hip_filename
stringlengths
5
84
hip_content
stringlengths
79
9.69M
cuda_filename
stringlengths
4
83
cuda_content
stringlengths
19
9.69M
5963e4e2d0c02bcb408e394fe6db81d9d90d3ded.hip
// !!! This is a file automatically generated by hipify!!! #include <stdbool.h> #include <stdio.h> #include <string.h> #include <getopt.h> #include <hiprand/hiprand_kernel.h> #include <stdlib.h> #include <hip/hip_runtime.h> #include <sys/time.h> #include "set_dynamic_positions.cu" #include<chrono> #include<iostream> using namespace std; using namespace std::chrono; int blocks_[20][2] = {{8,8},{16,16},{24,24},{32,32},{1,64},{1,128},{1,192},{1,256},{1,320},{1,384},{1,448},{1,512},{1,576},{1,640},{1,704},{1,768},{1,832},{1,896},{1,960},{1,1024}}; int matrices_[7][2] = {{240,240},{496,496},{784,784},{1016,1016},{1232,1232},{1680,1680},{2024,2024}}; int main(int argc, char **argv) { hipSetDevice(0); char* p;int matrix_len=strtol(argv[1], &p, 10); for(int matrix_looper=0;matrix_looper<matrix_len;matrix_looper++){ for(int block_looper=0;block_looper<20;block_looper++){ int XSIZE=matrices_[matrix_looper][0],YSIZE=matrices_[matrix_looper][1],BLOCKX=blocks_[block_looper][0],BLOCKY=blocks_[block_looper][1]; float *arr = NULL; hipMalloc(&arr, XSIZE*YSIZE); float t = 1; int iXSIZE= XSIZE; int iYSIZE= YSIZE; while(iXSIZE%BLOCKX!=0) { iXSIZE++; } while(iYSIZE%BLOCKY!=0) { iYSIZE++; } dim3 gridBlock(iXSIZE/BLOCKX, iYSIZE/BLOCKY); dim3 threadBlock(BLOCKX, BLOCKY); hipFree(0);hipLaunchKernelGGL(( set_dynamic_positions), dim3(gridBlock),dim3(threadBlock), 0, 0, arr,t); hipDeviceSynchronize(); for (int loop_counter = 0; loop_counter < 10; ++loop_counter) {hipLaunchKernelGGL(( set_dynamic_positions), dim3(gridBlock),dim3(threadBlock), 0, 0, arr,t); } auto start = steady_clock::now(); for (int loop_counter = 0; loop_counter < 1000; loop_counter++) {hipLaunchKernelGGL(( set_dynamic_positions), dim3(gridBlock),dim3(threadBlock), 0, 0, arr,t); } auto end = steady_clock::now(); auto usecs = duration_cast<duration<float, microseconds::period> >(end - start); cout <<'['<<usecs.count()<<','<<'('<<BLOCKX<<','<<BLOCKY<<')' << ','<<'('<<XSIZE<<','<<YSIZE<<')'<<']' << endl; } }}
5963e4e2d0c02bcb408e394fe6db81d9d90d3ded.cu
#include <stdbool.h> #include <stdio.h> #include <string.h> #include <getopt.h> #include <curand_kernel.h> #include <stdlib.h> #include <cuda.h> #include <sys/time.h> #include "set_dynamic_positions.cu" #include<chrono> #include<iostream> using namespace std; using namespace std::chrono; int blocks_[20][2] = {{8,8},{16,16},{24,24},{32,32},{1,64},{1,128},{1,192},{1,256},{1,320},{1,384},{1,448},{1,512},{1,576},{1,640},{1,704},{1,768},{1,832},{1,896},{1,960},{1,1024}}; int matrices_[7][2] = {{240,240},{496,496},{784,784},{1016,1016},{1232,1232},{1680,1680},{2024,2024}}; int main(int argc, char **argv) { cudaSetDevice(0); char* p;int matrix_len=strtol(argv[1], &p, 10); for(int matrix_looper=0;matrix_looper<matrix_len;matrix_looper++){ for(int block_looper=0;block_looper<20;block_looper++){ int XSIZE=matrices_[matrix_looper][0],YSIZE=matrices_[matrix_looper][1],BLOCKX=blocks_[block_looper][0],BLOCKY=blocks_[block_looper][1]; float *arr = NULL; cudaMalloc(&arr, XSIZE*YSIZE); float t = 1; int iXSIZE= XSIZE; int iYSIZE= YSIZE; while(iXSIZE%BLOCKX!=0) { iXSIZE++; } while(iYSIZE%BLOCKY!=0) { iYSIZE++; } dim3 gridBlock(iXSIZE/BLOCKX, iYSIZE/BLOCKY); dim3 threadBlock(BLOCKX, BLOCKY); cudaFree(0); set_dynamic_positions<<<gridBlock,threadBlock>>>(arr,t); cudaDeviceSynchronize(); for (int loop_counter = 0; loop_counter < 10; ++loop_counter) { set_dynamic_positions<<<gridBlock,threadBlock>>>(arr,t); } auto start = steady_clock::now(); for (int loop_counter = 0; loop_counter < 1000; loop_counter++) { set_dynamic_positions<<<gridBlock,threadBlock>>>(arr,t); } auto end = steady_clock::now(); auto usecs = duration_cast<duration<float, microseconds::period> >(end - start); cout <<'['<<usecs.count()<<','<<'('<<BLOCKX<<','<<BLOCKY<<')' << ','<<'('<<XSIZE<<','<<YSIZE<<')'<<']' << endl; } }}
e66766c56a72a262e9dbfce4114b35a23635f1de.hip
// !!! This is a file automatically generated by hipify!!! #include <stdbool.h> #include <stdio.h> #include <string.h> #include <getopt.h> #include <hiprand/hiprand_kernel.h> #include <stdlib.h> #include <hip/hip_runtime.h> #include <sys/time.h> #include "uplo_log10.cu" #include<chrono> #include<iostream> using namespace std; using namespace std::chrono; int blocks_[20][2] = {{8,8},{16,16},{24,24},{32,32},{1,64},{1,128},{1,192},{1,256},{1,320},{1,384},{1,448},{1,512},{1,576},{1,640},{1,704},{1,768},{1,832},{1,896},{1,960},{1,1024}}; int matrices_[7][2] = {{240,240},{496,496},{784,784},{1016,1016},{1232,1232},{1680,1680},{2024,2024}}; int main(int argc, char **argv) { hipSetDevice(0); char* p;int matrix_len=strtol(argv[1], &p, 10); for(int matrix_looper=0;matrix_looper<matrix_len;matrix_looper++){ for(int block_looper=0;block_looper<20;block_looper++){ int XSIZE=matrices_[matrix_looper][0],YSIZE=matrices_[matrix_looper][1],BLOCKX=blocks_[block_looper][0],BLOCKY=blocks_[block_looper][1]; const int sd = 1; const int unit = 1; const int bottom = 1; const REAL *a = NULL; hipMalloc(&a, XSIZE*YSIZE); const int offset_a = 1; const int ld_a = 1; REAL *b = NULL; hipMalloc(&b, XSIZE*YSIZE); const int offset_b = 1; const int ld_b = 1; int iXSIZE= XSIZE; int iYSIZE= YSIZE; while(iXSIZE%BLOCKX!