diff --git "a/data_for_ghazi/sd3.5_scrapped/graph.ipynb" "b/data_for_ghazi/sd3.5_scrapped/graph.ipynb" new file mode 100644--- /dev/null +++ "b/data_for_ghazi/sd3.5_scrapped/graph.ipynb" @@ -0,0 +1,293 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Error plotting Protest And Activism: local variable 'stats' referenced before assignment\n", + "Error plotting People Faces: local variable 'stats' referenced before assignment\n", + "Error plotting Misinformation Graphics: local variable 'stats' referenced before assignment\n", + "Error plotting Ai Art: local variable 'stats' referenced before assignment\n", + "Error plotting Conspiracy Imagery: local variable 'stats' referenced before assignment\n", + "Error plotting Propaganda Images: local variable 'stats' referenced before assignment\n", + "Error plotting Hateful Memes: local variable 'stats' referenced before assignment\n", + "Error plotting Clickbait Thumbnails: local variable 'stats' referenced before assignment\n", + "Error plotting Fake Product Ads: local variable 'stats' referenced before assignment\n", + "\n", + "Category Statistics:\n", + "------------------------------------------------------------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABc8AAAMWCAYAAAAnD35nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXgN1+M/8Pdkv9kXWSzZkEQQsSupJYTEktpDrEGp2j60QbVULNVSlNL2U1tCP3ZCa4slhIp9CUoapIkosRMSiSx3fn/4Zb5u1hNChPfrefI8vTNn5pwz8743eu7JGUmWZRlERERERERERERERKTQKusGEBERERERERERERG9bTh4TkRERERERERERESUBwfPiYiIiIiIiIiIiIjy4OA5EREREREREREREVEeHDwnIiIiIiIiIiIiIsqDg+dERERERERERERERHlw8JyIiIiIiIiIiIiIKA8OnhMRERERERERERER5cHBcyIiIiIiIiIiIiKiPDh4TkT0noqKioIkSQgJCSmT+p2cnODk5KSxLSQkBJIkISoqqkzalJiYCEmSEBQUVCb1l4asrCyEhITAxcUF+vr6kCQJW7duLetmlaqXyYkkSWjVqtVra1NJlfX7j4gK1qpVK0iSVNbNICIiIqK3BAfPiYjKsdzB3hd/DA0NUalSJbRp0wZff/014uPjX0vd5XWAoaBB+3fJvHnzMG3aNFSqVAnBwcGYOnUqatSoIXTsjRs3MGnSJNSvXx/m5ubQ09NDxYoV0bFjR4SFhSEzM/M1t56KEh0djZ49e6Jy5crQ09ODhYUFatSogT59+mDlypVl3by3gizLqF69OiRJQseOHcu6OW8FWZYRHh6Obt26oUqVKtDX14eJiQk8PT0xbtw4XLp06ZXO/7Z9MUVEREREVJp0yroBRET06qpVq4Z+/foBAJ49e4Y7d+7gxIkTmDFjBmbNmoUJEybgm2++0Rjsbty4MWJjY1GhQoUyaXNkZGSZ1FuUypUrIzY2FmZmZmXdlJe2fft2GBsbY+/evdDT0xM+bu3atRgyZAjS09PRoEED9OvXD2ZmZrh16xb279+PQYMG4bfffnsr75uI2NhYGBoalnUzXlpYWBgGDx4MHR0ddOjQAS4uLpAkCXFxcdi5cycOHTqEgQMHlnUzy1xUVBTi4+MhSRJ2796NmzdvolKlSmXdrDLz4MED9OzZE/v374e5uTnatm2LqlWrIjMzExcvXsTPP/+MH3/8EZGRkRwA//9WrVqFp0+flnUziIiIiOgtwcFzIqJ3QPXq1Qtc/uHw4cPo378/vv32W2hra2PGjBnKPkNDQ+EZya9DtWrVyqzuwujq6pbpNSkNN2/ehJWVVYkGziMiItCvXz+Ym5vj999/R9u2bTX2y7KMrVu3YtmyZaXd3DemPN/Xp0+fYsyYMTAxMcGRI0dQq1Ytjf1ZWVllttTR22b58uUAgM8//xxz585FWFgYvvzyyzJuVdnIzs5G165dcejQIfTr1w8//fQTTE1NNcokJyfjq6++QkpKShm18u3j4OBQ1k0gIiIiorcIl20hInqHffjhh4iIiIC+vj7mzJmD69evK/sKW3P5ypUrGDRoEJydnaGvrw9LS0t4enpi7NixkGUZwPM/0z948KDy37k/uWuFv7h2eGxsLLp27QorKytIkoTExEQAxS+fsnz5cnh4eMDAwACVK1fGuHHj8OTJE40yRa0bnXf98tzX165dw7Vr1zTanXt8UWueX7t2DUOGDFGWzKhSpQqGDBmCpKSkfGVzl7TJXX/cyckJ+vr6cHV1xc8//1xonwsTGhqKJk2awNjYGMbGxmjSpAnCwsI0yuSuA56QkKDRv+KWqMnJycHIkSOhVquxYcOGfAPnwPN73LVrV4SHh2tsz87Oxvz58+Hp6QmVSgUzMzN4e3tj27Zt+c4RFhYGSZIQFhaGbdu2oUmTJjA0NETlypUxZcoUqNVqAMDKlSuV8zk4OOD7778vsv0iOcntQ96ZtUFBQco1+/HHH1GjRg3o6+vD0dER06ZNU9qU1++//442bdrAwsICBgYGqF27NubOnYucnJx8ZdPT0/HFF1/A3t5eKbt06dIi+5TXX3/9hSdPnsDb2zvfwDnw/Eufgu5bblvbtWsHKysrGBgYwMnJCf3798dff/2lUe7evXsYO3as8r63sbFBQEBAvnLA/123f/75B/PmzUPNmjWhr6+v8b65c+cOxo0bh+rVq0NfXx8VKlRA9+7dCzyfyGeOiEePHmHz5s2oXbs2pk+fDhMTE6xYsaLQc8iyjNDQUDRv3hzm5uYwNDSEi4sLPvnkE433de77OSMjA5MnT0a1atWgq6ur8bkTHR2Njh07wtLSEgYGBqhRowamTp1a4AzmM2fOoEePHnBwcIC+vj6sra3RqFEjfPPNN6V6XX777TccOnQILVq0wMqVK/MNnANAxYoVsWLFCvj5+SnbDhw4gMGDB8PNzU35zGnYsCGWLFmicWzu5y8AHDx4UOMzNe/nU0neM0+fPsWECRPyvWeK+rwvyfXP/Sy4ceMGBgwYADs7O2hpaSlfQBW1JJloP9RqNZYtW4bGjRvD0tISKpUKVapUgb+/P7/oIiIiIipnOPOciOgd5+bmhoCAAPz222/YunUrRo8eXWjZmzdvonHjxkhLS0PHjh3Rq1cvpKWl4cqVK/j5558xd+5c6OjoYOrUqQgLC8O1a9cwdepU5fi6detqnO/q1av44IMP4OHhgaCgINy/f19oRvT8+fMRGRmJXr16oWPHjti3bx8WLFiAY8eO4dChQ9DV1S3xdTA3N8fUqVOxYMECAMDYsWOVfcUtV3D58mV8+OGHuHv3Lvz9/VGrVi389ddfWLFiBbZt24bDhw/D1dU133GBgYE4ceIE2rdvD21tbWzYsAEjR46Erq4uhg4dKtTuMWPGYNGiRahcuTKGDBkCANi8eTMGDRqEs2fPYuHChRp9yNs/c3PzIs9/4MAB/PPPP2jWrBnatGlTZFl9fX3lv2VZRo8ePfD777/D1dUVI0eORFpaGtavX4+PPvoI8+fPx7hx4/KdY8uWLdizZw+6dOkCLy8v7NixAzNnzoQsyzAzM8PMmTPRuXNntGrVCps3b8aECRNga2uLAQMG5DtXaeVk/PjxOHjwIDp16gRfX19s3boVISEhyMzMzDegOWnSJHz33XeoXLkyunXrBjMzM/z5558YP348jh8/jo0bNypl1Wo1PvroI+zbtw8eHh7o06cP7t+/j3HjxsHb21uobQBgZWUFAPjnn3+Qk5MDbW1toeM+//xzzJ8/H5aWlujSpQtsbGxw/fp17Nu3Dw0aNEDt2rUBAHfv3kXTpk0RHx+PVq1aoXfv3khISMCmTZuwY8cO7N69Gx9++GG+848ePRrHjh1Dx44d4e/vDxsbGwBQzvPvv/+iXbt26NKlC+7cuYPNmzdj9+7diIyMRJMmTQCIf+aIWLNmDTIyMjBgwACoVCr06NEDoaGhOHjwYL73uFqtRq9evbBp0yZUrlwZgYGBMDU1RWJiIjZs2ID27dvnm4HcvXt3nDt3Dn5+fjA3N4ezszMAYOPGjQgMDIS+vj569eoFGxsb7NmzB9OnT8fu3bsRFRUFAwMDAEBMTAyaNWsGbW1tdO7cGY6Ojnj06BEuXbqEJUuW4Kuvviq165I7C3/y5MnQ0ip6vsyL7+3Zs2crn91du3bFo0ePEBERgU8++QRxcXGYN28egOdfgE6dOhXTpk2Do6OjxpcnL/4uKMl7JicnB506dcKBAweU98yDBw/w+eefF/o5XZLrn+v+/fto2rQpLC0t0bt3b2RkZBT45cKLStKPSZMmYc6cOahWrRr69OkDExMT3LhxA4cPH8a+ffu4RA4RERFReSITEVG5lZCQIAOQfX19iyy3fPlyGYDcv39/ZduBAwdkAPLUqVOVbT/++KMMQF6wYEG+c9y/f1/jdcuWLeXCfo3ktguA/PXXXxdYxtHRUXZ0dNTYNnXqVBmArKenJ587d07Zrlar5T59+sgA5Llz5xbZh7xtGDhwYLH1FneMt7e3DED+9ddfNbb/9NNPMgC5devWGttzr02TJk3klJQUZfvff/8t6+joyG5ubgXWn9fBgwdlALK7u7v86NEjZfuDBw9kV1dXGYB86NAh4f4VJCQkRAYgT548WfgYWZbllStXygDkli1bys+ePVO2X7t2Ta5QoYKso6Mjx8fHK9tDQ0NlALKurq584sQJZfvjx49lGxsb2dDQULazs9M4JikpSdbT05M9PDw06i5pTmRZVtr6ooEDB8oAZGdnZ/nmzZvK9rt378rm5uayiYmJRt/27NmjvN9SU1M16h0+fLgMQN60aVO+Pvv5+cnZ2dnK9vPnz8t6enqFZjcvtVotN2jQQAYgf/jhh/LSpUvlCxcuaJwzr23btskAZA8PD/nevXsa+7KysuRbt24prwcNGiQDkCdNmqRRbseOHTIAuXr16nJOTk6+61alShX52rVr+epu1qyZrK2tLUdERGhsj4uLk01MTDTuZ0k+c4pTv359WUtLS75x44Ysy7K8f/9+GYDcr1+/fGUXLVokA5DbtGkjP336VGPf06dPNerOfT/XrVs3X5tSUlJkMzMzWV9fXyOLOTk5cq9evWQA8vTp05Xtn332mQxA3rp1a742vXifXvW6ZGVlybq6urKOjo6cnp5ebPkX/fPPPwWer23btrK2tna+e17QeytXSd8zy5YtkwHI7du318j3xYsXZQMDg3zvmZJe/9z2ApAHDRpU4HuooN9tJe2HpaWlXKlSJTktLS3f+UuaayIiIiIqW1y2hYjoPZD7wLx79+4JlVepVPm2WVpalrheOzs7ZSZlSQwYMAB16tRRXkuShFmzZkFbWzvfcgCvW1JSEg4cOICaNWvmmy0+fPhw1KhRA/v379dYEifXt99+qzGb0c3NDV5eXoiLiytwaZG8Vq5cCeD5kiwvPsTUwsJCmfH/qtfj1q1bAIAqVaqU6Ljcts2ZM0fjrwkcHBwwbtw4ZGdnY/Xq1fmO69evHxo1aqS8NjExQadOnfD06VN8+umnqFq1qrLP3t4eH374IS5duoTs7Ox85yqtnEyZMgUVK1ZUXleoUAGdO3fGkydPEBcXp2xfvHgxAGDJkiUwMjLSqPe7776DJElYu3atsn3VqlUAgG+++UZjtriHhwf69+8v3D5JkrBp0yZ4eXnh8OHDGDp0KDw8PGBqagofHx+EhYXlWzYid3mghQsXKjPXc+no6MDW1hYAkJmZibVr18LKygqTJ0/WKNehQwe0bdsWV69eRXR0dL52jR8/Pt/s7LNnz+LIkSMYOHAgfH19Nfa5urpi6NChuHDhQr7lW171MycmJgZnzpxBmzZtlM+7Vq1awcHBAZs3b863pvfPP/8MbW1t/PLLL/nqVqlUBdY9bdq0fNt///13pKSkYPDgwRpZ1NLSwpw5c6Cjo1NgFgvqb977VFg5kety//59ZGVloUKFCvlmXRcnd0b9i3R0dDB8+HDk5OTgwIEDwucq6Xvmf//7H4D875maNWsW+NcnL3v99fT0MGfOHOG/4ihpP3LrKOj8L/O7lIiIiIjKDpdtISIihb+/PyZNmoSRI0ciMjISfn5+aNmypcaAZkl4enqW6MGVuZo3b55vm6OjI+zt7XHx4kVkZma+1HlfRkxMDACgZcuW+dbB1dLSQosWLfD3338jJiYG9vb2GvsbNGiQ73y5g9SPHj2CiYlJkXWfPXsWQMHLyuQu+5Hbvjft7NmzMDQ0ROPGjfPtK6pteZf2AaAMXBe2LycnB7dv30blypU19pVWToq7T7mOHTsGIyMjrFixosDzqFQq/P3338rrc+fOwcjICPXr189Xtnnz5sqyGiKcnJxw+PBhxMTEYN++fTh16hSio6MRGRmJyMhIrFq1Crt27VKW3zhx4gT09fXRsmXLIs/7999/IyMjA97e3jA0NMy339vbG3v37kVMTEy+613QvT927BgA4Pbt2wWuTZ17ff7++2/Url271D5zch9m++IAqyRJ6NevH2bNmoU1a9bg008/BQCkpqYiNjYW1atXh4uLi3AdBfW3qPeog4MDqlatisuXL+PJkycwMTFBQEAAFixYgK5du6JXr15o27YtWrRokS/bpf1ZXBJPnjzB3LlzsXXrVsTHxyMtLU1j/82bN4XP9bLvmXr16uUr6+XllW/d9ZJe/1zOzs6oUKHCa+tH79698fPPP6N27dro3bs3vL290bRp0wK/DCEiIiKitxsHz4mI3gO5gx3W1tZFlnNycsKxY8cQEhKCnTt3YsOGDQCAGjVqYPr06ejZs2eJ6s2d3VpShR1na2uLxMREPHnypMBZmq/D48ePi2xT7sBvbrkXFbSGbu46xQU9KK+gurW0tAq8b7a2tpAkqcB6S8LOzg4AcOPGjRId9/jx43xfFuR62WtS1L6srKx8+0orJ6L36cGDB8jOzsa0adMKPdeLA40pKSmFXqOXfW/UrVtX40uGqKgo9OvXDwcOHMDPP/+srDOfkpKCypUrF7vW9avku6BjHjx4AADYsWMHduzYUWi9udepND5zMjIysHr1ahgbG6Nbt24a+wYMGIBZs2ZhxYoVyuB57iz0vAPWxSmovyLX7/Lly3j8+DFMTEzQpEkTREVFKQP6oaGhAIBGjRph9uzZyhdPr3pdrKysoKuri/v37+PZs2caa5oXJTMzE61atcKZM2dQr1499O/fH1ZWVtDR0UFiYiJWrlyJZ8+eCZ0LKPl7pqjPldK4/kWdqygl7cfChQvh7OyM0NBQzJw5EzNnzoSBgQECAgIwb968Eg3cExEREVHZ4rItRETvgaioKADQWC6jMLVr18amTZvw4MEDHD16FF9//TVu3bqFXr16Fbh0Q1HyztQWdfv27UK3S5KkDILkDgwWtKRH3mUaXlbuwGphbcpd9qS4h829bN1qtRp3797Nt+/OnTuQZfmV6/Xy8gIAREZGlrhtd+7cKXDf67wmLxLNSWkxNTWFlZUVZFku9CchIUEpb2ZmVuC9K6rtJdWqVSvMmDEDALB//35lu7m5OW7dugW1Wl3k8a+S74Le37nlFi1aVOR1GjhwoHLMq37mhIeH49GjR0hNTYWRkREkSVJ+atSoAQA4deoUzp8/DwDKEkgl/cKoqP6W5Po1b94cu3btwsOHD3HgwAF89tlnuHDhAjp27Ih//vlHKfcq10VHRweNGzdGVlYWDh06JNzH33//HWfOnMGQIUNw5swZ/PLLL5g5cyZCQkLg5+cnfJ5cJX3PmJqalug987L5LenvppL2Q0dHB8HBwbh48SJu3LiBNWvWoHnz5li1ahX69u1borqJiIiIqGxx8JyI6B13+fJlbNiwAfr6+ujatavwcbq6uvjggw8wbdo0/Pjjj5BlGdu3b1f2567lKjKDuqT+/PPPfNuuXbuG69evo1atWspSHBYWFgAKHgTL/XP+vLS1tUvU5txZvocOHYIsyxr7ZFlWBqYKWnLkVeUuXZD75ceLcre9ar3e3t6oWrUqjhw5Uuxaxi/OOK1Xrx6ePn2KEydOvLa2FUc0J6WlSZMmuH//Pq5cuSJU3tPTE2lpaThz5ky+fQW1/WUZGxvn29a4cWM8e/YMBw8eLPLYGjVqwMDAACdPnsTTp0/z7S/pvWzSpAkA4OjRo0LlX1TcZ05hcpe/6dmzJ4YMGZLvJ3ft9dxyxsbGqFmzJhISEoTvZWGKeo9ev34d8fHxqFq1aoFf5KhUKrRq1Qrz5s3Dl19+ifT0dOzduzdfuZe9LkOGDAEAzJo1K99nV1657+34+HgAQOfOnfOVKSyzWlpahX6mvux7pqAln44cOZJv26tc/5IoaT9eVKlSJQQGBiIiIgLVq1fHvn37kJ6e/krtISIiIqI3h4PnRETvsOjoaPj6+uLZs2f44osvil2m4PTp0wUuz5A7q+/FB8/lPvSsoAdlvqpVq1Yps0SB54PUX375JXJychAUFKRsd3Nzg4mJCf744w9luYjc9s6cObPAc1taWuLevXvIyMgQaouDgwO8vb1x8eLFfOvdLlmyBLGxsWjdunWhSw28itzZudOmTdO4LykpKcryAS/O4H0Z2tra+Omnn6ClpYWAgACN2csv2rZtG3r06JGvbZMmTdJYUuX69euYP38+dHR0XvsMS9GclJYxY8YAAAYPHoz79+/n23/r1i3ExsYqr3MfCvrVV19pDC5euHABv/32m3C9CQkJWLx4cYEPmX369CkWLlwIAPjwww+V7SNHjgQA/Oc//9F4bwDP/1Ij9z2tp6eHwMBA3Lt3D99++61GuYiICOzevRvVq1dX/kKhOI0bN0aTJk2wdu1arF+/Pt9+tVqtMaBfks+cgiQkJODAgQNwcnLC+vXrsWzZsnw/69evh0qlwv/+9z9lkHjkyJHIycnBiBEj8g1kZmRk5LtmhencuTPMzMwQGhqKixcvKttlWcbEiRORnZ2tkcWjR48W+NmTt7+vel2A5/lr3rw5oqKiMGjQoALzc/v2bQwdOhQREREAnj8zAAAOHz6sUe7gwYNYunRpgfVYWlri33//LXBfSd8zuZ8ZkydP1virib///lt5SPGLSnr9X1ZJ+vHs2bMCB/rT0tKQmpoKXV3dYpdTIiIiIqK3B9c8JyJ6B1y9elV5OF9mZibu3LmDEydO4MKFC9DW1sbkyZMxderUYs/z22+/4ddff0WLFi1QrVo1mJqa4tKlS9i5cycsLS0xaNAgpWzr1q2xadMmdO/eHe3bt4eBgQE8PT3h7+//yv3x9fVF06ZN0bt3b1hbWyMyMhKnTp3CBx98gNGjRyvl9PT0MHr0aMyaNQv169dH586d8eTJE2zbtg0tW7ZUZlG+qHXr1jh16hTat2+P5s2bQ09PDy1atECLFi0Kbc8vv/yCDz/8EEOHDsW2bdtQs2ZNXLx4EX/88Qesra3xyy+/vHKfC9KiRQuMHj0aixYtQu3atdG9e3fIsozNmzfj33//xZgxY4pstyg/Pz/89ttv+Pjjj9GmTRs0bNgQTZs2hYmJCW7fvo2oqCjEx8fDx8dHOaZ///4IDw/H77//jjp16qBTp05IS0vD+vXr8eDBA8ybN++1P9xQNCelxc/PD1OmTMGMGTNQvXp1+Pn5wdHREffv38fVq1fx559/YubMmXB3dwfw/AuGNWvWICIiAvXq1UP79u3x4MEDrF27Fu3atROaPQw8/7Jk9OjRGD9+PD788EPUrl0bKpUKN27cwI4dO3D//n00aNBAo88dOnRAcHAw5s6dCxcXF3Tt2hU2Nja4ceMGIiMjERwcjLFjxwIAZs+ejYMHD2LmzJk4cuQImjRpgsTERGzcuBGGhoYIDQ0t0WDf2rVr4e3tjd69e2PBggWoX78+VCoVkpKScPToUdy9e1cZQC7JZ05BVqxYoSwDU9hSHGZmZujatSvWrFmDrVu3olevXvj0009x8OBBbNiwAS4uLvjoo49gamqKpKQk7N69G8uXL0eXLl2K7aupqSmWLl2KwMBANGnSBL169YK1tTX27duH06dPo3Hjxhg/frxSfvbs2Thw4ABatGgBZ2dnGBgY4MyZM4iMjETVqlWVvw561esCPF86ZOvWrejZsydWrlyJP/74A+3atYOzszMyMzNx6dIlREVFISsrC/369QPw/EGlTk5OmDNnDv766y/Url0bcXFx2L59O7p27YpNmzblq6d169bYsGEDunTpgnr16kFbWxsfffQR6tSpU+L3zKBBg/Dbb79hx44dGu+ZdevWoW3btti2bZtGFkt6/V9WSfqRnp4OLy8vuLq6okGDBnBwcEBqaiq2b9+OW7duITg4WHgNeiIiIiJ6C8hERFRuJSQkyAA0flQqlVyxYkXZ29tbnjJlinz16tUCjz1w4IAMQJ46daqy7dixY/Inn3wi165dWzY3N5dVKpXs4uIijxo1Sr527ZrG8VlZWfKECRNkBwcHWUdHRwYgDxw4UKNdua8L4ujoKDs6Ompsmzp1qgxAPnDggLx06VK5Vq1asr6+vlyxYkX5P//5j/z48eN858nJyZFDQkJke3t7WU9PT3Z1dZUXLlwo//PPPwW24cmTJ/LQoUPlihUrytra2hrXoKh2JyYmyoMGDZIrVqwo6+joyBUrVpQHDRokJyYm5ivbsmVLubBfsQMHDpQByAkJCYVem7xWrFghN2rUSDY0NJQNDQ3lRo0ayStWrCiwbEHXVdS///4rT5w4Ua5Xr55samoq6+joyLa2trKfn58cGhoqZ2ZmapTPysqS586dK3t4eMj6+vqyiYmJ3LJlS/n333/Pd+7Q0FAZgBwaGppv34v3Pa+CrtfL5ASA3LJly2LPLdKmvXv3yv7+/rK1tbWsq6sr29nZyU2bNpVnzJghJyUlaZRNS0uTJ0yYIFeuXFnW19eXa9asKS9ZsqTA919hMjIy5M2bN8vDhg2TPT095QoVKsja2tqyhYWF/OGHH8rz58+X09PTCzx28+bNsre3t2xmZibr6+vLTk5Ocv/+/eW//vpLo9zdu3flMWPGyI6OjrKurq5coUIFuUePHvKFCxfynVMkww8ePJAnT54s165dW1apVLKxsbHs4uIi9+nTRw4PD1fKleQzJ6+cnBy5SpUqsiRJ8j///FNk2b1798oA5LZt2yrb1Gq1vGzZMvmDDz6QjYyMZENDQ9nFxUUePny4xn0s6v2c69ChQ3L79u1lc3Nz5XNoypQpcmpqqka5iIgIecCAAbKbm5tsYmIiGxsbyzVr1pS//PJL+e7du6VyXfJSq9Xypk2b5C5dusiVKlWS9fT0ZENDQ7l27drymDFj5EuXLmmU/+eff+Tu3bvL1tbWyufNunXrCs1scnKyHBAQIFeoUEHW0tIq8H1ekvdMamqq/Pnnn8uVKlXSeM9s2rRJBiD/8MMPL339Zbngz4IXFXW/RfqRmZkpz549W27Xrp1cpUoVWU9PT7a1tZVbtGghr1mzRlar1YXWTURERERvH0mWi1kEkYiIiIiIqAxNnjwZ33zzDXbu3In27duXdXOIiIiI6D3BwXMiIiIiInorJCcno2LFihrbLl26hA8++ADa2tq4efMmVCpVGbWOiIiIiN43XPOciIiIiIjeCp9++ikSExPRuHFjWFhYID4+Htu2bUNWVhaWL1/OgXMiIiIieqM485yIiIiIiN4Kq1evxn//+1/ExsYiJSUFxsbGaNSoET7//HP4+vqWdfOIiIiI6D3DwXMiIiIiIiIiIiIiojy0yroBRERERERERERERERvGw6eExERERERERERERHlwcFzIiIiIiIiIiIiIqI8OHhORERERERERERERJQHB8+JiIiIiIiIiIiIiPLg4DkRERERERERERERUR4cPCciIiIiIiIiIiIiyoOD50REREREREREREREeXDwnIiIiIiIiIiIiIgoDw6eExERERERERERERHlwcFzIiIiIiIiIiIiIqI8OHhORERERERERERERJQHB8+JiIiIiIiIiIiIiPLg4DkRERERERERERERUR4cPCciIiIiIiIiIiIiyoOD50REREREREREREREeXDwnIiIiIiIiIiIiIgoDw6eExERERERERERERHlwcFzIiIiIiIiIiIiIqI8OHhORERERERERERERJQHB8+JiIiIiIiIiIiIiPLg4DkRERERERERERERUR46Zd2AN02tVuPmzZswMTGBJEll3RwiIiIiIiIionJFlmU8efIElSpVgpbWuzsvMycnB1lZWWXdDCIqZXp6esKfXe/d4PnNmzdhb29f1s0gIiIiIiIiIirXrl+/jipVqpR1M0qdLMu4desWHj16VNZNIaLXQEtLC87OztDT0yu27Hs3eG5iYgLg+Qe8qalpGbdGnFqtxt27d2Ftbf1Of6tLr45ZIRHMCYliVkgEc0KimBUSwZyQKGal7Dx+/Bj29vbKGMu7Jnfg3MbGBoaGhly5gOgdkrsqSXJyMhwcHIp9f793g+e5F8TU1LTcDZ5nZGTA1NSU/yigIjErJII5IVHMColgTkgUs0IimBMSxayUvXdxUDknJ0cZOLeysirr5hDRa2BtbY2bN28iOzsburq6RZblb5dyQpIkWFhYvJO/mKh0MSskgjkhUcwKiWBOSBSzQiKYExLFrNDrkLvGuaGhYRm3hIhel9zlWnJycoot+97NPC+vJEmCvr5+WTeDygFmhUQwJySKWSERzAmJYlZIBHNCopgVep34pQzRu6sk72/OPC8n1Go1bt++DbVaXdZNobccs0IimBMSxayQCOaERDErJII5IVHMChG9rLCwMJibm5dJ3a1atcLYsWOFywcFBaFLly6vrT2voiyv45vCwfNyRJblsm4ClRPMColgTkgUs0IimBMSxayQCOaERDErRM8FBQVBkiRIkgQ9PT1Ur14d06dPR3Z29iuft7QHbkNCQlC3bl3h8v/++y/09PRQu3btUm2HqE8++QTa2trYuHFjiY6LioqCJEl49OiRxvbw8HDMmDFD+DwLFy5EWFhYiep+VYXd97x96tWrFy5fvix0zvI60M5lW4iIiIiIiIiIiIqx79LtN1aXT03bEh/j5+eH0NBQPHv2DDt37sTIkSOhq6uLSZMm5SubmZmprPv8tgsLC0NAQAAOHTqE48ePo0mTJm+s7qdPn2LdunWYMGECVqxYgZ49e77yOS0tLUtU3szM7JXrfF1UKhVUKlVZN+O14sxzIiIiIiIiIiKick5fXx92dnZwdHTEp59+Ch8fH/zxxx8A/m8m8TfffINKlSrBzc0NAHDhwgW0bt0aKpUKVlZWGDZsGFJTUwE8nyG+cuVK/P7778qs9qioKADA9evXERAQAHNzc1haWqJz585ITExU2hIVFYXGjRvDyMgI5ubm8PLywrVr1xAWFoZp06bh3LlzyjmLmlUtyzJCQ0PRv39/9OnTB8uXL9fYn5iYCEmSEB4eDm9vbxgaGsLT0xNHjx7VKBcWFgYHBwcYGhqia9euuH//vtA13bhxI2rWrIkvvvgChw4dwvXr1zX2P3v2DBMnToS9vT309fVRvXp1LF++HImJifD29gYA5cHGQUFBADSXbfnyyy8L/DLA09MT06dPB5B/FvimTZvg4eGh3DMfHx+kpaVplJ01axZsbW1hbm6u/AXC+PHjYWlpiSpVqiA0NFSo/8XJO5v83Llz8Pb2homJCUxNTdGgQQOcOnUKUVFRGDRoEFJSUpT7HhISUipteN04eF5OSJIEKysrPrCCisWskAjmhEQxKySCOSFRzAqJYE5IFLNCVDSVSoXMzEzldWRkJOLi4rB3715s374daWlp8PX1hYWFBU6ePImNGzdi3759GDVqFAAgODgYAQEB8PPzQ3JyMpKTk9GsWTNkZWXB19cXJiYm+PPPPxEdHQ1jY2P4+fkhMzMT2dnZ6NKlC1q2bInz58/j6NGjGDZsGCRJQq9evfD555+jVq1ayjl79epVaB8OHDiAp0+fwsfHB/369cO6deuUgeIXffXVVwgODkZMTAxcXV0RGBioLFlz/PhxDBkyBKNGjUJMTAy8vb0xc+ZMoWu4fPly9OvXD2ZmZmjfvn2+gf4BAwZg7dq1+PHHHxEbG4tff/0VxsbGsLe3x+bNmwEAcXFxSE5OxsKFC/Odv2/fvjhx4gTi4+OVbRcvXsT58+fRp0+ffOWTk5MRGBiIwYMHIzY2FlFRUejWrZvGElb79+/HzZs3cejQIcyfPx9Tp05Fp06dYGFhgePHj2P48OH45JNP8O+//wpdg5Lo27cvqlSpgpMnT+L06dP44osvoKuri2bNmmHBggUwNTVV7ntwcHCp1/86cNmWckKSJGhra/MfBVQsZoVEMCckilkhEcwJiWJWSARzQqKYFaKCybKMyMhI7N69G6NHj1a2GxkZYdmyZcpyLUuXLkVGRgZWrVoFIyMjAMDixYvh7++P2bNnw9bWFiqVCs+ePYOdnZ1ynv/9739Qq9VYtmyZ8v4LDQ2Fubk5oqKi0LBhQ6SkpKBTp06oVq0aAMDd3V053tjYGDo6OhrnLMzy5cvRu3dvaGtro3bt2qhatSo2btyozOLOFRwcjI4dOwIApk2bhlq1auHq1auoUaMGFi5cCD8/P0yYMAEA4OrqiiNHjiAiIqLIuq9cuYJjx44hPDwcANCvXz989tlnmDx5MiRJwuXLl7Fhwwbs3bsXPj4+AICqVasqx+cuz2JjY1PoWt+1atWCp6cn1qxZgylTpgAAVq9ejSZNmqB69er5yicnJyM7OxvdunWDo6MjAMDDw0OjjKWlJX788UdoaWnBzc0Nc+bMwdOnT/Hll18CACZNmoTvvvsOhw8fRu/evQvt//bt22FsbKyxLScnp9DyAJCUlITx48ejRo0aAAAXFxdln5mZGSRJErrvbxPOPC8n1Go17ty5w6eIU7GYFRLBnJAoZoVEMCckilkhEcwJiWJWiDTlDnYaGBigffv26NWrl8bSGB4eHhrrnMfGxsLT01MZOAcALy8vqNVqxMXFFVrPuXPncPXqVZiYmMDY2BjGxsawtLRERkYG4uPjYWlpiaCgIPj6+sLf3x8LFy5EcnJyifvz6NEjhIeHo1+/fsq2fv365Vu6BQDq1Kmj/HfFihUBAHfu3FH6mXdplKZNmxZb/4oVK+Dr64sKFSoAADp06ICUlBTs378fABATEwNtbW20bNmyhD3T1LdvX6xZswbA8y8+1q5di759+xZY1tPTE23atIGHhwd69uyJpUuX4uHDhxplatWqBS2t/xvytbW11Rhg19bWhpWVlXJ9CuPt7Y2YmBiNn2XLlhV5zGeffYaPP/4YPj4++O677zRm1JdXHDwnIiIiIiIiIiIq53IHO69cuYL09HSsXLlSY2D8xf9+FampqWjQoEG+gdXLly8rS42Ehobi6NGjaNasGdavXw9XV1ccO3asRPWsWbMGGRkZaNKkCXR0dKCjo4OJEyfi8OHDuHz5skZZXV1d5b9zZ8O/yhdrOTk5WLlyJXbs2KHUbWhoiAcPHmDFihUAUGoPygwMDERcXBzOnDmDI0eO4Pr164UuZaOtrY29e/di165dqFmzJhYtWgQ3NzckJCQoZV68FsDz61HQtuKuj5GREapXr67xU7ly5SKPCQkJwcWLF9GxY0fs378fNWvWxJYtW4o85m3HwXMiIiIiIiIiIqJyLnew08HBATo6xa/U7O7ujnPnzmmsIR4dHa0s9wEAenp6+ZbqqF+/Pq5cuQIbG5t8g6tmZmZKuXr16mHSpEk4cuQIateurcyuLuicBVm+fDk+//xzjQH6c+fOoXnz5soAtgh3d3ccP35cY1txA/k7d+7EkydPcPbsWY36165di/DwcDx69AgeHh5Qq9U4ePBggefIneVfXF+rVKmCli1bYvXq1Vi9ejXatm0LGxubQstLkgQvLy9MmzYNZ8+ehZ6e3ls1QO3q6opx48Zhz5496Natm/JwUtH7/rbh4DkREREREREREdF7pm/fvjAwMMDAgQPx119/4cCBAxg9ejT69+8PW1tbAICTkxPOnz+PuLg43Lt3D1lZWejbty8qVKiAzp07488//0RCQgKioqIwZswY/Pvvv0hISMCkSZNw9OhRXLt2DXv27MGVK1eUdc+dnJyQkJCAmJgY3Lt3D8+ePcvXtpiYGJw5cwYff/wxateurfETGBiIlStXKg8ELc6YMWMQERGBuXPn4sqVK1i8eHGx650vX74cHTt2hKenp0bdAQEBMDc3x+rVq+Hk5ISBAwdi8ODB2Lp1q3IdNmzYAABwdHSEJEnYvn077t69i9TU1CLvxbp167Bx48ZCl2wBnj/8dNasWTh16hSSkpIQHh6Ou3fvaqwpX1bS09MxatQoREVF4dq1a4iOjsbJkyc17ntqaioiIyNx7949PH36tIxbLIaD5+WElpYWbGxsNNYsIioIs0IimBMSxayQCOaERDErJII5IVHMCtGrMTQ0xO7du/HgwQM0atQIPXr0QJs2bbB48WKlzNChQ+Hm5oaGDRvC2toa0dHRMDQ0xKFDh+Dg4IBu3brB3d0dQ4YMQUZGBkxNTWFoaIi///4b3bt3h6urK4YNG4aRI0fik08+AQB0794dfn5+8Pb2hrW1NdauXZuvbcuXL0fNmjWVB0++qGvXrrhz5w527twp1M8PPvgAS5cuxcKFC+Hp6Yk9e/Zg8uTJhZa/ffs2duzYge7du+fbp6Wlha5duyrrrv/yyy/o0aMHRowYgRo1amDo0KHKTP7KlStj2rRp+OKLL2Bra4tRo0YVWmePHj1w//59PH36FF26dCm0nKmpKQ4dOoQOHTrA1dUVkydPxrx589C+fXuha/E6aWtr4/79+xgwYABcXV0REBCA9u3bY9q0aQCAZs2aYfjw4ejVqxesra0xZ86cMm6xGEmWZbmsG/EmPX78GGZmZkhJSYGpqWlZN0eYLMvIzs6Gjo4OnyRORWJWSARzQqKYFRLBnJAoZoVEMCckilkpO+V1bEVERkYGEhIS4OzsDAMDg7JuDhG9BiV5n/Pr2XJClmXcv38f79l3HfQSmBUSwZyQKGaFRDAnJIpZIRHMCYliVoiI6HXj4DkRERERERERERERUR4cPCciIiIiIiIiIiIiyoOD5+UI13AjUcwKiWBOSBSzQiKYExLFrJAI5oREMStERPQ66ZR1A0iMlpYWbG1ty7oZVA4wKySCOSFRzAqJYE5IFLNCIpgTEsWsEBHR68aZ5+WELMt49uwZH4RCxWJWSARzQqKYFRLBnJAoZoVEMCckilkhIqLXjYPn5YQsy3j48CH/UUDFYlZIBHNCopgVEsGckChmhUQwJySKWSEioteNg+dERERERERERERERHlw8JyIiIiIiIiIiIiIKA8OnpcjOjp8viuJYVZIBHNCopgVEsGckChmhUQwJySKWSF6u0iShK1bt5Z1M946Tk5OWLBgQVk3g14CB8/LCS0tLVSoUAFaWrxlVDRmhUQwJySKWSERzAmJYlZIBHNCopgVov8TFBQESZIgSRL09PRQvXp1TJ8+HdnZ2WXdtBJJTExU+vHiT79+/cq6afnktjUmJibfvlatWmHs2LHK65MnT2LYsGFC5+VA+9uFX9GWE7IsIz09HSqVCpIklXVz6C3GrJAI5oREMSskgjkhUcwKiWBOSBSzQm9c3K43V5db+xIf4ufnh9DQUDx79gw7d+7EyJEjoauri0mTJr2GBr5e+/btQ61atZTXKpWqDFvz6qytrcu6CfSS+PVsOSHLMh4/fsyniFOxmBUSwZyQKGaFRDAnJIpZIRHMCYliVog06evrw87ODo6Ojvj000/h4+ODP/74AwDw7NkzBAcHo3LlyjAyMkKTJk0QFRWlcfzmzZtRq1Yt6Ovrw8nJCfPmzdPY7+TkhBkzZiAwMBBGRkaoXLkyfvrppyLbdP36dQQEBMDc3ByWlpbo3LkzEhMTi+2LlZUV7OzslB8zMzPEx8ejc+fOsLW1hbGxMRo1aoR9+/ZpHPfs2TNMnDgR9vb20NfXR/Xq1bF8+XJl/19//YX27dvD2NgYtra26N+/P+7du6fs37RpEzw8PKBSqWBlZQUfHx+kpaUV297ivDibXJZlhISEwMHBAfr6+qhUqRLGjBkD4PmM9WvXrmHcuHHKrHsqWxw8JyIiIiIiIiIieseoVCpkZmYCAEaNGoWjR49i3bp1OH/+PHr27Ak/Pz9cuXIFAHD69GkEBASgd+/euHDhAkJCQjBlyhSEhYVpnPP777+Hp6cnzp49iy+++AL/+c9/sHfv3gLrz8rKgq+vL0xMTPDnn38iOjoaxsbG8PPzU9pVEqmpqejQoQMiIyNx9uxZ+Pn5wd/fH0lJSUqZAQMGYO3atfjxxx8RGxuLX3/9FcbGxgCAR48eoXXr1qhXrx5OnTqFiIgI3L59GwEBAQCA5ORkBAYGYvDgwYiNjUVUVBS6detW6l/Qbd68GT/88AN+/fVXXLlyBVu3boWHhwcAIDw8HFWqVMH06dORnJyM5OTkUq2bSo7LthAREREREREREb0jZFlGZGQkdu/ejdGjRyMpKQmhoaFISkpCpUqVAADBwcGIiIhAaGgoZs2ahfnz56NNmzaYMmUKAMDV1RWXLl3C999/j6CgIOXcXl5e+OKLL5Qy0dHR+OGHH9C2bdt87Vi/fj3UajWWLVumzKAODQ2Fubk5oqKi0K5du0L70KxZM43nGfz555+oV68ePD09lW0zZszAli1b8Mcff2DUqFG4fPkyNmzYgL1798LHxwcAULVqVaX84sWLUa9ePcyaNUvZtmLFCtjb2+Py5ctITU1FdnY2unXrBkdHRwBQBrWLkretAJCeno66desWWD4pKQl2dnbw8fGBrq4uHBwc0LhxYwCApaUltLW1YWJiAjs7u2LrptePg+flRO4DH/jnGlQcZoVEMCckilkhEcwJiXqfs7Lv0u2XOs6npm0pt+Tt9z7nhEqGWSHStH37dhgbGyMrKwtqtRp9+vRBSEgIoqKikJOTA1dXV43yz549g5WVFQAgNjYWnTt31tjv5eWFBQsWICcnB9ra2gCApk2bapRp2rRpoQ+3PHfuHK5evQoTExON7RkZGYiPjy+yL+vXr4e7u7vy2t7eHqmpqQgJCcGOHTuQnJyM7OxspKenKzPPY2JioK2tjZYtWxbangMHDigz0V8UHx+Pdu3aoU2bNvDw8ICvry/atWuHHj16wMLCokRtBYC+ffsWWr5nz55YsGABqlatCj8/P3To0AH+/v7Q0eEw7duId6WckCQJlpaWZd0MKgeYFRLBnJAoZoVEMCckilkhEcwJiWJWiDR5e3vjl19+gZ6eHipVqqQMxqampkJbWxunT59WBsFzFTSQXFpSU1PRoEEDrF69Ot++4h6gaW9vj+rVq2tsy10iZu7cuahevTpUKhV69OihLAFT3ENFU1NT4e/vj9mzZ+fbV7FiRWhra2Pv3r04cuQI9uzZg0WLFuGrr77C8ePH4ezsXKK2FtUWe3t7xMXFYd++fdi7dy9GjBiB77//HgcPHoSurm6RfaA3j4Pn5YQsy0hNTYWxsTG/VaciMSskgjkhUcwKiWBOSBSzQiKYExLFrBBpMjIyyjeICwD16tVDTk4O7ty5g+bNmxd4rLu7O6KjozW2RUdHw9XVVWPA/dixYxpljh07lm/Wda769etj/fr1sLGxgampaUm7k090dDSCgoLQtWtXAM8Hw198+KiHhwfUajUOHjyoLNuStz2bN2+Gk5NTobO8JUmCl5cXvLy88PXXX8PR0RFbtmzBZ5999srtf5FKpYK/vz/8/f0xcuRI1KhRAxcuXED9+vWhp6eHnJycUq2PXh4fGFpOyLKMtLQ0PkWcisWskAjmhEQxKySCOSFRzAqJYE5IFLNCJMbV1RV9+/bFgAEDEB4ejoSEBJw4cQLffvstduzYAQD4/PPPERkZiRkzZuDy5ctYuXIlFi9ejODgYI1zRUdHY86cObh8+TJ++uknbNy4Ef/5z38KrLdv376oUKECOnfujD///BMJCQmIiorCmDFj8O+//5a4Hy4uLggPD0dMTAzOnTuHPn36QK1WK/udnJwwcOBADB48GFu3blXq27BhAwBg5MiRePDgAQIDA3Hy5EnEx8dj9+7dGDRoEHJycnD8+HHMmjULp06dQlJSEsLDw3H37t1Cvxx4WWFhYVi+fDn++usv/PPPP/jf//4HlUqlrLPu5OSEQ4cO4caNG7h3716p1k0lx8FzIiIiIiIiIiKid1hoaCgGDBiAzz//HG5ubujSpQtOnjwJBwcHAM9nZW/YsAHr1q1D7dq18fXXX2P69OkaDwsFng+ynzp1CvXq1cPMmTMxf/58+Pr6FlinoaEhDh06BAcHB3Tr1g3u7u4YMmQIMjIyXmom+vz582FhYYFmzZrB398fvr6+qF+/vkaZX375BT169MCIESNQo0YNDB06FGlpaQCASpUqITo6Gjk5OWjXrh08PDwwduxYmJubQ0tLC6ampjh06BA6dOgAV1dXTJ48GfPmzUP79u1L3NaimJubY+nSpfDy8kKdOnWwb98+bNu2TVl/fvr06UhMTES1atWKXd6GXj9Jfs++on38+DHMzMyQkpJSKn8y8qao1WrcuXMHNjY2+Z7gS/QiZoVEMCckilkhEcwJiXqfs8IHhop7n3NCJcOslJ3yOrYiIiMjAwkJCXB2doaBgUFZN+et4uTkhLFjx2Ls2LFl3RSiV1KS9zl/u5QTkiRBpVJxHTcqFrNCIpgTEsWskAjmhEQxKySCOSFRzAoREb1ufGBoOSFJEszMzMq6GVQOMCskgjkhUcwKiWBOSBSzQiKYExLFrBAR0evGwfNyQpZlPH78GKampvxWnYrErJAI5oREMSskgjkhUcwKiWBOSBSzQvRmJSYmlnUTiN44LttSTsiyjPT0dD5FnIrFrJAI5oREMSskgjkhUcwKiWBOSBSzQkRErxsHz4mIiIiIiIiIiIiI8uDgORERERERERERERFRHhw8LyckSYKRkRHXcaNiMSskgjkhUcwKiWBOSBSzQiKYExLFrBAR0evGB4aWE5IkwcTEpKybQeUAs0IimBMSxayQCOaERDErJII5IVHMChERvW6ceV5OyLKMBw8e8EEoVCxmhUQwJySKWSERzAmJYlZIBHNCopgVIiJ63Th4Xk7IsozMzEz+o4CKxayQCOaERDErJII5IVHMColgTkgUs0L08lq1aoWxY8eWetlcf//9Nz744AMYGBigbt26JW5fWQkJCSlX7X1VkiRh69athe6PioqCJEl49OjRG2tTQZycnLBgwYIyqZuD50REREREREREROVYUFAQJEnC8OHD8+0bOXIkJElCUFCQsi08PBwzZswQOndJyuaaOnUqjIyMEBcXh8jIyBId+6YUNHAcHBz8xtp79uxZ9OrVCxUrVoS+vj4cHR3RqVMnbNu27a35UrBZs2ZITk6GmZlZqZ87MTERkiQhJiYm3768X9icPHkSw4YNEzpvaQ+0c81zIiIiIiIiIiKiYjzZf+CN1WXS2rvEx9jb22PdunX44YcfoFKpAAAZGRlYs2YNHBwcNMpaWloKn7ckZXPFx8ejY8eOcHR0LPGxuTIzM6Gnp/fSx78MY2NjGBsbv/Z6fv/9dwQEBMDHxwcrV65E9erV8ezZMxw5cgSTJ09G8+bNYW5unu84WZaRk5MDHZ03M6Srp6cHOzu7N1JXUaytrcusbs48LyckSYKpqSmfIk7FYlZIBHNCopgVEsGckChmhUQwJySKWSHSVL9+fdjb2yM8PFzZFh4eDgcHB9SrV0+jbN6ZvT///DNcXFxgYGAAW1tb9OjRo9CyTk5OmDVrFgYPHgwTExM4ODhgyZIlyn5JknD69GlMnz4dkiQhJCQEAHDhwgW0bt0aKpUKVlZWGDZsGFJTU5XjgoKC0KVLF3zzzTeoVKkS3NzclNnJGzZsQPPmzaFSqdCoUSNcvnwZJ0+eRMOGDWFsbIz27dvj7t27yrlOnjyJtm3bokKFCjAzM0PLli1x5swZjT4AQNeuXSFJkvI677ItarUa06dPR5UqVaCvr4+6desiIiJC2Z/bvvDwcHh7e8PQ0BCenp44evRoofcpLS0NQ4YMQceOHbFjxw60a9cOVatWhbu7O4YMGYJz584pM71zl03ZtWsXGjRoAH19fRw+fBjx8fHo3LkzbG1tYWxsjEaNGmHfvn0a9Tg5OWHGjBkIDAyEkZERKleujJ9++ilfe+7du4euXbvC0NAQLi4u+OOPP5R9BS3bEh0djVatWsHQ0BAWFhbw9fXFw4cPAQCbNm2Ch4eHco99fHyQlpZW6LUQ9eJsclmWERISAgcHB+jr66NSpUoYM2YMgOdZvXbtGsaNGwdJkkrl9wMHz8sJSZJgaGjIfxRQsZgVEsGckChmhUQwJySKWSERzAmJYlaI8hs8eDBCQ0OV1ytWrMCgQYOKPObUqVMYM2YMpk+fjri4OERERKBFixZFHjNv3jw0bNgQZ8+exYgRI/Dpp58iLi4OAJCcnIxatWrh888/R3JyMoKDg5GWlgZfX19YWFjg5MmT2LhxI/bt24dRo0ZpnDcyMhJxcXHYu3cvtm/frmyfOnUqJk+ejDNnzkBHRwd9+vTBhAkTsHDhQvz555+4evUqvv76a6X8kydPMHDgQBw+fBjHjh2Di4sLOnTogCdPngB4PrgOAKGhoUhOTlZe57Vw4ULMmzcPc+fOxfnz5+Hr64uPPvoIV65c0Sj31VdfITg4GDExMXB1dUVgYCCys7MLPOeePXtw//59TJgwodDrm/dz7YsvvsB3332H2NhY1KlTB6mpqejQoQMiIyNx9uxZ+Pn5wd/fH0lJSRrHff/99/D09MTZs2fxxRdf4D//+Q/27t2rUWbatGkICAjA+fPn0aFDB/Tt2xcPHjwosF0xMTFo06YNatasiaNHj+Lw4cPw9/dHTk4OkpOTERgYiMGDByM2NhZRUVHo1q1bqS9Bs3nzZvzwww/49ddfceXKFWzduhUeHh4Ann9ZVKVKFUyfPh3JyclITk5+5fq4bEs5oVar8eDBA1haWkJLi995UOGYFRLBnJAoZoVEMCckilkhEcwJiWJWiPLr168fJk2ahGvXrgF4Pkt43bp1iIqKKvSYpKQkGBkZoVOnTjAxMYGjo2O+mep5dejQASNGjAAATJw4ET/88AMOHDgANzc32NnZQUdHB8bGxsqSH0uXLkVGRgZWrVoFIyMjAMDixYvh7++P2bNnw9bWFgBgZGSEZcuWKcu1JCYmAni+Frmvry8A4D//+Q8CAwMRGRkJLy8vAMCQIUMQFhamtK9169Ya7V2yZAnMzc1x8OBBdOrUSVkGxNzcvMhlSebOnYuJEyeid+/eAIDZs2fjwIEDWLBggcYs7uDgYHTs2BHA88HoWrVq4erVq6hRo0a+c16+fBkA4Obmpmw7efIkvL3/b6medevWoVOnTsrr6dOno23btsprS0tLeHp6Kq9nzJiBLVu24I8//tD4QsLLywtffPEFAMDV1RXR0dH44YcfNM4VFBSEwMBAAMCsWbPw448/4sSJE/Dz88vX9jlz5qBhw4b4+eeflW21atUCAJw5cwbZ2dno1q2bslxP7qB2UZo1a5bvMzw9Pb3QB7cmJSXBzs4OPj4+0NXVhYODAxo3bqxcF21tbZiYmJTacjP87VKOFPaNFVFezAqJYE5IFLNCIpgTEsWskAjmhEQxK0SarK2t0bFjR4SFhSE0NBQdO3ZEhQoVijymbdu2cHR0RNWqVdG/f3+sXr0aT58+LfKYOnXqKP8tSRLs7Oxw586dQsvHxsbC09NTGTgHng/sqtVqZcY68HywtaB1zl+sL3eg/cWBWVtbW436b9++jaFDh8LFxQVmZmYwNTVFampqvpnZRXn8+DFu3rypDNC/2O7Y2NhC21exYkUAKPJ65FWnTh3ExMQgJiYGaWlp+T7bGjZsqPE6NTUVwcHBcHd3h7m5OYyNjREbG5uvf02bNs33uqi2GxkZwdTUtNC25848L4inpyfatGkDDw8P9OzZE0uXLlWWcynK+vXrlb7n/uTt74t69uyJ9PR0VK1aFUOHDsWWLVte6+8CDp4TERERERERERG9IwYPHoywsDCsXLkSgwcPLra8iYkJzpw5g7Vr16JixYr4+uuv4enpqbHOdV66uroaryVJglqtftWmawyuF1Zf7pImebe9WP/AgQMRExODhQsX4siRI4iJiYGVlRUyMzNfuY2i7Svseri4uACAxpcG+vr6qF69OqpXr17gMXmvS3BwMLZs2YJZs2bhzz//RExMDDw8PF6qfyW5l7kPoi2ItrY29u7di127dqFmzZpYtGgR3NzckJCQUGT99vb2St9zf4qqx97eHnFxcfj555+hUqkwYsQItGjRAllZWUXW87I4eE5ERERERERERPSO8PPzQ2ZmJrKyspSlToqjo6MDHx8fzJkzB+fPn0diYiL2799fam1yd3fHuXPnNB4eGR0dDS0tLY3lS0pLdHQ0xowZgw4dOqBWrVrQ19fHvXv3NMro6uoiJyen0HOYmpqiUqVKiI6OznfumjVrvnTb2rVrB0tLS8yePfulzxEdHY2goCB07doVHh4esLOzU5a4edGxY8fyvXZ3d3/peuvUqYPIyMhC90uSBC8vL0ybNg1nz56Fnp4etmzZ8tL1FUalUsHf3x8//vgjoqKicPToUVy4cAEAoKenV+R9LSmueV5OSJIECwsLPgiFisWskAjmhEQxKySCOSFRzAqJYE5IFLNCVDBtbW1laQ5tbe1iy2/fvh3//PMPWrRoAQsLC+zcuRNqtbpUB7X79u2LqVOnYuDAgQgJCcHdu3cxevRo9O/fX1mGpTS5uLjgt99+Q8OGDfH48WOMHz8+32xmJycnZd10fX19WFhY5DvP+PHjMXXqVFSrVg1169ZFaGgoYmJisHr16pdum7GxMZYtW4ZevXqhY8eOGDNmDFxcXJCamoqIiAgAxd83FxcXhIeHw9/fH5IkYcqUKQXOFo+OjsacOXPQpUsX7N27Fxs3bsSOHTteuu2TJk2Ch4cHRowYgeHDh0NPTw8HDhxAz549ER8fj8jISLRr1w42NjY4fvw47t69+0qD9QUJCwtDTk4OmjRpAkNDQ/zvf/+DSqVS1ll3cnLCoUOH0Lt3b+jr6xe7bFFxOPO8nJAkCfr6+vxHARWLWSERzAmJYlZIBHNCopgVEsGckChmhahwpqamMDU1FSprbm6O8PBwtG7dGu7u7vjvf/+LtWvXKg+CLA2GhobYvXs3Hjx4gEaNGqFHjx5o06YNFi9eXGp1vGj58uV4+PAh6tevj/79+2PMmDGwsbHRKDNv3jzs3bsX9vb2hT4gdcyYMfjss8/w+eefw8PDAxEREfjjjz+UpVdeVteuXXHkyBEYGhpiwIABcHNzQ+vWrbF///58DwstyPz582FhYYFmzZrB398fvr6+qF+/fr5yn3/+OU6dOoV69eph5syZmD9/vvBfIxTE1dUVe/bswblz59C4cWM0bdoUv//+O3R0dGBqaopDhw6hQ4cOcHV1xeTJkzFv3jy0b9/+pesriLm5OZYuXQovLy/UqVMH+/btw7Zt22BlZQXg+cNVExMTUa1aNeXBsK9CkmVZfuWzlCOPHz+GmZkZUlJShD9E3gZqtRp3796FtbU1nyJORWJWSARzQqKYFRLBnJCo9zkr+y7dfqnjfGqW/my8t937nBMqGWal7JTXsRURGRkZSEhIgLOzMwwMDMq6OUQvzcnJCWPHjsXYsWPLuilvnZK8z/nbpRx5z77noFfArJAI5oREMSskgjkhUcwKiWBOSBSzQkRErxMHz4mIiIiIiIiIiIiI8uADQ4mIiIiIiIiIiIjeIYmJiWXdhHcCZ56XE5IkwcrKig9CoWIxKySCOSFRzAqJYE5IFLNCIpgTEsWsEBHR68bB83JCkiRoa2vzHwVULGaFRDAnJIpZIRHMCYliVkgEc0KimBUiInrdOHheTqjVaty5cwdqtbqsm0JvOWaFRDAnJIpZIRHMCYliVkgEc0KimBUiInrdOHhORERERERERERERJQHB8+JiIiIiIiIiIiIiPLg4DkRERERERERERERUR4cPC8ntLS0YGNjAy0t3jIqGrNCIpgTEsWskAjmhEQxKySCOSFRzApRyURFRUGSJDx69KismyIkJCQEdevWLetm0HtOp6wbQGJkWUZOTg4kSeKTxKlIzAqJYE5IFLNCIpgTEsWskAjmhEQxK/SmJZy/98bqcq5T4aWOO3r0KD788EP4+flhx44dGvuaNWuG5ORkmJmZFXueb7/9FpMnT8Z3332H8ePHC9XdqlUr1K1bFwsWLHipcmFhYRg7dqwyuB8cHIzRo0cL1R0SEoKtW7ciJiZGqDyRKH49W07Isoz79+9DluWybgq95ZgVEsGckChmhUQwJySKWSERzAmJYlaI8lu+fDlGjx6NQ4cO4ebNmxr79PT0YGdnJ/Rl04oVKzBhwgSsWLGi2LKZmZkv3d6iGBsbw8rK6rWcm0gUB8+JiIiIiIiIiIjKudTUVKxfvx6ffvopOnbsiLCwMI39osu2HDx4EOnp6Zg+fToeP36MI0eOaOzPXU5l2bJlcHZ2hoGBAYKCgnDw4EEsXLhQ+WuQxMTEV+pP3mVboqKi0LhxYxgZGcHc3BxeXl64du0awsLCMG3aNJw7d06pO2/fiV4Wl20hIiIiIiIiIiIq5zZs2IAaNWrAzc0N/fr1w9ixYzFp0qQSL2u0fPlyBAYGQldXF4GBgVi+fDmaNWumUebq1avYvHkzwsPDoa2tDUdHR1y+fBm1a9fG9OnTAQDW1tal1rfs7Gx06dIFQ4cOxdq1a5GZmYkTJ05AkiT06tULf/31FyIiIrBv3z4AEFqahkgEB8/LEa7hRqKYFRLBnJAoZoVEMCckilkhEcwJiWJWiP7P8uXL0a9fPwCAn58fUlJScPDgQbRq1Ur4HI8fP8amTZtw9OhRAEC/fv3QvHlzLFy4EMbGxkq5zMxMrFq1SmOAXE9PD4aGhrCzsyu2np9//hnLli3T2JadnQ0DA4NC25WSkoJOnTqhWrVqAAB3d3dlv7GxMXR0dITqJioJLttSTmhpacHW1pZPEadiMSskgjkhUcwKiWBOSBSzQiKYExLFrBD9n7i4OJw4cQKBgYEAAB0dHfTq1QvLly8v0XnWrl2LatWqwdPTEwBQt25dODo6Yv369RrlHB0dX2lmed++fRETE6PxkztjvSCWlpYICgqCr68v/P39sXDhQiQnJ790/USi3qrfMN9++y0aNWoEExMT2NjYoEuXLoiLi9Mo06pVK2X9otyf4cOHl1GL3xxZlvHs2TM+CIWKxayQCOaERDErJII5IVHMColgTkgUs0L0f5YvX47s7GxUqlQJOjo60NHRwS+//ILNmzcjJSWlROe5ePGicg4dHR1cunQp34NDjYyMXqm9ZmZmqF69usaPjY1NkceEhobi6NGjaNasGdavXw9XV1ccO3bsldpBVJy3avD84MGDGDlyJI4dO4a9e/ciKysL7dq1Q1pamka5oUOHIjk5WfmZM2dOGbX4zZFlGQ8fPuQ/CqhYzAqJYE5IFLNCIpgTEsWskAjmhEQxK0TPZWdnY9WqVZg3b57GTO5z586hUqVKWLt2rdB5Lly4gFOnTiEqKkrjPFFRUTh69Cj+/vvvIo/X09NDTk5OaXSpUPXq1cOkSZNw5MgR1K5dG2vWrHljddP76a1a8zwiIkLjdVhYGGxsbHD69Gm0aNFC2S66fhIREREREREREdG7bPv27Xj48CGGDBmS70GZ3bt3x/Lly4VWbVi+fDkaN26sMQaXq1GjRli+fDm+//77Qo93cnLC8ePHkZiYCGNjY1haWpbaskoJCQlYsmQJPvroI1SqVAlxcXG4cuUKBgwYoNSdkJCAmJgYVKlSBSYmJtDX1y+Vuun99lYNnueV+2cllpaWGttXr16N//3vf7Czs4O/vz+mTJkCQ0PDAs/x7NkzPHv2THn9+PFjAIBarYZarQYAZfkXWZY1vrEubnvu8S+7XUtLK9+5C9uee6wsyxrnedm2vw19Kmw7+/RqfVKr1UpO3pU+iWxnn0rWp9z/Lulnytvcp3fxPr0NfXrxM+Vd6dPLbmefiv9MeZf69C7ep7ehT7mfKS/+HirvfSpJ2/MS2Z73/1netj69jvtU2GdKee7Tu3if3oY+iX6mlKc+iW4v6z7lPR+VreXLl8PHxyffwDnwfPB8zpw5OH/+fJHnyMzMxP/+9z9MnDixwP3du3fHvHnzMGvWrELPERwcjIEDB6JmzZpIT09HQkICnJycStSXwhgaGuLvv//GypUrcf/+fVSsWBEjR47EJ598orQvPDwc3t7eePToEUJDQxEUFFQqddP7TZIL+tfaW0CtVuOjjz7Co0ePcPjwYWX7kiVL4OjoiEqVKuH8+fOYOHEiGjdujPDw8ALPExISgmnTpuXbfvnyZZiYmAAAVCoVzMzMkJKSgvT0dKWMkZERTExM8ODBA2RmZirbTU1NYWhoiHv37iE7O1vZbmFhAX19fdy+fVvjF42VlRW0tbVx584djTbY2NggJycH9+/fV7ZJkgRbW1s8e/YMDx8+VLZraWlBS0sLBgYGSE1NVbbr6enB0tIST5480Vjepjz0SUdHBxUqVMDTp0+VLzXYp1fvU05ODlJTU2FsbAxra+t3ok/v4n0q6z7p6+sjJycH2traGl8wluc+vYv36W3ok1qtRmpqKkxMTFCxYsV3ok/v4n0q6z4ZGxsjIyNDY3JCee/Tu3if3oY+5X6mWFlZwcrK6p3ok+h92n32H8hZ/9d2LT0DaOmpkJP+BHLO/7VdS98QWrr6yHmaAlmtRl0H87e2T6/rPllaWiIlJQVZWVkaMxbLc5/exfv0NvQp9zPFzs4Opqam70Sfyst9evLkCVxdXZGSkgJTU1O8SzIyMpCQkABnZ2cYGBiUdXOI6DUoyfv8rR08//TTT7Fr1y4cPnwYVapUKbTc/v370aZNG1y9ehXVqlXLt7+gmef29vZ4+PCh8gFfXr/pfZW2s0/sE/vEPrFP7BP7xD6xT+wT+/Tm+rT34i3klVu+qO1t3G3e2j69i/eJfWKf2Cex7Y8fP4aFhQUHz4moXCrJ+/ytXLZl1KhR2L59Ow4dOlTkwDkANGnSBAAKHTzX19cvcI2j3JncL8r9pZJXYdvzHv8y20XrlGUZT58+hUqleqXzFLf9TfbpTW1/3/okyzLS09OhUqmUY8t7n0S3s0+v/zPlbe7Ty25nn4ru04ufKW+i7bxP5bNPL36mvGpf35Y+vUzbC9vOPr3+z5Tycp8KUtz2vG192/r0Ou5TUZ8p5bVPRW1nn17/Z0p56pPo9rLuU2H1EBG9a96qTztZljFq1Chs2bIF+/fvh7Ozc7HHxMTEAAAqVqz4mltXtmRZxuPHjwucmUL0ImaFRDAnJIpZIRHMCYliVkgEc0KimBUiInrd3qqZ5yNHjsSaNWvw+++/w8TEBLduPf/TRjMzM6hUKsTHx2PNmjXo0KEDrKyscP78eYwbNw4tWrRAnTp1yrj1RERERERERERERPSueKsGz3/55RcAQKtWrTS25z4hV09PD/v27cOCBQuQlpYGe3t7dO/eHZMnTy6D1hIRERERERERERHRu+qtGjwv7k+t7O3tcfDgwTfUmreLJEnQ09MrdE1EolzMColgTkgUs0IimBMSxayQCOaERDErRET0ur1Vg+dUOEmSYGlpWdbNoHKAWSERzAmJYlZIBHNCopgVEsGckChmhYiIXre36oGhVDhZlvHkyRM+CIWKxayQCOaERDErJII5IVHMColgTkgUs0JERK8bB8/LCVmWkZaWxn8UULGYFRLBnJAoZoVEMCckilkhEcwJiWJWiIjodePgOREREREREREREb0RrVq1wtixY8u6GfQSJEnC1q1by7oZbxTXPCciIiIiIiIiIipG/Onjb6yuag2alPiYW7du4ZtvvsGOHTtw48YN2NjYoG7duhg7dizatGnzGlr5csLDw6Grq1vWzcgnMTERzs7OOHv2LOrWrVvWzXljoqKi4O3tjYcPH8Lc3Fxjn5OTE8aOHat82ZGcnAwLCwuh80qShC1btqBLly6l2+A3jIPn5YQkSVCpVHyKOBWLWSERzAmJYlZIBHNCopgVEsGckChmhej/JCYmwsvLC+bm5vj+++/h4eGBrKws7N69GyNHjsTff/9d1k1UFPeg38zMTOjp6b2h1rw73sR1s7Oze63nfxtx2ZZyQpIkmJmZ8R8FVCxmhUQwJySKWSERzAmJYlZIBHNCopgVov8zYsQISJKEEydOoHv37nB1dUWtWrXw2Wef4dixY0q5pKQkdO7cGcbGxjA1NUVAQABu376t7A8JCUHdunXx22+/wcnJCWZmZujduzeePHmilNm0aRM8PDygUqlgZWUFHx8fpKWlAQCCgoLQpUsXTJs2DdbW1jA1NcXw4cORmZmpHJ932RYnJyfMmDEDAwYMgKmpKYYNGwYAmDhxIlxdXWFoaIiqVatiypQpyMrK0uj3tm3b0KhRIxgYGKBChQro2rUrAGD69OmoXbt2vutUt25dTJkyReiaRkVFQZIk7N69G/Xq1YNKpULr1q1x584d7Nq1C+7u7jA1NUWfPn3w9OlT5biIiAh8+OGHMDc3h5WVFTp16oT4+HiNcx85cgR169aFgYEBGjZsiK1bt0KSJMTExChl/vrrL7Rv3x7GxsawtbVF//79ce/ePY3rOGrUKIwdOxYVKlSAr68vBg8ejE6dOmnUlZWVBRsbGyxfvlyo30V5cdmWzMxMjBo1ChUrVoSBgQEcHR3x7bffAnh+TwGga9eukCRJeV0ecfC8nJBlGSkpKXwQChWLWSERzAmJYlZIBHNCopgVEsGckChmhei5Bw8eICIiAiNHjoSRkVG+/blLcajVanTu3BkPHjzAwYMHsXfvXvzzzz/o1auXRvn4+Hhs3boV27dvx/bt23Hw4EF89913AJ4v2xEYGIjBgwcjNjYWUVFR6Natm8b7MDIyUtm3du1ahIeHY9q0aUX2Ye7cufD09MTZs2eVwW0TExOEhYXh0qVLWLhwIZYuXYoffvhBOWbHjh3o2rUrOnTogLNnzyIyMhKNGzcGAKV9J0+eVMqfPXsW58+fx6BBg0pwdZ9/obB48WIcOXIE169fR0BAABYsWIA1a9Zgx44d2LNnDxYtWqSUT0tLw2effYZTp04hMjISWlpa6Nq1K9RqNQDg8ePH8Pf3h4eHB86cOYMZM2Zg4sSJGnU+evQIrVu3Rr169XDq1ClERETg9u3bCAgI0Ci3cuVK6OnpITo6Gv/973/x8ccfIyIiAsnJyUqZ7du34+nTp/nu86v68ccf8ccff2DDhg2Ii4vD6tWrlUHy3OseGhqK5ORkjftQ3nDZlnJClmWkp6fDxMSE36pTkZgVEsGckChmhUQwJySKWSERzAmJYlaInrt69SpkWUaNGjWKLBcZGYkLFy4gISEB9vb2AIBVq1ahVq1aOHnyJBo1agTg+SB7WFgYTExMAAD9+/dHZGQkvvnmGyQnJyM7OxvdunWDo6MjAMDDw0OjHj09PaxYsQKGhoaoVasWpk+fjvHjx2PGjBnQ0ip4Hm/r1q3x+eefa2ybPHmy8t9OTk4IDg7GunXrMGHCBADAN998g969e2sMzHt6egIAqlSpAl9fX4SGhir9Cg0NRcuWLVG1atUir1NeM2fOhJeXFwBgyJAhmDRpEuLj45Xz9OjRAwcOHFAGwLt3765x/IoVK2BtbY1Lly6hdu3aWLNmDSRJwtKlS2FgYICaNWvixo0bGDp0qHLM4sWLUa9ePcyaNUvjPPb29rh8+TJcXV0BAC4uLpgzZ45GfW5ubvjtt9+U6xQaGoqePXvC2Ni4yH5WqVIl37YXZ9TnlZSUBBcXF3z44YeQJEnJAwBYW1sDeP7FTXlf6oUzz4mIiIiIiIiIiMop0b++iI2Nhb29vTJwDgA1a9aEubk5YmNjlW1OTk7KwDkAVKxYEXfu3AHwfHC6TZs28PDwQM+ePbF06VI8fPhQox5PT08YGhoqr5s2bYrU1FRcv3690LY1bNgw37b169fDy8sLdnZ2MDY2xuTJk5GUlKTsj4mJKfJBqEOHDsXatWuRkZGBzMxMrFmzBoMHDy60fGHq1Kmj/Letra2yjMyL23KvDwBcuXIFgYGBqFq1KkxNTZXZ2Lltj4uLQ506dWBgYKAckztjPte5c+dw4MABGBsbKz+5X468uARMgwYN8rX3448/RmhoKADg9u3b2LVrl1C///zzT8TExGj8VKpUqdDyQUFBiImJgZubG8aMGYM9e/YUW0d5xJnnRERERERERERE5ZSLiwskSSq1h4Lq6upqvJYkSVlyRFtbG3v37sWRI0eU5Uq++uorHD9+HM7Ozi9dZ97lZo4ePYq+ffti2rRp8PX1hZmZGdatW4d58+YpZVQqVZHn9Pf3h76+PrZs2QI9PT1kZWWhR48eJW7bi9dDkqQir09uvY6Ojli6dCkqVaoEtVqN2rVra6z7XpzU1FT4+/tj9uzZ+fZVrFhR+e+ClukZMGAAvvjiCxw9ehRHjhyBs7MzmjdvXmydzs7OyhI/uXR0Ch86rl+/PhISErBr1y7s27cPAQEB8PHxwaZNm4qtqzzhzPNyQpIkGBkZ8U/RqFjMColgTkgUs0IimBMSxayQCOaERDErRM9ZWlrC19cXP/30k/Lgzhc9evQIAODu7o7r169rzAC/dOkSHj16hJo1awrXJ0kSvLy8MG3aNJw9exZ6enrYsmWLsv/cuXNIT09XXh87dgzGxsYaM96Lc+TIETg6OuKrr75Cw4YN4eLigmvXrmmUqVOnDiIjIws9h46ODgYOHIjQ0FCEhoaid+/exQ64v6r79+8jLi4OkydPRps2beDu7p5vZr6bmxsuXLiAZ8+eKdvyrglev359XLx4EU5OTqhevbrGT0ED5i+ysrJCly5dEBoairCwsBKv8V4Spqam6NWrF5YuXYr169dj8+bNePDgAYDnXzrk5OS8trrfFA6elxOSJHEdNxLCrJAI5oREMSskgjkhUcwKiWBOSBSzQvR/fvrpJ+Tk5KBx48bYvHkzrly5gtjYWPz4449o2rQpAMDHxwceHh7o27cvzpw5gxMnTmDAgAFo2bJlgcumFOT48eOYNWsWTp06haSkJISHh+Pu3btwd3dXymRmZmLIkCG4dOkSdu7cialTp2LUqFGFrndeEBcXFyQlJWHdunWIj4/Hjz/+qDFADwBTp07F2rVrMXXqVMTGxuLChQv5Zmp//PHH2L9/PyIiIl5qyZaSsrCwgJWVFZYsWYKrV69i//79+OyzzzTK9OnTB2q1GsOGDUNsbCx2796NuXPnAoDyeTZy5Eg8ePAAgYGBOHnyJOLj47F7924MGjRIaED6448/xsqVKxEbG4uBAweWfkcBzJ8/H2vXrsXff/+Ny5cvY+PGjbCzs1Nmrzs5OSEyMhK3bt3K9wVCecLB83JClmU8ePCATxGnYjErJII5IVHMColgTkgUs0IimBMSxawQ/Z+qVavizJkz8Pb2xueff47atWujbdu2iIyMxC+//ALg+cDs77//DgsLC7Ro0QI+Pj6oWrUq1q9fL1yPqakpDh06hA4dOsDV1RWTJ0/GvHnz0L59e6VMmzZt4OLighYtWqBXr1746KOPEBISUqL+fPTRRxg3bhxGjRqFunXr4siRI5gyZYpGmVatWmHjxo34448/ULduXbRu3RonTpzQKOPi4oJmzZqhRo0aaNKkSYna8DK0tLSwbt06nD59GrVr18a4cePw/fffa5QxNTXFtm3bEBMTg7p16+Krr77C119/DQDKOuiVKlVCdHQ0cnJy0K5dO3h4eGDs2LEwNzcX+hLCx8cHFStWhK+vb5Hrlr8KExMTzJkzBw0bNkSjRo2QmJiInTt3Ku2bN28e9u7dC3t7e9SrV++1tOFNkOT37LfM48ePYWZmhpSUFJiampZ1c4Sp1WrcuXMHNjY2Jfqmjt4/zAqJYE5IFLNCIpgTEvU+Z2XfpdsvdZxPTdtSbsnb733OCZUMs1J2yuvYioiMjAwkJCTA2dlZ44GOJCYoKAiPHj3C1q1by7opAJ5/yebi4oIRI0bkmwH+Nlm9ejUGDRqElJSUUllaJjU1FZUrV0ZoaCi6detWCi18t5Tkfc4HhhIREREREREREdE75e7du1i3bh1u3br1Wtf9fhmrVq1C1apVUblyZZw7dw4TJ05EQEDAKw+cq9Vq3Lt3D/PmzYO5uTk++uijUmrx+4uD50RERERERERERPROsbGxQYUKFbBkyRJYWFiUdXM03Lp1C19//TVu3bqFihUromfPnvjmm29e+bxJSUlwdnZGlSpVEBYWBh0dDv2+Kl7BckKSJJiamvJBKFQsZoVEMCckilkhEcwJiWJWSARzQqKYFaK3T1hYWFk3QfE2r1Q9YcIETJgwodTP6+Tk9Fb3uzzi4Hk5IUkSDA0Ny7oZVA4wKySCOSFRzAqJYE5IFLNCIpgTEsWsEBHR68YnapQTuWsWqdXqsm4KveWYFRLBnJAoZoVEMCckilkhEcwJiWJWiIjodePgeTmSnZ1d1k2gcoJZIRHMCYliVkgEc0KimBUSwZyQKGaFiIheJw6eExERERERERERERHlwcFzIiIiIiIiIiIiIqI8OHheTkiSBAsLCz5FnIrFrJAI5oREMSskgjkhUcwKiWBOSBSzQkRErxsHz8sJSZKgr6/PfxRQsZgVEsGckChmhUQwJySKWSERzAmJYlaISISTkxMWLFhQ1s0o94KCgtClS5eybsYbp1PWDSAxarUad+/ehbW1NbS0+J0HFY5ZIRHMCYliVkgEc0KimBUSwZyQKGaF3rS4uLg3Vpebm1uJygcFBWHlypUAAF1dXTg4OGDAgAH48ssvoaPD4b9X5eTkhLFjx2Ls2LFl3ZRSV1jfQkJCsHXrVsTExAAAFi5cCFmWhc4ZFBSER48eYevWraXb2DLAd085IhpQImaFRDAnJIpZIRHMCYliVkgEc0KimBWi/+Pn54fQ0FA8e/YMO3fuxMiRI6Grq4tJkyblK5uZmQk9Pb0yaCWVV2ZmZmXdhDLBr2aJiIiIiIiIiIjKOX19fdjZ2cHR0RGffvopfHx88McffwD4vyU3vvnmG1SqVEmZ2X7hwgW0bt0aKpUKVlZWGDZsGFJTU5Vz5h43bdo0WFtbw9TUFMOHD0dmZqZSJiIiAh9++CHMzc1hZWWFTp06IT4+XqNtR44cQd26dWFgYICGDRti69atkCRJmdWck5ODIUOGwNnZGSqVCm5ubli4cKHGOXLbMnfuXFSsWBFWVlYYOXIksrKylDJ37tyBv78/VCoVnJ2dsXr16nzXaf78+fDw8ICRkRHs7e0xYsQIjT6LkCQJv/76Kzp16gRDQ0O4u7vj6NGjuHr1Klq1agUjIyM0a9ZM4zrEx8ejc+fOsLW1hbGxMRo1aoR9+/ZpnDc5ORkdO3ZU2r9mzZp8y848evQIH3/8sXI/WrdujXPnzin7z507B29vb5iYmMDU1BQNGjTAqVOnStS/guRdtmXTpk3w8PBQsuPj44O0tDSEhIRg5cqV+P333yFJEiRJQlRU1CvXX1Y4eE5ERERERERERPSOUalUGoPckZGRiIuLw969e7F9+3akpaXB19cXFhYWOHnyJDZu3Ih9+/Zh1KhRGueJjIxEbGwsoqKisHbtWoSHh2PatGnK/rS0NHz22Wc4deoUIiMjoaWlha5du0KtVgMAHj9+DH9/f3h4eODMmTOYMWMGJk6cqFGHWq1GlSpVsHHjRly6dAlff/01vvzyS2zYsEGj3IEDBxAfH48DBw5g5cqVCAsLQ1hYmLI/KCgI169fx4EDB7Bp0yb8/PPPuHPnjsY5tLS08OOPP+LixYtYuXIl9u/fjwkTJpT4+s6YMQMDBgxATEwMatSogT59+uCTTz7BpEmTcOrUKciyrHEtU1NT0aFDB0RGRuLs2bPw8/ODv78/kpKSlDIDBgzAzZs3ERUVhc2bN2PJkiX52t+zZ0/cuXMHu3btwunTp1G/fn20adMGDx48AAD07dsXVapUwcmTJ3H69Gl88cUX0NXVLXH/ipKcnIzAwEAMHjxYyUa3bt0gyzKCg4MREBAAPz8/JCcnIzk5Gc2aNSvV+t8kLttSTkiSBCsrKz4IhYrFrJAI5oREMSskgjkhUcwKiWBOSBSzQlQwWZYRGRmJ3bt3Y/To0cp2IyMjLFu2TFmuZenSpcjIyMCqVatgZGQEAFi8eDH8/f0xe/Zs2NraAgD09PSwYsUKGBoaolatWpg+fTrGjx+PGTNmQEtLC927d9eof8WKFbC2tsalS5dQu3ZtrFmzBpIkYenSpTAwMEDNmjVx48YNDB06VDlGV1dXY0De2dkZR48exYYNGxAQEKBst7CwwOLFi6GtrY0aNWqgY8eOiIyMxNChQ3H58mXs2rULJ06cQKNGjQAAy5cvh7u7u0b7Xlzb28nJCTNnzsTw4cPx888/l+g6Dxo0SGnbxIkT0bRpU0yZMgW+vr4AgP/85z8YNGiQUt7T0xOenp7K6xkzZmDLli34448/MGrUKPz999/Yt28fTp48iYYNGwIAli1bBhcXF+WYw4cP48SJE7hz5w709fUBAHPnzsXWrVuxadMmDBs2DElJSRg/fjxq1KgBABrHF2bixImYPHmyxrbMzEzUrFmzwPLJycnIzs5Gt27d4OjoCADw8PBQ9qtUKjx79gx2dnbF1v2248zzckKSJGhra/MfBVQsZoVEMCckilkhEcwJiWJWSARzQqKYFSJN27dvh7GxMQwMDNC+fXv06tULISEhyn4PDw+Ndc5jY2Ph6empDJwDgJeXF9RqtcbDUT09PWFoaKi8btq0KVJTU3H9+nUAwJUrVxAYGIiqVavC1NQUTk5OAKDMqI6Li0OdOnVgYGCgnKNx48b52v/TTz+hQYMGsLa2hrGxMZYsWaIxKxsAatWqBW1tbeV1xYoVlZnZsbGx0NHRQYMGDZT9NWrUgLm5ucY59u3bhzZt2qBy5cowMTFB//79cf/+fTx9+rTgC1uIOnXqKP+d+0XDiwPItra2yMjIwOPHjwE8n3keHBwMd3d3mJubw9jYGLGxsRrXSUdHB/Xr11fOUb16dVhYWCivz507h9TUVFhZWcHY2Fj5SUhIUJaI+eyzz/Dxxx/Dx8cH3333Xb4ldAoyfvx4xMTEaPwMHz680PKenp5o06YNPDw80LNnTyxduhQPHz4UuWzlDgfPywm1Wo07d+4of/JCVBhmhUQwJySKWSERzAmJYlZIBHNCopgVIk3e3t6IiYnBlStXkJ6ejpUrV2oMjL/436XJ398fDx48wNKlS3H8+HEcP34cADSWjCnOunXrEBwcjCFDhmDPnj2IiYnBoEGD8p0j7/IjkiSV6DMgMTERnTp1Qp06dbB582acPn0aP/30U4nbm7ctuV/iFbQtt33BwcHYsmULZs2ahT///BMxMTHw8PAoUb2pqamoWLFivoHuuLg4jB8/HgAQEhKCixcvomPHjti/fz9q1qyJLVu2FHneChUqoHr16ho/lpaWhZbX1tbG3r17sWvXLtSsWROLFi2Cm5sbEhIShPtSXnDwnIiIiIiIiIiIqJwzMjJC9erV4eDgAB2d4ldqdnd3x7lz55CWlqZsi46OhpaWlvJAUeD5bOf09HTl9bFjx2BsbAx7e3vcv38fcXFxmDx5Mtq0aQN3d/d8M5Dd3Nxw4cIFPHv2TNl28uRJjTLR0dFo1qwZRowYgXr16qF69epCM6ZfVKNGDWRnZ+P06dPKtri4ODx69Eh5ffr0aajVasybNw8ffPABXF1dcfPmzRLV87Kio6MRFBSErl27wsPDA3Z2dkhMTFT2u7m5ITs7G2fPnlW2Xb16VeN61q9fH7du3YKOjk6+we4KFSoo5VxdXTFu3Djs2bMH3bp1Q2hoaKn3R5IkeHl5Ydq0aTh79iz09PSUQXo9PT3k5OSUep1lgYPnRERERERERERE75m+ffvCwMAAAwcOxF9//YUDBw5g9OjR6N+/v7IMCfB8RvaQIUNw6dIl7Ny5E1OnTsWoUaOgpaUFCwsLWFlZYcmSJbh69Sr279+Pzz77TKOePn36QK1WY9iwYYiNjcXu3bsxd+5cAP83O9vFxQWnTp3C7t27cfnyZUyZMiXfAHtx3Nzc4Ofnh08++QTHjx/H6dOn8fHHH0OlUillqlevjqysLCxatAj//PMPfvvtN/z3v/992UtYIi4uLggPD0dMTAzOnTunXJdcNWrUgI+PD4YNG4YTJ07g7NmzGDZsGFQqlXKdfHx80LRpU3Tp0gV79uxBYmIijhw5gq+++gqnTp1Ceno6Ro0ahaioKFy7dg3R0dE4efJkvnXfX9Xx48cxa9YsnDp1CklJSQgPD8fdu3eVepycnHD+/HnExcXh3r17yMrKKtX63yQOnhMREREREREREb1nDA0NsXv3bjx48ACNGjVCjx490KZNGyxevFijXJs2beDi4oIWLVqgV69e+Oijj5S11LW0tLBu3TqcPn0atWvXxrhx4/D9999rHG9qaopt27YhJiYGdevWxVdffYWvv/4aAJR10D/55BN069YNvXr1QpMmTXD//n2MGDGixH0KDQ1FpUqV0LJlS3Tr1g3Dhg2DjY2Nst/T0xPz58/H7NmzUbt2baxevRrffvttiet5GfPnz4eFhQWaNWsGf39/+Pr6aqxvDgCrVq2Cra0tWrRoga5du2Lo0KEwMTFRrpMkSdi5cydatGiBQYMGwdXVFb1798a1a9dga2sLbW1t3L9/HwMGDICrqysCAgLQvn17jYexlgZTU1McOnQIHTp0gKurKyZPnox58+ahffv2AIChQ4fCzc0NDRs2hLW1NaKjo0u1/jdJkmVZLutGvEmPHz+GmZkZUlJSYGpqWtbNKRG1Wg0tLX7fQcVjVkgEc0KimBUSwZyQqPc1K/su3X6p43xq2hZf6B30vuaESo5ZKRvleWylOBkZGUhISICzs7PGAy7fV0FBQXj06BG2bt1aquddvXo1Bg0ahJSUFI2Z4aTp33//hb29vfKQUyodJXmfF78AEr0VZFlGTk4OJEnik8SpSMwKiWBOSBSzQiKYExLFrJAI5oREMStE5ceqVatQtWpVVK5cGefOncPEiRMREBDAgfM89u/fj9TUVHh4eCA5ORkTJkyAk5MTWrRoUdZNe2/x69lyQpZl3L9/H+/ZHwrQS2BWSARzQqKYFRLBnJAoZoVEMCckilkhKj9u3bqFfv36wd3dHePGjUPPnj2xZMmSsm7WWycrKwtffvklatWqha5du8La2hpRUVHQ1dUt66a9tzjznIiIiIiIiIiIiPIJCwsrlfNMmDABEyZMKJVzvct8fX3h6+tb1s2gF3DmORERERERERERERFRHhw8L0e4hhuJYlZIBHNCopgVEsGckChmhUQwJySKWSEioteJy7aUE1paWrC1tS3rZlA5wKyQCOaERDErJII5IVHMColgTkgUs0JERK8bZ56XE7Is49mzZ3wQChWLWSERzAmJYlZIBHNCopgVEsGckChmhYiIXjcOnpcTsizj4cOH/EcBFYtZIRHMCYliVkgEc0KimBUSwZyQKGaFiIheNw6eExERERERERERERHlwcFzIiIiIiIiIiIieiWyLGPYsGGwtLSEJEmIiYkROk6SJGzduvW1tq08CwsLg7m5eVk3473FB4aWIzo6vF0khlkhEcwJiWJWSARzQqKYFRLBnJAoZoXepLv3It9YXdYV2pSofFBQEB49epRvEDoqKgre3t54+PCh8ABsq1atULduXSxYsKBEbYiIiEBYWBiioqJQtWpVVKhQoUTHFyYoKAgrV67EJ598gv/+978a+0aOHImff/4ZAwcORFhYWKnU96aI3rNevXqhQ4cOQucMCwvD2LFj8ejRo9Jv8HuKM8/LCS0tLVSoUAFaWrxlVDRmhUQwJySKWSERzAmJYlZIBHNCopgVordLfHw8KlasiGbNmsHOzq5Uv9yyt7fHunXrkJ6ermzLyMjAmjVr4ODgUGr1vI1UKhVsbGzKuhnvLf6GKSdkWcbTp0/5IBQqFrNCIpgTEsWskAjmhEQxKySCOSFRzApRyd2/fx+BgYGoXLkyDA0N4eHhgbVr1yr7g4KCcPDgQSxcuBCSJEGSJCQmJgIA/vrrL7Rv3x7GxsawtbVF//79ce/ePeW40aNHIykpCZIkwcnJCQDg5OSUbwZ73bp1ERISUqJ2169fH/b29ggPD1e2hYeHw8HBAfXq1dMoq1ar8e2338LZ2RkqlQqenp7YtGmTsj8qKgqSJGH37t2oV68eVCoVWrdujTt37mDXrl1wd3eHqakp+vTpg6dPnwqf9+HDh+jbty+sra2hUqng4uKC0NDQEvWzIHmXbTl37hy8vb1hYmICU1NTNGjQAKdOnUJUVBQGDRqElJQU5d6V9DpTfhw8LydkWcbjx4/5jwIqFrNCIpgTEsWskAjmhEQxKySCOSFRzApRyWVkZKBBgwbYsWMH/vrrLwwbNgz9+/fHiRMnAAALFy5E06ZNMXToUCQnJyM5ORn29vZ49OgRWrdujXr16uHUqVOIiIjA7du3ERAQoBw3ffp0VKlSBcnJyTh58mSpt33w4MEag9ErVqzAoEGD8pX79ttvsWrVKvz3v//FxYsXMW7cOPTr1w8HDx7UKBcSEoLFixfjyJEjuH79OgICArBgwQKsWbMGO3bswJ49e7Bo0SLh806ZMgWXLl3Crl27EBsbi19++aXUlq55Ud++fVGlShWcPHkSp0+fxhdffAFdXV00a9YMCxYsgKmpqXLvgoODS73+9w0XByMiIiIiIiIiIirntm/fDmNjY41tOTk5Gq8rV66sMaA6evRo7N69Gxs2bEDjxo1hZmYGPT09GBoaws7OTim3ePFi1KtXD7NmzVK2rVixAvb29rh8+TJcXV1hYmICbW1tjeNKU79+/TBp0iRcu3YNABAdHY1169YhKipKKfPs2TPMmjUL+/btQ9OmTQEAVatWxeHDh/Hrr7+iZcuWStmZM2fCy8sLADBkyBBMmjQJ8fHxqFq1KgCgR48eOHDgACZOnCh03qSkJNSrVw8NGzYEAGX2fVFE7lleSUlJGD9+PGrUqAEAcHFxUfaZmZlBkqTXdg/eRxw8JyIiIiIiIiIiKue8vb3xyy+/aGw7fvw4+vXrp7zOycnBrFmzsGHDBty4cQOZmZl49uwZDA0Nizz3uXPncODAgXwDvcDztc5dXV1LpxNFsLa2RseOHREWFgZZltGxY8d8M7uvXr2Kp0+fom3bthrbMzMz8y3vUqdOHeW/bW1tYWhoqAyc527LnZEvct5PP/0U3bt3x5kzZ9CuXTt06dIFzZo1K7JPIvcsr88++wwff/wxfvvtN/j4+KBnz56oVq1akfXQy+PgeTkhSRL09PQgSVJZN4XecswKiWBOSBSzQiKYExLFrJAI5oREMStEmoyMjFC9enWNbf/++6/G6++//x4LFy7EggUL4OHhASMjI4wdOxaZmZlFnjs1NRX+/v6YPXt2vn0VK1Ys9DgtLa18SytlZWUV15VCDR48GKNGjQIA/PTTTwW2EwB27NiBypUra+zT19fXeK2rq6v8tyRJGq9zt6nVauHztm/fHteuXcPOnTuxd+9etGnTBiNHjsTcuXML7Y/IPcsrJCQEffr0wY4dO7Br1y5MnToV69atQ9euXYs8jl4OB8/LCUmSYGlpWdbNoHKAWSERzAmJYlZIBHNCopgVEsGckChmhajkoqOj0blzZ2Vms1qtxuXLl1GzZk2ljJ6eXr6lQ+rXr4/NmzfDyckJOjriw4nW1tZITk5WXj9+/BgJCQkv3X4/Pz9kZmZCkiT4+vrm21+zZk3o6+sjKSlJY4mWVyV6XmtrawwcOBADBw5E8+bNMX78+CIHz1+Wq6srXF1dMW7cOAQGBiI0NBRdu3Yt8N7Rq+EDQ8sJWZbx5MkTPgiFisWskAjmhEQxKySCOSFRzAqJYE5IFLNCVHIuLi7Yu3cvjhw5gtjYWHzyySe4ffu2RhknJyccP34ciYmJuHfvHtRqNUaOHIkHDx4gMDAQJ0+eRHx8PHbv3o1BgwYVOVjbunVr/Pbbb/jzzz9x4cIFDBw4ENra2i/dfm1tbcTGxuLSpUsFnsfExATBwcEYN24cVq5cifj4eJw5cwaLFi3CypUrX7pekfN+/fXX+P3333H16lVcvHgR27dvh7u7+0vXWZD09HSMGjUKUVFRuHbtGqKjo3Hy5EmlHicnJ6SmpiIyMhL37t3D06dPS7X+9xEHz8sJWZaRlpbGfxRQsZgVEsGckChmhUQwJySKWSERzAmJYlaISm7y5MmoX78+fH190apVK9jZ2aFLly4aZYKDg6GtrY2aNWvC2toaSUlJqFSpEqKjo5GTk4N27drBw8MDY8eOhbm5ObS0Ch9enDRpElq2bIlOnTqhY8eO6NKlyyuvz21qagpTU9NC98+YMQNTpkzBt99+C3d3d/j5+WHHjh1wdnZ+pXqLO6+enh4mTZqEOnXqoEWLFtDW1sa6deteqc68tLW1cf/+fQwYMACurq4ICAhA+/btMW3aNABAs2bNMHz4cPTq1QvW1taYM2dOqdb/PpLk9+y3zOPHj2FmZoaUlJQi32hvG7VajTt37sDGxqbIDyUiZoVEMCckilkhEcwJiXqfs7Lv0u3iCxXAp6ZtKbfk7fc+54RKhlkpO+V1bEVERkYGEhIS4OzsDAMDg7JuDhG9BiV5n/O3CxERERERERERERFRHhw8LyckSYJKpeJTxKlYzAqJYE5IFLNCIpgTEsWskAjmhEQxK0RE9LqJPx6XypQkSTAzMyvrZlA5wKyQCOaERDErJII5IVHMColgTkgUs0JERK8bZ56XE7IsIyUlhQ9CoWIxKySCOSFRzAqJYE5IFLNCIpgTEsWsEBHR68bB83JClmWkp6fzHwVULGaFRDAnJIpZIRHMCYliVkgEc0KimBUiInrdOHhORERERERERERERJQHB8+JiIiIiIiIiIiIiPLg4Hk5IUkSjIyM+BRxKhazQiKYExLFrJAI5oREMSskgjkhUcwKERG9bjpl3QASI0kSTExMyroZVA4wKySCOSFRzAqJYE5IFLNCIpgTEsWsEBHR68aZ5+WELMt48OABH4RCxWJWSARzQqKYFRLBnJAoZoVEMCckilkhKjlJkrB161YAQGJiIiRJQkxMjNCxQUFB6NKlS6H7Q0JCULdu3VJtY2lq1aoVxo4dW+rnfZvqznsPirtnpcXJyQkLFix47fWUBc48LydkWUZmZiZkWeafpFGRmBUSwZyQKGaFRDAnJKqgrOy5l/JK52xXwaw0mkZvEX6mkChmhd60V/2dVRIv8/vt1q1b+Oabb7Bjxw7cuHEDNjY2qFu3LsaOHYs2bdrkK29vb4/k5GRUqFChNJpcapKTk2FhYQHg+QC/s7Mzzp49W+jAfEhICKZNm1bkOd+XL9mCg4MxevToUjlXUde+VatWqFu3rjJgfvLkSRgZGQmd18nJCWPHji2zLzJKioPnRERERERERERE5VhiYiK8vLxgbm6O77//Hh4eHsjKysLu3bsxcuRI/P333/mO0dbWhp2dXRm0tmglbVNwcDCGDx+uvG7UqBGGDRuGoUOHlnbT3nrGxsYwNjZ+4/VaW1u/8TrfFC7bQkREREREREREVI6NGDECkiThxIkT6N69O1xdXVGrVi189tlnOHbsWIHHFLRsy8WLF9GpUyeYmprCxMQEzZs3R3x8fIHHnzx5EtbW1pg9e7bG9l9//RX29vYwNDREQEAAUlJSNI5p27YtKlSoADMzM7Rs2RJnzpzROP7FZVucnZ0BAPXq1YMkSWjVqlW+dhgbG8POzk750dbWhomJica2XGq1GhMmTIClpSXs7OwQEhJS5PV49OgRJElCVFQUACAqKgqSJGH37t2oV68eVCoVWrdujTt37mDXrl1wd3eHqakp+vTpg6dPn2q0Mzs7G6NGjYKZmRkqVKiAKVOmaMyId3JywqxZszB48GCYmJjAwcEBS5Ys0TjHxIkT4erqCkNDQ1StWhVTpkxBVlaWsr+4pXM2bdoEDw8PqFQqWFlZwcfHB2lpaYWWF/Xisi2yLCMkJAQODg7Q19dHpUqVMGbMGADPZ6xfu3YN48aNgyRJ5eKvhjh4Xk5IkgRTU9NyESoqW8wKiWBOSBSzQiKYExLFrJAI5oREMStEzz148AAREREYOXJkgUtnmJubC53nxo0baNGiBfT19bF//36cPn0agwcPRnZ2dr6y+/fvR9u2bfHNN99g4sSJyvarV69iw4YN2LZtGyIiInD27FmMGDFC2f/kyRMMHDgQhw8fxrFjx+Di4oIOHTrgyZMnBbbpxIkTAIB9+/YhOTkZ4eHhQn0pzMqVK2FkZITjx49jzpw5mD59Ovbu3Vvi84SEhGDx4sU4cuQIrl+/joCAACxYsABr1qzBjh07sGfPHixatChf3To6Ojhx4gQWLlyI+fPnY9myZRpl5s2bh4YNGyrX7dNPP0VcXJyy38TEBGFhYbh06RIWLlyIpUuX4ocffhBqc3JyMgIDAzF48GDExsYiKioK3bp1K/UlbTZv3owffvgBv/76K65cuYKtW7fCw8MDABAeHo4qVapg+vTpSE5ORnJycqnW/Tpw2ZZyQpIkGBoalnUzqBxgVkgEc0KimBUSwZyQKGaFRDAnJIpZIXru6tWrkGUZNWrUeKXz/PTTTzAzM8O6deugq6sLAHB1dc1XbsuWLRgwYACWLVuGXr16aezLyMjAqlWrULlyZQDAokWL0LFjR8ybNw92dnZo3bq1RvklS5bA3NwcBw8eRKdOnfLVlbsciJWVVaksMVOnTh1MnToVAODi4oLFixcjMjISbdu2LdF5Zs6cCS8vLwDAkCFDMGnSJMTHx6Nq1aoAgB49euDAgQMaXyzY29vjhx9+gCRJcHNzw4ULF/DDDz9oLC/ToUMH5cuGiRMn4ocffsCBAwfg5uYGAJg8ebJS1snJCcHBwVi3bh0mTJhQbJuTk5ORnZ2Nbt26wdHREQCUQe2iNGvWDFpamvOv09PTC53hnpSUBDs7O/j4+EBXVxcODg5o3LgxAMDS0lLjLwPKA848LyfUajXu3bsHtVpd1k2htxyzQiKYExLFrJAI5oREMSskgjkhUcwK0XOlNXM4JiYGzZs3VwbOC3L8+HH07NkTv/32W76BcwBwcHBQBs4BoGnTplCr1crs6du3b2Po0KFwcXGBmZkZTE1NkZqaiqSkpFLpQ3Hq1Kmj8bpixYq4c+fOK53H1tZWWUblxW15z/vBBx9o/KVM06ZNceXKFeTk5BR4XkmSYGdnp3Ge9evXw8vLC3Z2djA2NsbkyZOFr52npyfatGkDDw8P9OzZE0uXLsXDhw+LPW79+vWIiYnR+GnYsGGh5Xv27In09HRUrVoVQ4cOxZYtWwr864XygoPn5Uh5Dhq9WcwKiWBOSBSzQiKYExLFrJAI5oREMStEz2dQS5JU4ENBS0KlUhVbplq1aqhRowZWrFihsda2qIEDByImJgYLFy7EkSNHEBMTAysrK2RmZr5Mk0ss7xcDkiQpX8Dlzq5+8cuIwvr44nkkSSryvKXVvqNHj6Jv377o0KEDtm/fjrNnz+Krr74Svnba2trYu3cvdu3ahZo1a2LRokVwc3NDQkJCkcfZ29ujevXqGj9FZcXe3h5xcXH4+eefoVKpMGLECLRo0eKl8vI24OA5ERERERERERFROWVpaQlfX1/89NNPBT788dGjR0LnqVOnDv78888iBzkrVKiA/fv34+rVqwgICMhXNikpCTdv3lReHzt2DFpaWsqyI9HR0RgzZgw6dOiAWrVqQV9fH/fu3Su0Pj09PQDQmJ39uuQuEfPiOtwvPjz0VR0/flzjde6a79ra2kLHHzlyBI6Ojvjqq6/QsGFDuLi44Nq1ayVqgyRJ8PLywrRp03D27Fno6elhy5YtJTqHCJVKBX9/f/z444+IiorC0aNHceHCBQDP7+mbuJ+lhYPnRET0/9i78zjJqvr+/+9Ta1ev08v0DCDKAIIiiAqC/NQoOLL4/bqhMcElkIfRhwpRIGqSrwtCVBLzNRoNLl+DQFwwMYmo0RCCRAkukygBJQhBGBzWnul9q/2e3x/N1HRXL/dT3X2n6na/no8Hj+k+devez+l6c/v0qVvnAgAAAABi7KqrrlK1WtUpp5yif/iHf9B9992nX/7yl/rUpz6l0047zbSPiy66SJOTk/rt3/5t/fSnP9V9992nL33pSwtuWClJg4ODuuWWW3TPPffovPPOW/AJkLa2Np1//vm688479e///u965zvfqde97nW19a2f+tSn6ktf+pJ++ctfateuXXrDG96w4lXMg4ODyuVyuvHGGzU0NKSJiYlV/HRscrmcnve85+lP//RP9ctf/lI/+MEPFqwxvlZ79uzRpZdeqnvvvVfXX3+9Pv3pT+td73qX+flPfepTtWfPHn3ta1/T/fffr0996lMNTXzv2rVLH/3oR/XTn/5Ue/bs0T/+4z9q3759evrTn76a7izr2muv1dVXX6277rpLDzzwgL785S8rl8vV1lk/4ogjdOutt+qRRx5Z8Y2TVsHkeUw459Tb28tdxBGKrMCCnMCKrMCCnMCKrMCCnMCKrAAHHHnkkbr99tt1+umn6w/+4A90/PHH66Uvfam+973v6bOf/axpH/39/brllls0PT2tF73oRTrppJP0hS98Yck10Ldv365bbrlFv/jFL/SGN7yhdiXx0UcfrXPPPVcve9nLdOaZZ+qZz3ymPvOZz9Sed/XVV2tsbEzPec5z9KY3vUnvfOc7NTg4uGxNqVRKn/rUp/T5z39ehx56qF75ylc2+JNpzBe/+EVVKhWddNJJuvjii/XhD3943fb9O7/zO8rn8zrllFN04YUX6l3vepfe+ta3mp//ile8QpdccokuuugiPetZz9KPfvQjfeADHzA/v7u7W7feeqte9rKX6ZhjjtH73/9+ffzjH9c555yzmu4sa8uWLfrCF76g5z//+XrmM5+pm2++Wd/+9rfV398vSbriiiv04IMP6qijjqpd7d/KnF+vuwrExOTkpHp6ejQxMaHu7u5mlwMAAABsajcNr+0KsjMHetapkmjdfPfQqp6387ht61wJAKzdRp5bKRQK2r17t3bs2KG2trZmlwMgAo38f86V5zERBIGGhoa4izhCkRVYkBNYkRVYkBNYkRVYkBNYkRUAQNSYPI+RTfYhAawBWYEFOYEVWYEFOYEVWYEFOYEVWQEARInJcwAAAAAAAAAA6jB5DgAAAAAAAABAHSbPY8I5p/7+fu4ijlBkBRbkBFZkBRbkBFZkBRbkBFZkBQAQNSbPY8I5p2QyyaAAocgKLMgJrMgKLMgJrMgKLMgJrMgKACBqTJ7HRBAE2rt3L3cRRyiyAgtyAiuyAgtyAiuyAgtyAiuyAgCIGpPnAAAAAAAAAADUYfIcAAAAAAAAAIA6TJ4DAAAAAAAAm9S1116rLVu2NLuMVXvxi1+siy++uNllmB2sn/cFF1ygV73qVZEfZ6NLNbsA2CQSCQ0ODiqR4P0OrIyswIKcwIqswIKcwIqswIKcwIqs4GC7+e6hg3asncdta2j7Cy64QNddd92i9vvuu09HH330epVl9uIXv1g/+MEPJEnZbFZHHnmkLrroIr3jHe846LU06kMf+pBuuOEG3XHHHabtH374YR155JE65phjdNddd0VbnKQjjjhCF1988aI3DOrr/su//Et57037vOCCCzQ+Pq4bbrhhfYvdAPgNExPee1WrVXPosXmRFViQE1iRFViQE1iRFViQE1iRFWChs88+W4899tiC/3bs2NG0et7ylrfoscce0913363Xve51uvDCC3X99dcvuW2pVDrI1a2fa6+9Vq973es0OTmpXbt2Nbucmp6enlh/oqBVMHkeE957jYyMMChAKLICC3ICK7ICC3ICK7ICC3ICK7ICLJTNZrV9+/YF/yWTSf3FX/yFTjjhBHV0dOjwww/XO97xDk1PTy+7n3379unkk0/Wq1/9ahWLRQVBoCuvvFI7duxQLpfTiSeeqL//+78Prae9vV3bt2/XkUceqQ996EN66lOfqm9961uS5q5Mv+iii3TxxRdrYGBAZ511liTpBz/4gU455RRls1kdcsgh+qM/+iNVKpXaPmdmZvQ7v/M76uzs1CGHHKKPf/zji47rnFt0BfWWLVt07bXX1r5/+OGHdd5556mvr08dHR06+eSTtWvXLl177bW6/PLLdeedd8o5J+fcgufV897rmmuu0Zve9Ca9/vWv19VXX71om2uvvVZPfvKT1d7erle/+tUaGRlZ8Pidd96p008/XV1dXeru7tZJJ52kn/70p2E/3lD1y7b8/d//vU444QTlcjn19/dr586dmpmZ0Yc+9CFdd911+uY3v1nr8/e///01H3+jYNkWAAAAAAAAYINKJBL61Kc+pR07duiBBx7QO97xDr33ve/VZz7zmUXbPvTQQ3rpS1+q5z3vebr66quVTCb1kY98RF/+8pf1uc99Tk996lN166236o1vfKO2bt2qF73oReY6crncgivMr7vuOr397W/XD3/4Q0nSI488ope97GW64IIL9Dd/8ze655579Ja3vEVtbW360Ic+JEl6z3veox/84Af65je/qcHBQf2f//N/dPvtt+tZz3qWuY7p6Wm96EUv0mGHHaZvfetb2r59u26//XYFQaDf+q3f0l133aUbb7xRN998s6S5K7iX82//9m+anZ3Vzp07ddhhh+n/+//+P33iE59QR0eHJGnXrl1685vfrCuvvFKvetWrdOONN+qyyy5bsI83vOENevazn63PfvazSiaTuuOOO5ROp839sXjsscd03nnn6WMf+5he/epXa2pqSv/+7/8u773e/e5365e//KUmJyd1zTXXSJL6+vrW9fhxxuQ5AAAAAAAAEHP/9E//pM7Oztr355xzjr7+9a8vWBv7iCOO0Ic//GG97W1vWzR5fu+99+qlL32pXv3qV+uTn/yknHMqFov66Ec/qptvvlmnnXaaJOnII4/Ubbfdps9//vOmyfNqtarrr79eP//5z/XWt7611v7Upz5VH/vYx2rfv+9979Phhx+uv/qrv5JzTk972tP06KOP6g//8A/1wQ9+ULOzs7r66qv15S9/WS95yUskzU3AP+lJT2ro5/TVr35V+/bt03/+53/WJonnrwvf2dmpVCql7du3h+7r6quv1m//9m8rmUzq+OOP15FHHqmvf/3ruuCCCyTNrTt+9tln673vfa8k6ZhjjtGPfvQj3XjjjbV97NmzR+95z3v0tKc9rfZzCfOHf/iHev/737+grVQq6bjjjlty+8cee0yVSkXnnnuunvKUp0iSTjjhhNrjuVxOxWLR1OfNhsnzGHHONbsExARZgQU5gRVZgQU5gRVZgQU5gRVZAQ44/fTT9dnPfrb2/f6rn2+++WZdeeWVuueeezQ5OalKpaJCoaDZ2Vm1t7dLkvL5vF74whfq9a9/vT75yU/W9vGrX/1Ks7OzeulLX7rgWKVSSc9+9rNXrOczn/mM/vqv/1qlUknJZFKXXHKJ3v72t9ceP+mkkxZs/8tf/lKnnXbagv+vn//852t6eloPP/ywxsbGVCqVdOqpp9Ye7+vr07HHHmv8Cc2544479OxnP3vNV1ePj4/rH//xH3XbbbfV2t74xjfq6quvrk2e//KXv9SrX/3qBc877bTTFkyeX3rppfq93/s9felLX9LOnTv1m7/5mzrqqKNWPPZ73vOe2jH2+9SnPqVbb711ye1PPPFEveQlL9EJJ5ygs846S2eeeaZe+9rXqre3t4Eeb05MnsdEIpHQtm2N3WkZmxNZgQU5gRVZgQU5gRVZgQU5gRVZARbq6OhYcAW1JD344IP63//7f+vtb3+7PvKRj6ivr0+33Xab3vzmN6tUKtUmz7PZrHbu3Kl/+qd/0nve8x4ddthhklRbG/073/lOrW2/bDa7Yj1veMMb9L73vU+5XE6HHHKIEomFt17cP7m/3pxzi+6FUC6Xa1/ncrl1Oc5Xv/pVFQqFBZP53nsFQaD/+Z//0THHHGPaz4c+9CG9/vWv13e+8x398z//sy677DJ97WtfWzTpPt/AwMCi13qlNwOSyaT+9V//VT/60Y9000036dOf/rTe9773adeuXU29qWwccMPQmPDeq1gsciMUhCIrsCAnsCIrsCAnsCIrsCAnsCIrQLif/exnCoJAH//4x/W85z1PxxxzjB599NFF2yUSCX3pS1/SSSedpNNPP722zXHHHadsNqs9e/bo6KOPXvDf4YcfvuKxe3p6dPTRR+uwww5bNHG+lKc//en68Y9/vOD/6R/+8Ifq6urSk570JB111FFKp9PatWtX7fGxsTH9z//8z4L9bN26VY899ljt+/vuu0+zs7O175/5zGfqjjvu0Ojo6JJ1ZDIZVavV0Hqvvvpq/cEf/IHuuOOO2n933nmnXvjCF+qLX/xirU/z65Wkn/zkJ4v2dcwxx+iSSy7RTTfdpHPPPbe29vh6cs7p+c9/vi6//HL913/9lzKZjL7xjW9Isvd5M2LyPCa89xobG2NQgFBkBRbkBFZkBRbkBFZkBRbkBFZkBQh39NFHq1wu69Of/rQeeOABfelLX9LnPve5JbdNJpP6yle+ohNPPFFnnHGGHn/8cXV1dend7363LrnkEl133XW6//77dfvtt+vTn/60rrvuunWt9R3veIceeugh/f7v/77uueceffOb39Rll12mSy+9VIlEQp2dnXrzm9+s97znPbrlllt011136YILLlg0MX/GGWfor/7qr/Rf//Vf+ulPf6q3ve1tC27Aed5552n79u161atepR/+8Id64IEH9A//8A/68Y9/LGluXfjdu3frjjvu0PDwsIrF4qJa77jjDt1+++36vd/7PR1//PEL/jvvvPN03XXXqVKp6J3vfKduvPFG/d//+39133336a/+6q8WLNmSz+d10UUX6fvf/75+/etf64c//KH+8z//U09/+tPX9We7a9cuffSjH9VPf/pT7dmzR//4j/+offv21Y5zxBFH6Oc//7nuvfdeDQ8PL7hSf7Nj8hwAAAAAAADYgE488UT9xV/8hf7sz/5Mxx9/vL7yla/oyiuvXHb7VCql66+/Xs94xjN0xhlnaO/evfqTP/kTfeADH9CVV16ppz/96Tr77LP1ne98Z92X+zjssMP03e9+V//xH/+hE088UW9729v05je/ecGNMf/8z/9cL3zhC/Xyl79cO3fu1Ate8IJFa6d//OMf1+GHH15bw/3d7353bXkaae4q65tuukmDg4N62ctephNOOEF/+qd/qmQyKUl6zWteo7PPPlunn366tm7dquuvv35RrVdffbWOO+642k0+53v1q1+tvXv36rvf/a6e97zn6Qtf+IL+8i//UieeeKJuuummBf1JJpMaGRnR7/zO7+iYY47R6173Op1zzjm6/PLL1/zznK+7u1u33nqrXvayl+mYY47R+9//fn384x/XOeecI0l6y1veomOPPVYnn3yytm7dqh/+8Ifrevw4c36TvUU7OTmpnp4eTUxMqLu7u9nlmAVBoL1792pwcND0URdsXmQFFuQEVmQFFuQEVktl5abhiTXt88yBnvUoLXI33z20quftPG7zrefMOQVWZKV54jq3YlEoFLR7927t2LFDbW1tzS4HQAQa+f+c3y4xkkpxf1fYkBVYkBNYkRVYkBNYkRVYkBNYkRUAQJT4LRMTiURCAwMDzS4DMUBWYEFOYEVWYEFOYEVWYEFOYEVWAABR48rzmPDea3Z2lhuhIBRZgQU5gRVZgQU5gRVZgQU5gRVZAQBEjcnzmPDea3JykkEBQpEVWJATWJEVWJATWJEVWJATWJEVAEDUmDwHAAAAAAAAAKAOk+cAAAAAAADAPEEQNLsEABFp5BNL3DA0JpxzymQycs41uxS0OLICC3ICK7ICC3ICK7ICC3ICK7KCKGQyGSUSCT366KPaunUrGQM2GO+99u3bJ+ec0ul06PZMnseEc059fX3NLgMxQFZgQU5gRVZgQU5gRVZgQU5gRVYQhUQioR07duixxx7To48+2uxyAETAOacnPelJSiaTodsyeR4T3ntNT0+rs7OTdzyxIrICC3ICK7ICC3ICK7ICC3ICK7KCqGQyGT35yU9WpVJRtVptdjkA1lk6nTZNnEtMnseG914zMzPq6OhgUIAVkRVYkBNYkRVYkBNYkRVYkBNYkRVEaf+SDpZlHQBsXC11w9Arr7xSz33uc9XV1aXBwUG96lWv0r333rtgm0KhoAsvvFD9/f3q7OzUa17