File size: 20,020 Bytes
56f55f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
__author__ = "Matlatipov Sanatbek, Jaloliddin Rajabov"
__credits__ = ""
__license__ = ""
__version__ = ""
__maintainer__ = ""
__email__ = "{s.matlatipov, j.rajabov}@nuu.uz"

try:
    import xml.etree.ElementTree as ET, getopt, logging, sys, random, re, copy
    from xml.sax.saxutils import escape
    import krippendorff as kp
    from sklearn.metrics import confusion_matrix, cohen_kappa_score
    import pandas as pd
    import numpy as np
    import re
    import matplotlib.pyplot as plt
    import seaborn as sns
except:
    sys.exit('Some package is missing... Perhaps <re>?')

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


def fd(counts):
    """Given a list of occurrences (e.g., [1,1,1,2]), return a dictionary of frequencies (e.g., {1:3, 2:1}.)"""
    d = {}
    for i in counts:
        d[i] = d[i] + 1 if i in d else 1
    return d


frequency_rank = lambda d: sorted(d, key=d.get, reverse=True)
'Given a map, return ranked the keys based on their values.'


class Category:
    """Category objects contain the term and polarity (i.e., pos, neg, neu, conflict) of the category (e.g., food,
    price, etc.) of a sentence. """

    def __init__(self, term='', polarity=''):
        self.term = term
        self.polarity = polarity

    def create(self, element):
        self.term = element.attrib['category']
        self.polarity = element.attrib['polarity']
        return self

    def update(self, term='', polarity=''):
        self.term = term
        self.polarity = polarity


class Aspect:
    """Aspect objects contain the term (e.g., battery life) and polarity (i.e., positive, negative, neutral, conflict)
    of an aspect. """

    def __init__(self, term, polarity, offsets):
        self.term = term
        self.polarity = polarity
        self.offsets = offsets

    def create(self, element):
        self.term = element.attrib['term']
        self.polarity = element.attrib['polarity']
        self.offsets = {'from': str(element.attrib['from']), 'to': str(element.attrib['to'])}
        return self

    def update(self, term='', polarity=''):
        self.term = term
        self.polarity = polarity


def validate(filename):
    """Validate an XML file"""
    elements = ET.parse(filename).getroot().findall('sentence')
    aspects = []
    for e in elements:
        for eterms in e.findall('aspectTerms'):
            if eterms is not None:
                for a in eterms.findall('aspectTerm'):
                    aspects.append(Aspect('', '', []).create(a).term)
    return elements, aspects


fix = lambda text: escape(text.encode('utf8')).replace('\"', '&quot;')
'Simple fix for writing out text.'


class Instance:
    """An instance is a sentence, modeled out of XML (pre-specified format, based on the 4th task of SemEval 2014).
    It contains the text, the aspect terms, and any aspect categories."""

    def __init__(self, element):
        self.text = element.find('text').text
        self.id = element.get('ID')
        self.aspect_terms = [Aspect('', '', offsets={'from': '', 'to': ''}).create(e) for es in
                             element.findall('aspectTerms') for e in es if
                             es is not None]
        self.aspect_categories = [Category(term='', polarity='').create(e) for es in element.findall('aspectCategories')
                                  for e in es if
                                  es is not None]

    def get_aspect_terms(self):
        return [a.term.lower() for a in self.aspect_terms]

    def get_aspect_categories(self):
        return [c.term.lower() for c in self.aspect_categories]

    def add_aspect_term(self, term, polarity='', offsets=None):
        if offsets is None:
            offsets = {'from': '', 'to': ''}
        a = Aspect(term, polarity, offsets)
        self.aspect_terms.append(a)

    def add_aspect_category(self, term, polarity=''):
        c = Category(term, polarity)
        self.aspect_categories.append(c)


class Corpus:
    """A corpus contains instances, and is useful for training algorithms or splitting to train/test files."""

