Datasets:

ArXiv:
License:
holylovenia commited on
Commit
42c88c2
·
verified ·
1 Parent(s): 3070b76

Upload xm3600.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. xm3600.py +202 -0
xm3600.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import Dict, List, Tuple
3
+
4
+ import datasets
5
+ import jsonlines as jl
6
+ import pandas as pd
7
+
8
+ from seacrowd.utils import schemas
9
+ from seacrowd.utils.configs import SEACrowdConfig
10
+ from seacrowd.utils.constants import Licenses, Tasks
11
+
12
+ _CITATION = """\
13
+ @inproceedings{thapliyal-etal-2022-crossmodal,
14
+ title = "Crossmodal-3600: A Massively Multilingual Multimodal Evaluation Dataset",
15
+ author = "Thapliyal, Ashish V. and
16
+ Pont Tuset, Jordi and
17
+ Chen, Xi and
18
+ Soricut, Radu",
19
+ editor = "Goldberg, Yoav and
20
+ Kozareva, Zornitsa and
21
+ Zhang, Yue",
22
+ booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
23
+ month = dec,
24
+ year = "2022",
25
+ address = "Abu Dhabi, United Arab Emirates",
26
+ publisher = "Association for Computational Linguistics",
27
+ url = "https://aclanthology.org/2022.emnlp-main.45",
28
+ doi = "10.18653/v1/2022.emnlp-main.45",
29
+ pages = "715--729",
30
+ }
31
+ """
32
+
33
+ _DATASETNAME = "xm3600"
34
+
35
+ _DESCRIPTION = """\
36
+ Crossmodal-3600 dataset (XM3600 in short), a geographically-diverse set of 3600 images annotated with
37
+ human-generated reference captions in 36 languages. The images were selected from across the world,
38
+ covering regions where the languages are spoken, and annotated with captions that achieve consistency in
39
+ terms of style across all languages, while avoiding annotation artifacts due to direct translation.
40
+ The languages covered in the dataset include Filipino, Indonesian, Thai, and Vietnamnese
41
+ """
42
+
43
+ _HOMEPAGE = "https://google.github.io/crossmodal-3600/"
44
+
45
+ _LICENSE = Licenses.CC_BY_4_0.value
46
+
47
+ _URLS = {
48
+ "captions": "https://google.github.io/crossmodal-3600/web-data/captions.zip",
49
+ "images": "https://open-images-dataset.s3.amazonaws.com/crossmodal-3600/images.tgz",
50
+ "image_attributions": "https://google.github.io/crossmodal-3600/web-data/image_attributions.csv",
51
+ }
52
+
53
+ _SUPPORTED_TASKS = [Tasks.IMAGE_CAPTIONING]
54
+
55
+ _SOURCE_VERSION = "1.0.0"
56
+
57
+ _SEACROWD_VERSION = "2024.06.20"
58
+
59
+ _LANGUAGES = ["fil", "id", "th", "vi"]
60
+
61
+ _LOCAL = False
62
+
63
+
64
+ class XM3600Dataset(datasets.GeneratorBasedBuilder):
65
+ """
66
+ Crossmodal-3600 dataset (XM3600 in short), a geographically-diverse set of 3600 images annotated with
67
+ human-generated reference captions in 36 languages. The images were selected from across the world,
68
+ covering regions where the languages are spoken, and annotated with captions that achieve consistency in
69
+ terms of style across all languages, while avoiding annotation artifacts due to direct translation.
70
+ The languages covered in the dataset include Filipino, Indonesian, Thai, and Vietnamnese
71
+ """
72
+
73
+ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
74
+ SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
75
+
76
+ BUILDER_CONFIGS = [
77
+ SEACrowdConfig(
78
+ name=f"{_DATASETNAME}_{lang}_source",
79
+ version=datasets.Version(_SOURCE_VERSION),
80
+ description=f"{_DATASETNAME}_{lang} source schema",
81
+ schema="source",
82
+ subset_id=f"{_DATASETNAME}_{lang}",
83
+ )
84
+ for lang in _LANGUAGES
85
+ ] + [
86
+ SEACrowdConfig(
87
+ name=f"{_DATASETNAME}_{lang}_seacrowd_imtext",
88
+ version=datasets.Version(_SEACROWD_VERSION),
89
+ description=f"{_DATASETNAME}_{lang} SEACrowd schema",
90
+ schema="seacrowd_imtext",
91
+ subset_id=f"{_DATASETNAME}_{lang}",
92
+ )
93
+ for lang in _LANGUAGES
94
+ ]
95
+
96
+ DEFAULT_CONFIG_NAME = f"xm3600_{sorted(_LANGUAGES)[0]}_source"
97
+
98
+ def _info(self) -> datasets.DatasetInfo:
99
+ if self.config.schema == "source":
100
+ features = datasets.Features(
101
+ {
102
+ "id": datasets.Value("string"),
103
+ "image_paths": datasets.Value("string"),
104
+ "texts": {
105
+ "caption": datasets.Value("string"),
106
+ "caption/tokenized": datasets.Value("string"),
107
+ "caption/tokenized/lowercase": datasets.Value("string"),
108
+ },
109
+ }
110
+ )
111
+ elif self.config.schema == "seacrowd_imtext":
112
+ features = schemas.image_text_features()
113
+
114
+ return datasets.DatasetInfo(
115
+ description=_DESCRIPTION,
116
+ features=features,
117
+ homepage=_HOMEPAGE,
118
+ license=_LICENSE,
119
+ citation=_CITATION,
120
+ )
121
+
122
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
123
+ """Returns SplitGenerators."""