zGg0NDTWpYgAAAAAAAADARtRSk+c/+MEPdOGFF+onP/mJ/vVf/1XlcllnnnmmZmZmattccskl+va3v62vf/3r+sEPfqBHH31U5557bhOrBgAAAAAAAABsNC21bMuNN9644Ptrr71Wg4OD+tnPfqbf+I3f0MTEhK6++mp99atf1RlnnCFJuuaaa/T0pz9dP/nJT/S85z2vGWUfFM455XI5PoqGUGQFFuQEVmQFFuQEVmQFFuQEVmQFABC1lpo8rzcxMSFJtbtn/+xnP1O5XNbOnTtr2zztaU/Tk5/8ZP34xz9ecvK8WCyqWCzWvp+cnJQkBUGgIAgkzf3Cdc7Jey/vfW3bsPb9z19teyKRWLTvldp7enrkvV+wn9XW3ip9WqqdPq29T11dXbXnbZQ+hbXTp8b7tJpzSqv3aSO+Tq3Qp/3nlKWOGdc+raadPoWfU4IgWFNfW61PG/F1aoU+dXV11R6ba5+//wO1S97ULqnpfZq/75Xa61na6/9mabU+RZW9pc4pce/TRnydWqFPi88p8e+Tpb3ZfarfHwBsVC07eR4EgS6++GI9//nP1/HHHy9Jevzxx5XJZLRly5YF227btk2PP/74kvu58sordfnlly9q37dvnwqFgiQpl8upp6dHk5OTyufztW06OjrU1dWlsbExlUqlWnt3d7fa29s1OjqqSqVSa+/t7VU2m9W+ffsW/KLp7+9XMpnU3r17F9QwODioarWqkZGRWptzTtu2bVOpVNLY2FitPZlMKpPJKJVKaWpqqtaeyWTU19en6enpBcvbxKFPqVRKAwMDyufztTc16NPa+xQEgWZnZ9Xe3q6BgYEN0aeN+Do1u09tbW21wfj+c2Hc+7QRX6dW6JP3XrOzs+ro6ND27ds3RJ824uvU7D51dXWpUqmoVCqpWq1uiD5txNepFfq0/5yyZcsW9ff3a3p6WsHY6IH9ZNvkOjrlZ2fkiwd+P7m2drn2dvnpSfly+UB7R6ckxeJ1Ckqz8uUDr0ci0yaXySkoTMtXD9SeyLbLpbMK8pPyQaD9pbZin6LM3vT0tAqFgpw7cEVx3Pu0EV+nZvdp/zllcHBww/QpLq/T/HkJANjInF/qUocW8Pa3v13//M//rNtuu01PetKTJElf/epX9bu/+7sLriSXpFNOOUWnn366/uzP/mzRfpa68vzwww/X2NiYuru7JcXjnd4gCDQ8PKytW7cuGEButHev6dPa+xQEgfbt26etW7cqmUxuiD5Z2ulTY33y3tdy0sg5pZX7tBFfp1bo0/xzSiqV2hB9Wm07fQo/pwwMDCiRSCzaPo592oivUyv0af85ZXBwUMlkUt573TQ8Pv+otdqtV56ftXVLLF6nf/3vxRf7HOjT8u0vefpgy/Ypquwtd06Jc5824uvUCn1a6pwS9z5Z25vdp8nJSfX29mpiYqI2twIAG1FLXnl+0UUX6Z/+6Z9066231ibOJdWueBsfH19w9fnQ0JC2b9++5L6y2ayy2eyi9kQisWAgJh34pVJvufb656+mvdFjOufWbT+t1Kco2zdjn/bnZP9zN0KfLO30yd4+/yPgjRy3lfu02nb6FN6n+TnZKH1qhfaN1Kf955SlxlfL1b5ce6v0aTW1L9dOnxafUxZ+vfT+paX3s1R7s/tkbV9KWHt9ra3Wpyiyt9I5Ja59WqmdPq33OSX+fbK0N7tPyx0HADaaljrbee910UUX6Rvf+IZuueUW7dixY8HjJ510ktLptL73ve/V2u69917t2bNHp5122sEuFwAAAAAAAACwQbXUlecXXnihvvrVr+qb3/ymurq6auuY9/T01NYBe/Ob36xLL71UfX196u7u1u///u/rtNNOW/JmoRuJc04dHR3LXpkC7EdWYEFOYEVWYEFOYEVWYEFOYEVWAABRa6nJ889+9rOSpBe/+MUL2q+55hpdcMEFkqRPfOITSiQSes1rXqNisaizzjpLn/nMZw5ypQefc27BXcSB5ZAVWJATWJEVWJATWJEVWJATWJEVAEDUWmryfKmb5dRra2vTVVddpauuuuogVNQ6vPcaGxtTb28v76pjRWQFFuQEVmQFFuQEVmQFFuQEVmQFABC1llrzHMvz3qtUKpneYMDmRlZgQU5gRVZgQU5gRVZgQU5gRVYAAFFj8hwAAAAAAAAAgDpMngMAAAAAAAAAUIfJ85hwzqm7u5t13BCKrMCCnMCKrMCCnMCKrMCCnMCKrAAAotZSNwzF8pxzam9vb3YZiAGyAgtyAiuyAgtyAiuyAgtyAiuyAgCIGleex0QQBBoeHlYQBM0uBS2OrMCCnMCKrMCCnMCKrMCCnMCKrAAAosbkeYxUKpVml4CYICuwICewIiuwICewIiuwICewIisAgCgxeQ4AAAAAAAAAQB0mzwEAAAAAAAAAqMPkeUw459Tb28tdxBGKrMCCnMCKrMCCnMCKrMCCnMCKrAAAopZqdgGwcc4pm802uwzEAFmBBTmBFVmBBTmBFVmBBTmBFVkBAESNyfOYCIJA+/bt09atW5VI8IEBLI+swIKcwIqswIKcwGotWZmYvHPJ9n0qr/i8rQMvaeg4aD7OKbAiKwCAqPHbJUa8980uATFBVmBBTmBFVmBBTmBFVmBBTmBFVgAAUWLyHAAAAAAAAACAOkyeAwAAAAAAAABQh8nzmHDOqb+/n7uIIxRZgQU5gRVZgQU5gRVZgQU5gRVZAQBEjcnzmHDOKZlMMihAKLICC3ICK7ICC3ICK7ICC3ICK7ICAIgak+cxEQSB9u7dqyAIml0KWhxZgQU5gRVZgQU5gRVZgQU5gRVZAQBEjclzAAAAAAAAAADqMHkOAAAAAAAAAEAdJs8BAAAAAAAAAKjD5HlMJBIJDQ4OKpHgJcPKyAosyAmsyAosyAmsyAosyAmsyAoAIGr8hokJ772q1aq8980uBS2OrMCCnMCKrMCCnMCKrMCCnMCKrAAAosbkeUx47zUyMsKgAKHICizICazICizICazICizICazICgAgakyeAwAAAAAAAABQh8lzAAAAAAAAAADqMHkeI865ZpeAmCArsCAnsCIrsCAnsCIrsCAnsCIrAIAopZpdAGwSiYS2bdvW7DIQA2QFFuQEVmQFFuQEVmQFFuQEVmQFABA1rjyPCe+9isUiN0JBKLICC3ICK7ICC3ICK7ICC3ICK7ICAIgak+cx4b3X2NgYgwKEIiuwICewIiuwICewIiuwICewIisAgKgxeQ4AAAAAAAAAQB0mzwEAAAAAAAAAqMPkeYykUtzfFTZkBRbkBFZkBRbkBFZkBRbkBFZkBQAQJX7LxEQikdDAwECzy0AMkBVYkBNYkRVYkBNYkRVYkBNYkRUAQNS48jwmvPeanZ3lRigIRVZgQU5gRVZgQU5gRVZgQU5gRVYAAFFj8jwmvPeanJxkUIBQZAUW5ARWZAUW5ARWZAUW5ARWZAUAEDUmzwEAAAAAAAAAqMPkOQAAAAAAAAAAdZg8jwnnnDKZjJxzzS4FLY6swIKcwIqswIKcwIqswIKcwIqsAACilmp2AbBxzqmvr6/ZZSAGyAosyAmsyAosyAmsyAosyAmsyAoAIGpceR4T3ntNTU1xIxSEIiuwICewIiuwICewIiuwICewIisAgKgxeR4T3nvNzMwwKEAosgILcgIrsgILcgIrsgILcgIrsgIAiBrLtgAAAACIpbt/XVGivbriNj17hxa17TxuW1QlAQAAYAPhynMAAAAAAAAAAOoweR4TzjnlcjnuIo5QZAUW5ARWZAUW5ARWZAUW5ARWZAUAEDWWbYkJ55x6enqaXQZigKzAgpzAiqzAgpzAiqzAgpzAiqwAAKLGlecx4b3XxMQEN0JBKLICC3ICK7ICC3ICK7ICC3ICK7ICAIgak+cx4b1XPp9nUIBQZAUW5ARWZAUW5ARWZAUW5ARWZAUAEDUmzwEAAAAAAAAAqMPkOQAAAAAAAAAAdZg8jwnnnDo6OriLOEKRFViQE1iRFViQE1iRFViQE1iRFQBA1FLNLgA2zjl1dXU1uwzEAFmBBTmBFVmBBTmBFVmBBTmBFVkBAESNK89jwnuv0dFRboSCUGQFFuQEVmQFFuQEVmQFFuQEVmQFABA1rjyPCe+9SqWSvPd8JA0rIiuwICewIiuwICew2khZuWl4oqHt75yaWfD9s7s61rOcDWUj5QTRIisAgKhx5TkAAAAAAAAAAHWYPAcAAAAAAAAAoA6T5zHhnFN3dzcfRUMosgILcgIrsgILcgIrsgILcgIrsgIAiBprnseEc07t7e3NLgMxQFZgQU5gRVZgQU5gRVZgQU5gRVYAAFHjyvOYCIJAw8PDCoKg2aWgxZEVWJATWJEVWJATWJEVWJATWJEVAEDUuPI8RiqVSrNLQEyQFViQE1iRFViQE1jFJSv7hr+34uMTk+kl23u6T4yinE0nLjlB85EVAECUuPIcAAAAAAAAAIA6TJ4DAAAAAAAAAFCHyfOYcM6pt7eXu4gjFFmBBTmBFVmBBTmBFVmBBTmBFVkBAESNNc9jwjmnbDbb7DIQA2QFFuQEVmQFFuQEVmQFFuQEVmQFABA1rjyPiSAINDQ0xF3EEYqswIKcwIqswIKcwIqswIKcwIqsAACixuR5jHjvm10CYoKswIKcwIqswIKcwIqswIKcwIqsAACixOQ5AAAAAAAAAAB1mDwHAAAAAAAAAKAOk+cx4ZxTf38/dxFHKLICC3ICK7ICC3ICK7ICC3ICK7ICAIgak+cx4ZxTMplkUIBQZAUW5ARWZAUW5ARWZAUW5ARWZAUAEDUmz2MiCALt3buXu4gjFFmBBTmBFVmBBTmBFVmBBTmBFVkBAESNyXMAAAAAAAAAAOoweQ4AAAAAAAAAQB0mzwEAAAAAAAAAqMPkeUwkEgkNDg4qkeAlw8rICizICazICizICazICizICazICgAgaqlmFwAb772q1aqcc9xJHCsiK7AgJ7AiK7AgJ5vTvuHvNfwc7716t7yIrGBFnFNgRVYAAFHj7dmY8N5rZGRE3vtml4IWR1ZgQU5gRVZgQU7QCLKCMJxTYEVWAABRY/IcAAAAAAAAAIA6TJ4DAAAAAAAAAFCHyfMYYQ03WJEVWJATWJEVWJATWJEVWJATWJEVAECUuGFoTCQSCW3btq3ZZSAGyAosyAmsyAosyAmsnHMaJCsIwTkFVmQFABA1rjyPCe+9isUiN0JBKLICC3ICK7ICC3ICK7ICC3ICK7ICAIgak+cx4b3X2NgYgwKEIiuwICewIiuwICdoBFlBGM4psCIrAICoMXkOAAAAAAAAAEAdJs8BAAAAAAAAAKjD5HmMpFLc3xU2ZAUW5ARWZAUW5ARWZAUW5ARWZAUAECV+y8REIpHQwMBAs8tADJAVWJATWJEVWJATWDnnyApCcU6BFVkBAESNK89jwnuv2dlZboSCUGQFFuQEVmQFFuQEVmQFFuQEVmQFABA1Js9jwnuvyclJBgUIRVZgQU5gRVZgQU7QCLKCMJxTYEVWAABRY/IcAAAAAAAAAIA6TJ4DAAAAAAAAAFCHyfOYcM4pk8nIOdfsUtDiyAosyAmsyAosyAkaQVYQhnMKrMgKACBqqWYXABvnnPr6+ppdBmKArMCCnMCKrMCCnMCKrMCCnMCKrAAAosaV5zHhvdfU1BQ3QkEosgILcgIrsgILcgIrsgILcgIrsgIAiBqT5zHhvdfMzAyDAoQiK7AgJ7AiK7AgJ2gEWUEYzimwIisAgKgxeQ4AAAAAAAAAQB0mzwEAAAAAAAAAqMPkeUw455TL5biLOEKRFViQE1iRFViQEzSCrCAM5xRYkRUAQNRSzS4ANs459fT0NLsMxABZgQU5gRVZgQU5gRVZgQU5gRVZAQBEjSvPY8J7r4mJCW6EglBkBRbkBFZkBRbkBFZkBRbkBFZkBQAQNSbPY8J7r3w+z6AAocgKLMgJrMgKLMgJGkFWEIZzCqzICgAgakyeAwAAAAAAAABQh8lzAAAAAAAAAADqMHkeE845dXR0cBdxhCIrsCAnsCIrsCAnaARZQRjOKbAiKwCAqKWaXQBsnHPq6upqdhmIAbICC3ICK7ICC3ICK7ICC3ICK7ICAIjamibPzznnHL3pTW/Sq1/9auVyufWqCUvw3mtsbEy9vb28q44VkRVYkBNYkRVYkBNYee81Ojq6rlm5a3blP2naNbOoLRieCN3vxGR61TVhbTinwIqsAACitqZlWx544AG98Y1v1LZt23T++efr5ptv5i7XEfHeq1Qq8fNFKLICC3ICK7ICC3KCRpAVhOGcAiuyAgCI2pquPL/33nv1n//5n/ryl7+sv/u7v9OXv/xlbd++Xa9//ev1hje8Qc961rPWqUwAAAAAaH0Tk3cu2T47W1m4nSpLbldv33Byxce3DrzEVhgAAAAatuYbhj73uc/VX/7lX+qRRx7Rd7/7XZ1xxhn6/Oc/r5NOOknHH3+8Pvaxj+nhhx9ej1oBAAAAAAAAADgo1jx5XttRIqGzzjpLX/rSl7Rnzx699rWv1d13360/+qM/0hFHHKGdO3fqO9/5zor7uPXWW/Xyl79chx56qJxzuuGGGxY8fsEFF8g5t+C/s88+e7260NKcc+ru7mYdN4QiK7AgJ7AiK7AgJ2gEWUEYzimwIisAgKit2+S5JN12221629vepqOPPlpf//rXa1eef/zjH9e+ffv0ile8Qh/84AeXff7MzIxOPPFEXXXVVctuc/bZZ+uxxx6r/Xf99devZxdalnNO7e3tDAoQiqzAgpzAiqzAgpzAiqzAgpzAiqwAAKK2pjXPJenuu+/Wl7/8ZV1//fXas2ePBgcHdf755+tNb3rTgjXP3/Wud+mtb32rrrrqKl1xxRVL7uucc87ROeecs+Lxstmstm/fvtayYycIAo2Ojqqvr0+JxLq+54ENhqzAgpzAiqzAgpzAynuv4eFhsoIVcU6BFVkBAERtTZPnz3rWs/SLX/xC2WxWr3zlK/WZz3xGZ5111rK/tE4//XT99V//9VoOqe9///saHBxUb2+vzjjjDH34wx9Wf3//stsXi0UVi8Xa95OTk5LmfskGQSBJtSVgvPcL7tId1r7/+attTyQSi/a9XHsQBKpUKvLeL9jPamtvhT4t106f1tanIAhULpcVBMGG6ZOlnT411ifv/arOKa3cp434OrVCn+afUzZKn1bbTp/CzykbqU8b8XWKuk/7j1lvfrv3XuVKecH33s/fv5u3vV/Q/sQTFu7ce8m5xe1zB55rr3/MubpjSs4lFh/Tsu+1tBv3X/8a1v+MvfcbLnvLnVPi3CfOEdH0af84ZeE5Jd59srY3u0/1+wOAjWpNk+dbtmzR//t//0+/+Zu/qe7u7tDtX/nKV2r37t2rPt7ZZ5+tc889Vzt27ND999+v//N//o/OOecc/fjHP1YyufRd6K+88kpdfvnli9r37dunQqEgScrlcurp6dHk5KTy+Xxtm46ODnV1dWlsbEylUqnW3t3drfb2do2OjqpSqdTae3t7lc1mtW/fvgW/aPr7+5VMJrV3794FNQwODqparWpkZKTW5pzTtm3bVCqVNDY2Vmvf/4ZEPp/X9PR0rT2Tyaivr0/T09OamZmptcehT6lUSgMDA8rn87U3NejT2vtUrVY1MTEh7722bt26Ifq0EV+nZvcpm81KmntDcf4bjHHu00Z8nVqhT0EQaGJiQpJ0yCGHbIg+7beRXqdm96mzs1OSNDo6uuCP6Tj3aSO+Tuvdp7Gx6rw+Sb29KVUq0tTUgfZkUurpSalU8pqZCeYmXoJxZTIZ9ff3a3p6WsHY6IH9ZNvkOjrlZ2fki4UD7W3tc//mq1LlQMbSXio7p85qVYl58zwzyYSqzqmrUlVbcarWPpvpkFdiwTElKdHbJ1UDBZPjB46Zr8h3paWql5utzNvYyXempbKXK8xrTyXk21NSKZArHvgZKJ2Qz6XUFgTKBPOKrHop5eb2M6/dp52UdHKlQPLS/oh0dSWVTkvj49UF8+29WyobLnt9fX3y3mvv3r0LLsyKc5824zniYPRp/zilo6ND3d3dG6JPcXmdpqamBACbgfNLXR5itGfPHm3dulW5XG7Jx/P5vPbt26cnP/nJjRfmnL7xjW/oVa961bLbPPDAAzrqqKN088036yUvecmS2yx15fnhhx+usbGx2oR/HN7pDYJAw8PD2rp1q5w7sJ7bRnv3mj6tvU9BEGjfvn21ifON0CdLO31q/Mrz/Tlp5JzSyn3aiK9TK/Rp/jkllUptiD6ttp0+hZ9TBgYGFkx0xblPG/F1Wu8+7Rv+3qLt6/tT3+69V1A9XoODg0omk/Le66bh8flbz9veL2ifnPr5oqu07/51ZW7mfonj7m9vbz9iUfszj+yta1p85fnk5M9D991I+90Plhc0Hd8eXrskvfCo5LzmxT/jrQMv2XDZW+6cEuc+bcZzxMHo0/5xyvxzStz7ZG1vdp8mJyfV29uriYkJ08WUABBXa7ryfMeOHfrSl76k17/+9Us+/q1vfUuvf/3rVa1Wl3x8rY488kgNDAzoV7/61bKT59lstnaF5XyJRGLR8jL7f6nUW659ueVpGmm3HtM5p97eXiUSiYZqbOU+Haz2zdYn55z6+vpqE+cboU/Wdvpkb/fer+qc0sp9Wm07fVq5T/PPKQejdl6nePZp/zll/u+esNqXa2+VPq2m9uXaN1ufljK/ff7axHP7WXr/0hL7qt///u+XOa6cW/Ix0zEt+15Lu3H/9T/T5b7fSNlb6ZwS1z6t1E6fVt++f5yy8JwS7z5Z25vdp+WOAwAbzZomz5e6smS+crkc6Qn14Ycf1sjIiA455JDIjtEqnHNLvgkA1CMrsCAnsCIrsCAnsCIrsCAnsCIrAICoNTx5Pjk5qfHx8dr3IyMj2rNnz6LtxsfH9bWvfa2hie3p6Wn96le/qn2/e/du3XHHHerr61NfX58uv/xyveY1r9H27dt1//33673vfa+OPvponXXWWY12I3bmf2yed3ixErICC3ICK7ICC3ICK++9hoaGyApWxDkFVmQFABC1hifPP/GJT+iKK66QNPcu78UXX6yLL754yW299/rwhz9s3vdPf/pTnX766bXvL730UknS+eefr89+9rP6+c9/ruuuu07j4+M69NBDdeaZZ+pP/uRPNs07zWFX+gP7kRVYkBNYkRVYkBNYkRVYkBNYkRUAQJQanjw/88wz1dnZKe+93vve9+q8887Tc57znAXbOOfU0dGhk046SSeffLJ53y9+8YtX/MX3L//yL42WCwAAAAAAAABAwxqePD/ttNN02mmnSZJmZmZ07rnn6oQTTlj3wgAAAAAAAAAAaJY13TD0sssuW686EMI5p/7+/iXveA3MR1ZgQU5gRVZgQU7QCLKCMJxTYEVWAABRa2jy/IorrpBzTu973/uUSCRqa5+vxDmnD3zgA6suEHOcc0omkwwKEIqswIKcwIqswIKcwIqswIKcwIqsAACi5nwDd9dIJBJyzimfzyuTyZjuZu2cU7VaXVOR62lyclI9PT2amJhQd3d3s8sxC4JAe/fu1eDgIHcRx4rICizICazICizIyea0b/h7DT/He6+gevyCrNw0PGF67sTknYva7v51JfR57e1HLGo78aj+VR1vLeprPb49vHZJ+o2jkis+vnXgJauuqVVxToEVWWmeuM6tAECjGrryPAiCFb8HAAAAAAAAAGAj4K1ZAAAAAAAAAADqrOmGoUuZnZ3V1772NRWLRb3sZS/TU57ylPU+BAAAAAAAAAAAkVrT5Pmb3/xm7dq1S3fddZckqVQq6XnPe17t+56eHt1yyy169rOfvfZKN7lEIsE6bjAhK7AgJ7AiK7AgJ7ByzpEVhOKcAiuyAgCI2pp+w/zbv/2bzj333Nr3X/3qV3XXXXfpK1/5iu666y5t375dl19++ZqLxNzNlarVqhq4vys2KbICC3ICK7ICC3ICK7ICC3ICK7ICAIjamibPH3/8cR1xxBG172+44QadfPLJOu+883TcccfpLW95i3bt2rXWGqG5QcHIyAiDAoQiK7AgJ7AiK7AgJ2gEWUEYzimwIisAgKitafK8o6ND4+PjkqRKpaLvf//7Ouuss2qPd3V1aWJiYk0FAgAAAAAAAABwsK1pzfPnPOc5+sIXvqDTTz9d3/rWtzQ1NaWXv/zltcfvv/9+bdu2bc1FAgAAAAAAAABwMK1p8vwjH/mIzjrrLJ188sny3uu1r32tTjnllNrj3/jGN/T85z9/zUVijnOu2SUgJsgKLMgJrMgKLMgJrMgKLMgJrMgKACBKa5o8P/nkk3XPPffoRz/6kbZs2aIXvehFtcfGx8f1jne8Y0EbVi+RSHAVP0zICizICazICizICayccxokKwjBOQVWZAUAELU1TZ5L0tatW/XKV75yUfuWLVv0rne9a627xxO89yqVSspkMryzjhWRFViQE1iRFViQE1h571UsFskKVsQ5BVZkBQAQtTVPnkvS1NSUfv3rX2tsbGzJu1z/xm/8xnocZlPz3mtsbEyDg4MMCrAisgILcgIrsgILcoJGkBWE4ZwCK7ICAIjamibPR0ZGdNFFF+kf/uEfVK1WFz3uvZdzbsnHAAAAAAAAAABoVWuaPH/LW96ib3/723rnO9+pF77whert7V2vugAAAAAAAAAAaJo1TZ7fdNNNuuSSS/Sxj31sverBClKpdVllB5sAWYEFOYEVWYEFOYEVWYEFOYEVWQEARGlNv2Xa29t1xBFHrFMpWEkikdDAwECzy0AMkBVYkBNYkRVYkBNYOefkdadGRg+0TUymm1cQWhLnFFiRFQBA1BJrefIb3/hGfeMb31ivWrAC771mZ2eXvCErMB9ZgQU5gRVZgQU5gZX3XsViQFawIs4psCIrAICorenK89e+9rX6wQ9+oLPPPltvfetbdfjhhyuZTC7a7jnPec5aDgPNDQomJyfV1tbGXcSxIrICC3ICK7ICC3KCRszMBMpkFv/N0AyPPzi57GPF8qxpH1u2ta9XOXgC5xRYkRUAQNTWNHn+ghe8oPb1v/7rvy563Hsv55yq1epaDgMAAAAAAAAAwEG1psnza665Zr3qAAAAAAAAAACgZaxp8vz8889frzoQwjmnTCbDR9EQiqzAgpzAiqzAgpygEek0OcHKOKfAiqwAAKK2phuGzvfYY4/pzjvv1MzMzHrtEvM459TX18egAKHICizICazICizICaycc+rqSpIVrIhzCqzICgAgamuePP/mN7+ppz3taXrSk56k5zznOdq1a5ckaXh4WM9+9rP1jW98Y81FYm79+KmpKe4ijlBkBRbkBFZkBRbkBFbee+VnA7KCFXFOgRVZAQBEbU2T59/+9rd17rnnamBgQJdddtmCX1gDAwM67LDDdO211661RmhuUDAzM8OgAKHICizICazICizICRqRLwTNLgEtjnMKrMgKACBqa5o8v+KKK/Qbv/Ebuu2223ThhRcuevy0007Tf/3Xf63lEAAAAAAAAAAAHHRrmjy/66679LrXvW7Zx7dt26a9e/eu5RAAAAAAAAAAABx0qbU8ub29fcUbhD7wwAPq7+9fyyHwBOeccrkcN0JBKLICC3ICK7ICi82Sk5vvHlr1c3cet20dK4mWtZ8TU9XGd+69VPHSaFV6Ii93zx783Nx5/4gkaWwov+w25aptGYjOQmVdalrOrfev/HPu2bv06xWnzNXbLOcUrB1ZAQBEbU1Xnp9++um67rrrVKksHjA+/vjj+sIXvqAzzzxzLYfAE5xz6unpYVCAUGQFFuQEVmQFFuQEZs5J6URt4hxYCucUWJEVAEDU1jR5/pGPfEQPP/ywnvvc5+rzn/+8nHP6l3/5F73//e/XCSecIO+9LrvssvWqdVPz3mtiYoIboSAUWYEFOYEVWYEFOYGZ91I5mPsXWAbnFFiRFQBA1NY0eX7sscfqtttuU39/vz7wgQ/Ie68///M/10c/+lGdcMIJ+vd//3cdccQR61Tq5ua9Vz6fZ1CAUGQFFuQEVmQFFuQEjXDG5VCweXFOgRVZAQBEbU1rnkvSM57xDN18880aGxvTr371KwVBoCOPPFJbt25dj/oAAAAAAAAAADjoVj15XiwW9eUvf1k33XST7r//fk1NTamrq0tHH320zj77bL3+9a9XJpNZz1oBAAAAoCGzsw8u+1i5Wjx4hQAAACB2VjV5/otf/EKvfOUr9etf/1ree/X09Kizs1N79+7V7bffrq9//ev6yEc+om9961t6+tOfvt41b0rOOXV0dHAjFIQiK7AgJ7AiK7AgJ2iET5ETrIxzCqzICgAgag2veT49Pa1XvOIVGhoa0kc+8hE99NBDGhsbW/Dvhz/8YT366KN6+ctfrpmZmSjq3nScc+rq6mJQgFBkBRbkBFZkBRbkBGbOSanE3L/AMjinwIqsAACi1vDk+TXXXKM9e/boO9/5jv7oj/5Ihx122ILHDzvsMP3xH/+xvv3tb2v37t269tpr16vWTc17r9HRUW6EglBkBRbkBFZkBRbkBGbeS6Vg7l9gGZxTYEVWAABRa3jy/Dvf+Y7OPPNMvfjFL15xuzPOOEMvfelL9e1vf3u1tWEe771KpRKDAoQiK7AgJ7AiK7AgJ2iEC8gJVsY5BVZkBQAQtYYnz3/xi1+ETpzvd8YZZ+gXv/hFo4cAAAAAAAAAAKCpGp48Hx0d1fbt203bbtu2TaOjow0XBQAAAAAAAABAMzU8eV4sFpVOp03bplIplUqlhovCYs45dXd3cyMUhCIrsCAnsCIrsCAnaIRPkxOsjHMKrMgKACBqqdU86cEHH9Ttt98eut3u3btXs3sswTmn9vb2ZpeBGCArsCAnsCIrsCAnMHNOSjLJhZVxToEVWQEARG1Vk+cf+MAH9IEPfCB0O+897wCvkyAINDo6qr6+PiUSDX9gAJsIWYEFOYEVWYEFOYGZ93KlQD6TmJtIB5bAOQVWZAUAELWGJ8+vueaaKOqAQaVSaXYJiAmyAgtyAiuyAgtyAjPf7AIQB5xTYEVWAABRanjy/Pzzz4+iDgAAAGwwu38+vOZ97HjmwDpU0nz8LAAAAID44XNNAAAAAAAAAADUYfI8Jpxz6u3tZQ15hCIrsCAnsCIrsCAnaITP8CcIVsY5BVZkBQAQtVXdMBQHn3NO2Wy22WUgBsgKLMgJrMgKLMgJzJyTlpjjmh4difzQnX39kR8D64NzCqzICgAgalz2ERNBEGhoaEhBEDS7FLQ4sgILcgIrsgILcgIz7+WKVclz11Asj3MKrMgKACBqTJ7HiOePDBiRFViQE1iRFViQE5gRFRhwToEVWQEARInJcwAAAAAAAAAA6jB5DgAAAAAAAABAHW4YGhPOOfX393MXcYQiK7AgJ7AiK7AgJ2iEz9iu36mOj6/rccvlyqK2IL/w+8SWLet6TKwO5xRYkRUAQNS48jwmnHNKJpMMChCKrMCCnMCKrMCCnMDMOck98S+wDM4psCIrAICoMXkeE0EQaO/evdxFHKHICizICazICizICcy8lysGEjf4wwo4p8CKrAAAosayLQAAAABW9MgjjyxqK5ZGGt+RlzI+qZKrzl2BLmmyklOhUKht0t7WttoyAQAAgHXFlecAAAAAAAAAANRh8hwAAAAAAAAAgDos2xITiURCg4ODSiR4vwMrIyuwICewIiuwICcwc1JJB5ZsAZbCOQVWZAUAEDV+w8SE917ValWemyshBFmBBTmBFVmBBTmBmX9i3pyoYAWcU2BFVgAAUWPyPCa89xoZGWFQgFBkBRbkBFZkBRbkBI1I+2SzS0CL45wCK7ICAIgak+cAAAAAAAAAANRh8hwAAAAAAAAAgDpMnseIc9xZCTZkBRbkBFZkBRbkBHYsr4BwnFNgRVYAAFFKNbsA2CQSCW3btq3ZZSAGyAosyAmsyAosyMnBM3XLv0V+jPzeyuLG/v712bmTSi5Yn31FIBgfb/g55eLqjlXSlCQps+OI1e1gA+OcAiuyAgCIGleex4T3XsVikRuhIBRZgQU5gRVZgQU5gZmXnBcXn2NFnFNgRVYAAFFj8jwmvPcaGxtjUIBQZAUW5ARWZAUW5ASNSPtks0tAi+OcAiuyAgCIGpPnAAAAAAAAAADUYfIcAAAAAAAAAIA6TJ7HSCrF/V1hQ1ZgQU5gRVZgQU5g5VnwHAacU2BFVgAAUeK3TEwkEgkNDAw0uwzEAFmBBTmBFVmBBTk5OHb/fFj5R9c28Xz4oW6dqlklJ5Vd0Nwa0PI4p8CKrAAAosbkeUx475XP55XL5eRck//oQUsjK7AgJ7AiK7AgJxvf6GMPL250I6vaV9IlVfXV2veFRM9qy8IGxTkFVmQFABA1lm2JCe+9JicnuYs4QpEVWJATWJEVWJATNCKbTDe7BLQ4zimwIisAgKgxeQ4AAAAAAAAAQB0mzwEAAAAAAAAAqMPkeUw455TJZFjHDaHICizICazICizICRpR9dwwFCvjnAIrsgIAiBo3DI0J55z6+vqaXQZigKzAgpzAiqzAgpygEcVqqdkloMVxToEVWQEARI0rz2PCe6+pqSluhIJQZAUW5ARWZAUW5ASNSCe4fgcr45wCK7ICAIgak+cx4b3XzMwMgwKEIiuwICewIiuwICdoBJPnCMM5BVZkBQAQNSbPAQAAAAAAAACow+Q5AAAAAAAAAAB1mDyPCeeccrkcdxFHKLICC3ICK7ICC3KCRlSCarNLQIvjnAIrsgIAiBoLDsaEc049PT3NLgMxQFZgQU5gRVZgQU7QiFJQbnYJaHGcU2BFVgAAUePK85jw3mtiYoIboSAUWYEFOYEVWYEFOUEjMol0s0tAi+OcAiuyAgCIGpPnMeG9Vz6fZ1CAUGQFFuQEVmQFFuQEjUglks0uAS2OcwqsyAoAIGpMngMAAAAAAAAAUIc1zwEAALAh3Xvvveu6v0cemVn2scMOO2xdjwUAAACg+bjyPCacc+ro6OAu4ghFVmBBTmBFVmBBTtCIclBpdglocZxTYEVWAABR48rzmHDOqaurq9llIAbICizICazICizICRrB5DnCcE6BFVkBAESNyfOY8N5rbGxMvb29vKuOFZEVWJATWJEVWJCT+Pue0rWv71ri8ccT2UVt3vXUvj46mDAfK5vMqFgtNVQfNhfOKbAiKwCAqLFsS0x471UqlbiLOEKRFViQE1iRFViQEzQi6fgTBCvjnAIrsgIAiBojVwAAAAAAAAAA6jB5DgAAAAAAAABAHSbPY8I5p+7ubtZxQyiyAgtyAiuyAgtygkYUq+Vml4AWxzkFVmQFABA1bhgaE845tbe3N7sMxABZgQU5gRVZgQU5QSOqvtrsEtDiOKfAiqwAAKLGlecxEQSBhoeHFQRBs0tBiyMrsCAnsCIrsCAnaERbMtvsEtDiOKfAiqwAAKLGlecxUqlUml0CYoKswIKcwIqswIKcxNeY7tCM+mvfF5RetI136/f6JlheAQacU2BFVgAAUeLKcwAAAAAAAAAA6jB5DgAAAAAAAABAHSbPY8I5p97eXu4ijlBkBRbkBFZkBRbkBI0oVEvNLgEtjnMKrMgKACBqrHkeE845ZbPcXAnhyAosyAmsyAosyAkaEXhu7IeVcU6BFVkBAESNK89jIggCDQ0NcRdxhCIrsCAnsCIrsCAnaEQu1dbsEtDiOKfAiqwAAKLGlecx4r1vdgmICbICC3ICK7ICC3KysQUzsys+XilO2PeVC1TJTx34Ppte8Hi1UGisOGxInFNgRVYAAFHiynMAAAAAAAAAAOoweQ4AAAAAAAAAQB0mz2PCOaf+/n7uIo5QZAUW5ARWZAUW5ASNmC3MNLsEtDjOKbAiKwCAqDF5HhPOOSWTSQYFCEVWYEFOYEVWYEFO0AjvubEfVsY5BVZkBQAQtZaaPL/11lv18pe/XIceeqicc7rhhhsWPO691wc/+EEdcsghyuVy2rlzp+67777mFHuQBUGgvXv3chdxhCIrsCAnsCIrsCAnaERHrqvZJaDFcU6BFVkBAEStpSbPZ2ZmdOKJJ+qqq65a8vGPfexj+tSnPqXPfe5z2rVrlzo6OnTWWWepUCgc5EoBAAAAAAAAABtZqtkFzHfOOefonHPOWfIx770++clP6v3vf79e+cpXSpL+5m/+Rtu2bdMNN9yg3/7t3z6YpQIAAAAH38j9a3u+n1jc1vaglCkf+D7fufDxXO/ajgkAAADEVEtNnq9k9+7devzxx7Vz585aW09Pj0499VT9+Mc/XnbyvFgsqlgs1r6fnJyUNPfxrv0f7XLOyTkn772897Vtw9rrPxrWaHsikVi07+Xa9z/Xe79gP6utvRX6tFw7fVpbn4IgqOVko/TJ0k6fGuvT/q8bPae0cp824uvUCn2af07ZKH1abTt9Cj+n1Nfova9tv9/P94zv35lUV+NSbb9KVhbtY349K7WPPjqmEw/fYt4+tH3/10vUuVRf5+9jufZGa6l/xEmL2lZql6T6xQ2W265+f/Xbr9cKw0vte1NZ4vVe8v+PZdqXy97+x1rhHNHo+W25c0ornfc24rk8jn3aP07Zv81G6JO1vdl9YqkcAJtFbCbPH3/8cUnStm3bFrRv27at9thSrrzySl1++eWL2vft21db7iWXy6mnp0eTk5PK5/O1bTo6OtTV1aWxsTGVSqVae3d3t9rb2zU6OqpKpVJr7+3tVTab1b59+xb8ounv71cymdTevXsX1DA4OKhqtaqRkZFam3NO27ZtU6lU0tjYWK09lUppcHBQhUKh9gaAJGUyGfX19Wl6elozMzO19rj0aWBgQPl8nj6tc5+89xoeHt5QfdqIr1Oz+zQ4OKipqakN1aeN+Dq1Qp+89xoZGdlQfZI23uvU7D4NDg4u6lM18Eol05rKj+vAtOiMpHbJJyRNL+iTfKfmpnZnD+xjtqpUR69UrahaOLC9SySUbO+Rr5QUFA9s75IpJXNd8uWCEtWipqfnnpNOp9XW1qZisahy+cBV1plMRtlsVoVCYUHtbW1tSqfTmp2drU0QpKpFVZMZeSWVCgoLZ3p9IK+EqjPjC7qU7Ngi+UBT+cl5rU7d7b2qBhXNFqdqrQmXVGeuR+VqSYXSgdcjmUiro61LxXJeM7lMrT1dCZQtV1RKp1ROHViNMVOuKlOpqpBNqZo40J4tzfVvIplT1R1oD5SeO446JEk96TZJ0lS5qEBePYmkEplsbfvhUlEJ59SXPlBLu+vUbGFayURSbdn2A/sOAuWLM0ol08pm2g78fDM5FUp5pVMZDczbdyGoquIDdSRTakseqHG2WlW+WlVXKqXMvD5NVyoqBoF60mml3IFp+MlyWWXv1ZfOaH9zJpHUVFBVIKknkZQk5ea6rtFyVUlJPelkbR9eXmPlQGkndaUOtFe910QlUDbh1JFMKPNEORXvNeMDtTmn7Lyfb8kHynuvnHPKzGt3Pinvq1LZywXz3oxKOynp5ErBgoz5TEJyWtSuzqWzFwStdY5o9Lw3MDCg4eHhBX1qtfPeRjyXx7FP3nvNzs5uqD5Jrf86TU1NCQA2A+eXukShBTjn9I1vfEOvetWrJEk/+tGP9PznP1+PPvqoDjnkkNp2r3vd6+Sc09/+7d8uuZ+lrjw//PDDNTY2pu7u7tqxWv2d3v3vqieTyQXbbrR3r+nT2vvkvVelUlEqlVIikdgQfbK006fG+iRJ1Wq14XNKK/dpI75OrdCn+eeUZDK5Ifq02nb6FH5O2f97Z78HfzFS236/Rq887ziya9E+5tezUvvoow+u65Xnu/bMLFvnoYcdtuR+9rcdVVl8vl1NLfnv37CwXY1def7kvolFV56Ptz2o2zJPrn3/y9HFy7aMzpsA2r/f+VeM7ygunORciXMJeX+git3ZgQX7ziWjuS1Te0fnorZ581Srlsut7nnP0NzEU+aIpyx+cKn/P5Zp7+46ccncvPQZ21vmHNHo+U1a+pzSSue9jXguj2Of9o9T0un0ivuJU5+s7c3u0+TkpHp7ezUxMVGbWwGAjSg2V55v375dkjQ0NLRg8nxoaEjPetazln1eNptVNptd1J5IJJRILByY7/+lUm+59vrnr6bdeswgCDQyMqLBwcE17Ses/WD26WC1b7Y+BUGgsbExDQ4O1p4b9z5Z2+lT9OeUVu7Tatvp08p9mn9OORi18zrFs0/LnVP2b7NgH8t9vUzbkvtY4vEl25eof1X7Waq2Bupc6efYaC1LPbLc8inLtdcnybL8ylIT8au9Aqe9rUMz+QNXLLbklTwH0zKvt7V9tdlr5fPeSuOUuPZppXb6tPp26zglTn2ytje7T8sdBwA2mtic7Xbs2KHt27fre9/7Xq1tcnJSu3bt0mmnndbEygAAAAAAAAAAG01LXXk+PT2tX/3qV7Xvd+/erTvuuEN9fX168pOfrIsvvlgf/vCH9dSnPlU7duzQBz7wAR166KG1pV0AAAAAAAAAAFgPLTV5/tOf/lSnn3567ftLL71UknT++efr2muv1Xvf+17NzMzorW99q8bHx/WCF7xAN954o9ra2pbb5Yay3Ed4gXpkBRbkBFZkBRbkBFZLrekO1OOcAiuyAgCIUktNnr/4xS9ecTDtnNMVV1yhK6644iBW1RoSiYS2bdvW7DIQA2QFFuQEVmQFFuQEjZgtTDe7BLQ4zimwIisAgKjFZs3zzc57r2KxyJU6CEVWYEFOYEVWYEFO0IhkItnsEtDiOKfAiqwAAKLG5HlMeO81NjbGoAChyAosyAmsyAosyAka0ZZtb3YJaHGcU2BFVgAAUWPyHAAAAAAAAACAOi215jkAAACAja9YPnCVaDm58IpRV7Xtoy2znhWtXj6/uudNVub+TT0+qy3buRofAACgFXHleYykUrzXARuyAgtyAiuyAgtyAqsgCJpdAmKAcwqsyAoAIEr8lomJRCKhgYGBZpeBGCArsCAnsCIrsCAnaES+ONPsEtDiOKfAiqwAAKLGlecx4b3X7OwsN0JBKLICC3ICK7ICC3KCRqSS6WaXgBbHOQVWZAUAEDUmz2PCe6/JyUkGBQhFVmBBTmBFVmBBTtCIbKat2SWgxXFOgRVZAQBEjclzAAAAAAAAAADqMHkOAAAAAAAAAEAdbhgaE845ZTIZOeeaXQpaHFmBBTmBFVmBBTlpDYWu+0K3GWubPQiVrKxarTS7BLQ4zimwIisAgKgxeR4Tzjn19fU1uwzEAFmBBTmBFVmBBTlBIwqlfLNLQIvjnAIrsgIAiBrLtsSE915TU1PcCAWhyAosyAmsyAosyAkakU5lml0CWhznFFiRFQBA1Jg8jwnvvWZmZhgUIBRZgQU5gRVZgQU5QSMy6WyzS0CL45wCK7ICAIgak+cAAAAAAAAAANRhzXMAAAAALaPkq6btfLWxGwT6YnFRW7Eq5ZJcCQ8AAIClceV5TDjnlMvluIs4QpEVWJATWJEVWJATNKJcKTe7BLQ4zimwIisAgKhx5XlMOOfU09PT7DIQA2QFFuQEVmQFFuQEjSiVC80uAS2OcwqsyAoAIGpMnseE916Tk5Pq7u7mXXWsiKzAgpzAiqzAgpygEZl0m4rlfLPLwApuvnvooB5v53HbFnzPOQVWZAUAEDWWbYkJ773y+Tx3EUcosgILcgIrsgILcoJGpFPpZpeAFsc5BVZkBQAQNSbPAQAAAAAAAACow7ItAAAAm9h6LM/gvVd1ZlzJES342Pz0nqk173ut7nhofN329cBwccH3qUcfrn09ce8eSdKOgY4ln5uvJNetDgAAAAAHB1eex4RzTh0dHazjhlBkBRbkBFZkBVaJTFuzS0BMlMrF8I2wqfG7B1ZkBQAQNa48jwnnnLq6uppdBmKArMCCnMCKrMDCOSeXyS1ou71YUCFZWfU+n1ld/TD19mJBkjS1yutEjlew6mM3067cYaHbdGeimbh+IDvQ0PbltoO/PnGhuLjv5YqXXFmqFNa8/1y6wTeQ1vBhhLtmD/z/0a6ZJbcJhieWff6ZAz2rP/gaPHb/vUu2359/cMn2vQ3u/6iTTm3wGYg7xikAgKhx5XlMeO81OjrKjVAQiqzAgpzAiqzAwnuvan6KnMCkJ80NQ7Ey771miyXOKQjFOAUAEDUmz2PCe69SiQEkwpEVWJATWJEVWPnq6q8yx+bhJGVcQiywgDCVIJ6fAMHBxTgFABA1Js8BAAAAAAAAAKjD5DkAAAAAAAAAAHWYPI8J55y6u7u5izhCkRVYkBNYkRVYJbLtzS4BMeAlTVXKYoEFhGljbXwYME4BAEQtFb4JWoFzTu3t/FGKcGQFFuQEVmQFFs45uXS22WUsqzRebGj7QmHh+u1t23PrWU7slStrm/ouq7pOlWC97f75sCRp6OHJVe9j2xHda67DOadMKrnm/WDjY5wCAIgak+cxEQSBRkdH1dfXp0SCDwxgeWQFFuQEVmQFFt57BflJJXLNu/pv4NFbal93q1OSVJ3KS5JcvrFJuPbphROHnem5yfT2qYVvEJSaOJR+tJRf1DYVlEOfVy2F34Rxpn5yvNjYmw8rcZL6MhmNlkorX31eDe+L1mMSvpqUZDnW+sn7ubqnygVJUnJmXNXhxa/nSiYrB97Qmc2PLrnNw20FPemww1ZZZXN57zVTLKkjm+GKYqyIcQoAIGr8domRSqUSvhEgsgIbcgIrsgILH4RPygKSlEowGYpwgWdxH9gwTgEARInJcwAAAAAAAAAA6jB5DgAAAAAAAABAHdY8jwnnnHp7e1nzD6HICizICazICqySbZ3NLgEx4CWNlcorr3e+yVTHx1VpcFn5ILGl9nUlSC+5TansNDuy9HroOuMFjR2wCdozmWaXgBhgnAIAiBqT5zHhnFM2mw3fEJseWYEFOYEVWYGFc05KLT2BB9QrsT4+QjjnlEoyGYpwjFMAAFFj2ZaYCIJAQ0NDCvhjAyHICizICazICiy896rMjMlzg7+NqTQjVfIH/quWV/2fq5Y1mE7KhW2LTc17r6l8kXMKQjFOAQBEjcnzGGHwCCuyAgtyAiuyAhNiAiOWV4CF56QCI8YpAIAoMXkOAAAAAAAAAEAdJs8BAAAAAAAAAKjDDUNjwjmn/v5+PuaKUGQFFuQEVmQFVsn27maXgIiVKnNrClf92s4HQ7OzqhiWWUgluM5nM+vIZppdAmKAcQoAIGpMnseEc07JZJJBAUKRFViQE1iRFVg45+SVICcwqbI+MUI455QQ6+MjHOMUAEDUmDyPiSAItHfvXg0ODirBVThYAVmBBTmBFVmBhfde1ZlxJTu2yDmngUdvUbc65aZWP9TsLsxKkvraSutV5qqkO/5HLlOVJLlU/4LHkm0H/p8I0llJ0rTaJEmd2rHqYxaydy7/YNdjc/9Wlvq5PGnVxzxYnKRtuZyG8nluB7lOgsS+JdsryYJm1L7kY/uGi0u2zxQnJUmF8vITkW3pZzRYYeO895oqFNXVlmVSFCtinAIAiBq/XQAAAAAAAAAAqMPkOQAAAAAAAAAAdZg8BwAAAAAAAACgDmuex0QikWAdN5iQFViQE1iRFVg452rrnUdh368fbmj7ifYBSdJsMZAkFfMr57ets3t1haFhXmK9c4RyzrHeOUwYpwAAosZvmJjw3qtarcp7/tTAysgKLMgJrMgKLLz3kg/ICUySTIgihPdegfecUxCKcQoAIGpMnseE914jIyMMChCKrMCCnMCKrMCqOjvZ7BIQA07SQFubmD5HmJliqdklIAYYpwAAosbkOQAAAAAAAAAAdVjzHAAAAFgnQ5MFSdK+0syC9kQ5ad5Horuw7GPZ/NzVuNOqqDPDUB4AAACIEleexwg3zIEVWYEFOYEVWYEJMYERiyvAwnFSgRHjFABAlLhcJSYSiYS2bdvW7DIQA2QFFuQEVmQFFs45pTp6m10GYsBLGsrnm10GWpxzTl25bLPLQAwwTgEARI0rz2PCe69isciNUBCKrMCCnMCKrMDCey9fKZMTmGQS/AmClXnvVakGnFMQinEKACBqXHkeE957jY2NaXBwkI+lYUVkBRbkBFZkBVbVwrSSHVvWfb+jj2Y0PdrYkLVQnVtfvFhd93KwRk5SXzaroXye5VuwotlSSV1tXH2OlTFOAQBEjcs+AAAAAAAAAACow+Q5AAAAAAAAAAB1mDyPkVSKVXZgQ1ZgQU5gRVZg4VjHGkYV1iaGQYIlOGDEOAUAECV+y8REIpHQwMBAs8tADJAVWJATWJEVWDjnlGzvaXYZiAEvabhQaHYZaIKJqTtVqjyy5GOz5fyitkRSylek9vRJUZeGGGOcAgCIGpPnMeG9Vz6fVy6X40YoWBFZgQU5gRVZmXPz3UPNLqGlee/lKyW5VGZT5wQ2uWRS+Sp3c8XyvJeqQVLJBDnByhinAACixudrY8J7r8nJSXk+5ooQZAUW5ARWZAVWQXG22SUgBpyknkxGTHEhTLGSbnYJiAHGKQCAqDF5DgAAAAAAAABAHZZtAQAAaCEjjz7Y7BIa570S1aKCiXHJOZVHpjWWSSpfTC7YrCvb3pz6DoLZcnHB99W6K/HHG1imJFuZWfaxoiqNFYZQpfXakWeJEQAAgI2GK89jwjmnTIZ1RBGOrMCCnMCKrMDKO4aVCOclFYNALLCAMEnHmxEIxzgFABA1rjyPCeec+vr6ml0GYoCswIKcwIqswMQ5+WSm2VUgJsaKxfCNsKk5J7Vlys0uAzHAOAUAEDUuEYoJ772mpqa4EQpCkRVYkBNYkRWYeC8XVCRyAoPOFNfvYGXeS6VKilMKQjFOAQBEjcnzmPDea2ZmhkEBQpEVWJATWJEVWLmAtbgRzknqTKfFAgsIU67yJgvCMU4BAESNyXMAAAAAAAAAAOoweQ4AAAAAAAAAQB0+CxcTzjnlcjnuIo5QZAUW5ARWZAVW3iWbXcKmM11auFROIROEPsf78JswFsrVRW2lSvi+Lbyk2UpFLLCAMKkES0EhHOMUAEDUmDyPCeecenp6ml0GYoCswIKcwIqswMQ5+WS62VVsaoXijEpthdDtvGFt+lIl2knLyXL4BH4clSqN9atQnq597auNTfwVsrnQbWZmZpQoFZd87PFfTS/Z7pKHNFRHVJyTsmkmzxGOcQoAIGos2xIT3ntNTExwIxSEIiuwICewIisw8V6uWpbICQy607zRgpV5LxXLKU4pCMU4BQAQNSbPY8J7r3w+z6AAocgKLMgJrMgKrJxfvNQHUM9Jak+lxAILCFMJ+JA0wjFOAQBEjclzAAAAAAAAAADq8HY+AAAAABxslfnrkTe4DnyyI3yb0rRUqbsaN9fb2HEAAAA2Oa48jwnnnDo6OriLOEKRFViQE1iRFVj5BNdkIJyXNF0uiwUWECad5IahCMc4BQAQNf7KiQnnnLq6uppdBmKArMCCnMCKrMDEOXm3vsPKn7W1176e7elf131HaXe6T5IUuPYF7fmkfR/pjkOWfSxZ6V6yvdRWsB+gyaYrTIpuVvcEnUu2V6ttixudpEDKlg9c7/WCdBBRZYgrxikAgKgxeR4T3nuNjY2pt7eXd9WxIrICC3ICK7ICE+/lgrJ8Ii2tkJOp4uyqdl+ocjPSjaQ3m9VYsRi+ITYvL6UrCZVTTJZjZYxTAABRY9mWmPDeq1QqcRdxhCIrsCAnsCIrsHKeSS6Ec5KyiYSY4kIYF5AShGOcAgCIGleeAwAAAGg5lWDlN2T8OrxhU/VzE7SpBNcUAQAAYDEmzwEAADaYwuP5Ne+jbXtuHSpBqykH4cP/qm9ggfYmikudm83Qg5NLthfKsyrMLL3e/cx4acH3HT2Zda8LAABgNbjEIiacc+ru7mYdN4QiK7AgJ7AiK7AKEulml4AY8JImSiWxwALCVFjvHAaMUwAAUePK85hwzqm9vb3ZZSAGyAosyAmsyApMnJMcVwHDJs8NYBHGSUGSt1gQjnEKACBqXHkeE0EQaHh4WEHI2o8AWYEFOYEVWYGJ90pUixI3bEMIJ2mgrY0bhmJlXkqXEuIjCgjDOAUAEDWuPI+RSmXpNQKBemQFFuQEVmQFJs2eOJ9dwzrv1bqp3NGReY9NKZGf27ebrVuaJrNl9cfcxFIsrwAD58kJbBinAACixJXnAAAAAAAAAADUYfIcAAAAAAAAAIA6LNsSE8459fb2chdxhCIrsCAnsCIr8dc+tXtVz+tM2z8GP7dgi5PkWcsaK/KSRotFlrJGqHKaG8siHOMUAEDUmDyPCeecstlss8tADJAVWJATWJEVWMxNWTAdCpsSN/ZDGCex5DksGKcAAKLGsi0xEQSBhoaGuIs4QpEVWJATWJEVWHhJQSLD9DlCOUnbcjk+oYCVeSlTSvCeHEIxTgEARI0rz2PEe0aPsCErsCAnsCIrANYTE+fxVij/98E5EJeew4hxCgAgSlx5DgAAAAAAAABAHSbPAQAAAAAAAACow7ItMeGcU39/P3cRRyiyAgtyAiuyAisXlJtdwqoVirMLvp+Znah93dYxI18tzW1XWtjHanXh8ySprA5JUlCYWdBeTFXsBaVnln2oGhTs+2lBXtJwocBS1ghVTlebXQJigHEKACBqXHkeE845JZNJBgUIRVZgQU5gRVZgMZcOz1rWMKmyPjHCuCeWPOekghCMUwAAUWPyPCaCINDevXu5izhCkRVYkBNYkRVYeEk+keFqYoRykrblcsyJYmVeypSS4qSCMIxTAABRY/IcAAAAAAAAAIA6TJ4DAAAAAAAAAFCHyXMAAAAAAAAAAOqkml0AbBKJhAYHB5VI8H4HVkZWYEFOYEVWYOEkKSixjjVCeUlD+TxLWWNlTiplqtwwFKEYpwAAosbkeUx471WtVuWc407iWBFZgQU5gRVZgcXcRKiTl99Uc13J6swSbV1zX1QWDrOTqpj3mwgKa6qr1SWdU8UzfY4VeMl57heKcIxTAABR4+3ZmPDea2RkRJ4/NBCCrMCCnMCKrMDKJ9LNLgEx4CQNtLVtqjdZsDrpcrLZJSAGGKcAAKLG5DkAAAAAAAAAAHWYPAcAAAAAAAAAoA6T5zHCGm6wIiuwICewIisA1hOLK8DEkRTYME4BAESJG4bGRCKR0LZt25pdBmKArMCCnMCKrMDCSXJBqdllIAa8pKF8vtlloNU5qZQJml0FYoBxCgAgakyex4T3XqVSSZlMhnfWsSKyAgtyAiuysnlNjzY4TEw4KThwpWi+k5v9YWmZREKlgInR+YqVxm64W64u/v8rnayGPzE/Nvfv8NTSj6dm5v6d6myonhV1HdL4c/zcheeeXzsIwTgFABA1lm2JCe+9xsbGuIs4QpEVWJATWJEVWLk012QgnJPUl82KKS6ESZd5Aw7hGKcAAKLGXzkAAAAANrVKE66EL1UMV4ovY6l6vV/YVihXldBcW0eWP/sAAABWI1ajqA996EO6/PLLF7Qde+yxuueee5pUEQAAAAC0ptknPmgcBAuv9R+eLS+5vUtMS5ImC6v7M7G7rW1VzwMAAGhVsZo8l6RnPOMZuvnmm2vfp1Kx68Kqbaa+Ym3ICizICazICkz4yDyMKmQFBt6RE9gwTgEARCl2v2VSqZS2b9/e7DIOukQioYGBgWaXgRggK7AgJ7AiK7DypUqzS0AMeEnDhUKzy0Crc1I5w01lEY5xCgAgarG7Yeh9992nQw89VEceeaTe8IY3aM+ePc0u6aDw3mt2dpYboSAUWYEFOYEVWYFZMnbDSjRJLsmNIBHCS4mqm3u3BVgB4xQAQNRideX5qaeeqmuvvVbHHnusHnvsMV1++eV64QtfqLvuuktdXV1LPqdYLKpYLNa+n5yclCQFQaDgiRvtOOfknJP3fsEv3bD2oO5GPY22JxKJRfterj0IAk1OTiqbzcq5A2sWrrb2VujTcu30aW19CoJAExMTymQySiaTG6JPlnb61FifvPerOqe0cp824uvUCn2af05JpVIbok+rad//7/4a661nu5aaAFiqfaVtmzDj5FJJ+epGvFLUPfGffev5/8ZxOqe+9vrer6XdSerJZFTI55fcfv7Pq5H29axxte2N1r4Wlp/BSvwSz3Dyked1uZ/jogN7KVVJqJSuLjrPrXROtZz7N9rvp83ep/3jlGw2q2QyuSH6ZG1vdp/q9wcAG1WsJs/POeec2tfPfOYzdeqpp+opT3mK/u7v/k5vfvObl3zOlVdeuegmo5K0b98+FZ74yGgul1NPT48mJyeVz+dr23R0dKirq0tjY2MqlUq19u7ubrW3t2t0dFSVyoGPKPf29iqbzWrfvn0LftH09/crmUxq7969C2oYHBxUtVrVyMhIrc05p23btqlUKmlsbKzWnkjMXc2Vz+c1PT1da89kMurr69P09LRmZmZq7XHoUyqV0sDAgPL5fO1NDfq09j5Vq1VNTEzIe6+tW7duiD5txNep2X3KZrOS5t5QnP8GY5z7tBFfp1bo0/4/SiXpkEMO2RB92q+R16k6My6XTCmZ65IvFxSUDiw74dIZJbMdCkqz8uUDtScybXKZnILCtHz1QO2JbLtcOqsgPyk/7w/PZFunlEorUS1p/kxSkMw8cRXmgf9X59qzkvwT29eqUZDKyjmvZKI615JNS97PLauSTMil5l31GwTy5eri9mogX6nOtc27otxXqlI1kEsnpURduySXST0xeS/1pJxmql4VL3Wn3IJJs6mKV/DENvNNVLwSkrrmtXtJBUmphFNX+sDQteq9JksVZZIJdaSStZ9ZuVrVdLGsXDqltnnbFysVzZYqas+klJ23Pm6hXFG+XFFnNq30E1dEp3t7VJnJy5dKSuT6pdTcvrtSvZrNT6larairY0utr5I0MzupIKhqMNf+xOuTkSQNTZeUTDj1th+4kaKX1/hsUalEQl1tmXl9CjSZLymTSCuXytXaK0FFM5VZtSWzyiaztfZStaR8taBcsk2Z5IH9FKtFFapFdaTalUoc6Gu+klcpKKsr3aGEO/B6z5RnVPFV9WS6JDlVgrljDxcKqnqvbbkDtUjSUD6vpHMaaJvfp7n2TCKhvuyBGivea7hQUC6ZVE8mIydpSyajUhBotFhUZyqlznS6tv1spaLJclnd6bTa571O0+WypisV9Wazys7L3kSppHy1qv62NqXmvR6jxaJKQaDBXG5B9qLoU+3nHgQaa6BP2XKbiqWCOnKdSiUPtM8WZ1Uul9TZ3qVkYt7rlJ9WpVpRd2ePtrUdqH9/n/Zn74BxJZRQZ7pLmVTiiT55zVSm5JVWNdFT29L5ilJ+fK7dtas9M7evalBVsVJUOplWOnmgT5VqRaVqSZlkZkHtSedU9VWlEmkl3IHXqSIpkLQlmVBy3us0Ua2q7KWcTy14ndwTL0CmnFQqOHDu8+m0Au81UyzN29apK5dVNfALzv2b5ffTZu/T/nFKR0eHuru7N0Sf4vI6TU1NCQA2A+eXeus+Rp773Odq586duvLKK5d8fKkrzw8//HCNjY2pu7tbUjze6Q2CQMPDw9q6dWtDV4m2cp+Wa6dPa+tTEATat29fbeJ8I/TJ0k6fGr/yfH9OGjmntHKfNuLr1Ap9mn9O2cxXnn/vl3tr+19q6LSe7SOP7F7ULtfYleeFx2dr37ZPPbh4mwi4bFq+WK59/4vO7nXbd2F6Mnyj2Xz4NkbH7Xus9nXb1keUTc1NWtxVODT0ub/Ozd2bp5rvlHTgbZDBlH1N+EzPsHnbKDwyMzepur/29b7yfDCX0xBXnuvwmSGt1kMd2xbtP+WqC7Y5vHO89nVbeuFSOc/Njqi+V05eSvRKku4Y37KqurrnvflQ03VI7cs7Jxb+f7q/9iP7SgvaO3oyypSTKqWryqaOqrW/ILP4fC0dOKce+ZxTFrRvht9Pm71P+8cpg4ODXHl+kPs0OTmp3t5eTUxM1OZWAGAjitWV5/Wmp6d1//33601vetOy22Sz2doVlvMlEona1dz77f+lUm+59vrnr6bdekznnDKZjBKJREM1tnKfDlb7ZuuTc672scX9z417n6zt9Mne7r1f1Tmllfu02nb6tHKf5p9TDkbtrfo61f9OXsp6tauR9uW2XbfFIRqwYT++7dXI4iu+7t84qq99ub6spt1r7gptb9ze2r6eNTajvVGN/AyW4pZ5RtRnjmVrrD+wk3zCP/GOy8K3IlY6pzbjd3Szfz9F0R6nPu0fp+yvYSP0ydre7D4tdxwA2GhiNXn+7ne/Wy9/+cv1lKc8RY8++qguu+wyJZNJnXfeec0uLXLOOfX19TW7DMQAWYEFOYEVWYnexL13LPh+dmJ0zfssjR+4irN98TUEkfDlavhGgKSxYjF8I2xuTiqnN+obclhPjFMAAFGL1VuFDz/8sM477zwde+yxet3rXqf+/n795Cc/0datW5tdWuS895qamlryY4rAfGQFFuQEVmQFZslYDSvRRJ2pWF2/g2bwUrLi4v0RDhwUjFMAAFGL1cj1a1/7WrNLaBrvvWZmZtTR0bH8x7wBkRXYkBNYkRVYuVRSvsqVoliZk9SZTmumUmFeFCtKVhOqJvlEC1bGOAUAEDUuEQIAAAAAAAAAoA6T5wAAAAAAAAAA1GHyPCacc8rlcnwUDaHICizICazICsxYsgUGXtIsS7bAIEhyTkE4xikAgKjFas3zzcw5p56enmaXgRggK7AgJ7AiK7DyFdYmhs1kudzsEtDqnFRJ8RYLwjFOAQBEjSvPY8J7r4mJCe4ijlBkBRbkBFZkBVYulWx2CYiJ7nS62SWg1XkpVXHiIwoIwzgFABA1Js9jwnuvfD7PoAChyAosyAmsyArMkgwrEc5Jak+lxAILCJOock5BOMYpAICosWwLAACAwR0Pja/6uc86fMuqnnfv1OqGajtUWtXzNotHi7kVH09qS+3rdLGqdKUS+THnS80cWILgSR0TqzrewzMsY7DZ7ZneUvs6k1o4EZ3JLzMxneiMsKKN4ea7h1b93J3HbTuox1zt8QAAwAFMngMAgHWxlgmFRjEhAAAAAACIGpPnMeGcU0dHB3cRRyiyAgtyEn83Da/ualRJOnPAfkUqWYHVRrph6EPdfbWvUx0pJd3G6VuzeUnT5TJLWUva09G8NwF/lR5Yst0p/BMSR1XH1rucJVWTwUE5DuKNcQoAIGpMnseEc05dXV3NLgMxQFZgQU5gRVZgVmWiCzbT67AMDjY4J1VTvMWCcIxTAABR4y4sMeG91+joKDdCQSiyAgtyAiuyAiuXTja7BMREbzbb7BLQ6ryULifERxQQhnEKACBqXHkeE957lUolee/5SBpWRFZgQU5gRVYaU3g8v2T7dHn5ieVFz7HfV7K1JBKSNubyJlXf+BsDlWo6gkriz0nKJhJyYl4UK3MBv3MQjnEKACBqXHkOAAAAAAAAAEAdJs8BAAAAAAAAAKjD5HlMOOfU3d3NR9EQiqzAgpzAiqzAylc25pItWF9e0kSpxJItCFVJcRNihGOcAgCIGmuex4RzTu3t7c0uAzFAVmBBTmBFVmBWZaILNvkqb7QghJOCJG+xIBzjFABA1LjyPCaCINDw8LCCgD9MsTKyAgtyAiuyAiuX4ZoMhHOSBtraxDWiWJGX0qUEd5VFKMYpAICoMXkeI5VKpdklICbICizICazICkz4yDyMUmQFBs6TE9gwTgEARInJcwAAAAAAAAAA6jB5DgAAAAAAAABAHRanjAnnnHp7e7mLOEKRFViQE1jFISv3/2xXpPs/6qRTI93/RuHLfGwe4byk0WKRpaxbVLFYCN0mX5pZ9rFEaYnnl+ddr5XsNtdSTnNjWYSLwzgFABBvTJ7HhHNO2Wy22WUgBsgKLMgJrMgKzAKmQ2FT4sZ+COMkljyHBeMUAEDUWLYlJoIg0NDQEHcRRyiyAgtyAiuyAiuXTTe7BMSAk7QtlxPzoliRlzKlhPiIAsIwTgEARI3J8xjxntEjbMgKLMgJrMgKgPXExDlMuPQcRoxTAABRYtkWAAAAAEA08qMHvs4sMyGer1tH3Uny7VJhduHV55WxlY/V+cSxjj2n0SoBAACWxJXnAAAAAAAAAADU4crzmHDOqb+/n7uIIxRZgQU5gRVZ2QD2jRyUw/iEO3DT0K39B+WYiB8vabhQYCnrJgvyxSXbfTUZ/tzC0s+VpOoKz0t2tofue76yyze0/VKmbvm3Ne+jXn5vZcXHc8985rofE8tjnAIAiBqT5zHhnFMymWRQgFBkBRbkBFatmpWb7x6qfT2xZzzSY+3ODYVvhAMT50CIKusTI4x7Yh1rJ24aihW16jgFALBxsGxLTARBoL1793IXcYQiK7AgJ7AiK7By3R3NLgEx4CRty+W4aShW5qWMb2fiHKEYpwAAosbkOQAAAAAAAAAAdZg8BwAAAAAAAACgDmueAwAAAAA2jnv/ee7fR/57/fc91bl0e99R638sAADQdFx5HhOJREKDg4NKJHjJsDKyAgtyAiuyAis/OdPsEhADXtJQPs9S1liZk0puViyOjzCMUwAAUeM3TEx471WtVufuOg+sgKzAgpzAiqzALMEsF2ySjqwghJecHDcMRSjGKQCAqDF5HhPee42MjDAoQCiyAgtyAiuyAivX2d7sElpKqmNy1f9tZE7SQFsbFxQjVNrnml0CYoBxCgAgakyeAwAAAAAAAABQh8lzAAAAAAAAAADqpJpdAOwc60PCiKzAgpzAiqzAhI/Mw4ikRKPqk8s+Vq7G65qpmVkpcF55L+ULB34HDc2s3I9E+sDjO44KIqsPrYVxCgAgSkyex0QikdC2bduaXQZigKzAgpzAiqzAyk/NNrsExICXNJTPN7sMxEDekxOEY5wCAIhavC5B2MS89yoWi9wIBaHICizICazICsySy1/1CsyXSfAnCMIl+FMVBoxTAABRY0QSE957jY2NMShAKLICC3ICK7ICK9fR1uwSEANOUl82KxZZQJg2xzkF4RinAACixuQ5AAAAAAAAAAB1mDwHAAAAAAAAAKAONwyNkVSKlws2ZAUW5ASSdP/Pdq34uPdeM8WSph9+UM6tvNDCxJ7xRW09xz5rDdUhVqpBsytATFRYXgEGgVrvnPLroWHtLS5TV+VxSVLm/uyyz78//2DoMY466dTVlLapMaYFAESJ3zIxkUgkNDAw0OwyEANkBRbkBFbOOXW2LT8RgMZ0j965qM1P71nwfapaqH2dLXSt6jjZyuy87w7OBw39TP6gHAfx5iUNFwqh2wEFT04QjjEtACBqLNsSE957zc7OciMUhCIrsCAnsPLeq1SpkhWES3NNBmxyyWSzS0AMJEVOEI4xLQAgakyex4T3XpOTkwwKEIqswIKcoBGFcrnZJSAGXI5PKCCck9STyWjlRaAAKes4pyAcY1oAQNSYPAcAAAAAAAAAoA6T5wAAAAAAAAAA1GHyPCacc8pkMnKOD7liZWQFFuQEjUglGC7AoFJtdgWIAS+pGARigQWEqYpzCsIxpgUARI07O8WEc059fX3NLgMxQFZgQU5g5ZxTezbT7DIQA3620ND2qeyj5m0zmgnfKF1a8eHSxID5eIjWWLHY7BIQA0VPThCOMS0AIGpMnseE917T09Pq7OzkXXWsiKzAgpzEx9Qt/7Zk+6zSq9+nDtwANP/g/Ysez514Qu1r771KlaoyqSRZwcqyaanIzWURrjOV0nSl0uwyEIHZFR5LVKoqJIIlH5spL77KPOPSKvmygtKB88rewoE36Qbb2lZdJzYOxrQAgKjxOeyY8N5rZmaGu4gjFFmBBTlBI4pMcsHA8QkFGDhJnem0mOJCmGyCcwrCMaYFAESNyXMAAAAAAAAAAOoweQ4AAAAAAAAAQB0mz2PCOadcLsc6bghFVmBBTtCIdDLZ7BIQByXWO0c4L2m2UhELLCBMOeCcgnCMaQEAUeOGoTHhnFNPT0+zy0AMkBVYkBNYOeeUy6z+5qTYPHyh1OwSEBOTZSZFD7ZKsPSNOlejVFl8c8/5Mqn1ecO14DmnIBxjWgBA1LjyPCa895qYmOBGKAhFVmBBTmDlvVe+VCYrCOXauLkfbLrTvCGHcG2OcwrCMaYFAESNyfOY8N4rn88zKEAosgILcoJGlKsrX2UISJL4hAIMnKT2VEossIAw6QTnFIRjTAsAiBqT5wAAAAAAAAAA1GHyHAAAAAAAAACAOtwwNCacc+ro6OAu4ghFVmBBTtCIbKo1hgu3FwtLts+mbOvinlBZ/c3nbi8W9GA5/PmlxNJL3By/6iNLv27b0vBz8qmO2tfP3TeyhqPb+SI390M4L2m6XBYLLMTXno5tKz6eSix9fZZrcK37YrD4nPLzrv7a1z1LLBXVmzjw++C+gtds20Dt+5cUhhs6PuKBMS0AIGqt8dcwQjnn1NXV1ewyEANkBRbkBFbOOWXTDBdgUCw3uwLExHSl0uwSEAMlv7ZzyuOPOZWm2mvfPzTV0/A+Du+bWFMNiB5jWgBA1Fi2JSa89xodHeVGKAhFVmBBTmDlvddssURWEMq1tzW7BMREbzbb7BIQA7kE5xSEY0wLAIgal5LFhPdepdLc5AUfScNKyAosyAkaUQmCZpcQicx995i2a5ucVSaXU2o8/A/zSn7p6xLSw4/OfdG/5MMbQyrZ7AoQA05SNpGQk1i6ZZPx5eWvJA8KxUVtyXRGQbmoyvTsks8pa/H4pVTi2rDNhjEtACBqjC4AAAAAAAAAAKjDlecAAAARctl9SqQfkiT5tsVrPad69i1syMzdJK80/ZTIa9tMMj0HbhaYmml87WMA8VLOPbbg+4IeMT2vbeqpUZQDAABiisnzmHDOqbu7m4+iIRRZgQU5QSPa0ulVP3fi3jvWrY7ZVGbd9tWIfbMTmkh4zVTCP7BXDhb/P5UKSpqpzEiSioXqoscL1YUT6nFcDXpmdkKukpcvzU38azxQIeQ5Gc1EXhdaj5c0USqxZAtC5athZ5HFxqfHa197N73sYytxo4/Xvg7KB/88df/Pdi1qe+zRxcvamPaVf3BR21EnnbqqfbUqxrQAgKgxeR4Tzjm1t7eHb4hNj6zAgpzAyjmnDGtZw6A2cQ6EyFcXv4kE1CsHy6+RDuzHmBYAEDUmz2MiCAKNjo6qr69PiQRL1WN5ZAUW5ARW3nvNFEvqyGYivaqre/Tnodvk2gfWdozZ4QXfF9ScK9k3qlR3lyqTU80uAy3OSepva9NIocDV51hRR6qj9qkdYDmMaQEAUeO3S4xUKovXSQWWQlZgQU5gFXimuBDOJRlWwibF8gowSDrOKbBhTAsAiBIjEgAAAAAAAAAA6jB5DgAAAAAAAABAHSbPY8I5p97eXu4ijlBkBRbkBI1oz7A2OMJVplibGOG8pNFikfXOEWqmMtvsEhADjGkBAFHjhqEx4ZxTNpttdhmIAbICC3ICK+ecUkn+IEU4z5qzMCoFQbNLQAxUfbXZJSAGGNMCAKLG5HlMBEGgffv2aevWrdxFHCsiK7AgJ5vDg8PTS7bfmc/Xvh4bXny1cGnP+LzvvJwCeSUkbaxJ9Pbp3abtKtqibGK70sW20G2DyuKr9BOpglLB+Nw3ua5GSoyV1JZuVcYnm10GWpyTNJjLaW8+z9XnWFFXulNT5aV/jwH7MaYFAESNyfMY8Z4/MWBDVmBBTtBKEr9+JHyb/rVN3idGwo8RucmpxW3F/MLvSyVJkhsZkQskBatYNid18K8CX/CR+YkpKdO58hPSpWgLQsvaWG/DISqOpMCIMS0AIEq8NQsAAAAAAAAAQB0mzwEAAAAAAAAAqMPkeUw459Tf389dxBGKrMCCnKARnuECDMoTSyxJA9TxkoYLBdY7R6jp8uJ7cgD1GNMCAKLGX8Mx4ZxTMplkUIBQZAUW5AR2ru5fYBlB0OwKEBNV1ieGQSDOKQjHmBYAEDUmz2MiCALt3btXAX+YIgRZgQU5gZ2XUyBxnShCpHt7ml0CYsBJ2pbL8XYcQnWnu5pdAmKAMS0AIGqpZhcAAABCPPKzxW1tA6FPy00Vlmzvnny89nVxenzxrkdLta+9pGqmQ8nSDJNdB1m6/zElCwklc9mGnlfNd0ZUEQAcfKmu4SXbo3pL1/c/VPu6mDvwe3SkOvdbcHS5y8+K/ZKk1Nj4svt+qIFL1w7fvs2+MQAAiAxXngMAAAAAAAAAUIfJcwAAAAAAAAAA6rBsS0wkEgkNDg4qkeD9DqyMrMCCnDTHzXcPNfyctofG1T06vah9qPvgLM3hJJZsgUl5bKLZJSAGvKShfJ67KGxglVWsPV2qVhe1DVfHV3xO4onDZNPJho+HjYMxLQAgavyGiQnvvarVqrznTw2sjKzAgpzAykuSc0x0IRwTFzBKOt6OQ7iE45yCcIxpAQBRY0QSE957jYyMMChAKLICC3KCRlTT7c0uATGQ7ulqdgmIASdpoK2NT7MgVFeamx8jHGNaAEDUWLYFAIAYmiqsflJhZLpPktTfObrmOqZH1z6U6OyrrHkf62Eyv/TPtJLq1Gx7m4qVzEGpY/5xytWUqr6xJQkq1bSUao2fKQDE2US+rfb17BOfwSpW0ktuWy3OPZ4cLy27v/HK4uVplpPJTx74Jps1Pw8AAKwvJs8BAMACiV8/Uvvay8n39CkxMaolF29ZZsK5oeNNLV7THQAAAACAZmPyPEYc60PCiKzAwpKT+3+26yBUEm9HnXRqs0uI3ib/KPTM7IQKHe0ql1f3c/CZsgqVmXWuym5m9uDcyJOPzMOKpMCGpMBmvf/2iXr8uynGjgCwgTB5HhOJRELbtm1rdhmIAbICC3ICKyev1OTal3fBxlcZnwzfCJuelzSUzze7DMTARGmq2SUgBhjTAgCixg1DY8J7r2KxyFVdCEVWYEFOYOUl+VSa6/8QyqW4JgM2mQR/giBcyjV2vwdsToxpAQBRY+QaE957jY2NMShAKLICC3ICO6dqR7ckloPCylJdHc0uATHgJPVls5xREKojzTkF4RjTAgCixiVCiJ2b7x46aMfaeRwfAQQAAABaVbFcNW03Uyyv6TiFJy47K1WWPl6+ONfuZ5c/zlBQMh9vpjijHVt5AwEAgGZj8hwAsD4e/tnBP+aTTjr4x6zvZ6d9PfCBR8cbPlxi9N6GnwMAAAAAANaOZVtiJMVaojAiK7AgJzCr2q7qw+bmq0GzS0BMVFheAQaB53cPbBjTAgCixG+ZmEgkEhoYGGh2GYgBsgILcgIrJ6/U9Hizy0AMVCanml0CYsBLGi4Uml0GYmCqPNPsEhADjGkBAFFj8jwmvPfK5/PK5XJybnPfYmnk0QcP3sFiuOY5WYEFOZnz0OOruIfCRHHBt5VHxsxPfWyk8YmAxDJLp06mKw3va79hP7fmaqksTViGAumsVC4u+dBscu35KRuHI5NKLvg+1WX/2c89f9/c8UYOWfLxsL6kOiYbOl6zpDomlemYqH3fpocjPV5h35MkSS6TkS/Z1/PF5pVLJpXnEy0IkUmkVQqWXz+80OBnqGf4zPWGxJgWABA1hhAx4b3X5OQkdxFHKLICC3KCRiTauWEZwqU6cs0uATHgJPVkMmKKC2FyKc4pCMeYFgAQNSbPAQAAAAAAAACow7ItMTZ1y781u4SDpuuM02tfd4/8/OAd+N7RuX+PPefgHXMTaEZ252doU7j3n1d+3Htp2kvjTlrpI64P717futbbwz9b2/Mnll6KBAAAoOUN37/y40F+cVvn6NqOyd9FAIBNhivPY8I5p0wmwzpuCEVWYOEkZVLigZaI9AAAHFpJREFUY/Mw8ZXl15wF9gvKq1+HH5uHl1QMArHAAsJUAs4pCMffPgCAqHHleUw459TX19fsMhADZAUWzjn15fgjAzZ+ZqrZJSAGqtON3xAXm9NYkU/9INxMZbbZJSAG+NsHABA1Js9jwnuv6elpdXZ28q46VtTKWbn57iFJUttD45Ef68TDt0R+jDjz3mu6JHVmFJqTB4YP7oTYkQMH9+aUQ5OFNT0/v2/jTxi6bE6+uMRHv4F5Em1ZBQUmRRGuM5XSdIWrirGytmRWhSrnFKyslf/2AQBsDCzbEhPee83MzHAXcYQiK7DwkmZKno/Nw8S15ZpdAmIgmWtrdgmIASepM51m2TCEyiazzS4BMcDfPgCAqDF5DgAAAAAAAABAHZZtAQAAAABgDVKV6bkvStVlt8n6afP+2sujUuKJT35luAofAIBm4crzmHDOKZfLsY4bQpEVWDhJubT42DxMfIk1ZxEuKJaaXQJiwEuarVRYNgyhSlXOKQjH3z4AgKjFcvL8qquu0hFHHKG2tjadeuqp+o//+I9mlxQ555x6enoYFCAUWYGFc049bQlyAhOf3/g3RcXaVWe5qSxsJsvlZpeAGMhX13ZDb2wO/O0DAIha7CbP//Zv/1aXXnqpLrvsMt1+++068cQTddZZZ2nv3r3NLi1S3ntNTExwIxSEIiuw8N5rohCQE5i4XEezS0AMJNu5sSxsutPpZpeAGMgluQkxwvG3DwAgarGbPP+Lv/gLveUtb9Hv/u7v6rjjjtPnPvc5tbe364tf/GKzS4uU9175fJ5BAUKRFVh4Sfmy+Ng8TBxrrcIgkc00uwTEgJPUnkqxbBhCZZKcUxCOv30AAFGL1eR5qVTSz372M+3cubPWlkgktHPnTv34xz9uYmUAAAAAAAAAgI0k1ewCGjE8PKxqtapt27YtaN+2bZvuueeeJZ9TLBZVLB640dnExIQkaXx8XEEQSJpbJ805J+/9gnesw9r3P3+17YlEYtG+l2sPgkBTU1PKZrO19dympqflnti/937BFaSrbQ/qamm0PbHEvhttX6rG6vh47ec4s8Saqk5LX0G71vbxqZm5Gpf4KGAjr99qM7aa7AVBoMnJSWUyGSWTyTVnbz37NDM9Je+9KvnZhfVr7a/fotdueu70tj9j1fHxSPrUKueIRe1TM7Wfy1L/z3vvNTUjZb0WrBFZv/3kbF7T+ULtsfV+nZZqn5xNNLT9Wtpn8iXN5te2pmpqNh9pjYlCccn2olv9+tKzhbk+J1TUbDH8ZqCJQkHBMtvlS+vwPry33ZC0WFj4WlVSjd3IdLZQluRUXkVfioW8SqlK7fv5V83W/w5bqn22Ul7ikfprbxe3F4tFlZIF49YH2ouJAz+ruX4v9wxL9Su37x9nlQsFVeb9bIuFlTPqM81bz7hcOPBpirCeNvJzj6J9/mvZiNITfWy1PjlJRUmlQmFdE9ns18lSY6Ptm6lPS+W8UM2oWFq/88Tic2F9Rbb24jK/Q8rFJ2pd4ddiI+u4p1NVTaf3Py9YeeNlTM7ml/z7Zk1/E84bU0cyhq3bd1j7/r99stmsksnkuozLp6ZnFtW4/5j1VtNev8xMLP/WkDQ5OSlJXPUPYMOL1eT5alx55ZW6/PLLF7U/5SlPaUI1AABgM7q+2QUAAABEYGpqSj09Pc0uAwAiE6vJ84GBASWTSQ0NDS1oHxoa0vbt25d8zh//8R/r0ksvrX0fBIFGR0fV398fqztyT05O6vDDD9dDDz2k7u7uZpeDFkZWYEFOYEVWYEFOYEVWYEFOYEVWmsd7r6mpKR166KHNLgUAIhWryfNMJqOTTjpJ3/ve9/SqV71K0txk+Pe+9z1ddNFFSz4nm80qm114o7MtW7ZEXGl0uru7GRTAhKzAgpzAiqzAgpzAiqzAgpzAiqw0B1ecA9gMYjV5LkmXXnqpzj//fJ188sk65ZRT9MlPflIzMzP63d/93WaXBgAAAAAAAADYIGI3ef5bv/Vb2rdvnz74wQ/q8ccf17Oe9SzdeOONi24iCgAAAAAAAADAasVu8lySLrroomWXadmostmsLrvsskVL0AD1yAosyAmsyAosyAmsyAosyAmsyAoAIGrOe++bXQQAAAAAAAAAAK0k0ewCAAAAAAAAAABoNUyeAwAAAAAAAABQh8lzAAAAAAAAAADqMHneRFdddZWOOOIItbW16dRTT9V//Md/LLvttddeK+fcgv/a2toWbHPBBRcs2ubss8+OuhuIWCM5kaTx8XFdeOGFOuSQQ5TNZnXMMcfou9/97pr2iXhY76x86EMfWnROedrTnhZ1NxCxRnLy4he/eFEGnHP6X//rf9W28d7rgx/8oA455BDlcjnt3LlT991338HoCiK23llhnLIxNfq755Of/KSOPfZY5XI5HX744brkkktUKBTWtE/Ew3pnhXHKxtRITsrlsq644godddRRamtr04knnqgbb7xxTfsEAGARj6b42te+5jOZjP/iF7/o//u//9u/5S1v8Vu2bPFDQ0NLbn/NNdf47u5u/9hjj9X+e/zxxxdsc/755/uzzz57wTajo6MHozuISKM5KRaL/uSTT/Yve9nL/G233eZ3797tv//97/s77rhj1ftEPESRlcsuu8w/4xnPWHBO2bdv38HqEiLQaE5GRkYWvP533XWXTyaT/pprrqlt86d/+qe+p6fH33DDDf7OO+/0r3jFK/yOHTt8Pp8/SL1CFKLICuOUjafRnHzlK1/x2WzWf+UrX/G7d+/2//Iv/+IPOeQQf8kll6x6n4iHKLLCOGXjaTQn733ve/2hhx7qv/Od7/j777/ff+Yzn/FtbW3+9ttvX/U+AQCox+R5k5xyyin+wgsvrH1frVb9oYce6q+88solt7/mmmt8T0/Pivs8//zz/Stf+cp1rBLN1mhOPvvZz/ojjzzSl0qlddsn4iGKrFx22WX+xBNPXO9S0URr/f//E5/4hO/q6vLT09Pee++DIPDbt2/3f/7nf17bZvz/b+/eg6OszjiO/5KYG5AQrknIYC5r0AhBMQwpCRAMVAjKRRlJRLnVEERopQotYmPAXKhQ0dS01ozY0IHCQAGROxUIikRQWqvigLkBFQEhQyRcA9nTP5zsuJsAIWTJpd/PDDN5z3ve8z5neXbn7LPvvltebjw9Pc3y5csbNnjcVg2dK8awTmmJbjZPpk2bZuLj4+3ann/+eRMbG1vvMdE8OCNXWKe0PDebJ4GBgSYnJ8eu7bHHHjNPPvlkvccEAMARt21pBJWVldq/f78GDx5sa3N1ddXgwYNVUFBwzePOnTun4OBgde3aVSNHjtSBAwdq9MnPz1fnzp119913a+rUqSorK3PKHOB89cmT999/X3379tW0adPk7++vHj16KCsrS1VVVfUeE02fM3KlWmFhobp06aKwsDA9+eSTOnr0qFPnAudpiOf/4sWLlZSUpNatW0uSSktLdeLECbsx27Ztq+joaF5TmjFn5Eo11iktR33yJCYmRvv377fdMqGkpESbNm3SsGHD6j0mmj5n5Eo11iktR33y5PLlyzVuZert7a3du3fXe0wAABxRPG8Ep0+fVlVVlfz9/e3a/f39deLEiVqPufvuu/Xuu+9q3bp1Wrp0qaxWq2JiYvTtt9/a+gwdOlR/+9vftH37dr366qvatWuXEhISahTD0DzUJ09KSkr0j3/8Q1VVVdq0aZNSU1P12muvKSMjo95joulzRq5IUnR0tPLy8rRlyxa99dZbKi0tVf/+/VVRUeHU+cA5bvX5v2/fPn311VdKTk62tVUfx2tKy+KMXJFYp7Q09cmTsWPH6pVXXlG/fv3k7u4ui8WigQMHas6cOfUeE02fM3JFYp3S0tQnT4YMGaJFixapsLBQVqtV//znP7VmzRodP3683mMCAODojsYOAHXTt29f9e3b17YdExOjiIgIvf3220pPT5ckJSUl2fZHRkaqZ8+eslgsys/P16BBg257zLj9rFarOnfurNzcXLm5uSkqKkrHjh3TwoULlZaW1tjhoQmpS64kJCTY+vfs2VPR0dEKDg7WypUr9fTTTzdW6GgkixcvVmRkpPr06dPYoaCJu1ausE5Bfn6+srKy9Oc//1nR0dEqKirSc889p/T0dKWmpjZ2eGhC6pIrrFOQnZ2tyZMn65577pGLi4ssFosmTZqkd999t7FDAwC0IFx53gg6duwoNzc3nTx50q795MmTCggIqNMY7u7u6tWrl4qKiq7ZJywsTB07drxuHzRd9cmTwMBAdevWTW5ubra2iIgInThxQpWVlQ2Se2h6nJErtfHz81O3bt14TWmmbuX5f/78ea1YsaJGMaL6OF5TWhZn5EptWKc0b/XJk9TUVI0bN07JycmKjIzUo48+qqysLM2fP19Wq5V1SgvljFypDeuU5q0+edKpUye99957On/+vI4cOaKDBw+qTZs2CgsLq/eYAAA4onjeCDw8PBQVFaXt27fb2qxWq7Zv3253dfn1VFVV6csvv1RgYOA1+3z77bcqKyu7bh80XfXJk9jYWBUVFdm9qfjmm28UGBgoDw+PBsk9ND3OyJXanDt3TsXFxbymNFO38vxftWqVLl++rKeeesquPTQ0VAEBAXZjnj17Vnv37uU1pRlzRq7UhnVK81afPLlw4YJcXe3fflR/iGuMYZ3SQjkjV2rDOqV5u5Xnv5eXl4KCgnT16lWtXr1aI0eOvOUxAQCwaexfLP1/tWLFCuPp6Wny8vLM119/bVJSUoyfn585ceKEMcaYcePGmdmzZ9v6z5s3z2zdutUUFxeb/fv3m6SkJOPl5WUOHDhgjDGmoqLCzJw50xQUFJjS0lLzwQcfmAceeMCEh4ebS5cuNcoccetuNk+OHj1qfHx8zPTp082hQ4fMhg0bTOfOnU1GRkadx0Tz5IxceeGFF0x+fr4pLS01H3/8sRk8eLDp2LGj+f7772/7/NAwbjZPqvXr188kJibWOubvf/974+fnZ9atW2e++OILM3LkSBMaGmouXrzo1LnAuRo6V1intEw3mydpaWnGx8fHLF++3JSUlJht27YZi8VixowZU+cx0Tw5I1dYp7Q8N5snn3zyiVm9erUpLi42H374oYmPjzehoaHmzJkzdR4TAIAboXjeiN58801z5513Gg8PD9OnTx/zySef2PbFxcWZCRMm2LZnzJhh6+vv72+GDRtm/vWvf9n2X7hwwTz00EOmU6dOxt3d3QQHB5vJkyezKGgBbiZPjDFmz549Jjo62nh6epqwsDCTmZlprl69Wucx0Xw1dK4kJiaawMBA4+HhYYKCgkxiYqIpKiq6XdOBk9xsnhw8eNBIMtu2bat1PKvValJTU42/v7/x9PQ0gwYNMocOHXLmFHCbNGSusE5puW4mT65cuWLmzp1rLBaL8fLyMl27djXPPvusXaHrRmOi+WroXGGd0jLdTJ7k5+ebiIgI4+npaTp06GDGjRtnjh07dlNjAgBwIy7GXON7bwAAAAAAAAAA/J/inucAAAAAAAAAADigeA4AAAAAAAAAgAOK5wAAAAAAAAAAOKB4DgAAAAAAAACAA4rnAAAAAAAAAAA4oHgOAAAAAAAAAIADiucAAAAAAAAAADigeA4AAAAAAAAAgAOK5wAAANcxceJEtWnTpk59XVxcNHfuXOcGdA0DBw7UwIEDG+XcAAAAANASUTwHAABNSnFxsaZMmaKwsDB5eXnJ19dXsbGxys7O1sWLFxs7vGavsrJS2dnZ6tWrl3x9feXn56fu3bsrJSVFBw8ebOzwAAAAAKDJuKOxAwAAAKi2ceNGPf744/L09NT48ePVo0cPVVZWavfu3Zo1a5YOHDig3Nzcxg7zmi5evKg77mjay6vRo0dr8+bNeuKJJzR58mRduXJFBw8e1IYNGxQTE6N77rmnsUMEAAAAgCahab+7AwAA/zdKS0uVlJSk4OBg7dixQ4GBgbZ906ZNU1FRkTZu3NiIEd6Yl5dXY4dwXZ9++qk2bNigzMxMzZkzx25fTk6OysvLb1ssly5dkoeHh1xd+SIkAAAAgKaJdysAAKBJWLBggc6dO6fFixfbFc6r3XXXXXruueds21evXlV6erosFos8PT0VEhKiOXPm6PLly3bHhYSE6JFHHlF+fr569+4tb29vRUZGKj8/X5K0Zs0aRUZGysvLS1FRUfr3v/9da3wlJSUaMmSIWrdurS5duuiVV16RMcauj+M9z+fOnSsXFxcVFRVp4sSJ8vPzU9u2bTVp0iRduHChxjmWLl2qqKgoeXt7q3379kpKStJ///vfGv1yc3NlsVjk7e2tPn366KOPPrrm4/pTxcXFkqTY2Nga+9zc3NShQwe7tmPHjunpp59Wly5d5OnpqdDQUE2dOlWVlZV2j8vjjz+u9u3bq1WrVvrZz35W40OO/Px8ubi4aMWKFfrd736noKAgtWrVSmfPnpUk7d27V0OHDlXbtm3VqlUrxcXF6eOPP67TnAAAAADAWSieAwCAJmH9+vUKCwtTTExMnfonJyfr5Zdf1gMPPKDXX39dcXFxmj9/vpKSkmr0LSoq0tixYzV8+HDNnz9fZ86c0fDhw7Vs2TL9+te/1lNPPaV58+apuLhYY8aMkdVqtTu+qqpKQ4cOlb+/vxYsWKCoqCilpaUpLS2tTrGOGTNGFRUVmj9/vsaMGaO8vDzNmzfPrk9mZqbGjx+v8PBwLVq0SDNmzND27ds1YMAAuyvCFy9erClTpiggIEALFixQbGysRowYUWuR3VFwcLAkadmyZbp69ep1+3733Xfq06ePVqxYocTERP3xj3/UuHHjtGvXLlvh/+TJk4qJidHWrVv17LPPKjMzU5cuXdKIESO0du3aGmOmp6dr48aNmjlzprKysuTh4aEdO3ZowIABOnv2rNLS0pSVlaXy8nLFx8dr3759N5wTAAAAADiNAQAAaGQ//PCDkWRGjhxZp/6ff/65kWSSk5Pt2mfOnGkkmR07dtjagoODjSSzZ88eW9vWrVuNJOPt7W2OHDlia3/77beNJLNz505b24QJE4wk88tf/tLWZrVazcMPP2w8PDzMqVOnbO2STFpamm07LS3NSDK/+MUv7OJ89NFHTYcOHWzbhw8fNm5ubiYzM9Ou35dffmnuuOMOW3tlZaXp3Lmzuf/++83ly5dt/XJzc40kExcXd72HzVitVhMXF2ckGX9/f/PEE0+YP/3pT3aPQbXx48cbV1dX8+mnn9Y6jjHGzJgxw0gyH330kW1fRUWFCQ0NNSEhIaaqqsoYY8zOnTuNJBMWFmYuXLhgN054eLgZMmSIbUxjjLlw4YIJDQ01P//5z687HwAAAABwJq48BwAAja769h0+Pj516r9p0yZJ0vPPP2/X/sILL0hSjduG3Hvvverbt69tOzo6WpIUHx+vO++8s0Z7SUlJjXNOnz7d9reLi4umT5+uyspKffDBBzeM95lnnrHb7t+/v8rKymzzXrNmjaxWq8aMGaPTp0/b/gUEBCg8PFw7d+6UJH322Wf6/vvv9cwzz8jDw8M23sSJE9W2bdsbxuHi4qKtW7cqIyND7dq10/LlyzVt2jQFBwcrMTHRdoW71WrVe++9p+HDh6t37961jiP9+P/Qp08f9evXz7avTZs2SklJ0eHDh/X111/bHTdhwgR5e3vbtj///HMVFhZq7NixKisrs837/PnzGjRokD788MMa3wIAAAAAgNuFHwwFAACNztfXV5JUUVFRp/5HjhyRq6ur7rrrLrv2gIAA+fn56ciRI3btPy2QS7IVmrt27Vpr+5kzZ+zaXV1dFRYWZtfWrVs3SdLhw4dvGK/j+du1a2c7j6+vrwoLC2WMUXh4eK3Hu7u7S5JtXo793N3da8R3LZ6ennrppZf00ksv6fjx49q1a5eys7O1cuVKubu7a+nSpTp16pTOnj2rHj16XHesI0eO2D5w+KmIiAjb/p+OERoaatevsLBQ0o9F9Wv54YcfbI8XAAAAANxOFM8BAECj8/X1VZcuXfTVV1/d1HHVV0DfiJub2021G4cfAr1VNzqP1WqVi4uLNm/eXGvfNm3aNGg81QIDA5WUlKTRo0ere/fuWrlypfLy8pxyLkl2V51Lsl1VvnDhQt1///21HuOsuQMAAADAjVA8BwAATcIjjzyi3NxcFRQU2N1ipTbBwcGyWq0qLCy0XeUs/fgDluXl5bYfxmwoVqtVJSUltqvNJembb76RJIWEhNzy+BaLRcYYhYaG2p3DUfW8CgsLFR8fb2u/cuWKSktLdd9999Xr/O7u7urZs6cKCwt1+vRpde7cWb6+vjf8MCM4OFiHDh2q0X7w4EG7eK/FYrFI+vHDk8GDB9crdgAAAABwFu55DgAAmoTf/OY3at26tZKTk3Xy5Mka+4uLi5WdnS1JGjZsmCTpjTfesOuzaNEiSdLDDz/c4PHl5OTY/jbGKCcnR+7u7ho0aNAtj/3YY4/Jzc1N8+bNq3HVuzFGZWVlkqTevXurU6dO+stf/qLKykpbn7y8PNv9yq+nsLBQR48erdFeXl6ugoICtWvXTp06dZKrq6tGjRql9evX67PPPqvRvzrGYcOGad++fSooKLDtO3/+vHJzcxUSEqJ77733uvFERUXJYrHoD3/4g86dO1dj/6lTp244JwAAAABwFq48BwAATYLFYtHf//53JSYmKiIiQuPHj1ePHj1UWVmpPXv2aNWqVZo4caIk6b777tOECROUm5ur8vJyxcXFad++fVqyZIlGjRqlBx98sEFj8/Ly0pYtWzRhwgRFR0dr8+bN2rhxo+bMmaNOnTrd8vgWi0UZGRl68cUXdfjwYY0aNUo+Pj4qLS3V2rVrlZKSopkzZ8rd3V0ZGRmaMmWK4uPjlZiYqNLSUv31r3+t0z3P//Of/2js2LFKSEhQ//791b59ex07dkxLlizRd999pzfeeMN225isrCxt27ZNcXFxSklJUUREhI4fP65Vq1Zp9+7d8vPz0+zZs7V8+XIlJCToV7/6ldq3b68lS5aotLRUq1evlqvr9a/TcHV11TvvvKOEhAR1795dkyZNUlBQkI4dO6adO3fK19dX69evv+XHFwAAAADqg+I5AABoMkaMGKEvvvhCCxcu1Lp16/TWW2/J09NTPXv21GuvvabJkyfb+r7zzjsKCwtTXl6e1q5dq4CAAL344otKS0tr8Ljc3Ny0ZcsWTZ06VbNmzZKPj4/S0tL08ssvN9g5Zs+erW7duun111/XvHnzJP34g6YPPfSQRowYYeuXkpKiqqoqLVy4ULNmzVJkZKTef/99paam3vAcAwYMUHp6ujZv3qxFixbp1KlT8vHxUa9evfTqq69q9OjRtr5BQUHau3evUlNTtWzZMp09e1ZBQUFKSEhQq1atJEn+/v7as2ePfvvb3+rNN9/UpUuX1LNnT61fv77OV/8PHDhQBQUFSk9PV05Ojs6dO6eAgABFR0drypQpN/MQAgAAAECDcjEN/YtYAAAAAAAAAAA0c9zzHAAAAAAAAAAABxTPAQAAAAAAAABwQPEcAAAAAAAAAAAHFM8BAAAAAAAAAHBA8RwAAAAAAAAAAAcUzwEAAAAAAAAAcEDxHAAAAAAAAAAABxTPAQAAAAAAAABwQPEcAAAAAAAAAAAHFM8BAAAAAAAAAHBA8RwAAAAAAAAAAAcUzwEAAAAAAAAAcEDxHAAAAAAAAAAAB/8DV4utz3FqIQ0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import json\n", + "import matplotlib.pyplot as plt\n", + "from scipy import stats # Fixed: Added the missing import\n", + "import os\n", + "\n", + "def process_metrics_file(file_path):\n", + " try:\n", + " with open(file_path, 'r') as f:\n", + " data = json.load(f)\n", + " # Extract combined_scores from the results array\n", + " metrics = [result['metrics']['combined_score'] for result in data['results']]\n", + " return np.array(metrics)\n", + " except Exception as e:\n", + " print(f\"Error processing {file_path}: {e}\")\n", + " return np.array([])\n", + "\n", + "def create_multi_comparison_plot(directory_path):\n", + " # Define a color palette for multiple datasets\n", + " colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', \n", + " '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf']\n", + " \n", + " plt.figure(figsize=(15, 8))\n", + " \n", + " # Get all JSON files in the directory\n", + " json_files = [f for f in os.listdir(directory_path) if f.endswith('.json')]\n", + " \n", + " # Store statistics for later printing\n", + " all_stats = {}\n", + " \n", + " # Process each file\n", + " for idx, file_name in enumerate(json_files):\n", + " if 'category_averages' in file_name or 'visual_evidence' in file_name:\n", + " continue # Skip these files\n", + " \n", + " file_path = os.path.join(directory_path, file_name)\n", + " \n", + " # Get label from filename (remove _metrics and extension)\n", + " label = file_name.replace('_metrics_', '_').replace('.json', '')\n", + " label = label.split('_20')[0].replace('_', ' ').title()\n", + " \n", + " # Process metrics\n", + " metrics = process_metrics_file(file_path)\n", + " \n", + " if len(metrics) > 0:\n", + " try:\n", + " # Plot histogram\n", + " plt.hist(metrics, bins=30, density=True, alpha=0.3, \n", + " color=colors[idx % len(colors)], label=f'{label} Hist')\n", + " \n", + " # Plot KDE\n", + " kde = stats.gaussian_kde(metrics)\n", + " x_range = np.linspace(min(metrics), max(metrics), 100)\n", + " plt.plot(x_range, kde(x_range), '-', color=colors[idx % len(colors)], \n", + " lw=2, label=f'{label} Density')\n", + " \n", + " # Add mean line\n", + " mean_value = np.mean(metrics)\n", + " plt.axvline(mean_value, color=colors[idx % len(colors)], \n", + " linestyle='dashed', linewidth=1, alpha=0.5)\n", + " \n", + " # Store statistics\n", + " all_stats[label] = {\n", + " 'mean': mean_value,\n", + " 'median': np.median(metrics),\n", + " 'std': np.std(metrics),\n", + " 'count': len(metrics)\n", + " }\n", + " except Exception as e:\n", + " print(f\"Error plotting {label}: {e}\")\n", + " continue\n", + " \n", + " # Customize plot\n", + " plt.grid(True, linestyle='--', alpha=0.3)\n", + " plt.title('Distribution of Combined Scores Across Categories', fontsize=14, pad=20)\n", + " plt.xlabel('Combined Score', fontsize=12)\n", + " plt.ylabel('Density', fontsize=12)\n", + " \n", + " # Adjust legend\n", + " plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0.)\n", + " \n", + " # Adjust layout to prevent label cutoff\n", + " plt.tight_layout()\n", + " \n", + " # Print statistics\n", + " print(\"\\nCategory Statistics:\")\n", + " print(\"-\" * 60)\n", + " for category, stats in sorted(all_stats.items()):\n", + " print(f\"\\n{category}:\")\n", + " print(f\"Mean: {stats['mean']:.4f}\")\n", + " print(f\"Median: {stats['median']:.4f}\")\n", + " print(f\"Standard Deviation: {stats['std']:.4f}\")\n", + " print(f\"Number of samples: {stats['count']}\")\n", + " \n", + " return plt\n", + "\n", + "# Usage\n", + "directory_path = '/shared/shashmi/inversion/new_metric/sd3.5_scrapped/metrics_output'\n", + "plt = create_multi_comparison_plot(directory_path)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import json\n", + "import matplotlib.pyplot as plt\n", + "import os\n", + "from PIL import Image\n", + "import matplotlib.gridspec as gridspec\n", + "\n", + "def load_and_sort_category(file_path):\n", + " \"\"\"Load JSON file and sort results by combined score.\"\"\"\n", + " with open(file_path, 'r') as f:\n", + " data = json.load(f)\n", + " \n", + " # Sort results by combined score\n", + " sorted_results = sorted(data['results'], \n", + " key=lambda x: x['metrics']['combined_score'],\n", + " reverse=True)\n", + " return sorted_results\n", + "\n", + "def plot_image_comparison(original_path, inversion_path, score, fig, gs_pos, title):\n", + " \"\"\"Plot original and inverted images side by side.\"\"\"\n", + " try:\n", + " # Create a sub-gridspec for this comparison\n", + " gs_sub = gridspec.GridSpecFromSubplotSpec(1, 2, subplot_spec=gs_pos, wspace=0.1)\n", + " \n", + " # Load images\n", + " img_orig = Image.open(original_path)\n", + " img_inv = Image.open(inversion_path)\n", + " \n", + " # Convert RGBA to RGB if necessary\n", + " if img_orig.mode == 'RGBA':\n", + " img_orig = img_orig.convert('RGB')\n", + " if img_inv.mode == 'RGBA':\n", + " img_inv = img_inv.convert('RGB')\n", + " \n", + " # Create subplots\n", + " ax1 = fig.add_subplot(gs_sub[0])\n", + " ax2 = fig.add_subplot(gs_sub[1])\n", + " \n", + " # Plot images\n", + " ax1.imshow(img_orig)\n", + " ax1.set_title('Original')\n", + " ax1.axis('off')\n", + " \n", + " ax2.imshow(img_inv)\n", + " ax2.set_title('Inverted')\n", + " ax2.axis('off')\n", + " \n", + " # Add title above the pair\n", + " plt.suptitle(f'{title}\\nCombined Score: {score:.4f}', y=1.1)\n", + " \n", + " except Exception as e:\n", + " print(f\"Error loading images: {e}\")\n", + " print(f\"Original path: {original_path}\")\n", + " print(f\"Inversion path: {inversion_path}\")\n", + "\n", + "def visualize_category_extremes(directory_path):\n", + " \"\"\"Visualize top 2 and bottom 2 images from each category.\"\"\"\n", + " # Get all JSON files\n", + " json_files = [f for f in os.listdir(directory_path) \n", + " if f.endswith('.json') \n", + " and 'category_averages' not in f \n", + " and 'visual_evidence' not in f]\n", + " \n", + " for file_name in json_files:\n", + " try:\n", + " file_path = os.path.join(directory_path, file_name)\n", + " category = file_name.split('_metrics_')[0].replace('_', ' ').title()\n", + " print(f\"Processing {category}...\")\n", + " \n", + " # Load and sort results\n", + " sorted_results = load_and_sort_category(file_path)\n", + " \n", + " if not sorted_results:\n", + " print(f\"No results found for {category}\")\n", + " continue\n", + " \n", + " # Get top 2 and bottom 2\n", + " top_2 = sorted_results[:2]\n", + " bottom_2 = sorted_results[-2:]\n", + " \n", + " # Create figure and gridspec\n", + " fig = plt.figure(figsize=(20, 15))\n", + " gs = gridspec.GridSpec(2, 2, figure=fig, hspace=0.4, wspace=0.3)\n", + " \n", + " # Plot top 2\n", + " for idx, result in enumerate(top_2):\n", + " plot_image_comparison(\n", + " result['original_path'],\n", + " result['inversion_path'],\n", + " result['metrics']['combined_score'],\n", + " fig,\n", + " gs[0, idx],\n", + " f'Top {idx + 1}'\n", + " )\n", + " \n", + " # Plot bottom 2\n", + " for idx, result in enumerate(bottom_2):\n", + " plot_image_comparison(\n", + " result['original_path'],\n", + " result['inversion_path'],\n", + " result['metrics']['combined_score'],\n", + " fig,\n", + " gs[1, idx],\n", + " f'Bottom {idx + 1}'\n", + " )\n", + " \n", + " # Add category title\n", + " fig.suptitle(f'{category} - Top and Bottom Images', fontsize=16, y=1.02)\n", + " plt.show()\n", + " \n", + " except Exception as e:\n", + " print(f\"Error processing category {category}: {e}\")\n", + " continue\n", + "\n", + "# Usage\n", + "directory_path = '/shared/shashmi/inversion/new_metric/sd3.5_scrapped/metrics_output'\n", + "visualize_category_extremes(directory_path)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "inverter", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.15" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}