=0) { iXSIZE++; } while(iYSIZE%BLOCKY!=0) { iYSIZE++; } dim3 gridBlock(iXSIZE/BLOCKX, iYSIZE/BLOCKY); dim3 threadBlock(BLOCKX, BLOCKY); hipFree(0);hipLaunchKernelGGL(( uplo_log10), dim3(gridBlock),dim3(threadBlock), 0, 0, sd,unit,bottom,a,offset_a,ld_a,b,offset_b,ld_b); hipDeviceSynchronize(); for (int loop_counter = 0; loop_counter < 10; ++loop_counter) {hipLaunchKernelGGL(( uplo_log10), dim3(gridBlock),dim3(threadBlock), 0, 0, sd,unit,bottom,a,offset_a,ld_a,b,offset_b,ld_b); } auto start = steady_clock::now(); for (int loop_counter = 0; loop_counter < 1000; loop_counter++) {hipLaunchKernelGGL(( uplo_log10), dim3(gridBlock),dim3(threadBlock), 0, 0, sd,unit,bottom,a,offset_a,ld_a,b,offset_b,ld_b); } auto end = steady_clock::now(); auto usecs = duration_cast<duration<float, microseconds::period> >(end - start); cout <<'['<<usecs.count()<<','<<'('<<BLOCKX<<','<<BLOCKY<<')' << ','<<'('<<XSIZE<<','<<YSIZE<<')'<<']' << endl; } }}
e66766c56a72a262e9dbfce4114b35a23635f1de.cu
#include <stdbool.h> #include <stdio.h> #include <string.h> #include <getopt.h> #include <curand_kernel.h> #include <stdlib.h> #include <cuda.h> #include <sys/time.h> #include "uplo_log10.cu" #include<chrono> #include<iostream> using namespace std; using namespace std::chrono; int blocks_[20][2] = {{8,8},{16,16},{24,24},{32,32},{1,64},{1,128},{1,192},{1,256},{1,320},{1,384},{1,448},{1,512},{1,576},{1,640},{1,704},{1,768},{1,832},{1,896},{1,960},{1,1024}}; int matrices_[7][2] = {{240,240},{496,496},{784,784},{1016,1016},{1232,1232},{1680,1680},{2024,2024}}; int main(int argc, char **argv) { cudaSetDevice(0); char* p;int matrix_len=strtol(argv[1], &p, 10); for(int matrix_looper=0;matrix_looper<matrix_len;matrix_looper++){ for(int block_looper=0;block_looper<20;block_looper++){ int XSIZE=matrices_[matrix_looper][0],YSIZE=matrices_[matrix_looper][1],BLOCKX=blocks_[block_looper][0],BLOCKY=blocks_[block_looper][1]; const int sd = 1; const int unit = 1; const int bottom = 1; const REAL *a = NULL; cudaMalloc(&a, XSIZE*YSIZE); const int offset_a = 1; const int ld_a = 1; REAL *b = NULL; cudaMalloc(&b, XSIZE*YSIZE); const int offset_b = 1; const int ld_b = 1; int iXSIZE= XSIZE; int iYSIZE= YSIZE; while(iXSIZE%BLOCKX!=0) { iXSIZE++; } while(iYSIZE%BLOCKY!=0) { iYSIZE++; } dim3 gridBlock(iXSIZE/BLOCKX, iYSIZE/BLOCKY); dim3 threadBlock(BLOCKX, BLOCKY); cudaFree(0); uplo_log10<<<gridBlock,threadBlock>>>(sd,unit,bottom,a,offset_a,ld_a,b,offset_b,ld_b); cudaDeviceSynchronize(); for (int loop_counter = 0; loop_counter < 10; ++loop_counter) { uplo_log10<<<gridBlock,threadBlock>>>(sd,unit,bottom,a,offset_a,ld_a,b,offset_b,ld_b); } auto start = steady_clock::now(); for (int loop_counter = 0; loop_counter < 1000; loop_counter++) { uplo_log10<<<gridBlock,threadBlock>>>(sd,unit,bottom,a,offset_a,ld_a,b,offset_b,ld_b); } auto end = steady_clock::now(); auto usecs = duration_cast<duration<float, microseconds::period> >(end - start); cout <<'['<<usecs.count()<<','<<'('<<BLOCKX<<','<<BLOCKY<<')' << ','<<'('<<XSIZE<<','<<YSIZE<<')'<<']' << endl; } }}
366d767d3497c538983bfee836c928f38054fdee.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "includes.h" __global__ void matchValidity_kernel(float *d_flow, float *d_disparity, int n_cols, int n_rows) { unsigned int x = blockIdx.x * blockDim.x + threadIdx.x; unsigned int y = blockIdx.y * blockDim.y + threadIdx.y; if ((x < n_cols) & (y < n_rows)) // are we in the image? { unsigned int ind = x + y * n_cols; bool valid = (isfinite(d_flow[ind]) && isfinite(d_disparity[ind])); if (!valid) { d_flow[ind] = nanf(""); d_flow[ind + n_cols * n_rows] = nanf(""); d_disparity[ind] = nanf(""); } } }
366d767d3497c538983bfee836c928f38054fdee.cu
#include "includes.h" __global__ void matchValidity_kernel(float *d_flow, float *d_disparity, int n_cols, int n_rows) { unsigned int x = blockIdx.x * blockDim.x + threadIdx.x; unsigned int y = blockIdx.y * blockDim.y + threadIdx.y; if ((x < n_cols) & (y < n_rows)) // are we in the image? { unsigned int ind = x + y * n_cols; bool valid = (isfinite(d_flow[ind]) && isfinite(d_disparity[ind])); if (!valid) { d_flow[ind] = nanf(""); d_flow[ind + n_cols * n_rows] = nanf(""); d_disparity[ind] = nanf(""); } } }
0bf107cab9f91024a61b0b5e13ab6087cb3d07d5.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "debug_rendering.h" // Kernel that writes the depth image to the OpenGL PBO directly. __global__ void sendDepthImageBufferToPBO(float4* PBOpos, glm::vec2 resolution, DPixel* depthBuffer){ int r = (blockIdx.y * blockDim.y) + threadIdx.y; int c = (blockIdx.x * blockDim.x) + threadIdx.x; int i = (r * resolution.x) + c; if(r<resolution.y && c<resolution.x) { // Cast to float for storage float depth = depthBuffer[i].depth; // Each thread writes one pixel location in the texture (textel) // Store depth in every component except alpha PBOpos[i].x = depth; PBOpos[i].y = depth; PBOpos[i].z = depth; PBOpos[i].w = 1.0f; } } // Kernel that writes the image to the OpenGL PBO directly. __global__ void sendColorImageBufferToPBO(float4* PBOpos, glm::vec2 resolution, ColorPixel* colorBuffer){ int r = (blockIdx.y * blockDim.y) + threadIdx.y; int c = (blockIdx.x * blockDim.x) + threadIdx.x; int i = (r * resolution.x) + c; if(r<resolution.y && c<resolution.x){ glm::vec3 color; color.r = colorBuffer[i].r/255.0f; color.g = colorBuffer[i].g/255.0f; color.b = colorBuffer[i].b/255.0f; // Each thread writes one pixel location in the texture (textel) PBOpos[i].x = color.r; PBOpos[i].y = color.g; PBOpos[i].z = color.b; PBOpos[i].w = 1.0f; } } // Draws depth image buffer to the texture. // Texture width and height must match the resolution of the depth image. // Returns false if width or height does not match, true otherwise __host__ void drawDepthImageBufferToPBO(float4* dev_PBOpos, DPixel* dev_depthImageBuffer, int texWidth, int texHeight) { int tileSize = 16; dim3 threadsPerBlock(tileSize, tileSize); dim3 fullBlocksPerGrid((int)ceil(float(texWidth)/float(tileSize)), (int)ceil(float(texHeight)/float(tileSize))); hipLaunchKernelGGL(( sendDepthImageBufferToPBO), dim3(fullBlocksPerGrid), dim3(threadsPerBlock), 0, 0, dev_PBOpos, glm::vec2(texWidth, texHeight), dev_depthImageBuffer); } // Draws color image buffer to the texture. // Texture width and height must match the resolution of the color image. // Returns false if width or height does not match, true otherwise // dev_PBOpos must be a CUDA device pointer __host__ void drawColorImageBufferToPBO(float4* dev_PBOpos, ColorPixel* dev_colorImageBuffer, int texWidth, int texHeight) { int tileSize = 16; dim3 threadsPerBlock(tileSize, tileSize); dim3 fullBlocksPerGrid((int)ceil(float(texWidth)/float(tileSize)), (int)ceil(float(texHeight)/float(tileSize))); hipLaunchKernelGGL(( sendColorImageBufferToPBO), dim3(fullBlocksPerGrid), dim3(threadsPerBlock), 0, 0, dev_PBOpos, glm::vec2(texWidth, texHeight), dev_colorImageBuffer); } __global__ void sendFloat3SOAToPBO(float4* pbo, float* x_src, float* y_src, float* z_src, float w, int xRes, int yRes, int pboXRes, int pboYRes) { int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int i = (y * xRes) + x; int pboi = (y * pboXRes) + x; if(y < yRes && x < xRes){ // Each thread writes one pixel location in the texture (textel) pbo[pboi].x = x_src[i]; pbo[pboi].y = y_src[i]; pbo[pboi].z = z_src[i]; pbo[pboi].w = w; } } __global__ void sendFloat1SOAToPBO(float4* pbo, float* x_src, float w, int xRes, int yRes, int pboXRes, int pboYRes) { int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int i = (y * xRes) + x; int pboi = (y * pboXRes) + x; if(y < yRes && x < xRes){ // Each thread writes one pixel location in the texture (textel) pbo[pboi].x = x_src[i]; pbo[pboi].y = w; pbo[pboi].z = w; pbo[pboi].w = w; } } __global__ void clearPBOKernel(float4* pbo, int xRes, int yRes, float clearValue) { int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int i = (y * xRes) + x; if(y < yRes && x < xRes){ // Each thread writes one pixel location in the texture (textel) // float4 clear; clear.x = clearValue; clear.y = clearValue; clear.z = clearValue; clear.w = clearValue; pbo[i] = clear; } } __host__ void clearPBO(float4* pbo, int xRes, int yRes, float clearValue) { int tileSize = 16; dim3 threadsPerBlock(tileSize, tileSize); dim3 fullBlocksPerGrid((int)ceil(float(xRes)/float(tileSize)), (int)ceil(float(yRes)/float(tileSize))); hipLaunchKernelGGL(( clearPBOKernel), dim3(fullBlocksPerGrid), dim3(threadsPerBlock), 0, 0, pbo, xRes, yRes, clearValue); } __host__ void drawVMaptoPBO(float4* pbo, Float3SOAPyramid vmap, int level, int xRes, int yRes) { int tileSize = 16; if(level < NUM_PYRAMID_LEVELS) { int scaledXRes = xRes >> level; int scaledYRes = yRes >> level; dim3 threadsPerBlock(tileSize, tileSize); dim3 fullBlocksPerGrid((int)ceil(float(scaledXRes)/float(tileSize)), (int)ceil(float(scaledYRes)/float(tileSize))); hipLaunchKernelGGL(( sendFloat3SOAToPBO), dim3(fullBlocksPerGrid), dim3(threadsPerBlock), 0, 0, pbo, vmap.x[level], vmap.y[level], vmap.z[level], 1.0, scaledXRes, scaledYRes, xRes, yRes); } } __host__ void drawNMaptoPBO(float4* pbo, Float3SOAPyramid nmap, int level, int xRes, int yRes) { int tileSize = 16; if(level < NUM_PYRAMID_LEVELS) { int scaledXRes = xRes >> level; int scaledYRes = yRes >> level; dim3 threadsPerBlock(tileSize, tileSize); dim3 fullBlocksPerGrid((int)ceil(float(scaledXRes)/float(tileSize)), (int)ceil(float(scaledYRes)/float(tileSize))); hipLaunchKernelGGL(( sendFloat3SOAToPBO), dim3(fullBlocksPerGrid), dim3(threadsPerBlock), 0, 0, pbo, nmap.x[level], nmap.y[level], nmap.z[level], 0.0, scaledXRes, scaledYRes, xRes, yRes); } } __host__ void drawRGBMaptoPBO(float4* pbo, Float3SOAPyramid rgbMap, int level, int xRes, int yRes) { int tileSize = 16; if(level < NUM_PYRAMID_LEVELS) { int scaledXRes = xRes >> level; int scaledYRes = yRes >> level; dim3 threadsPerBlock(tileSize, tileSize); dim3 fullBlocksPerGrid((int)ceil(float(scaledXRes)/float(tileSize)), (int)ceil(float(scaledYRes)/float(tileSize))); hipLaunchKernelGGL(( sendFloat3SOAToPBO), dim3(fullBlocksPerGrid), dim3(threadsPerBlock), 0, 0, pbo, rgbMap.x[level], rgbMap.y[level], rgbMap.z[level], 1.0, scaledXRes, scaledYRes, xRes, yRes); } } __host__ void drawCurvaturetoPBO(float4* pbo, float* curvature, int xRes, int yRes) { int tileSize = 16; dim3 threadsPerBlock(tileSize, tileSize); dim3 