__author__ = "Matlatipov Sanatbek, Jaloliddin Rajabov" __credits__ = "" __license__ = "" __version__ = "" __maintainer__ = "" __email__ = "{s.matlatipov, j.rajabov}@nuu.uz" try: import xml.etree.ElementTree as ET, getopt, logging, sys, random, re, copy from xml.sax.saxutils import escape import krippendorff as kp from sklearn.metrics import confusion_matrix, cohen_kappa_score import pandas as pd import numpy as np import re import matplotlib.pyplot as plt import seaborn as sns except: sys.exit('Some package is missing... Perhaps ?') logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def fd(counts): """Given a list of occurrences (e.g., [1,1,1,2]), return a dictionary of frequencies (e.g., {1:3, 2:1}.)""" d = {} for i in counts: d[i] = d[i] + 1 if i in d else 1 return d frequency_rank = lambda d: sorted(d, key=d.get, reverse=True) 'Given a map, return ranked the keys based on their values.' class Category: """Category objects contain the term and polarity (i.e., pos, neg, neu, conflict) of the category (e.g., food, price, etc.) of a sentence. """ def __init__(self, term='', polarity=''): self.term = term self.polarity = polarity def create(self, element): self.term = element.attrib['category'] self.polarity = element.attrib['polarity'] return self def update(self, term='', polarity=''): self.term = term self.polarity = polarity class Aspect: """Aspect objects contain the term (e.g., battery life) and polarity (i.e., positive, negative, neutral, conflict) of an aspect. """ def __init__(self, term, polarity, offsets): self.term = term self.polarity = polarity self.offsets = offsets def create(self, element): self.term = element.attrib['term'] self.polarity = element.attrib['polarity'] self.offsets = {'from': str(element.attrib['from']), 'to': str(element.attrib['to'])} return self def update(self, term='', polarity=''): self.term = term self.polarity = polarity def validate(filename): """Validate an XML file""" elements = ET.parse(filename).getroot().findall('sentence') aspects = [] for e in elements: for eterms in e.findall('aspectTerms'): if eterms is not None: for a in eterms.findall('aspectTerm'): aspects.append(Aspect('', '', []).create(a).term) return elements, aspects fix = lambda text: escape(text.encode('utf8')).replace('\"', '"') 'Simple fix for writing out text.' class Instance: """An instance is a sentence, modeled out of XML (pre-specified format, based on the 4th task of SemEval 2014). It contains the text, the aspect terms, and any aspect categories.""" def __init__(self, element): self.text = element.find('text').text self.id = element.get('ID') self.aspect_terms = [Aspect('', '', offsets={'from': '', 'to': ''}).create(e) for es in element.findall('aspectTerms') for e in es if es is not None] self.aspect_categories = [Category(term='', polarity='').create(e) for es in element.findall('aspectCategories') for e in es if es is not None] def get_aspect_terms(self): return [a.term.lower() for a in self.aspect_terms] def get_aspect_categories(self): return [c.term.lower() for c in self.aspect_categories] def add_aspect_term(self, term, polarity='', offsets=None): if offsets is None: offsets = {'from': '', 'to': ''} a = Aspect(term, polarity, offsets) self.aspect_terms.append(a) def add_aspect_category(self, term, polarity=''): c = Category(term, polarity) self.aspect_categories.append(c) class Corpus: """A corpus contains instances, and is useful for training algorithms or splitting to train/test files.""" def __init__(self, elements): self.corpus = [Instance(e) for e in elements] self.size = len(self.corpus) self.aspect_terms_fd = fd([a for i in self.corpus for a in i.get_aspect_terms()]) self.top_aspect_terms = frequency_rank(self.aspect_terms_fd) self.texts = [t.text for t in self.corpus] def echo(self): print('%d instances\n%d distinct aspect terms' % (len(self.corpus), len(self.top_aspect_terms))) print('Top aspect terms: %s' % (', '.join(self.top_aspect_terms[:10]))) def clean_tags(self): for i in range(len(self.corpus)): self.corpus[i].aspect_terms = [] class Evaluate: """Manual