Datasets:

facat commited on
Commit
23a1b7b
·
1 Parent(s): 5bc70a2
Files changed (3) hide show
  1. .gitattributes +1 -0
  2. data/math23k.csv +3 -0
  3. math23k.py +84 -4
.gitattributes CHANGED
@@ -52,3 +52,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
52
  *.jpg filter=lfs diff=lfs merge=lfs -text
53
  *.jpeg filter=lfs diff=lfs merge=lfs -text
54
  *.webp filter=lfs diff=lfs merge=lfs -text
 
 
52
  *.jpg filter=lfs diff=lfs merge=lfs -text
53
  *.jpeg filter=lfs diff=lfs merge=lfs -text
54
  *.webp filter=lfs diff=lfs merge=lfs -text
55
+ *.csv filter=lfs diff=lfs merge=lfs -text
data/math23k.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03df80a02b5404e7231abccb6e5511ef6cc05f101b260408dbbac201799997ec
3
+ size 11831918
math23k.py CHANGED
@@ -1,8 +1,64 @@
 
1
  import string
 
 
 
2
 
3
  import datasets
4
  from datasets import DatasetInfo, load_dataset
5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
  def get_expre(example):
8
  seq = example["target_template"]
@@ -27,12 +83,14 @@ def get_expre(example):
27
  def regular(example):
28
  if example["id"] in ["17520"]:
29
  return False
30
- alphabet = string.ascii_lowercase
31
- num_list = list(map(lambda x: "temp_" + x, alphabet[: len(example["num_list"])]))
32
  eqs = example["expression"].format(**dict(zip(num_list, example["num_list"])))
33
  return eval(eqs) == example["answer"]
34
 
35
 
 
 
 
36
  class DatasetBuilder(datasets.DatasetBuilder):
37
  def _info(self):
38
  return DatasetInfo()
@@ -40,10 +98,32 @@ class DatasetBuilder(datasets.DatasetBuilder):
40
  def __init__(self, **kwargs):
41
  super().__init__(**kwargs)
42
 
43
- def download_and_prepare(self, *args, **kwargs):
44
- return self
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
 
46
  def as_dataset(self, split, **kwargs):
 
47
  ds = load_dataset("Gxg/Math23K", self.config.name, split=split)
48
  ds = ds.map(get_expre).filter(regular)
 
 
 
 
 
 
49
  return ds
 
1
+ import re
2
  import string
3
+ from pathlib import Path
4
+
5
+ import pandas as pd
6
 
7
  import datasets
8
  from datasets import DatasetInfo, load_dataset
9
 
10
+ ALPHABET = string.ascii_lowercase
11
+
12
+
13
+ def temp_list(num_list):
14
+ return map(lambda x: "temp_" + x, ALPHABET[: len(num_list)])
15
+
16
+
17
+ def extract_placeholders(text):
18
+ pattern = r"<<(.*?)>>"
19
+ matches = re.findall(pattern, text)
20
+ return matches
21
+
22
+
23
+ def multiple_replace(text, replacement_dict):
24
+ for k, v in replacement_dict.items():
25
+ text = text.replace(k, v)
26
+ return text
27
+ # if replacement_dict:
28
+ # pattern = "|".join(map(re.escape, replacement_dict.keys()))
29
+ # return re.sub(pattern, lambda m: replacement_dict[m.group()], text)
30
+ # else:
31
+ # return text
32
+
33
+
34
+ def solution_human(solution, num_list):
35
+ eqs = extract_placeholders(solution)
36
+ num_list = {key: str(value) for key, value in zip(temp_list(num_list), num_list)}
37
+
38
+ modified = []
39
+ cached = {}
40
+ for eq in eqs:
41
+ eq = multiple_replace(eq, num_list)
42
+ eq = multiple_replace(eq, cached)
43
+ try:
44
+ res = eval(eq)
45
+ be_eval = True
46
+ except Exception:
47
+ res = eq
48
+ be_eval = False
49
+ cached[eq] = str(res)
50
+ num_ops = sum([1 for char in eq if char in "+-*/"])
51
+ if num_ops and be_eval:
52
+ modified.append(f"{eq}={cached[eq]}")
53
+ else:
54
+ modified.append(f"{eq}")
55
+
56
+ text = solution
57
+ for t, rt in zip(eqs, modified):
58
+ text = text.replace(t, rt, 1)
59
+
60
+ return text
61
+
62
 
63
  def get_expre(example):
64
  seq = example["target_template"]
 
83
  def regular(example):
84
  if example["id"] in ["17520"]:
85
  return False
86
+ num_list = list(temp_list(example["num_list"]))
 
87
  eqs = example["expression"].format(**dict(zip(num_list, example["num_list"])))
88
  return eval(eqs) == example["answer"]
89
 
90
 
91
+ _DATA_FILES = ["data/math23k.csv"]
92
+
93
+
94
  class DatasetBuilder(datasets.DatasetBuilder):
95
  def _info(self):
96
  return DatasetInfo()
 
98
  def __init__(self, **kwargs):
99
  super().__init__(**kwargs)
100
 
101
+ # def download_and_prepare(self, *args, **kwargs):
102
+
103
+ # return self
104
+
105
+ def _download_and_prepare(
106
+ self, dl_manager, verification_mode, **prepare_split_kwargs
107
+ ):
108
+ from datasets import SplitDict
109
+
110
+ downloaded_files = dl_manager.download(_DATA_FILES)
111
+ print(downloaded_files)
112
+ self.info.solution_files = downloaded_files
113
+ df=pd.read_csv(downloaded_files[0])
114
+ print(df)
115
+ split_dict = SplitDict(dataset_name=self.name)
116
+ self.info.splits = split_dict
117
+ self.info.download_size = dl_manager.downloaded_size
118
 
119
  def as_dataset(self, split, **kwargs):
120
+ df = pd.read_csv(self.info.solution_files[0])
121
  ds = load_dataset("Gxg/Math23K", self.config.name, split=split)
122
  ds = ds.map(get_expre).filter(regular)
123
+ ds = ds.add_column("solution", df["answers"])
124
+ ds = ds.map(
125
+ lambda exa: {
126
+ "solution_human": solution_human(exa["solution"], exa["num_list"])
127
+ }
128
+ )
129
  return ds