fullBlocksPerGrid((int)ceil(float(xRes)/float(tileSize)), (int)ceil(float(yRes)/float(tileSize))); hipLaunchKernelGGL(( sendFloat1SOAToPBO), dim3(fullBlocksPerGrid), dim3(threadsPerBlock), 0, 0, pbo, curvature, 0.0, xRes, yRes, xRes, yRes); } __global__ void sendInt1SOAToPBO(float4* pbo, int* x_src, int xRes, int yRes, int pboXRes, int pboYRes) { int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int i = (y * xRes) + x; int pboi = (y * pboXRes) + x; if(y < yRes && x < xRes){ // Each thread writes one pixel location in the texture (textel) pbo[pboi].x = x_src[i]; pbo[pboi].y = 0.0; pbo[pboi].z = 0.0; pbo[pboi].w = 0.0; } } __host__ void drawNormalVoxelsToPBO(float4* pbo, int* voxels, int pboXRes, int pboYRes, int voxelAzimuthBins, int voxelPolarBins) { int tileSize = 16; dim3 threadsPerBlock(tileSize, tileSize); dim3 fullBlocksPerGrid((int)ceil(float(voxelAzimuthBins)/float(tileSize)), (int)ceil(float(voxelPolarBins)/float(tileSize))); hipLaunchKernelGGL(( sendInt1SOAToPBO), dim3(fullBlocksPerGrid), dim3(threadsPerBlock), 0, 0, pbo, voxels, voxelAzimuthBins, voxelPolarBins, pboXRes, pboYRes); } __global__ void sendHistogramSOAToPBO(float4* pbo, int* binsX, int* binsY, int* binsZ, int length, int pboXRes, int pboYRes) { int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int pboi = (y * pboXRes) + x; if(y < pboYRes && x < length){ // Each thread writes one pixel location in the texture (textel) pbo[pboi].x = binsX[x]; pbo[pboi].y = binsY[x]; pbo[pboi].z = binsZ[x]; pbo[pboi].w = 0.0; } } __host__ void drawDecoupledHistogramsToPBO(float4* pbo, Int3SOA histograms, int length, int pboXRes, int pboYRes) { int tileSize = 16; assert(length < pboXRes); dim3 threadsPerBlock(tileSize, tileSize); dim3 fullBlocksPerGrid((int)ceil(float(length)/float(tileSize)), (int)ceil(float(pboYRes)/float(tileSize))); hipLaunchKernelGGL(( sendHistogramSOAToPBO), dim3(fullBlocksPerGrid), dim3(threadsPerBlock), 0, 0, pbo, histograms.x, histograms.y, histograms.z, length, pboXRes, pboYRes); } __global__ void sendInt3SOAToPBO(float4* pbo, int* x_src, int* y_src, int* z_src, int xRes, int yRes, int pboXRes, int pboYRes) { int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int i = (y * xRes) + x; int pboi = (y * pboXRes) + x; if(y < yRes && x < xRes){ // Each thread writes one pixel location in the texture (textel) pbo[pboi].x = x_src[i]; pbo[pboi].y = y_src[i]; pbo[pboi].z = z_src[i]; pbo[pboi].w = 0.0; } } __global__ void sendSegmentDataToPBO(float4* pbo, int* segments, float* projectedDistances, int xRes, int yRes, int pboXRes, int pboYRes) { int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int i = (y * xRes) + x; int pboi = (y * pboXRes) + x; if(y < yRes && x < xRes){ // Each thread writes one pixel location in the texture (textel) pbo[pboi].x = segments[i]; pbo[pboi].y = projectedDistances[i]; pbo[pboi].z = 0.0; pbo[pboi].w = 0.0; } } __host__ void drawNormalSegmentsToPBO(float4* pbo, int* normalSegments, float* projectedDistanceMap, int xRes, int yRes, int pboXRes, int pboYRes) { int tileSize = 16; dim3 threadsPerBlock(tileSize, tileSize); dim3 fullBlocksPerGrid((int)ceil(float(xRes)/float(tileSize)), (int)ceil(float(yRes)/float(tileSize))); hipLaunchKernelGGL(( sendSegmentDataToPBO), dim3(fullBlocksPerGrid), dim3(threadsPerBlock), 0, 0, pbo, normalSegments, projectedDistanceMap, xRes, yRes, pboXRes, pboYRes); } __global__ void sendFinalSegmentDataToPBO(float4* pbo, int* segments, float* projectedDistances, float* projectedSx, float* projectedSy, int xRes, int yRes, int pboXRes, int pboYRes) { int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int i = (y * xRes) + x; int pboi = (y * pboXRes) + x; if(y < yRes && x < xRes){ // Each thread writes one pixel location in the texture (textel) pbo[pboi].x = segments[i]; pbo[pboi].y = projectedDistances[i]; pbo[pboi].z = projectedSx[i]; pbo[pboi].w = projectedSy[i]; } } __host__ void drawSegmentsDataToPBO(float4* pbo, int* normalSegments, float* projectedDistanceMap, float* projectedSx, float* projectedSy, int xRes, int yRes, int pboXRes, int pboYRes) { int tileSize = 16; dim3 threadsPerBlock(tileSize, tileSize); dim3 fullBlocksPerGrid((int)ceil(float(xRes)/float(tileSize)), (int)ceil(float(yRes)/float(tileSize))); hipLaunchKernelGGL(( sendFinalSegmentDataToPBO), dim3(fullBlocksPerGrid), dim3(threadsPerBlock), 0, 0, pbo, normalSegments, projectedDistanceMap, projectedSx, projectedSy, xRes, yRes, pboXRes, pboYRes); } __global__ void drawScaledHistogramToPBOKernel(float4* pbo, int* hist, glm::vec3 color, float scaleInv, int length, int pboXRes, int pboYRes) { int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int pboi = (y * pboXRes) + x; if(y < pboYRes && x < length){ // Each thread writes one pixel location in the texture (textel) pbo[pboi].x = color.x; pbo[pboi].y = color.y; pbo[pboi].z = color.z; pbo[pboi].w = hist[x] * scaleInv; } } __host__ void drawScaledHistogramToPBO(float4* pbo, int* histogram, glm::vec3 color, int maxValue, int length, int pboXRes, int pboYRes) { int tileSize = 16; assert(length < pboXRes); dim3 threadsPerBlock(tileSize, tileSize); dim3 fullBlocksPerGrid((int)ceil(float(length)/float(tileSize)), (int)ceil(float(pboYRes)/float(tileSize))); hipLaunchKernelGGL(( drawScaledHistogramToPBOKernel), dim3(fullBlocksPerGrid),dim3(threadsPerBlock), 