evaluation of subtask""" def __init__(self, correct, predicted): self.value_domains_str = None self.size = len(correct) self.correct = correct self.predicted = predicted self.reliability_aspect_terms_data = self.get_reliability_aspect_terms_data() self.reliability_aspect_terms_polarity = self.get_reliability_aspect_terms_polarity() self.reliability_aspect_categories_data = self.get_reliability_aspect_category_data() self.reliability_aspect_categoty_polarity = self.get_reliability_aspect_categories_polarities() def krippendorff_alpha_aspect_terms(self, krippendorff_metric_type): self.get_aspect_terms_value_domains_str() alpha = kp.alpha(reliability_data=self.reliability_aspect_terms_data, value_domain=list(self.value_domains_str), level_of_measurement=krippendorff_metric_type) return alpha def krippendorff_alpha_aspect_terms_polarity(self, krippendorff_metric_type): self.get_aspect_terms_value_domains_str() alpha = kp.alpha(reliability_data=self.reliability_aspect_terms_polarity, level_of_measurement=krippendorff_metric_type) return alpha def krippendorff_alpha_aspect_categories(self, krippendorff_metric_type): alpha = kp.alpha(reliability_data=self.reliability_aspect_categories_data, value_domain=list(['ovqat', 'xizmat', 'muhit', 'narx', 'boshqalar']), level_of_measurement=krippendorff_metric_type) # value_counts = kp._reliability_data_to_value_counts(reliability_data, value_domain) # alpha. return alpha def krippendorff_alpha_aspect_terms_polarity(self, krippendorff_metric_type): self.get_aspect_terms_value_domains_str() alpha = kp.alpha(reliability_data=self.reliability_aspect_terms_polarity, level_of_measurement=krippendorff_metric_type) return alpha def get_aspect_terms_value_domains_str(self): self.value_domains_str = set(self.reliability_aspect_terms_data[0]) self.value_domains_str.update(self.reliability_aspect_terms_data[1]) def get_reliability_aspect_terms_data(self): new_gold = [] new_test = [] for i in range(self.size): gold = self.correct[i].get_aspect_terms() test = self.predicted[i].get_aspect_terms() self.get_reliability_data(gold, new_gold, new_test, test) return [new_gold, new_test] def get_reliability_aspect_terms_polarity(self): new_gold, new_test = [], [] for i in range(self.size): cor_offsets, cor_polarities = [], [] pre_offsets, pre_polarities = [], [] for a in self.correct[i].aspect_terms: cor_offsets = list(a.offsets) cor_polarities = list(a.polarity) for a in self.predicted[i].aspect_terms: pre_offsets = list(a.offsets) pre_polarities = list(a.polarity) for cor_idx in range(len(cor_offsets)): for pre_idx in range(len(pre_offsets)): if cor_offsets[cor_idx] != pre_offsets[pre_idx]: new_gold.append(cor_polarities[cor_idx]) new_test.append(np.nan) new_gold.append(np.nan) new_test.append(pre_polarities[pre_idx]) else: new_gold.append(cor_polarities[cor_idx]) new_test.append(pre_polarities[pre_idx]) return [new_gold, new_test] def get_reliability_aspect_category_data(self): new_gold = [] new_test = [] for i in range(self.size): gold = self.correct[i].get_aspect_categories() test = self.predicted[i].get_aspect_categories() gold = sorted(gold) test = sorted(test) new_gold = new_gold + gold new_test = new_test + test return [new_gold, new_test] def get_reliability_aspect_categories_polarities(self): new_gold, new_test = [], [] for i in range(self.size): cor_polarities = self.correct[i].aspect_categories pre_polarities = self.predicted[i].aspect_categories new_gold = new_gold + cor_polarities new_test = new_test + pre_polarities return [new_gold, new_test] @staticmethod def get_reliability_data(gold, new_gold, new_test, test): gold = sorted(gold) test = sorted(test) cnt = 0 for j in range(max(len(gold), len(test))): try: goldJ = re.sub(r'[^\w]', ' ', gold[j]) testJ = re.sub(r'[^\w]', ' ', test[j]) if goldJ != testJ: cnt = cnt + 1 new_gold.append(goldJ) new_test.append(np.nan) new_gold.append(np.nan) new_test.append(testJ) else: new_test.append(testJ) new_gold.append(goldJ) except IndexError: if len(gold) < j: new_gold.append(np.nan) if len(test) < j: new_test.append(np.nan) def