File size: 5,615 Bytes
e161039 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """
@inproceedings{lyu-etal-2021-goal,
title = "Goal-Oriented Script Construction",
author = "Lyu, Qing and
Zhang, Li and
Callison-Burch, Chris",
editor = "Belz, Anya and
Fan, Angela and
Reiter, Ehud and
Sripada, Yaji",
booktitle = "Proceedings of the 14th International Conference on Natural Language Generation",
month = aug,
year = "2021",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.inlg-1.19",
doi = "10.18653/v1/2021.inlg-1.19",
pages = "184--200",
}
"""
_LOCAL = False
_LANGUAGES = {"ind": "id", "tha": "th", "vie": "vn"}
_DATASETNAME = "wikihow_gosc"
_DESCRIPTION = """
This dataset consists of wikiHow goal-oriented scripts. For each goal or task, sections with steps to achieve this task are
generated. Both the sections and steps within them are classified as either ordered or unordered.
"""
_HOMEPAGE = "https://github.com/veronica320/wikihow-GOSC/tree/main?tab=readme-ov-file"
_LICENSE = Licenses.MIT.value
_URL = "https://drive.google.com/uc?id=1AqAocrNFEPhBAfa5ATCj-3xMWbq659ME"
_SUPPORTED_TASKS = [Tasks.INSTRUCTION_TUNING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class WikiHowGOSCDataset(datasets.GeneratorBasedBuilder):
"""Dataset of WikiHow tasks/goals with generated steps to perform them."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_{lang}_source",
version=_SOURCE_VERSION,
description=f"{_DATASETNAME} source schema for {lang} language",
schema="source",
subset_id=f"{_DATASETNAME}_{lang}",
)
for lang in _LANGUAGES
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_ind_source"
def _info(self) -> datasets.DatasetInfo:
features = datasets.Features(
{
"title": datasets.Value("string"),
"category": datasets.Value("string"),
"sections": datasets.Sequence({"section": datasets.Value("string"), "steps": datasets.Sequence(datasets.Value("string")), "ordered": datasets.Value("int32")}),
"ordered": datasets.Value("int32"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
try:
import gdown
except ImportError:
raise ImportError("Please install `gdown` to enable downloading data from google drive.")
# Download from Google drive
output_dir = Path.cwd() / "data" / "wikihow_gosc"
output_dir.mkdir(parents=True, exist_ok=True)
output_file = output_dir / "wikihow_multilingual_scripts.zip"
if not output_file.exists():
gdown.download(_URL, str(output_file), fuzzy=True)
else:
print(f"File already downloaded: {str(output_file)}")
data_dir = Path(dl_manager.extract(output_file))
lang = _LANGUAGES[self.config.subset_id.split("_")[-1]]
return [ # Train and test are in same file
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, f"script_{lang}.json"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, f"script_{lang}.json"),
"split": "test",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
with open(filepath, "r", encoding="utf-8") as file:
data = json.load(file)
for key, example in enumerate(data[split]):
if "sections" not in example: # Single-section example
yield key, {
"title": example["title"],
"category": example["category"],
"sections": [{
"section": "",
"steps": example["steps"],
"ordered": example["ordered"],
}],
"ordered": 1
}
else:
yield key, example |