0, 0, pbo, histogram, color, float(1.0f/maxValue), length, pboXRes, pboYRes); } __global__ void drawPlaneProjectedTexturetoPBOKernel(float4* pbo, Float4SOA projectedTexture, int texWidth, int texHeight, int texBufferWidth, int pboXRes, int pboYRes) { int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int pboi = (y * pboXRes) + x; if(x < pboXRes && y < pboYRes){ //Calculate Scale recip int scale = 1; if(texWidth > pboXRes || texHeight > pboYRes) { scale = glm::max(ceil(texWidth/float(pboXRes)),ceil(texHeight/float(pboYRes))); } x*=scale; y*=scale; int i = (y * texBufferWidth) + x; //TODO: Texture oversize scaling float4 texVal = {CUDART_NAN_F,CUDART_NAN_F,CUDART_NAN_F,CUDART_NAN_F}; if(x < texWidth && y < texHeight) { texVal.x = projectedTexture.x[i]; texVal.y = projectedTexture.y[i]; texVal.z = projectedTexture.z[i]; texVal.w = projectedTexture.w[i]; } // Each thread writes one pixel location in the texture (textel) pbo[pboi] = texVal; } } __host__ void drawPlaneProjectedTexturetoPBO(float4* pbo, Float4SOA projectedTexture, int texWidth, int texHeight, int texBufferWidth, int pboXRes, int pboYRes) { int tileSize = 16; dim3 threadsPerBlock(tileSize, tileSize); dim3 fullBlocksPerGrid((int)ceil(float(pboXRes)/float(tileSize)), (int)ceil(float(pboYRes)/float(tileSize))); //Parallel by PBO pixel (is for debug, not exact recreation) hipLaunchKernelGGL(( drawPlaneProjectedTexturetoPBOKernel), dim3(fullBlocksPerGrid), dim3(threadsPerBlock), 0, 0, pbo, projectedTexture, texWidth, texHeight, texBufferWidth, pboXRes, pboYRes); } __global__ void drawQuadtreetoPBOKernel(float4* pbo, int* quadTree, int texWidth, int texHeight, int texBufferWidth, int pboXRes, int pboYRes) { int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int pboi = (y * pboXRes) + x; if(x < pboXRes && y < pboYRes){ //Calculate Scale recip int scale = 1; if(texWidth > pboXRes || texHeight > pboYRes) { scale = glm::max(ceil(texWidth/float(pboXRes)),ceil(texHeight/float(pboYRes))); } x*=scale; y*=scale; int i = (y * texBufferWidth) + x; //TODO: Texture oversize scaling float4 texVal = {CUDART_NAN_F,CUDART_NAN_F,CUDART_NAN_F,CUDART_NAN_F}; if(x < texWidth && y < texHeight) { texVal.x = quadTree[i]; } // Each thread writes one pixel location in the texture (textel) pbo[pboi] = texVal; } } __host__ void drawQuadtreetoPBO(float4* pbo, int* dev_quadTree, int texWidth, int texHeight, int texBufferWidth, int pboXRes, int pboYRes) { int tileSize = 16; dim3 threadsPerBlock(tileSize, tileSize); dim3 fullBlocksPerGrid((int)ceil(float(pboXRes)/float(tileSize)), (int)ceil(float(pboYRes)/float(tileSize))); //Parallel by PBO pixel (is for debug, not exact recreation) hipLaunchKernelGGL(( drawQuadtreetoPBOKernel), dim3(fullBlocksPerGrid), dim3(threadsPerBlock), 0, 0, pbo, dev_quadTree, texWidth, texHeight, texBufferWidth, pboXRes, pboYRes); }
0bf107cab9f91024a61b0b5e13ab6087cb3d07d5.cu
#include "debug_rendering.h" // Kernel that writes the depth image to the OpenGL PBO directly. __global__ void sendDepthImageBufferToPBO(float4* PBOpos, glm::vec2 resolution, DPixel* depthBuffer){ int r = (blockIdx.y * blockDim.y) + threadIdx.y; int c = (blockIdx.x * blockDim.x) + threadIdx.x; int i = (r * resolution.x) + c; if(r<resolution.y && c<resolution.x) { // Cast to float for storage float depth = depthBuffer[i].depth; // Each thread writes one pixel location in the texture (textel) // Store depth in every component except alpha PBOpos[i].x = depth; PBOpos[i].y = depth; PBOpos[i].z = depth; PBOpos[i].w = 1.0f; } } // Kernel that writes the image to the OpenGL PBO directly. __global__ void sendColorImageBufferToPBO(float4* PBOpos, glm::vec2 resolution, ColorPixel* colorBuffer){ int r = (blockIdx.y * blockDim.y) + threadIdx.y; int c = (blockIdx.x * blockDim.x) + threadIdx.x; int i = (r * resolution.x) + c; if(r<resolution.y && c<resolution.x){ glm::vec3 color; color.r = colorBuffer[i].r/255.0f; color.g = colorBuffer[i].g/255.0f; color.b = colorBuffer[i].b/255.0f; // Each thread writes one pixel location in the texture (textel) PBOpos[i].x = color.r; PBOpos[i].y = color.g; PBOpos[i].z = color.b; PBOpos[i].w = 1.0f; } } // Draws depth image buffer to the texture. // Texture width and height must match the resolution of the depth image. // Returns false if width or height does not match, true otherwise __host__ void drawDepthImageBufferToPBO(float4* dev_PBOpos, DPixel* dev_depthImageBuffer, int texWidth, int texHeight) { int tileSize = 16; dim3 threadsPerBlock(tileSize, tileSize); dim3 fullBlocksPerGrid((int)ceil(float(texWidth)/float(tileSize)), (int)ceil(float(texHeight)/float(tileSize))); sendDepthImageBufferToPBO<<<fullBlocksPerGrid, threadsPerBlock>>>(dev_PBOpos, glm::vec2(texWidth, texHeight), dev_depthImageBuffer); } // Draws color image buffer to the texture. // Texture width and height must match the resolution of the color image. // Returns false if width or height does not match, true otherwise // dev_PBOpos must be a CUDA device pointer __host__ void drawColorImageBufferToPBO(float4* dev_PBOpos, ColorPixel* dev_colorImageBuffer, int texWidth, int texHeight) { int tileSize = 16; dim3 threadsPerBlock(tileSize, tileSize); dim3 