    def __init__(self, elements):
        self.corpus = [Instance(e) for e in elements]
        self.size = len(self.corpus)
        self.aspect_terms_fd = fd([a for i in self.corpus for a in i.get_aspect_terms()])
        self.top_aspect_terms = frequency_rank(self.aspect_terms_fd)
        self.texts = [t.text for t in self.corpus]

    def echo(self):
        print('%d instances\n%d distinct aspect terms' % (len(self.corpus), len(self.top_aspect_terms)))
        print('Top aspect terms: %s' % (', '.join(self.top_aspect_terms[:10])))

    def clean_tags(self):
        for i in range(len(self.corpus)):
            self.corpus[i].aspect_terms = []


class Evaluate:
    """Manual evaluation of subtask"""

    def __init__(self, correct, predicted):
        self.value_domains_str = None
        self.size = len(correct)
        self.correct = correct
        self.predicted = predicted
        self.reliability_aspect_terms_data = self.get_reliability_aspect_terms_data()
        self.reliability_aspect_terms_polarity = self.get_reliability_aspect_terms_polarity()
        self.reliability_aspect_categories_data = self.get_reliability_aspect_category_data()
        self.reliability_aspect_categoty_polarity = self.get_reliability_aspect_categories_polarities()

    def krippendorff_alpha_aspect_terms(self, krippendorff_metric_type):
        self.get_aspect_terms_value_domains_str()
        alpha = kp.alpha(reliability_data=self.reliability_aspect_terms_data, value_domain=list(self.value_domains_str),
                         level_of_measurement=krippendorff_metric_type)
        return alpha

    def krippendorff_alpha_aspect_terms_polarity(self, krippendorff_metric_type):
        self.get_aspect_terms_value_domains_str()
        alpha = kp.alpha(reliability_data=self.reliability_aspect_terms_polarity,
                         level_of_measurement=krippendorff_metric_type)
        return alpha

    def krippendorff_alpha_aspect_categories(self, krippendorff_metric_type):
        alpha = kp.alpha(reliability_data=self.reliability_aspect_categories_data,
                         value_domain=list(['ovqat', 'xizmat', 'muhit', 'narx', 'boshqalar']),
                         level_of_measurement=krippendorff_metric_type)
        # value_counts = kp._reliability_data_to_value_counts(reliability_data, value_domain)
        # alpha.
        return alpha

    def krippendorff_alpha_aspect_terms_polarity(self, krippendorff_metric_type):
        self.get_aspect_terms_value_domains_str()
        alpha = kp.alpha(reliability_data=self.reliability_aspect_terms_polarity,
                         level_of_measurement=krippendorff_metric_type)
        return alpha

    def get_aspect_terms_value_domains_str(self):
        self.value_domains_str = set(self.reliability_aspect_terms_data[0])
        self.value_domains_str.update(self.reliability_aspect_terms_data[1])

    def get_reliability_aspect_terms_data(self):
        new_gold = []
        new_test = []
        for i in range(self.size):
            gold = self.correct[i].get_aspect_terms()
            test = self.predicted[i].get_aspect_terms()
            self.get_reliability_data(gold, new_gold, new_test, test)
        return [new_gold, new_test]

    def get_reliability_aspect_terms_polarity(self):
        new_gold, new_test = [], []
        for i in range(self.size):
            cor_offsets, cor_polarities = [], []
            pre_offsets, pre_polarities = [], []
            for a in self.correct[i].aspect_terms:
                cor_offsets = list(a.offsets)
                cor_polarities = list(a.polarity)
            for a in self.predicted[i].aspect_terms:
                pre_offsets = list(a.offsets)
                pre_polarities = list(a.polarity)
            for cor_idx in range(len(cor_offsets)):
                for pre_idx in range(len(pre_offsets)):
                    if cor_offsets[cor_idx] != pre_offsets[pre_idx]:
                        new_gold.append(cor_polarities[cor_idx])
                        new_test.append(np.nan)
                        new_gold.append(np.nan)
                        new_test.append(pre_polarities[pre_idx])
                    else:
                        new_gold.append(cor_polarities[cor_idx])
                        new_test.append(pre_polarities[pre_idx])
        return [new_gold, new_test]

