Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
PabloAccuosto commited on
Commit
050d415
·
verified ·
1 Parent(s): 17d7861

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -0
README.md CHANGED
@@ -39,3 +39,74 @@ configs:
39
  - split: train
40
  path: data/train-*
41
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
  - split: train
40
  path: data/train-*
41
  ---
42
+
43
+ # Grant Classification Dataset
44
+
45
+ This dataset contains research grant documents classified according to a custom categorization of science, technology, and innovation (STI) policy instruments.
46
+
47
+ ## Dataset Description
48
+
49
+ ### Overview
50
+
51
+ The dataset consists of research grants from various funding sources.
52
+ Each grant is classified into one of 8 categories according to a taxonomy based on the OECD's categorization of STI policy instruments.
53
+
54
+ ### Data Sources
55
+
56
+ - **Open Sources**: Publicly available grant data from various sources including NIH, Kohesio, CORDIS, and others
57
+
58
+ ### Features
59
+
60
+ - `id`: Unique identifier for the grant
61
+ - `title`: Title of the grant
62
+ - `abstract`: Abstract or description of the grant
63
+ - `funder`: Organization providing the funding
64
+ - `funding_scheme`: Type of funding scheme
65
+ - `beneficiary`: Organization or individual receiving the funding
66
+ - `source`: Origin of the data (Dimensions or Open source)
67
+ - `label`: Classification category (target variable)
68
+
69
+ ### Labels
70
+
71
+ The dataset uses the following classification categories:
72
+
73
+ 1. **business_rnd_innovation**: Direct allocation of funding to private firms for R&D and innovation activities with commercial applications
74
+ 2. **fellowships_scholarships**: Financial support for individual researchers or higher education students
75
+ 3. **institutional_funding**: Core funding for higher education institutions and public research institutes
76
+ 4. **networking_collaborative**: Tools to bring together various actors within the innovation system
77
+ 5. **other_research_funding**: Alternative funding mechanisms for R&D or higher education
78
+ 6. **out_of_scope**: Grants unrelated to research, development, or innovation
79
+ 7. **project_grants_public**: Direct funding for specific research projects in public institutions
80
+ 8. **research_infrastructure**: Funding for research facilities, equipment, and resources
81
+
82
+ ### Statistics
83
+
84
+ - Total examples: 2386
85
+ - Class distribution:
86
+ - business_rnd_innovation: 170 (7.1% of examples)
87
+ - fellowships_scholarships: 342 (14.3% of examples)
88
+ - institutional_funding: 48 (2.0% of examples)
89
+ - networking_collaborative: 200 (8.4% of examples)
90
+ - other_research_funding: 34 (1.4% of examples)
91
+ - out_of_scope: 298 (12.5% of examples)
92
+ - project_grants_public: 1157 (48.5% of examples)
93
+ - research_infrastructure: 137 (5.7% of examples)
94
+
95
+ ## Usage
96
+
97
+ ```python
98
+ from datasets import load_dataset
99
+
100
+ # Load the dataset
101
+ dataset = load_dataset("SIRIS-Lab/grant-classification-dataset")
102
+
103
+ # Access the data
104
+ train_data = dataset["train"]
105
+ validation_data = dataset["validation"]
106
+ test_data = dataset["test"]
107
+
108
+ # Example of accessing a sample
109
+ sample = train_data[0]
110
+ print(f"Title: {sample['title']}")
111
+ print(f"Label: {sample['label']}")
112
+ ```