Upload vitext2sql.py with huggingface_hub
Browse files- vitext2sql.py +177 -0
vitext2sql.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from typing import Dict, List, Tuple
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
from seacrowd.utils import schemas
|
8 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
9 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
10 |
+
|
11 |
+
_CITATION = """\
|
12 |
+
@inproceedings{nguyen2020vitext2sql,
|
13 |
+
title = {{A Pilot Study of Text-to-SQL Semantic Parsing for Vietnamese}},
|
14 |
+
author = {Anh Tuan Nguyen and Mai Hoang Dao and Dat Quoc Nguyen},
|
15 |
+
booktitle = {Findings of the Association for Computational Linguistics: EMNLP 2020},
|
16 |
+
year = {2020},
|
17 |
+
pages = {4079--4085}
|
18 |
+
}
|
19 |
+
"""
|
20 |
+
|
21 |
+
_DATASETNAME = "vitext2sql"
|
22 |
+
|
23 |
+
_DESCRIPTION = """\
|
24 |
+
This is the first public large-scale Text-to-SQL semantic parsing dataset for Vietnamese.
|
25 |
+
The dataset is created by manually translating the Spider dataset into Vietnamese.
|
26 |
+
"""
|
27 |
+
|
28 |
+
_HOMEPAGE = "https://github.com/VinAIResearch/ViText2SQL"
|
29 |
+
|
30 |
+
_LICENSE = f"""{Licenses.OTHERS.value} |
|
31 |
+
By downloading the ViText2SQL dataset, USER agrees:
|
32 |
+
1. to use ViText2SQL for research or educational purposes only.
|
33 |
+
2. to not distribute ViText2SQL or part of ViText2SQL in any original or modified form.
|
34 |
+
3. and to cite our EMNLP-2020 Findings paper above whenever ViText2SQL is employed to help produce published results.
|
35 |
+
Copyright (c) 2020 VinAI Research
|
36 |
+
THE DATA IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
37 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
38 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
39 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
40 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
41 |
+
OUT OF OR IN CONNECTION WITH THE DATA OR THE USE OR OTHER DEALINGS IN THE
|
42 |
+
DATA.
|
43 |
+
"""
|
44 |
+
|
45 |
+
_SOURCE_VERSION = "1.0.0"
|
46 |
+
|
47 |
+
_URLS = {
|
48 |
+
"word-level": {
|
49 |
+
"train": "https://raw.githubusercontent.com/VinAIResearch/ViText2SQL/master/data/word-level/train.json",
|
50 |
+
"test": "https://raw.githubusercontent.com/VinAIResearch/ViText2SQL/master/data/word-level/test.json",
|
51 |
+
"validation": "https://raw.githubusercontent.com/VinAIResearch/ViText2SQL/master/data/word-level/dev.json",
|
52 |
+
},
|
53 |
+
"syllable-level": {
|
54 |
+
"train": "https://raw.githubusercontent.com/VinAIResearch/ViText2SQL/master/data/syllable-level/train.json",
|
55 |
+
"test": "https://raw.githubusercontent.com/VinAIResearch/ViText2SQL/master/data/syllable-level/test.json",
|
56 |
+
"validation": "https://raw.githubusercontent.com/VinAIResearch/ViText2SQL/master/data/syllable-level/dev.json",
|
57 |
+
},
|
58 |
+
}
|
59 |
+
|
60 |
+
_LOCAL = False
|
61 |
+
_LANGUAGES = ["vie"]
|
62 |
+
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION]
|
63 |
+
|
64 |
+
_SEACROWD_VERSION = "2024.06.20"
|
65 |
+
|
66 |
+
|
67 |
+
class ViText2SQLDataset(datasets.GeneratorBasedBuilder):
|
68 |
+
"""Vitext2sql dataset is a Text-to-SQL semantic parsing dataset for Vietnamese."""