fullBlocksPerGrid((int)ceil(float(texWidth)/float(tileSize)), (int)ceil(float(texHeight)/float(tileSize))); sendColorImageBufferToPBO<<<fullBlocksPerGrid, threadsPerBlock>>>(dev_PBOpos, glm::vec2(texWidth, texHeight), dev_colorImageBuffer); } __global__ void sendFloat3SOAToPBO(float4* pbo, float* x_src, float* y_src, float* z_src, float w, int xRes, int yRes, int pboXRes, int pboYRes) { int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int i = (y * xRes) + x; int pboi = (y * pboXRes) + x; if(y < yRes && x < xRes){ // Each thread writes one pixel location in the texture (textel) pbo[pboi].x = x_src[i]; pbo[pboi].y = y_src[i]; pbo[pboi].z = z_src[i]; pbo[pboi].w = w; } } __global__ void sendFloat1SOAToPBO(float4* pbo, float* x_src, float w, int xRes, int yRes, int pboXRes, int pboYRes) { int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int i = (y * xRes) + x; int pboi = (y * pboXRes) + x; if(y < yRes && x < xRes){ // Each thread writes one pixel location in the texture (textel) pbo[pboi].x = x_src[i]; pbo[pboi].y = w; pbo[pboi].z = w; pbo[pboi].w = w; } } __global__ void clearPBOKernel(float4* pbo, int xRes, int yRes, float clearValue) { int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int i = (y * xRes) + x; if(y < yRes && x < xRes){ // Each thread writes one pixel location in the texture (textel) // float4 clear; clear.x = clearValue; clear.y = clearValue; clear.z = clearValue; clear.w = clearValue; pbo[i] = clear; } } __host__ void clearPBO(float4* pbo, int xRes, int yRes, float clearValue) { int tileSize = 16; dim3 threadsPerBlock(tileSize, tileSize); dim3 fullBlocksPerGrid((int)ceil(float(xRes)/float(tileSize)), (int)ceil(float(yRes)/float(tileSize))); clearPBOKernel<<<fullBlocksPerGrid, threadsPerBlock>>>(pbo, xRes, yRes, clearValue); } __host__ void drawVMaptoPBO(float4* pbo, Float3SOAPyramid vmap, int level, int xRes, int yRes) { int tileSize = 16; if(level < NUM_PYRAMID_LEVELS) { int scaledXRes = xRes >> level; int scaledYRes = yRes >> level; dim3 threadsPerBlock(tileSize, tileSize); dim3 fullBlocksPerGrid((int)ceil(float(scaledXRes)/float(tileSize)), (int)ceil(float(scaledYRes)/float(tileSize))); sendFloat3SOAToPBO<<<fullBlocksPerGrid, threadsPerBlock>>>(pbo, vmap.x[level], vmap.y[level], vmap.z[level], 1.0, scaledXRes, scaledYRes, xRes, yRes); } } __host__ void drawNMaptoPBO(float4* pbo, Float3SOAPyramid nmap, int level, int xRes, int yRes) { int tileSize = 16; if(level < NUM_PYRAMID_LEVELS) { int scaledXRes = xRes >> level; int scaledYRes = yRes >> level; dim3 threadsPerBlock(tileSize, tileSize); dim3 fullBlocksPerGrid((int)ceil(float(scaledXRes)/float(tileSize)), (int)ceil(float(scaledYRes)/float(tileSize))); sendFloat3SOAToPBO<<<fullBlocksPerGrid, threadsPerBlock>>>(pbo, nmap.x[level], nmap.y[level], nmap.z[level], 0.0, scaledXRes, scaledYRes, xRes, yRes); } } __host__ void drawRGBMaptoPBO(float4* pbo, Float3SOAPyramid rgbMap, int level, int xRes, int yRes) { int tileSize = 16; if(level < NUM_PYRAMID_LEVELS) { int scaledXRes = xRes >> level; int scaledYRes = yRes >> level; dim3 threadsPerBlock(tileSize, tileSize); dim3 fullBlocksPerGrid((int)ceil(float(scaledXRes)/float(tileSize)), (int)ceil(float(scaledYRes)/float(tileSize))); sendFloat3SOAToPBO<<<fullBlocksPerGrid, threadsPerBlock>>>(pbo, rgbMap.x[level], rgbMap.y[level], rgbMap.z[level], 1.0, scaledXRes, scaledYRes, xRes, yRes); } } __host__ void drawCurvaturetoPBO(float4* pbo, float* curvature, int xRes, int yRes) { int tileSize = 16; dim3 threadsPerBlock(tileSize, tileSize); dim3 fullBlocksPerGrid((int)ceil(float(xRes)/float(tileSize)), (int)ceil(float(yRes)/float(tileSize))); sendFloat1SOAToPBO<<<fullBlocksPerGrid, threadsPerBlock>>>(pbo, curvature, 0.0, xRes, yRes, xRes, yRes); } __global__ void sendInt1SOAToPBO(float4* pbo, int* x_src, int xRes, int yRes, int pboXRes, int pboYRes) { int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int i = (y * xRes) + x; int pboi = (y * pboXRes) + x; if(y < yRes && x < xRes){ // Each thread writes one pixel location in the texture (textel) pbo[pboi].x = x_src[i]; pbo[pboi].y = 0.0; pbo[pboi].z = 0.0; pbo[pboi].w = 0.0; } } __host__ void drawNormalVoxelsToPBO(float4* pbo, int* voxels, int pboXRes, int pboYRes, int voxelAzimuthBins, int voxelPolarBins) { int tileSize = 16; dim3 threadsPerBlock(tileSize, tileSize); dim3 fullBlocksPerGrid((int)ceil(float(voxelAzimuthBins)/float(tileSize)), (int)ceil(float(voxelPolarBins)/float(tileSize))); sendInt1SOAToPBO<<<fullBlocksPerGrid, threadsPerBlock>>>(pbo, voxels, voxelAzimuthBins, voxelPolarBins, pboXRes, pboYRes); } __global__ void sendHistogramSOAToPBO(float4* pbo, int* binsX, int* binsY, int* binsZ, int length, int pboXRes, int pboYRes) { int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int pboi = (y * pboXRes) + x; if(y < pboYRes && x < length){ // Each thread writes one pixel location in the texture (textel) pbo[pboi].x = binsX[x]; pbo[pboi].y = binsY[x]; pbo[pboi].z = binsZ[x]; pbo[pboi].w = 0.0; } } __host__ void drawDecoupledHistogramsToPBO(float4* pbo, Int3SOA histograms, int length, int pboXRes, int pboYRes) { int tileSize = 16; assert(length < pboXRes); dim3 threadsPerBlock(tileSize, tileSize); dim3 