Philippe and
|
21 |
+
Choukri, Khalid and
|
22 |
+
Cieri, Christopher and
|
23 |
+
Declerck, Thierry and
|
24 |
+
Goggi, Sara and
|
25 |
+
Isahara, Hitoshi and
|
26 |
+
Maegaard, Bente and
|
27 |
+
Mariani, Joseph and
|
28 |
+
Mazo, H{\'e}l{\'e}ne and
|
29 |
+
Odijk, Jan and
|
30 |
+
Piperidis, Stelios",
|
31 |
+
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
|
32 |
+
month = jun,
|
33 |
+
year = "2022",
|
34 |
+
address = "Marseille, France",
|
35 |
+
publisher = "European Language Resources Association",
|
36 |
+
url = "https://aclanthology.org/2022.lrec-1.700",
|
37 |
+
pages = "6521--6529",
|
38 |
+
}
|
39 |
+
"""
|
40 |
+
|
41 |
+
_DATASETNAME = "vimqa"
|
42 |
+
|
43 |
+
_DESCRIPTION = """
|
44 |
+
VIMQA, a new Vietnamese dataset with over 10,000 Wikipedia-based multi-hop question-answer pairs. The dataset is human-generated and has four main features:
|
45 |
+
The questions require advanced reasoning over multiple paragraphs.
|
46 |
+
Sentence-level supporting facts are provided, enabling the QA model to reason and explain the answer.
|
47 |
+
The dataset offers various types of reasoning to test the model's ability to reason and extract relevant proof.
|
48 |
+
The dataset is in Vietnamese, a low-resource language
|
49 |
+
"""
|
50 |
+
|
51 |
+
_HOMEPAGE = "https://github.com/vimqa/vimqa"
|
52 |
+
|
53 |
+
_LANGUAGES = ["vie"]
|
54 |
+
|
55 |
+
_LICENSE = f"""{Licenses.OTHERS.value} | \
|
56 |
+
The licence terms for VimQA follows this EULA docs on their repo.
|
57 |
+
Please refer to the following doc of EULA (to review the permissions and request for access)
|
58 |
+
VIMQA EULA -- https://github.com/vimqa/vimqa/blob/main/VIMQA_EULA.pdf
|
59 |
+
"""
|
60 |
+
|
61 |
+
_LOCAL = True
|
62 |
+
|
63 |
+
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING]
|
64 |
+
|
65 |
+
_SOURCE_VERSION = "1.0.0"
|
66 |
+
|
67 |
+
_SEACROWD_VERSION = "2024.06.20"
|
68 |
+
|
69 |
+
|
70 |
+
class VimqaDataset(datasets.GeneratorBasedBuilder):
|
71 |
+
"""VIMQA, a new Vietnamese dataset with over 10,000 Wikipedia-based multi-hop question-answer pairs."""
|
72 |
+
|
73 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
74 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
75 |
+
|
76 |
+
BUILDER_CONFIGS = [
|
77 |
+
SEACrowdConfig(
|
78 |
+
name=f"{_DATASETNAME}_source",
|
79 |
+
version=SOURCE_VERSION,
|
80 |
+
description=f"{_DATASETNAME} source schema",
|
81 |
+
schema="source",
|
82 |
+
subset_id=_DATASETNAME,
|
83 |
+
),
|
84 |
+
SEACrowdConfig(
|
85 |
+
name=f"{_DATASETNAME}_seacrowd_qa",
|
86 |
+
version=SEACROWD_VERSION,
|
87 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
88 |
+
schema="seacrowd_qa",
|
89 |
+
subset_id=_DATASETNAME,
|
90 |
+
),
|
91 |
+
]
|
92 |
+
|
93 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
94 |
+
|
95 |
+
def _info(self) -> datasets.DatasetInfo:
|
96 |
+
if self.config.schema == "source":
|
97 |
+
features = datasets.Features(
|
98 |
+
{
|
99 |
+
"id": datasets.Value("string"),
|
100 |
+
"question": datasets.Value("string"),
|
101 |
+
"answer": datasets.Value("string"),
|
102 |
+
"type": datasets.Value("string"),
|
103 |
+