124
+ captions_path = dl_manager.download_and_extract(_URLS["captions"])
125
+ images_path = dl_manager.download_and_extract(_URLS["images"])
126
+ attr_path = dl_manager.download(_URLS["image_attributions"])
127
+
128
+ train_caps = {}
129
+ test_caps = {}
130
+ val_caps = {}
131
+
132
+ current_lang = self.config.subset_id.split("_")[1]
133
+
134
+ img_df = pd.read_csv(attr_path)
135
+
136
+ img_df_train = img_df.loc[img_df["Subset"] == "train"][["ImageID", "Subset"]]
137
+ img_df_test = img_df.loc[img_df["Subset"] == "test"][["ImageID", "Subset"]]
138
+ img_df_val = img_df.loc[img_df["Subset"] == "validation"][["ImageID", "Subset"]]
139
+
140
+ with jl.open(os.path.join(captions_path, "captions.jsonl"), mode="r") as jsonl_file:
141
+ for line in jsonl_file:
142
+ if line["image/key"] in img_df_train.ImageID.values:
143
+ train_caps[line["image/key"]] = line[current_lang]
144
+ elif line["image/key"] in img_df_test.ImageID.values:
145
+ test_caps[line["image/key"]] = line[current_lang]
146
+ elif line["image/key"] in img_df_val.ImageID.values:
147
+ val_caps[line["image/key"]] = line[current_lang]
148
+
149
+ return [
150
+ datasets.SplitGenerator(
151
+ name=datasets.Split.TRAIN,
152
+ gen_kwargs={
153
+ "filepath": {"img_ids": img_df_train.ImageID.values, "images": {img_id: os.path.join(images_path, img_id + ".jpg") for img_id in img_df_train.ImageID.values}, "captions": train_caps},
154
+ },
155
+ ),
156
+ datasets.SplitGenerator(
157
+ name=datasets.Split.TEST,
158
+ gen_kwargs={
159
+ "filepath": {"img_ids": img_df_test.ImageID.values, "images": {img_id: os.path.join(images_path, img_id + ".jpg") for img_id in img_df_test.ImageID.values}, "captions": test_caps},
160
+ },
161
+ ),
162
+ datasets.SplitGenerator(
163
+ name=datasets.Split.VALIDATION,
164
+ gen_kwargs={
165
+ "filepath": {"img_ids": img_df_val.ImageID.values, "images": {img_id: os.path.join(images_path, img_id + ".jpg") for img_id in img_df_val.ImageID.values}, "captions": val_caps},
166
+ },
167
+ ),
168
+ ]
169
+
170
+ def _generate_examples(self, filepath: dict) -> Tuple[int, Dict]:
171
+ """Yields examples as (key, example) tuples."""
172
+ counter = 0
173
+ for img_id in filepath["img_ids"]:
174
+ cap = filepath["captions"][img_id]
175
+ for line in cap["caption"]:
176
+ cap_index = cap["caption"].index(line)
177
+ if self.config.schema == "source":
178
+ yield counter, {
179
+ "id": img_id + "_" + str(counter),
180
+ "image_paths": filepath["images"][img_id],
181
+ "texts": {
182
+ "caption": line,
183
+ "caption/tokenized": cap["caption/tokenized"][cap_index],
184
+ "caption/tokenized/lowercase": cap["caption/tokenized/lowercase"][cap_index],
185
+ },
186
+ }
187
+
188
+ elif self.config.schema == "seacrowd_imtext":
189
+ yield counter, {
190
+ "id": img_id + "_" + str(counter),
191
+ "image_paths": [filepath["images"][img_id]],
192
+ "texts": line,
193
+ "metadata": {
194
+ "context": None,
195
+ "labels": None,
196
+ },
197
+ }
198
+
199
+ else:
200
+ raise ValueError(f"Invalid config: {self.config.name}")
201
+
202
+ counter += 1