|
import json |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@article{Artetxe:etal:2019, |
|
author = {Mikel Artetxe and Sebastian Ruder and Dani Yogatama}, |
|
title = {On the cross-lingual transferability of monolingual representations}, |
|
journal = {CoRR}, |
|
volume = {abs/1910.11856}, |
|
year = {2019}, |
|
archivePrefix = {arXiv}, |
|
eprint = {1910.11856} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "xquad" |
|
|
|
_DESCRIPTION = """\ |
|
XQuAD (Cross-lingual Question Answering Dataset) is a benchmark dataset for evaluating cross-lingual question answering performance. |
|
The dataset consists of a subset of 240 paragraphs and 1190 question-answer pairs from the development set of SQuAD v1.1 together (Rajpurkar et al., 2016) |
|
with their professional translations into ten languages in their original implementation: Spanish, German, Greek, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, and Hindi and two in this dataloader: Vietnamese & Thai |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/google-deepmind/xquad" |
|
|
|
_LICENSE = Licenses.CC_BY_SA_4_0.value |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["tha", "vie"] |
|
|
|
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class XQuADDataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
XQuAD (Cross-lingual Question Answering Dataset) is a benchmark dataset for evaluating cross-lingual question answering performance. |
|
The dataset consists of a subset of 240 paragraphs and 1190 question-answer pairs from the development set of SQuAD v1.1 together |
|
with their professional translations into ten languages: Spanish, German, Greek, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, and Hindi. |
|
""" |
|
|
|
subsets = ["xquad.vi", "xquad.th"] |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="{sub}_source".format(sub=subset), |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description="{sub} source schema".format(sub=subset), |
|
schema="source", |
|
subset_id="{sub}".format(sub=subset), |
|
) |
|
for subset in subsets |
|
] + [ |
|
SEACrowdConfig( |
|
name="{sub}_seacrowd_qa".format(sub=subset), |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description="{sub} SEACrowd schema".format(sub=subset), |
|
schema="seacrowd_qa", |
|
subset_id="{sub}".format(sub=subset), |
|
) |
|
for subset in subsets |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "xquad.vi_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{"context": datasets.Value("string"), "question": datasets.Value("string"), "answers": datasets.Features({"answer_start": [datasets.Value("int64")], "text": [datasets.Value("string")]}), "id": datasets.Value("string")} |
|
) |
|
elif self.config.schema == "seacrowd_qa": |
|
features = schemas.qa_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN |
|
) |
|
] |
|
|
|
def _generate_examples(self) -> Tuple[int, Dict]: |
|
name_split = self.config.name.split("_") |
|
subset_name = name_split[0] |
|
dataset = datasets.load_dataset(_DATASETNAME, subset_name) |
|
|
|
|
|
for data in dataset['validation']: |
|
if self.config.schema == "source": |
|
yield data['id'], { |
|
"context": data['context'], |
|
"question": data['question'], |
|
"answers": {"answer_start": str(data['answers']['answer_start'][0]), "text": data['answers']['text'][0]}, |
|
"id": data['id'], |
|
} |
|
|
|
elif self.config.schema == "seacrowd_qa": |
|
yield data['id'], { |
|
"question_id": data['id'], |
|
"context": data['context'], |
|
"question": data['question'], |
|
"answer": {"answer_start": data['answers']['answer_start'][0], "text": data['answers']['text'][0]}, |
|
"id": data['id'], |
|
"choices": [], |
|
"type": "", |
|
"document_id": data['id'], |
|
"meta": {}, |
|
} |
|
|