holylovenia
commited on
Upload xstorycloze.py with huggingface_hub
Browse files- xstorycloze.py +176 -0
xstorycloze.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import Dict, List, Tuple
|
4 |
+
|
5 |
+
import datasets
|
6 |
+
|
7 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
8 |
+
from seacrowd.utils.constants import SCHEMA_TO_FEATURES, Licenses, Tasks
|
9 |
+
|
10 |
+
_CITATION = """\
|
11 |
+
@inproceedings{lin2022fewshot,
|
12 |
+
author = {Xi Victoria Lin and
|
13 |
+
Todor Mihaylov and
|
14 |
+
Mikel Artetxe and
|
15 |
+
Tianlu Wang and
|
16 |
+
Shuohui Chen and
|
17 |
+
Daniel Simig and
|
18 |
+
Myle Ott and
|
19 |
+
Naman Goyal and
|
20 |
+
Shruti Bhosale and
|
21 |
+
Jingfei Du and
|
22 |
+
Ramakanth Pasunuru and
|
23 |
+
Sam Shleifer and
|
24 |
+
Punit Singh Koura and
|
25 |
+
Vishrav Chaudhary and
|
26 |
+
Brian O'Horo and
|
27 |
+
Jeff Wang and
|
28 |
+
Luke Zettlemoyer and
|
29 |
+
Zornitsa Kozareva and
|
30 |
+
Mona T. Diab and
|
31 |
+
Veselin Stoyanov and
|
32 |
+
Xian Li},
|
33 |
+
editor = {Yoav Goldberg and
|
34 |
+
Zornitsa Kozareva and
|
35 |
+
Yue Zhang},
|
36 |
+
title = {Few-shot Learning with Multilingual Generative Language Models},
|
37 |
+
booktitle = {Proceedings of the 2022 Conference on Empirical Methods in Natural
|
38 |
+
Language Processing, {EMNLP} 2022, Abu Dhabi, United Arab Emirates,
|
39 |
+
December 7-11, 2022},
|
40 |
+
pages = {9019--9052},
|
41 |
+
publisher = {Association for Computational Linguistics},
|
42 |
+
year = {2022},
|
43 |
+
url = {https://doi.org/10.18653/v1/2022.emnlp-main.616},
|
44 |
+
doi = {10.18653/V1/2022.EMNLP-MAIN.616},
|
45 |
+
}
|
46 |
+
"""
|
47 |
+
|
48 |
+
_DATASETNAME = "xstorycloze"
|
49 |
+
_DESCRIPTION = """\
|
50 |
+
XStoryCloze consists of the professionally translated version of the English StoryCloze
|
51 |
+
dataset (Spring 2016 version) to 10 non-English languages. This dataset is released by
|
52 |
+
Meta AI.
|
53 |
+
"""
|
54 |
+
_HOMEPAGE = "https://huggingface.co/datasets/juletxara/xstory_cloze"
|
55 |
+
_LANGUAGES = ["ind", "mya"]
|
56 |
+
_LICENSE = Licenses.CC_BY_SA_4_0.value
|
57 |
+
|
58 |
+
_LOCAL = False
|
59 |
+
_BASE_URL = "https://huggingface.co/datasets/juletxara/xstory_cloze/resolve/main/spring2016.val.{lang}.tsv.split_20_80_{split}.tsv"
|
60 |
+
_SUPPORTED_TASKS = [Tasks.COMMONSENSE_REASONING]
|
61 |
+
_SOURCE_VERSION = "1.0.0"
|
62 |
+
_SEACROWD_VERSION = "2024.06.20"
|
63 |
+
|
64 |
+
|
65 |
+
class XStoryClozeDataset(datasets.GeneratorBasedBuilder):
|
66 |
+
"""XStoryCloze subset for Indonesian and Burmese language."""