    def get_reliability_aspect_category_data(self):
        new_gold = []
        new_test = []
        for i in range(self.size):
            gold = self.correct[i].get_aspect_categories()
            test = self.predicted[i].get_aspect_categories()
            gold = sorted(gold)
            test = sorted(test)
            new_gold = new_gold + gold
            new_test = new_test + test
        return [new_gold, new_test]

    def get_reliability_aspect_categories_polarities(self):
        new_gold, new_test = [], []
        for i in range(self.size):
            cor_polarities = self.correct[i].aspect_categories
            pre_polarities = self.predicted[i].aspect_categories
            new_gold = new_gold + cor_polarities
            new_test = new_test + pre_polarities
        return [new_gold, new_test]

    @staticmethod
    def get_reliability_data(gold, new_gold, new_test, test):
        gold = sorted(gold)
        test = sorted(test)
        cnt = 0
        for j in range(max(len(gold), len(test))):
            try:
                goldJ = re.sub(r'[^\w]', ' ', gold[j])
                testJ = re.sub(r'[^\w]', ' ', test[j])
                if goldJ != testJ:
                    cnt = cnt + 1
                    new_gold.append(goldJ)
                    new_test.append(np.nan)
                    new_gold.append(np.nan)
                    new_test.append(testJ)
                else:
                    new_test.append(testJ)
                    new_gold.append(goldJ)
            except IndexError:
                if len(gold) < j:
                    new_gold.append(np.nan)
                if len(test) < j:
                    new_test.append(np.nan)

    def aspect_extraction(self, b=1):
        manual_common, manual_gold, manual_test = 0., 0., 0.
        for i in range(self.size):
            cor = [a.offsets for a in self.correct[i].aspect_terms]
            pre = [a.offsets for a in self.predicted[i].aspect_terms]
            manual_common += len([a for a in pre if a in cor])
            manual_test += len(pre)
            manual_gold += len(cor)
        p = manual_common / manual_test if manual_test > 0 else 0.
        r = manual_common / manual_gold
        f1 = (1 + (b ** 2)) * p * r / ((p * b ** 2) + r) if p > 0 and r > 0 else 0.
        return p, r, f1, manual_common, manual_test, manual_gold

    def aspect_extraction_cohen_kappa(self, b=1):
        manual_gold, manual_test = [], []
        for i in range(self.size):
            temp_gold_list = []
            temp_test_list = []
            for a in self.correct[i].aspect_terms:
                temp_gold_list.append(a.term)
            for a in self.predicted[i].aspect_terms:
                temp_test_list.append(a.term)
            manual_gold = manual_gold + sorted(temp_gold_list)
            manual_test = manual_test + sorted(temp_test_list)

        return cohen_kappa_score(manual_gold, manual_test)

    def get_confusion_matrix_heatmap(self, manual_gold, manual_test, labels, title):
        confusion = confusion_matrix(manual_gold, manual_test, labels=labels)
        ax = plt.subplot()
        sns.heatmap(confusion, annot=True, fmt='g', ax=ax)
        # labels, title and ticks
        ax.set_xlabel('Test labels')
        ax.set_ylabel('Gold labels')
        ax.set_title(title);
        ax.xaxis.set_ticklabels(list(labels))
        ax.yaxis.set_ticklabels(list(labels))
        plt.show()
    # Aspect Category Detection
    def category_detection(self, b=1):
        manual_common, manual_gold, manual_test = 0., 0., 0.
        for i in range(self.size):
            cor = self.correct[i].get_aspect_categories()
            # Use set to avoid duplicates (i.e., two times the same category)
            pre = set(self.predicted[i].get_aspect_categories())
            manual_common += len([c for c in pre if c in cor])
            manual_test += len(pre)
            manual_gold += len(cor)
        p = manual_common / manual_test if manual_test > 0 else 0.
        r = manual_common / manual_gold
        f1 = (1 + b ** 2) * p * r / ((p * b ** 2) + r) if p > 0 and r > 0 else 0.
        return p, r, f1, manual_common, manual_test, manual_gold

