import os import pickle from pathlib import Path from typing import Dict, List, Tuple import datasets from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Tasks _CITATION = """\ @inproceedings{ ladhak-wiki-2020, title={WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization}, author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown}, booktitle={Findings of EMNLP, 2020}, year={2020} } """ _DATASETNAME = "wikilingua" _DESCRIPTION = """\ We introduce WikiLingua, a large-scale, multilingual dataset for the evaluation of crosslingual abstractive summarization systems. We extract article and summary pairs in 18 languages from WikiHow12, a high quality, collaborative resource of how-to guides on a diverse set of topics written by human authors. We create gold-standard article summary alignments across languages by aligning the images that are used to describe each how-to step in an article. """ _HOMEPAGE = "https://github.com/esdurmus/Wikilingua" _LANGUAGES = ["ind"] _LICENSE = "CC-BY-NC-SA 3.0" _LOCAL = False _URLS = { _DATASETNAME: "https://drive.google.com/u/0/uc?id=1PGa8j1_IqxiGTc3SU6NMB38sAzxCPS34&export=download" } _SUPPORTED_TASKS = [Tasks.SUMMARIZATION] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" class Wikilingua(datasets.GeneratorBasedBuilder): """ The dataset includes 47,511 articles from WikiHow. Extracted gold-standard article-summary alignments across languages by aligning the images that are used to describe each how-to step in an article. """ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) BUILDER_CONFIGS = [ SEACrowdConfig( name="wikilingua_source", version=SOURCE_VERSION, description="wikilingua source schema", schema="source", subset_id="wikilingua", ), SEACrowdConfig( name="wikilingua_seacrowd_t2t", version=SEACROWD_VERSION, description="wikilingua Nusantara schema", schema="seacrowd_t2t", subset_id="wikilingua", ), ] DEFAULT_CONFIG_NAME = "wikilingua_source" def _info(self) -> datasets.DatasetInfo: features = [] if self.config.schema == "source": features = datasets.Features( { "id": datasets.Value("int64"), "link": datasets.Value("string"), "main_point": datasets.Value("string"), "summary": datasets.Value("string"), "document": datasets.Value("string"), "english_section_name": datasets.Value("string"), "english_url": datasets.Value("string"), } ) elif self.config.schema == "seacrowd_t2t": features = schemas.text2text_features return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: """Returns SplitGenerators.""" urls = _URLS[_DATASETNAME] data_dir = dl_manager.download_and_extract(urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": os.path.join(data_dir), "split": "train", }, ), ] def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: """Yields examples as (key, example) tuples.""" if self.config.schema == "source": with open(filepath, "rb") as file: indonesian_docs = pickle.load(file) _id = 1 for key_link, articles in indonesian_docs.items(): for main_point, items in articles.items(): example = {"id": _id, "link": key_link, "main_point": main_point, "summary": items["summary"], "document": items["document"], "english_section_name": items["english_section_name"], "english_url": items["english_url"]} yield _id, example _id += 1 elif self.config.schema == "seacrowd_t2t": with open(filepath, "rb") as file: indonesian_docs = pickle.load(file) _id = 1 for key_link, articles in indonesian_docs.items(): for main_point, items in articles.items(): example = {"id": _id, "text_1": items["document"], "text_2": items["summary"], "text_1_name": "document", "text_2_name": "summary"} yield _id, example _id += 1