aspect_extraction(self, b=1): manual_common, manual_gold, manual_test = 0., 0., 0. for i in range(self.size): cor = [a.offsets for a in self.correct[i].aspect_terms] pre = [a.offsets for a in self.predicted[i].aspect_terms] manual_common += len([a for a in pre if a in cor]) manual_test += len(pre) manual_gold += len(cor) p = manual_common / manual_test if manual_test > 0 else 0. r = manual_common / manual_gold f1 = (1 + (b ** 2)) * p * r / ((p * b ** 2) + r) if p > 0 and r > 0 else 0. return p, r, f1, manual_common, manual_test, manual_gold def aspect_extraction_cohen_kappa(self, b=1): manual_gold, manual_test = [], [] for i in range(self.size): temp_gold_list = [] temp_test_list = [] for a in self.correct[i].aspect_terms: temp_gold_list.append(a.term) for a in self.predicted[i].aspect_terms: temp_test_list.append(a.term) manual_gold = manual_gold + sorted(temp_gold_list) manual_test = manual_test + sorted(temp_test_list) return cohen_kappa_score(manual_gold, manual_test) def get_confusion_matrix_heatmap(self, manual_gold, manual_test, labels, title): confusion = confusion_matrix(manual_gold, manual_test, labels=labels) ax = plt.subplot() sns.heatmap(confusion, annot=True, fmt='g', ax=ax) # labels, title and ticks ax.set_xlabel('Test labels') ax.set_ylabel('Gold labels') ax.set_title(title); ax.xaxis.set_ticklabels(list(labels)) ax.yaxis.set_ticklabels(list(labels)) plt.show() # Aspect Category Detection def category_detection(self, b=1): manual_common, manual_gold, manual_test = 0., 0., 0. for i in range(self.size): cor = self.correct[i].get_aspect_categories() # Use set to avoid duplicates (i.e., two times the same category) pre = set(self.predicted[i].get_aspect_categories()) manual_common += len([c for c in pre if c in cor]) manual_test += len(pre) manual_gold += len(cor) p = manual_common / manual_test if manual_test > 0 else 0. r = manual_common / manual_gold f1 = (1 + b ** 2) * p * r / ((p * b ** 2) + r) if p > 0 and r > 0 else 0. return p, r, f1, manual_common, manual_test, manual_gold def aspect_category_detection_cohen_kappa(self, b=1): manual_gold, manual_test = [], [] for i in range(self.size): temp_gold_list = [] temp_test_list = [] for a in list(self.correct[i].aspect_categories): temp_gold_list.append(a.term) for a in list(self.predicted[i].aspect_categories): temp_test_list.append(a.term) manual_gold = manual_gold + sorted(temp_gold_list) manual_test = manual_test + sorted(temp_test_list) if len(self.correct[i].aspect_categories) != len(self.predicted[i].aspect_categories): print("ID missed = ", self.correct[i].id) labels = ['ovqat', 'xizmat', 'narx', 'muhit', 'boshqalar'] self.get_confusion_matrix_heatmap(manual_gold, manual_test, labels, 'Aspect Category term Confusion Matrix') alpha = cohen_kappa_score(manual_gold, manual_test, labels=labels) return alpha def aspect_polarity_estimation(self, b=1): common, relevant, retrieved = 0., 0., 0. for i in range(self.size): cor = [a.polarity for a in self.correct[i].aspect_terms] pre = [a.polarity for a in self.predicted[i].aspect_terms] common += sum([1 for j in range(len(pre)) if pre[j] == cor[j]]) retrieved += len(pre) acc = common / retrieved return acc, common, retrieved def aspect_polarity_kappa_cohen_estimation(self, b=1): manual_gold, manual_test = [], [] for i in range(self.size): for a in self.correct[i].aspect_terms: manual_gold.append(a.polarity) for a in self.predicted[i].aspect_terms: manual_test.append(a.polarity) if len(self.correct[i].aspect_terms) != len(self.predicted[i].aspect_terms): print("ID missed = ", self.correct[i].id) labels = ['positive', 'negative', 'neutral', 'conflict'] self.get_confusion_matrix_heatmap(manual_gold, manual_test, labels, 'Aspect Terms Polarity Confusion Matrix') return cohen_kappa_score(manual_gold, manual_test, labels=labels) def aspect_category_polarity_estimation(self, b=1): common, relevant, retrieved = 0., 0., 0. for i in range(self.size): cor = [a.polarity for a in self.correct[i].aspect_categories] pre = [a.polarity for a in self.predicted[i].aspect_categories] common += sum([1 for j in