    def aspect_category_detection_cohen_kappa(self, b=1):
        manual_gold, manual_test = [], []
        for i in range(self.size):
            temp_gold_list = []
            temp_test_list = []
            for a in list(self.correct[i].aspect_categories):
                temp_gold_list.append(a.term)
            for a in list(self.predicted[i].aspect_categories):
                temp_test_list.append(a.term)
            manual_gold = manual_gold + sorted(temp_gold_list)
            manual_test = manual_test + sorted(temp_test_list)
            if len(self.correct[i].aspect_categories) != len(self.predicted[i].aspect_categories):
                print("ID missed = ", self.correct[i].id)
        labels = ['ovqat', 'xizmat', 'narx', 'muhit', 'boshqalar']
        self.get_confusion_matrix_heatmap(manual_gold, manual_test, labels, 'Aspect Category term Confusion Matrix')
        alpha = cohen_kappa_score(manual_gold, manual_test, labels=labels)
        return alpha

    def aspect_polarity_estimation(self, b=1):
        common, relevant, retrieved = 0., 0., 0.
        for i in range(self.size):
            cor = [a.polarity for a in self.correct[i].aspect_terms]
            pre = [a.polarity for a in self.predicted[i].aspect_terms]
            common += sum([1 for j in range(len(pre)) if pre[j] == cor[j]])
            retrieved += len(pre)
        acc = common / retrieved
        return acc, common, retrieved

    def aspect_polarity_kappa_cohen_estimation(self, b=1):
        manual_gold, manual_test = [], []
        for i in range(self.size):
            for a in self.correct[i].aspect_terms:
                manual_gold.append(a.polarity)
            for a in self.predicted[i].aspect_terms:
                manual_test.append(a.polarity)
            if len(self.correct[i].aspect_terms) != len(self.predicted[i].aspect_terms):
                print("ID missed = ", self.correct[i].id)
        labels = ['positive', 'negative', 'neutral', 'conflict']
        self.get_confusion_matrix_heatmap(manual_gold, manual_test, labels, 'Aspect Terms Polarity Confusion Matrix')
        return cohen_kappa_score(manual_gold, manual_test, labels=labels)

    def aspect_category_polarity_estimation(self, b=1):
        common, relevant, retrieved = 0., 0., 0.
        for i in range(self.size):
            cor = [a.polarity for a in self.correct[i].aspect_categories]
            pre = [a.polarity for a in self.predicted[i].aspect_categories]
            common += sum([1 for j in range(len(pre)) if pre[j] == cor[j]])
            retrieved += len(pre)
        acc = common / retrieved
        return acc, common, retrieved

    def aspect_category_polarity_kappa_cohen_estimation(self, b=1):
        manual_gold, manual_test = [], []
        for i in range(self.size):
            temp_gold_list = []
            temp_test_list = []
            for a in self.correct[i].aspect_categories:
                manual_gold.append(a.polarity)
            for a in self.predicted[i].aspect_categories:
                manual_test.append(a.polarity)
            if len(self.correct[i].aspect_categories) != len(self.predicted[i].aspect_categories):
                print("ID missed = ", self.correct[i].id)
        labels = ['positive', 'negative', 'neutral', 'conflict']
        self.get_confusion_matrix_heatmap(manual_gold, manual_test, labels, 'Aspect Category Terms Polarity Confusion Matrix')

        return cohen_kappa_score(manual_gold, manual_test)


def main(argv=None):
    # Parse the input
    opts, args = getopt.getopt(argv, "hg:dt:om:k:", ["help", "grammar", "train=", "task=", "test="])
    trainfile, testfile, task = None, None, 1
    use_msg = 'Use as:\n">>> python baselines.py --train file.xml --task -1|1|2|3|4"\n\nThis will parse a train ' \
              'set, examine whether is valid, test files, perform ABSA for task 1, 2, 3, or 4 , and write out a file ' \
              'with the predictions. '

    if len(opts) == 0:
        sys.exit(use_msg)
    for opt, arg in opts:
        if opt in ("-h", "--help"):
            sys.exit(use_msg)
        elif opt in ('-t', "--train"):
            trainfile = arg
        elif opt in ('-m', "--task"):
            task = int(arg)