"supporting_facts": datasets.features.Sequence(
|
104 |
+
{
|
105 |
+
"title": datasets.Value("string"),
|
106 |
+
"sent_id": datasets.Value("int32"),
|
107 |
+
}
|
108 |
+
),
|
109 |
+
"context": datasets.features.Sequence(
|
110 |
+
{
|
111 |
+
"title": datasets.Value("string"),
|
112 |
+
"sentences": datasets.features.Sequence(datasets.Value("string")),
|
113 |
+
}
|
114 |
+
),
|
115 |
+
}
|
116 |
+
)
|
117 |
+
else:
|
118 |
+
features = schemas.qa_features
|
119 |
+
features["meta"] = {
|
120 |
+
"supporting_facts": datasets.features.Sequence(
|
121 |
+
{
|
122 |
+
"title": datasets.Value("string"),
|
123 |
+
"sent_id": datasets.Value("int32"),
|
124 |
+
}
|
125 |
+
),
|
126 |
+
"context": datasets.features.Sequence(
|
127 |
+
{
|
128 |
+
"title": datasets.Value("string"),
|
129 |
+
"sentences": datasets.features.Sequence(datasets.Value("string")),
|
130 |
+
}
|
131 |
+
),
|
132 |
+
}
|
133 |
+
|
134 |
+
return datasets.DatasetInfo(
|
135 |
+
description=_DESCRIPTION,
|
136 |
+
features=features,
|
137 |
+
homepage=_HOMEPAGE,
|
138 |
+
license=_LICENSE,
|
139 |
+
citation=_CITATION,
|
140 |
+
)
|
141 |
+
|
142 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> list[datasets.SplitGenerator]:
|
143 |
+
"""Returns SplitGenerators."""
|
144 |
+
if self.config.data_dir is None:
|
145 |
+
raise ValueError("This is a local dataset. Please pass the data_dir kwarg to load_dataset.")
|
146 |
+
else:
|
147 |
+
data_dir = self.config.data_dir
|
148 |
+
|
149 |
+
return [
|
150 |
+
datasets.SplitGenerator(
|
151 |
+
name=datasets.Split.TRAIN,
|
152 |
+
gen_kwargs={"filepath": os.path.join(data_dir, "vimqa_train.json")},
|
153 |
+
),
|
154 |
+
datasets.SplitGenerator(
|
155 |
+
name=datasets.Split.VALIDATION,
|
156 |
+
gen_kwargs={"filepath": os.path.join(data_dir, "vimqa_dev.json")},
|
157 |
+
),
|
158 |
+
datasets.SplitGenerator(
|
159 |
+
name=datasets.Split.TEST,
|
160 |
+
gen_kwargs={"filepath": os.path.join(data_dir, "vimqa_test.json")},
|
161 |
+
),
|
162 |
+
]
|
163 |
+
|
164 |
+
def _generate_examples(self, filepath: Path) -> tuple[int, dict]:
|
165 |
+
with open(filepath, "r", encoding="utf-8") as f:
|
166 |
+
data = json.load(f)
|
167 |
+
for i, item in enumerate(data):
|
168 |
+
if self.config.schema == "source":
|
169 |
+
yield i, {
|
170 |
+
"id": item["_id"],
|
171 |
+
"question": item["question"],
|
172 |
+
"answer": item["answer"],
|
173 |
+
"type": item["type"],
|
174 |
+
"supporting_facts": [{"title": f[0], "sent_id": f[1]} for f in item["supporting_facts"]],
|
175 |
+
"context": [{"title": f[0], "sentences": f[1]} for f in item["context"]],
|
176 |
+
}
|
177 |
+
else:
|
178 |
+
yield i, {
|
179 |
+
"id": str(i),
|
180 |
+
"question_id": item["_id"],
|
181 |
+
"document_id": "",
|
182 |
+
"question": item["question"],
|
183 |
+
"type": item["type"],
|
184 |
+
"choices": [],
|
185 |
+
"context": "",
|
186 |
+
"answer": [item["answer"]],
|
187 |
+
"meta": {
|
188 |
+
"supporting_facts": [{"title": f[0], "sent_id": f[1]} for f in item["supporting_facts"]],
|
189 |
+
"context": [{"title": f[0], "sentences": f[1]} for f in item["context"]],
|
190 |
+
},
|
191 |
+
}
|