|
69 |
+
|
70 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
71 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
72 |
+
|
73 |
+
BUILDER_CONFIGS = [
|
74 |
+
SEACrowdConfig(
|
75 |
+
name=f"{_DATASETNAME}_source",
|
76 |
+
version=SOURCE_VERSION,
|
77 |
+
description="Vitext2sql word level source schema",
|
78 |
+
schema="source",
|
79 |
+
subset_id="vitext2sql",
|
80 |
+
),
|
81 |
+
SEACrowdConfig(
|
82 |
+
name=f"{_DATASETNAME}_source_syllable",
|
83 |
+
version=SOURCE_VERSION,
|
84 |
+
description="Vitext2sql syllable level source schema",
|
85 |
+
schema="source",
|
86 |
+
subset_id="vitext2sql",
|
87 |
+
),
|
88 |
+
SEACrowdConfig(
|
89 |
+
name=f"{_DATASETNAME}_seacrowd_t2t",
|
90 |
+
version=SEACROWD_VERSION,
|
91 |
+
description="Vitext2sql SEACrowd schema for word-level",
|
92 |
+
schema="seacrowd_t2t",
|
93 |
+
subset_id="vitext2sql",
|
94 |
+
),
|
95 |
+
SEACrowdConfig(
|
96 |
+
name=f"{_DATASETNAME}_seacrowd_syllable_t2t",
|
97 |
+
version=SEACROWD_VERSION,
|
98 |
+
description="Vitext2sql SEACrowd schema for syllable-level",
|
99 |
+
schema="seacrowd_t2t",
|
100 |
+
subset_id="vitext2sql",
|
101 |
+
),
|
102 |
+
]
|
103 |
+
|
104 |
+
DEFAULT_CONFIG_NAME = "vitext2sql_source"
|
105 |
+
|
106 |
+
def _info(self) -> datasets.DatasetInfo:
|
107 |
+
if self.config.schema == "source":
|
108 |
+
# The sql column is an unstructured JSON,
|
109 |
+
# in the meantime just treat it as large string.
|
110 |
+
features = datasets.Features(
|
111 |
+
{
|
112 |
+
"db_id": datasets.Value("string"),
|
113 |
+
"query": datasets.Value("string"),
|
114 |
+
"query_toks": [datasets.Value("string")],
|
115 |
+
"query_toks_no_value": [datasets.Value("string")],
|
116 |
+
"question": datasets.Value("string"),
|
117 |
+
"question_toks": [datasets.Value("string")],
|
118 |
+
"sql": datasets.Value("large_string"),
|
119 |
+
}
|
120 |
+
)
|
121 |
+
elif self.config.schema == "seacrowd_t2t":
|
122 |
+
features = schemas.text2text_features
|
123 |
+
|
124 |
+
return datasets.DatasetInfo(
|
125 |
+
description=_DESCRIPTION,
|
126 |
+
features=features,
|
127 |
+
homepage=_HOMEPAGE,
|
128 |
+
license=_LICENSE,
|
129 |
+
citation=_CITATION,
|
130 |
+
)
|
131 |
+
|
132 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
133 |
+
if "syllable" in self.config.name:
|
134 |
+
level_urls = _URLS["syllable-level"]
|
135 |
+
else:
|
136 |
+
level_urls = _URLS["word-level"]
|
137 |
+
|
138 |
+
data_files = dl_manager.download_and_extract(level_urls)
|
139 |
+
split_generators = [
|
140 |
+
datasets.SplitGenerator(
|
141 |
+
name=datasets.Split.TEST,
|
142 |
+
gen_kwargs={
|
143 |
+
"filepath": data_files["test"],
|
144 |
+
},
|
145 |
+
),
|
146 |
+
datasets.SplitGenerator(
|
147 |
+
name=datasets.Split.TRAIN,
|
148 |
+
gen_kwargs={
|
149 |
+
"filepath": data_files["train"],
|
150 |
+
},
|
151 |
+
),
|
152 |
+
datasets.SplitGenerator(
|
153 |
+
name=datasets.Split.VALIDATION,
|
154 |
+
gen_kwargs={
|
155 |
+
"filepath": data_files["validation"],
|
156 |
+
},
|
157 |
+
),
|
158 |
+
]
|
159 |
+
|
160 |
+
return split_generators
|
161 |
+
|
162 |
+
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
|
163 |
+
df = pd.read_json(filepath)
|
164 |
+
if self.config.schema == "source":
|
165 |
+
for i, row in df.iterrows():
|
166 |
+
entry = {"db_id": row["db_id"], "query": row["query"], "query_toks": row["query_toks"], "query_toks_no_value": row["query_toks_no_value"], "question": row["question"], "question_toks": row["question_toks"], "sql": str(row["sql"])}
|
167 |
+
yield i, entry
|
168 |
+
elif self.config.schema == "seacrowd_t2t":
|
169 |
+
for i, row in df.iterrows():
|
170 |
+
entry = {
|
171 |
+
"id": str(i),
|
172 |
+
"text_1": row["question"],
|
173 |
+
"text_2": row["query"],
|
174 |
+
"text_1_name": "question",
|
175 |
+
"text_2_name": "sql_query",
|
176 |
+
}
|
177 |
+
yield i, entry
|