range(len(pre)) if pre[j] == cor[j]]) retrieved += len(pre) acc = common / retrieved return acc, common, retrieved def aspect_category_polarity_kappa_cohen_estimation(self, b=1): manual_gold, manual_test = [], [] for i in range(self.size): temp_gold_list = [] temp_test_list = [] for a in self.correct[i].aspect_categories: manual_gold.append(a.polarity) for a in self.predicted[i].aspect_categories: manual_test.append(a.polarity) if len(self.correct[i].aspect_categories) != len(self.predicted[i].aspect_categories): print("ID missed = ", self.correct[i].id) labels = ['positive', 'negative', 'neutral', 'conflict'] self.get_confusion_matrix_heatmap(manual_gold, manual_test, labels, 'Aspect Category Terms Polarity Confusion Matrix') return cohen_kappa_score(manual_gold, manual_test) def main(argv=None): # Parse the input opts, args = getopt.getopt(argv, "hg:dt:om:k:", ["help", "grammar", "train=", "task=", "test="]) trainfile, testfile, task = None, None, 1 use_msg = 'Use as:\n">>> python baselines.py --train file.xml --task -1|1|2|3|4"\n\nThis will parse a train ' \ 'set, examine whether is valid, test files, perform ABSA for task 1, 2, 3, or 4 , and write out a file ' \ 'with the predictions. ' if len(opts) == 0: sys.exit(use_msg) for opt, arg in opts: if opt in ("-h", "--help"): sys.exit(use_msg) elif opt in ('-t', "--train"): trainfile = arg elif opt in ('-m', "--task"): task = int(arg) # Examine if the file is in proper XML format for further use. print('Validating the file...') try: elements, aspects = validate(trainfile) print('PASSED! This corpus has: %d sentences, %d aspect term occurrences, and %d distinct aspect terms.' % ( len(elements), len(aspects), len(list(set(aspects))))) except: print("Unexpected error:", sys.exc_info()[0]) raise # Get the corpus and split into train/test. manual_corpus_gold = Corpus(ET.parse(trainfile).getroot().findall('sentence')) manual_corpus_test = Corpus(ET.parse('rest-manual-test-cohen-kapp.xml').getroot().findall('sentence')) if task == 1: print('\n------- Aspect terms --------') print('P = %f -- R = %f -- F1 = %f (#correct: %d, #retrieved-test: ' '%d, #relevant-gold: %d)' % Evaluate(manual_corpus_gold.corpus, manual_corpus_test.corpus).aspect_extraction()) print('Cohen\'s kappa = ', Evaluate(manual_corpus_gold.corpus, manual_corpus_test.corpus) .aspect_extraction_cohen_kappa()) print('Krippendorff nominal metric = ', Evaluate(manual_corpus_gold.corpus, manual_corpus_test.corpus) .krippendorff_alpha_aspect_terms("nominal")) if task == 2: print('\nAspect term polarity...') print('Accuracy = %f, #Correct/#All: %d/%d' % Evaluate(manual_corpus_gold.corpus, manual_corpus_test.corpus) .aspect_polarity_estimation()) print('Cohen Kappa Accuracy = %f,' % Evaluate(manual_corpus_gold.corpus, manual_corpus_test.corpus) .aspect_polarity_kappa_cohen_estimation()) print('Krippendorff nominal metric = ', Evaluate(manual_corpus_gold.corpus, manual_corpus_test.corpus) .krippendorff_alpha_aspect_terms_polarity("nominal")) if task == 3: print('\n------- Aspect Categories --------') print('P = %f -- R = %f -- F1 = %f (#correct: %d, #retrieved: ' '%d, #relevant: %d)' % Evaluate(manual_corpus_gold.corpus, manual_corpus_test.corpus).category_detection()) print('Cohen\'s kappa = ', Evaluate(manual_corpus_gold.corpus, manual_corpus_test.corpus) .aspect_category_detection_cohen_kappa()) print('Krippendorff nominal metric = ', Evaluate(manual_corpus_gold.corpus, manual_corpus_test.corpus) .krippendorff_alpha_aspect_categories("nominal")) if task == 4: print('\nEstimating aspect category polarity...') print('Accuracy = %f, #Correct/#All: %d/%d' % Evaluate(manual_corpus_gold.corpus, manual_corpus_test.corpus) .aspect_category_polarity_estimation()) print('Cohen Kappa Accuracy = %f,' % Evaluate(manual_corpus_gold.corpus, manual_corpus_test.corpus) .aspect_category_polarity_kappa_cohen_estimation()) print('Krippendorff nominal metric = ', Evaluate(manual_corpus_gold.corpus, manual_corpus_test.corpus) .krippendorff_alpha_aspect_terms_polarity("nominal")) if __name__ == "__main__": main(sys.argv[1:])