import json import os from pathlib import Path import datasets from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Licenses, Tasks _CITATION = """ @inproceedings{le-etal-2022-vimqa, title = "{VIMQA}: A {V}ietnamese Dataset for Advanced Reasoning and Explainable Multi-hop Question Answering", author = "Le, Khang and Nguyen, Hien and Le Thanh, Tung and Nguyen, Minh", editor = "Calzolari, Nicoletta and B{\'e}chet, Fr{\'e}d{\'e}ric and Blache, Philippe and Choukri, Khalid and Cieri, Christopher and Declerck, Thierry and Goggi, Sara and Isahara, Hitoshi and Maegaard, Bente and Mariani, Joseph and Mazo, H{\'e}l{\'e}ne and Odijk, Jan and Piperidis, Stelios", booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference", month = jun, year = "2022", address = "Marseille, France", publisher = "European Language Resources Association", url = "https://aclanthology.org/2022.lrec-1.700", pages = "6521--6529", } """ _DATASETNAME = "vimqa" _DESCRIPTION = """ VIMQA, a new Vietnamese dataset with over 10,000 Wikipedia-based multi-hop question-answer pairs. The dataset is human-generated and has four main features: The questions require advanced reasoning over multiple paragraphs. Sentence-level supporting facts are provided, enabling the QA model to reason and explain the answer. The dataset offers various types of reasoning to test the model's ability to reason and extract relevant proof. The dataset is in Vietnamese, a low-resource language """ _HOMEPAGE = "https://github.com/vimqa/vimqa" _LANGUAGES = ["vie"] _LICENSE = f"""{Licenses.OTHERS.value} | \ The licence terms for VimQA follows this EULA docs on their repo. Please refer to the following doc of EULA (to review the permissions and request for access) VIMQA EULA -- https://github.com/vimqa/vimqa/blob/main/VIMQA_EULA.pdf """ _LOCAL = True _SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" class VimqaDataset(datasets.GeneratorBasedBuilder): """VIMQA, a new Vietnamese dataset with over 10,000 Wikipedia-based multi-hop question-answer pairs.""" SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) BUILDER_CONFIGS = [ SEACrowdConfig( name=f"{_DATASETNAME}_source", version=SOURCE_VERSION, description=f"{_DATASETNAME} source schema", schema="source", subset_id=_DATASETNAME, ), SEACrowdConfig( name=f"{_DATASETNAME}_seacrowd_qa", version=SEACROWD_VERSION, description=f"{_DATASETNAME} SEACrowd schema", schema="seacrowd_qa", subset_id=_DATASETNAME, ), ] DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "id": datasets.Value("string"), "question": datasets.Value("string"), "answer": datasets.Value("string"), "type": datasets.Value("string"), "supporting_facts": datasets.features.Sequence( { "title": datasets.Value("string"), "sent_id": datasets.Value("int32"), } ), "context": datasets.features.Sequence( { "title": datasets.Value("string"), "sentences": datasets.features.Sequence(datasets.Value("string")), } ), } ) else: features = schemas.qa_features features["meta"] = { "supporting_facts": datasets.features.Sequence( { "title": datasets.Value("string"), "sent_id": datasets.Value("int32"), } ), "context": datasets.features.Sequence( { "title": datasets.Value("string"), "sentences": datasets.features.Sequence(datasets.Value("string")), } ), } return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> list[datasets.SplitGenerator]: """Returns SplitGenerators.""" if self.config.data_dir is None: raise ValueError("This is a local dataset. Please pass the data_dir kwarg to load_dataset.") else: data_dir = self.config.data_dir return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(data_dir, "vimqa_train.json")}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(data_dir, "vimqa_dev.json")}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, "vimqa_test.json")}, ), ] def _generate_examples(self, filepath: Path) -> tuple[int, dict]: with open(filepath, "r", encoding="utf-8") as f: data = json.load(f) for i, item in enumerate(data): if self.config.schema == "source": yield i, { "id": item["_id"], "question": item["question"], "answer": item["answer"], "type": item["type"], "supporting_facts": [{"title": f[0], "sent_id": f[1]} for f in item["supporting_facts"]], "context": [{"title": f[0], "sentences": f[1]} for f in item["context"]], } else: yield i, { "id": str(i), "question_id": item["_id"], "document_id": "", "question": item["question"], "type": item["type"], "choices": [], "context": "", "answer": [item["answer"]], "meta": { "supporting_facts": [{"title": f[0], "sent_id": f[1]} for f in item["supporting_facts"]], "context": [{"title": f[0], "sentences": f[1]} for f in item["context"]], }, }