aspect-based-sentiment-analysis-uzbek / aspect-based-sentiment-analysis-uzbek.py
Sanatbek_Matlatipov
dataset is moved to google drive
821db02
raw
history blame
2.61 kB
import os
import xml.etree.ElementTree as ET
import datasets
from datasets import GeneratorBasedBuilder, DatasetInfo, Split, SplitGenerator, Features, Value, Sequence
_BASE_URL = "https://drive.google.com/uc?export=download&id=15YklLKAaNXomOAkEAMmLAIIFhS9o-ywS"
class UzABSA(GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="uzabsa", version=VERSION,
description="UZABSA dataset for sentiment analysis in Uzbek"),
]
def _info(self):
return DatasetInfo(
features=Features({
"sentence_id": Value("string"),
"text": Value("string"),
"aspect_terms": Sequence({
"term": Value("string"),
"polarity": Value("string"),
"from": Value("int32"),
"to": Value("int32"),
}),
"aspect_categories": Sequence({
"category": Value("string"),
"polarity": Value("string"),
}),
})
)
def _split_generators(self, dl_manager):
# Use the dl_manager to download and cache the data
downloaded_file = dl_manager.download_and_extract(_BASE_URL)
return [
SplitGenerator(name=Split.TRAIN, gen_kwargs={"filepath": downloaded_file}),
]
def _generate_examples(self, filepath):
tree = ET.parse(filepath)
root = tree.getroot()
for sentence in root.findall("sentence"):
sentence_id = sentence.get("ID")
text = sentence.find("text").text
aspect_terms = []
for aspect_term in sentence.findall("./aspectTerms/aspectTerm"):
aspect_terms.append({
"term": aspect_term.get("term"),
"polarity": aspect_term.get("polarity"),
"from": int(aspect_term.get("from")),
"to": int(aspect_term.get("to")),
})
aspect_categories = []
for aspect_category in sentence.findall("./aspectCategories/aspectCategory"):
aspect_categories.append({
"category": aspect_category.get("category"),
"polarity": aspect_category.get("polarity"),
})
yield sentence_id, {
"sentence_id": sentence_id,
"text": text,
"aspect_terms": aspect_terms,
"aspect_categories": aspect_categories,
}