Upload alffamharic_asr.py
Browse files- alffamharic_asr.py +145 -0
alffamharic_asr.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""ALFFAAmharic automatic speech recognition dataset."""
|
18 |
+
|
19 |
+
|
20 |
+
import os
|
21 |
+
from pathlib import Path
|
22 |
+
|
23 |
+
import datasets
|
24 |
+
from datasets.tasks import AutomaticSpeechRecognition
|
25 |
+
|
26 |
+
|
27 |
+
_CITATION = """\
|
28 |
+
@inproceedings{
|
29 |
+
title={ALFFAAmharic Acoustic-Phonetic Continuous Speech Corpus},
|
30 |
+
author={Garofolo, John S., et al},
|
31 |
+
ldc_catalog_no={LDC93S1},
|
32 |
+
DOI={https://doi.org/10.35111/17gk-bn40},
|
33 |
+
journal={Linguistic Data Consortium, Philadelphia},
|
34 |
+
year={1983}
|
35 |
+
}
|
36 |
+
"""
|
37 |
+
|
38 |
+
_DESCRIPTION = """\
|
39 |
+
The ALFFAAmharic corpus of reading speech has been developed to provide speech data for acoustic-phonetic research studies
|
40 |
+
and for the evaluation of automatic speech recognition systems.
|
41 |
+
|
42 |
+
ALFFAAmharic contains high quality recordings of 630 individuals/speakers with 8 different American English dialects,
|
43 |
+
with each individual reading upto 10 phonetically rich sentences.
|
44 |
+
|
45 |
+
More info on ALFFAAmharic dataset can be understood from the "README" which can be found here:
|
46 |
+
https://catalog.ldc.upenn.edu/docs/LDC93S1/readme.txt
|
47 |
+
"""
|
48 |
+
|
49 |
+
_HOMEPAGE = "https://catalog.ldc.upenn.edu/LDC93S1"
|
50 |
+
|
51 |
+
|
52 |
+
class ALFFAAmharicASRConfig(datasets.BuilderConfig):
|
53 |
+
"""BuilderConfig for ALFFAAmharicASR."""
|
54 |
+
|
55 |
+
def __init__(self, **kwargs):
|
56 |
+
"""
|
57 |
+
Args:
|
58 |
+
data_dir: `string`, the path to the folder containing the files in the
|
59 |
+
downloaded .tar
|
60 |
+
citation: `string`, citation for the data set
|
61 |
+
url: `string`, url for information about the data set
|
62 |
+
**kwargs: keyword arguments forwarded to super.
|
63 |
+
"""
|
64 |
+
super(ALFFAAmharicASRConfig, self).__init__(version=datasets.Version("2.0.1", ""), **kwargs)
|
65 |
+
|
66 |
+
|
67 |
+
class ALFFAAmharic(datasets.GeneratorBasedBuilder):
|
68 |
+
"""TimitASR dataset."""
|
69 |
+
|
70 |
+
BUILDER_CONFIGS = [TimitASRConfig(name="clean", description="'Clean' speech.")]
|
71 |
+
|
72 |
+
@property
|
73 |
+
def manual_download_instructions(self):
|
74 |
+
return (
|
75 |
+
"To use TIMIT you have to download it manually. "
|
76 |
+
"Please create an account and download the dataset from https://catalog.ldc.upenn.edu/LDC93S1 \n"
|
77 |
+
"Then extract all files in one folder and load the dataset with: "
|
78 |
+
"`datasets.load_dataset('timit_asr', data_dir='path/to/folder/folder_name')`"
|
79 |
+
)
|
80 |
+
|
81 |
+
def _info(self):
|
82 |
+
return datasets.DatasetInfo(
|
83 |
+
description=_DESCRIPTION,
|
84 |
+
features=datasets.Features(
|
85 |
+
{
|
86 |
+
"file": datasets.Value("string"),
|
87 |
+
"audio": datasets.Audio(sampling_rate=16_000),
|
88 |
+
"text": datasets.Value("string"),
|
89 |
+
"speaker_id": datasets.Value("string"),
|
90 |
+
"id": datasets.Value("string"),
|
91 |
+
}
|
92 |
+
),
|
93 |
+
supervised_keys=("file", "text"),
|
94 |
+
homepage=_HOMEPAGE,
|
95 |
+
citation=_CITATION,
|
96 |
+
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
|
97 |
+
)
|
98 |
+
|
99 |
+
def _split_generators(self, dl_manager):
|
100 |
+
|
101 |
+
data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
|
102 |
+
|
103 |
+
if not os.path.exists(data_dir):
|
104 |
+
raise FileNotFoundError(
|
105 |
+
f"{data_dir} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('timit_asr', data_dir=...)` that includes files unzipped from the TIMIT zip. Manual download instructions: {self.manual_download_instructions}"
|
106 |
+
)
|
107 |
+
|
108 |
+
return [
|
109 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"split": "train", "data_dir": data_dir}),
|
110 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"split": "test", "data_dir": data_dir}),
|
111 |
+
]
|
112 |
+
|
113 |
+
def _generate_examples(self, split, data_dir):
|
114 |
+
"""Generate examples from TIMIT archive_path based on the test/train csv information."""
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
# Iterating the contents of the data to extract the relevant information
|
119 |
+
wav_paths = sorted(Path(data_dir).glob(f"**/{split}/**/*.wav"))
|
120 |
+
wav_paths = wav_paths if wav_paths else sorted(Path(data_dir).glob(f"**/{split.upper()}/**/*.WAV"))
|
121 |
+
for key, wav_path in enumerate(wav_paths):
|
122 |
+
|
123 |
+
# extract transcript
|
124 |
+
txt_path = with_case_insensitive_suffix(wav_path, ".txt")
|
125 |
+
with txt_path.open(encoding="utf-8") as op:
|
126 |
+
transcript = " ".join(op.readlines()[0].split()[2:]) # first two items are sample number
|
127 |
+
|
128 |
+
speaker_id = wav_path.parents[0].name[1:]
|
129 |
+
id_ = wav_path.stem
|
130 |
+
|
131 |
+
example = {
|
132 |
+
"file": str(wav_path),
|
133 |
+
"audio": str(wav_path),
|
134 |
+
"text": transcript,
|
135 |
+
"speaker_id": speaker_id,
|
136 |
+
"id": id_,
|
137 |
+
}
|
138 |
+
|
139 |
+
yield key, example
|
140 |
+
|
141 |
+
|
142 |
+
def with_case_insensitive_suffix(path: Path, suffix: str):
|
143 |
+
path = path.with_suffix(suffix.lower())
|
144 |
+
path = path if path.exists() else path.with_suffix(suffix.upper())
|
145 |
+
return path
|