Datasets:

math23k / math23k.py
facat's picture
upd
687c1c3
import re
import string
from pathlib import Path
import logging
import pandas as pd
import datasets
from datasets import DatasetInfo, SplitDict, SplitInfo, load_dataset
ALPHABET = string.ascii_lowercase
def temp_list(num_list):
return map(lambda x: "temp_" + x, ALPHABET[: len(num_list)])
def extract_placeholders(text):
pattern = r"<<(.*?)>>"
matches = re.findall(pattern, text)
return matches
def multiple_replace(text, replacement_dict):
for k, v in replacement_dict.items():
text = text.replace(k, v)
return text
# if replacement_dict:
# pattern = "|".join(map(re.escape, replacement_dict.keys()))
# return re.sub(pattern, lambda m: replacement_dict[m.group()], text)
# else:
# return text
def solution_human(solution, num_list):
eqs = extract_placeholders(solution)
num_list = {key: str(value) for key, value in zip(temp_list(num_list), num_list)}
modified = []
cached = {}
for eq in eqs:
eq = multiple_replace(eq, num_list)
eq = multiple_replace(eq, cached)
try:
res = eval(eq)
be_eval = True
except Exception:
res = eq
be_eval = False
cached[eq] = str(res)
num_ops = sum([1 for char in eq if char in "+-*/"])
if num_ops and be_eval:
modified.append(f"{eq}={cached[eq]}")
else:
modified.append(f"{eq}")
text = solution
for t, rt in zip(eqs, modified):
text = text.replace(t, rt, 1)
return text
def get_expre(example):
seq = example["target_template"]
new_seq = []
for comp in seq[2:]:
if comp.startswith("temp"):
new_seq.append("{" + comp + "}")
elif comp == "PI":
new_seq.append("3.14")
elif comp == "^":
new_seq.append("**")
else:
new_seq.append(comp)
# num_list = list(set(sorted(num_list)))
# alphabet = string.ascii_lowercase
# num_list = list(map(lambda x: "temp_" + x, alphabet[: len(example["num_list"])]))
eqs = "".join(new_seq)
return {"expression": eqs}
# 获取字母表
def regular(example):
if example["id"] in ["17520"]:
return False
num_list = list(temp_list(example["num_list"]))
eqs = example["expression"].format(**dict(zip(num_list, example["num_list"])))
return eval(eqs) == example["answer"]
_DATA_FILES = ["data/math23k.csv"]
class DatasetBuilder(datasets.DatasetBuilder):
def _info(self):
return DatasetInfo()
def __init__(self, **kwargs):
super().__init__(**kwargs)
# def download_and_prepare(self, *args, **kwargs):
# return self
def _download_and_prepare(
self, dl_manager, verification_mode, **prepare_split_kwargs
):
downloaded_files = dl_manager.download(_DATA_FILES)
split_dict = SplitDict(dataset_name=self.name)
split_info = SplitInfo(name="train", shard_lengths=downloaded_files[0])
split_dict.add(split_info)
self.info.splits = split_dict
self.info.download_size = dl_manager.downloaded_size
def as_dataset(self, split, **kwargs):
df_file=self.info.splits[split].shard_lengths
logging.info("Loading dataset %s split %s from %s", self.name, split, df_file)
df = pd.read_csv(df_file)
ds = load_dataset("Gxg/Math23K", self.config.name, split=split)
ds = ds.map(get_expre).filter(regular)
ds = ds.add_column("solution", df["answers"])
ds = ds.map(
lambda exa: {
"solution_human": solution_human(exa["solution"], exa["num_list"])
}
)
ds = ds.select_columns(["original_text", "solution_human"])
ds = ds.rename_columns(
{"original_text": "question", "solution_human": "answer"}
)
return ds