|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""naab: A ready-to-use plug-and-play corpus in Farsi""" |
|
|
|
|
|
import csv |
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
|
|
|
|
_CITATION = """\ |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
Huge corpora of textual data are always known to be a crucial need for training deep models such as transformer-based ones. This issue is emerging more in lower resource languages - like Farsi. We propose naab, the biggest cleaned and ready-to-use open-source textual corpus in Farsi. It contains about 130GB of data, 250 million paragraphs, and 15 billion words. The project name is derived from the Farsi word ناب which means pure and high-grade. |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/SLPL/naab" |
|
|
|
|
|
_LICENSE = "mit" |
|
|
|
N_FILES = { |
|
"train": 126, |
|
"test": 3 |
|
} |
|
_BASE_URL = "https://huggingface.co/datasets/SLPL/naab/resolve/main/data/" |
|
_URLS = { |
|
"train": [_BASE_URL + "train-{:05d}-of-{:05d}.txt".format(x, N_FILES["train"]) for x in range(N_FILES["train"])], |
|
"test": [_BASE_URL + "test-{:05d}-of-{:05d}.txt".format(x, N_FILES["test"]) for x in range(N_FILES["test"])], |
|
} |
|
|
|
|
|
class NaabConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for naab.""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
"""BuilderConfig for naab. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super().__init__( |
|
*args, |
|
**kwargs, |
|
) |
|
|
|
|
|
class Naab(datasets.GeneratorBasedBuilder): |
|
"""naab: A ready-to-use plug-and-play corpus in Farsi.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
NaabConfig( |
|
name="train", |
|
version=VERSION, |
|
description=_DESCRIPTION), |
|
NaabConfig( |
|
name="test", |
|
version=VERSION, |
|
description=_DESCRIPTION), |
|
] |
|
BUILDER_CONFIG_CLASS = NaabConfig |
|
|
|
DEFAULT_CONFIG_NAME = "train" |
|
|
|
def _info(self): |
|
features = datasets.Features({ |
|
"paragraph": datasets.Value("string") |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls = _URLS[self.config.name] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "train.jsonl"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "test.jsonl"), |
|
"split": "test" |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
for key, row in enumerate(f): |
|
data = json.loads(row) |
|
yield key, { |
|
"paragraph": data["paragraph"] |
|
} |
|
|