import re import string from pathlib import Path import logging import pandas as pd import datasets from datasets import DatasetInfo, SplitDict, SplitInfo, load_dataset ALPHABET = string.ascii_lowercase def temp_list(num_list): return map(lambda x: "temp_" + x, ALPHABET[: len(num_list)]) def extract_placeholders(text): pattern = r"<<(.*?)>>" matches = re.findall(pattern, text) return matches def multiple_replace(text, replacement_dict): for k, v in replacement_dict.items(): text = text.replace(k, v) return text # if replacement_dict: # pattern = "|".join(map(re.escape, replacement_dict.keys())) # return re.sub(pattern, lambda m: replacement_dict[m.group()], text) # else: # return text def solution_human(solution, num_list): eqs = extract_placeholders(solution) num_list = {key: str(value) for key, value in zip(temp_list(num_list), num_list)} modified = [] cached = {} for eq in eqs: eq = multiple_replace(eq, num_list) eq = multiple_replace(eq, cached) try: res = eval(eq) be_eval = True except Exception: res = eq be_eval = False cached[eq] = str(res) num_ops = sum([1 for char in eq if char in "+-*/"]) if num_ops and be_eval: modified.append(f"{eq}={cached[eq]}") else: modified.append(f"{eq}") text = solution for t, rt in zip(eqs, modified): text = text.replace(t, rt, 1) return text def get_expre(example): seq = example["target_template"] new_seq = [] for comp in seq[2:]: if comp.startswith("temp"): new_seq.append("{" + comp + "}") elif comp == "PI": new_seq.append("3.14") elif comp == "^": new_seq.append("**") else: new_seq.append(comp) # num_list = list(set(sorted(num_list))) # alphabet = string.ascii_lowercase # num_list = list(map(lambda x: "temp_" + x, alphabet[: len(example["num_list"])])) eqs = "".join(new_seq) return {"expression": eqs} # 获取字母表 def regular(example): if example["id"] in ["17520"]: return False num_list = list(temp_list(example["num_list"])) eqs = example["expression"].format(**dict(zip(num_list, example["num_list"]))) return eval(eqs) == example["answer"] _DATA_FILES = ["data/math23k.csv"] class DatasetBuilder(datasets.DatasetBuilder): def _info(self): return DatasetInfo() def __init__(self, **kwargs): super().__init__(**kwargs) # def download_and_prepare(self, *args, **kwargs): # return self def _download_and_prepare( self, dl_manager, verification_mode, **prepare_split_kwargs ): downloaded_files = dl_manager.download(_DATA_FILES) split_dict = SplitDict(dataset_name=self.name) split_info = SplitInfo(name="train", shard_lengths=downloaded_files[0]) split_dict.add(split_info) self.info.splits = split_dict self.info.download_size = dl_manager.downloaded_size def as_dataset(self, split, **kwargs): df_file=self.info.splits[split].shard_lengths logging.info("Loading dataset %s split %s from %s", self.name, split, df_file) df = pd.read_csv(df_file) ds = load_dataset("Gxg/Math23K", self.config.name, split=split) ds = ds.map(get_expre).filter(regular) ds = ds.add_column("solution", df["answers"]) ds = ds.map( lambda exa: { "solution_human": solution_human(exa["solution"], exa["num_list"]) } ) ds = ds.select_columns(["original_text", "solution_human"]) ds = ds.rename_columns( {"original_text": "question", "solution_human": "answer"} ) return ds