|
67 |
+
|
68 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
69 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
70 |
+
|
71 |
+
SEACROWD_SUBSET = ["id", "my"]
|
72 |
+
|
73 |
+
BUILDER_CONFIGS = [
|
74 |
+
SEACrowdConfig(
|
75 |
+
name=f"{_DATASETNAME}_{subset}_source",
|
76 |
+
version=datasets.Version(_SOURCE_VERSION),
|
77 |
+
description=f"{_DATASETNAME} {subset} source schema",
|
78 |
+
schema="source",
|
79 |
+
subset_id=f"{_DATASETNAME}_{subset}",
|
80 |
+
)
|
81 |
+
for subset in SEACROWD_SUBSET
|
82 |
+
] + [
|
83 |
+
SEACrowdConfig(
|
84 |
+
name=f"{_DATASETNAME}_{subset}_seacrowd_qa",
|
85 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
86 |
+
description=f"{_DATASETNAME} {subset} SEACrowd schema",
|
87 |
+
schema="seacrowd_qa",
|
88 |
+
subset_id=f"{_DATASETNAME}_{subset}",
|
89 |
+
)
|
90 |
+
for subset in SEACROWD_SUBSET
|
91 |
+
]
|
92 |
+
|
93 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_{SEACROWD_SUBSET[0]}_source"
|
94 |
+
|
95 |
+
def _info(self) -> datasets.DatasetInfo:
|
96 |
+
if self.config.schema == "source":
|
97 |
+
features = datasets.Features(
|
98 |
+
{
|
99 |
+
"story_id": datasets.Value("string"),
|
100 |
+
"input_sentence_1": datasets.Value("string"),
|
101 |
+
"input_sentence_2": datasets.Value("string"),
|
102 |
+
"input_sentence_3": datasets.Value("string"),
|
103 |
+
"input_sentence_4": datasets.Value("string"),
|
104 |
+
"sentence_quiz1": datasets.Value("string"),
|
105 |
+
"sentence_quiz2": datasets.Value("string"),
|
106 |
+
"answer_right_ending": datasets.Value("int32"),
|
107 |
+
}
|
108 |
+
)
|
109 |
+
elif self.config.schema == "seacrowd_qa":
|
110 |
+
features = SCHEMA_TO_FEATURES["QA"]
|
111 |
+
|
112 |
+
return datasets.DatasetInfo(
|
113 |
+
description=_DESCRIPTION,
|
114 |
+
features=features,
|
115 |
+
homepage=_HOMEPAGE,
|
116 |
+
license=_LICENSE,
|
117 |
+
citation=_CITATION,
|
118 |
+
)
|
119 |
+
|
120 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
121 |
+
lang = self.config.name.split("_")[1]
|
122 |
+
filepaths = dl_manager.download_and_extract(
|
123 |
+
{
|
124 |
+
"train": _BASE_URL.format(lang=lang, split="train"),
|
125 |
+
"test": _BASE_URL.format(lang=lang, split="eval"),
|
126 |
+
}
|
127 |
+
)
|
128 |
+
|
129 |
+
return [
|
130 |
+
datasets.SplitGenerator(
|
131 |
+
name=datasets.Split.TRAIN,
|
132 |
+
gen_kwargs={
|
133 |
+
"filepath": filepaths["train"],
|
134 |
+
"split": "train",
|
135 |
+
},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.TEST,
|
139 |
+
gen_kwargs={
|
140 |
+
"filepath": filepaths["test"],
|
141 |
+
"split": "test",
|
142 |
+
},
|
143 |
+
),
|
144 |
+
]
|
145 |
+
|
146 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
147 |
+
with open(filepath, encoding="utf-8") as f:
|
148 |
+
data = csv.reader(f, quotechar='"', delimiter="\t", quoting=csv.QUOTE_ALL, skipinitialspace=True)
|
149 |
+
_ = next(data) # skip header
|
150 |
+
if self.config.schema == "source":
|
151 |
+
for id, row in enumerate(data):
|
152 |
+
yield id, {
|
153 |
+
"story_id": row[0],
|
154 |
+
"input_sentence_1": row[1],
|
155 |
+
"input_sentence_2": row[2],
|
156 |
+
"input_sentence_3": row[3],
|
157 |
+
"input_sentence_4": row[4],
|
158 |
+
"sentence_quiz1": row[5],
|
159 |
+
"sentence_quiz2": row[6],
|
160 |
+
"answer_right_ending": int(row[7]),
|
161 |
+
}
|
162 |
+
elif self.config.schema == "seacrowd_qa":
|
163 |
+
for id, row in enumerate(data):
|
164 |
+
question = " ".join(row[1:5])
|
165 |
+
choices = [row[5], row[6]]
|
166 |
+
yield id, {
|
167 |
+
"id": str(id),
|
168 |
+
"question_id": row[0],
|
169 |
+
"document_id": None,
|
170 |
+
"question": question,
|
171 |
+
"type": "multiple_choice",
|
172 |
+
"choices": choices,
|
173 |
+
"context": None,
|
174 |
+
"answer": [choices[int(row[7]) - 1]],
|
175 |
+
"meta": {},
|
176 |
+
}
|