    # Examine if the file is in proper XML format for further use.
    print('Validating the file...')
    try:
        elements, aspects = validate(trainfile)
        print('PASSED! This corpus has: %d sentences, %d aspect term occurrences, and %d distinct aspect terms.' % (
            len(elements), len(aspects), len(list(set(aspects)))))
    except:
        print("Unexpected error:", sys.exc_info()[0])
        raise

    # Get the corpus and split into train/test.
    manual_corpus_gold = Corpus(ET.parse(trainfile).getroot().findall('sentence'))
    manual_corpus_test = Corpus(ET.parse('rest-manual-test-cohen-kapp.xml').getroot().findall('sentence'))

    if task == 1:
        print('\n------- Aspect terms --------')
        print('P = %f -- R = %f -- F1 = %f (#correct: %d, #retrieved-test: '
              '%d, #relevant-gold: %d)' % Evaluate(manual_corpus_gold.corpus,
                                                   manual_corpus_test.corpus).aspect_extraction())
        print('Cohen\'s kappa = ', Evaluate(manual_corpus_gold.corpus, manual_corpus_test.corpus)
              .aspect_extraction_cohen_kappa())
        print('Krippendorff nominal metric = ', Evaluate(manual_corpus_gold.corpus, manual_corpus_test.corpus)
              .krippendorff_alpha_aspect_terms("nominal"))

    if task == 2:
        print('\nAspect term polarity...')
        print('Accuracy = %f, #Correct/#All: %d/%d' % Evaluate(manual_corpus_gold.corpus, manual_corpus_test.corpus)
              .aspect_polarity_estimation())
        print('Cohen Kappa Accuracy = %f,' % Evaluate(manual_corpus_gold.corpus, manual_corpus_test.corpus)
              .aspect_polarity_kappa_cohen_estimation())
        print('Krippendorff nominal metric = ', Evaluate(manual_corpus_gold.corpus, manual_corpus_test.corpus)
              .krippendorff_alpha_aspect_terms_polarity("nominal"))

    if task == 3:
        print('\n------- Aspect Categories --------')
        print('P = %f -- R = %f -- F1 = %f (#correct: %d, #retrieved: '
              '%d, #relevant: %d)' % Evaluate(manual_corpus_gold.corpus,
                                              manual_corpus_test.corpus).category_detection())
        print('Cohen\'s kappa = ', Evaluate(manual_corpus_gold.corpus, manual_corpus_test.corpus)
              .aspect_category_detection_cohen_kappa())
        print('Krippendorff nominal metric = ', Evaluate(manual_corpus_gold.corpus, manual_corpus_test.corpus)
              .krippendorff_alpha_aspect_categories("nominal"))

    if task == 4:
        print('\nEstimating aspect category polarity...')
        print('Accuracy = %f, #Correct/#All: %d/%d' % Evaluate(manual_corpus_gold.corpus, manual_corpus_test.corpus)
              .aspect_category_polarity_estimation())
        print('Cohen Kappa Accuracy = %f,' % Evaluate(manual_corpus_gold.corpus, manual_corpus_test.corpus)
              .aspect_category_polarity_kappa_cohen_estimation())
        print('Krippendorff nominal metric = ', Evaluate(manual_corpus_gold.corpus, manual_corpus_test.corpus)
              .krippendorff_alpha_aspect_terms_polarity("nominal"))


if __name__ == "__main__": main(sys.argv[1:])