fullBlocksPerGrid((int)ceil(float(length)/float(tileSize)), (int)ceil(float(pboYRes)/float(tileSize))); sendHistogramSOAToPBO<<<fullBlocksPerGrid, threadsPerBlock>>>(pbo, histograms.x, histograms.y, histograms.z, length, pboXRes, pboYRes); } __global__ void sendInt3SOAToPBO(float4* pbo, int* x_src, int* y_src, int* z_src, int xRes, int yRes, int pboXRes, int pboYRes) { int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int i = (y * xRes) + x; int pboi = (y * pboXRes) + x; if(y < yRes && x < xRes){ // Each thread writes one pixel location in the texture (textel) pbo[pboi].x = x_src[i]; pbo[pboi].y = y_src[i]; pbo[pboi].z = z_src[i]; pbo[pboi].w = 0.0; } } __global__ void sendSegmentDataToPBO(float4* pbo, int* segments, float* projectedDistances, int xRes, int yRes, int pboXRes, int pboYRes) { int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int i = (y * xRes) + x; int pboi = (y * pboXRes) + x; if(y < yRes && x < xRes){ // Each thread writes one pixel location in the texture (textel) pbo[pboi].x = segments[i]; pbo[pboi].y = projectedDistances[i]; pbo[pboi].z = 0.0; pbo[pboi].w = 0.0; } } __host__ void drawNormalSegmentsToPBO(float4* pbo, int* normalSegments, float* projectedDistanceMap, int xRes, int yRes, int pboXRes, int pboYRes) { int tileSize = 16; dim3 threadsPerBlock(tileSize, tileSize); dim3 fullBlocksPerGrid((int)ceil(float(xRes)/float(tileSize)), (int)ceil(float(yRes)/float(tileSize))); sendSegmentDataToPBO<<<fullBlocksPerGrid, threadsPerBlock>>>(pbo, normalSegments, projectedDistanceMap, xRes, yRes, pboXRes, pboYRes); } __global__ void sendFinalSegmentDataToPBO(float4* pbo, int* segments, float* projectedDistances, float* projectedSx, float* projectedSy, int xRes, int yRes, int pboXRes, int pboYRes) { int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int i = (y * xRes) + x; int pboi = (y * pboXRes) + x; if(y < yRes && x < xRes){ // Each thread writes one pixel location in the texture (textel) pbo[pboi].x = segments[i]; pbo[pboi].y = projectedDistances[i]; pbo[pboi].z = projectedSx[i]; pbo[pboi].w = projectedSy[i]; } } __host__ void drawSegmentsDataToPBO(float4* pbo, int* normalSegments, float* projectedDistanceMap, float* projectedSx, float* projectedSy, int xRes, int yRes, int pboXRes, int pboYRes) { int tileSize = 16; dim3 threadsPerBlock(tileSize, tileSize); dim3 fullBlocksPerGrid((int)ceil(float(xRes)/float(tileSize)), (int)ceil(float(yRes)/float(tileSize))); sendFinalSegmentDataToPBO<<<fullBlocksPerGrid, threadsPerBlock>>>(pbo, normalSegments, projectedDistanceMap, projectedSx, projectedSy, xRes, yRes, pboXRes, pboYRes); } __global__ void drawScaledHistogramToPBOKernel(float4* pbo, int* hist, glm::vec3 color, float scaleInv, int length, int pboXRes, int pboYRes) { int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int pboi = (y * pboXRes) + x; if(y < pboYRes && x < length){ // Each thread writes one pixel location in the texture (textel) pbo[pboi].x = color.x; pbo[pboi].y = color.y; pbo[pboi].z = color.z; pbo[pboi].w = hist[x] * scaleInv; } } __host__ void drawScaledHistogramToPBO(float4* pbo, int* histogram, glm::vec3 color, int maxValue, int length, int pboXRes, int pboYRes) { int tileSize = 16; assert(length < pboXRes); dim3 threadsPerBlock(tileSize, tileSize); dim3 fullBlocksPerGrid((int)ceil(float(length)/float(tileSize)), (int)ceil(float(pboYRes)/float(tileSize))); drawScaledHistogramToPBOKernel<<<fullBlocksPerGrid,threadsPerBlock>>>(pbo, histogram, color, float(1.0f/maxValue), length, pboXRes, pboYRes); } __global__ void drawPlaneProjectedTexturetoPBOKernel(float4* pbo, Float4SOA projectedTexture, int texWidth, int texHeight, int texBufferWidth, int pboXRes, int pboYRes) { int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int pboi = (y * pboXRes) + x; if(x < pboXRes && y < pboYRes){ //Calculate Scale recip int scale = 1; if(texWidth > pboXRes || texHeight > pboYRes) { scale = glm::max(ceil(texWidth/float(pboXRes)),ceil(texHeight/float(pboYRes))); } x*=scale; y*=scale; int i = (y * texBufferWidth) + x; //TODO: Texture oversize scaling float4 texVal = {CUDART_NAN_F,CUDART_NAN_F,CUDART_NAN_F,CUDART_NAN_F}; if(x < texWidth && y < texHeight) { texVal.x = projectedTexture.x[i]; texVal.y = projectedTexture.y[i]; texVal.z = projectedTexture.z[i]; texVal.w = projectedTexture.w[i]; } // Each thread writes one pixel location in the texture (textel) pbo[pboi] = texVal; } } __host__ void drawPlaneProjectedTexturetoPBO(float4* pbo, Float4SOA projectedTexture, int texWidth, int texHeight, int texBufferWidth, int pboXRes, int pboYRes) { int tileSize = 16; dim3 threadsPerBlock(tileSize, tileSize); dim3 fullBlocksPerGrid((int)ceil(float(pboXRes)/float(tileSize)), (int)ceil(float(pboYRes)/float(tileSize))); //Parallel by PBO pixel (is for debug, not exact recreation) drawPlaneProjectedTexturetoPBOKernel<<<fullBlocksPerGrid, threadsPerBlock>>>(pbo, projectedTexture, texWidth, texHeight, texBufferWidth, pboXRes, pboYRes); } __global__ void drawQuadtreetoPBOKernel(float4* pbo, int* quadTree, int texWidth, int texHeight, int texBufferWidth, int pboXRes, int pboYRes) { int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int pboi = (y * pboXRes) + x; if(x < pboXRes && y < pboYRes){ //Calculate Scale recip int scale = 1; if(texWidth > pboXRes || texHeight > pboYRes) { scale = glm::max(ceil(texWidth/float(pboXRes)),ceil(texHeight/float(pboYRes))); } x*=scale; y*=scale; int i = (y * texBufferWidth) + x; //TODO: Texture oversize scaling float4 texVal = {CUDART_NAN_F,CUDART_NAN_F,CUDART_NAN_F,CUDART_NAN_F}; if(x < texWidth && y < texHeight) { texVal.x = quadTree[i]; } // Each thread writes one pixel location in the texture (textel) pbo[pboi] = texVal; } } __host__ void drawQuadtreetoPBO(float4* pbo, int* dev_quadTree, int texWidth, int texHeight, int texBufferWidth, int pboXRes, int pboYRes) { int tileSize = 16; dim3 threadsPerBlock(tileSize, tileSize); dim3 fullBlocksPerGrid((int)ceil(float(pboXRes)/float(tileSize)), (int)ceil(float(pboYRes)/float(tileSize))); //Parallel by PBO pixel (is for debug, not exact recreation) drawQuadtreetoPBOKernel<<<fullBlocksPerGrid, threadsPerBlock>>>(pbo, dev_quadTree, texWidth, texHeight, texBufferWidth, pboXRes, pboYRes); }
6a83fe35eee2eca4b143763679ab633183210fd5.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <iostream> #include "parent.cu" int main(int argc, char* argv[]) { float host_a[kDataLen]; float host_b[kDataLen]; float host_c[kDataLen]; for (int i=0; i < kDataLen; i++) { host_a[i] = i; host_b[i] = 2*i; } // Copy input data to device. float* device_a; float* device_b; float* device_c; hipMalloc(&device_a, kDataLen * sizeof(float)); hipMalloc(&device_b, kDataLen * sizeof(float)); hipMalloc(&device_c, kDataLen * sizeof(float)); hipMemcpy(device_a, host_a, kDataLen * sizeof(float), hipMemcpyHostToDevice); hipMemcpy(device_b, host_b, kDataLen * sizeof(float), hipMemcpyHostToDevice); // Launch the kernel. hipLaunchKernelGGL(( parent), dim3(5), dim3(kDataLen/5), 0, 0, device_a, device_b, device_c); // Copy output data to host. hipDeviceSynchronize(); hipMemcpy(host_c, device_c, kDataLen * sizeof(float), hipMemcpyDeviceToHost); // Print the results. for (int i = 0; i < kDataLen; ++i) { std::cout << "y[" << i << "] = " << host_c[i] << "\n"; } hipDeviceReset(); return 0; }
6a83fe35eee2eca4b143763679ab633183210fd5.cu
#include <iostream> #include "parent.cu" int main(int argc, char* argv[]) { float host_a[kDataLen]; float host_b[kDataLen]; float host_c[kDataLen]; for (int i=0; i < kDataLen; i++) { host_a[i] = i; host_b[i] = 2*i; } // Copy input data to device. float* device_a; float* device_b; float* device_c; cudaMalloc(&device_a, kDataLen * sizeof(float)); cudaMalloc(&device_b, kDataLen * sizeof(float)); cudaMalloc(&device_c, kDataLen * sizeof(float)); cudaMemcpy(device_a, host_a, kDataLen * sizeof(float), cudaMemcpyHostToDevice); cudaMemcpy(device_b, host_b, kDataLen * sizeof(float), cudaMemcpyHostToDevice); // Launch the kernel. parent<<<5, kDataLen/5>>>(device_a, device_b, device_c); // Copy output data to host. cudaDeviceSynchronize(); cudaMemcpy(host_c, device_c, kDataLen * sizeof(float), cudaMemcpyDeviceToHost); // Print the results. for (int i = 0; i < kDataLen; ++i) { std::cout << "y[" << i << "] = " << host_c[i] << "\n"; } cudaDeviceReset(); return 0; }
2c1452288b2ddb86757d25d3ff13ca13f49110bc.hip
// !!! This is a file automatically generated by hipify!!! #include <hip/hip_runtime.h> #include <stdio.h> #include <stdlib.h> #define XBLOCK_SIZE 32 #define YBLOCK_SIZE 24 __global__ void mandelKernel(float lowerX, float lowerY, float stepX, float stepY,size_t width,int count, int *output) { // To avoid error caused by the floating number, use the following pseudo code // // float x = lowerX + thisX * stepX; // float y = lowerY + thisY * stepY; int i = blockIdx.x * blockDim.x + threadIdx.x; int j = blockIdx.y * blockDim.y + threadIdx.y; float c_re = lowerX + i * stepX; float c_im = lowerY + j * stepY; int idx; float z_re = c_re, z_im = c_im; for (idx = 0; idx < count; ++idx) { if (z_re * z_re + z_im * z_im > 4.f) break; float new_re = z_re * z_re - z_im * z_im; float new_im = 2.f * z_re * z_im; z_re = c_re + new_re; z_im = c_im + new_im; } int* row = (int*)((char*)output + j * width); row[i] = idx; } // Host front-end function that allocates the memory and launches the GPU kernel void hostFE (float upperX, float upperY, float lowerX, float lowerY, int* img, int resX, int resY, int maxIterations) { int size = resX * resY * sizeof(int); float stepX = (upperX - lowerX) / resX; float stepY = (upperY - lowerY) / resY; // allocate memory in host & device int *host_mem, *dev_mem; size_t pitch; hipHostMalloc(&host_mem, size, hipHostMallocDefault); hipMallocPitch(&dev_mem, &pitch, resX * sizeof(int), resY); // GPU processing dim3 num_block(resX / XBLOCK_SIZE, resY / YBLOCK_SIZE); dim3 block_size(XBLOCK_SIZE, YBLOCK_SIZE); hipLaunchKernelGGL(( mandelKernel), dim3(num_block), dim3(block_size), 0, 0, lowerX, lowerY, stepX, stepY, pitch, maxIterations, dev_mem); hipDeviceSynchronize(); // GPU translate result data back hipMemcpy2D(host_mem, size/resY, dev_mem, pitch, resX * sizeof(int), resY, hipMemcpyDeviceToHost); memcpy(img, host_mem, size); hipHostFree(host_mem); hipFree(dev_mem); }
2c1452288b2ddb86757d25d3ff13ca13f49110bc.cu
#include <cuda.h> #include <stdio.h> #include <stdlib.h> #define XBLOCK_SIZE 32 #define YBLOCK_SIZE 24 __global__ void mandelKernel(float lowerX, float lowerY, float stepX, float stepY,size_t width,int count, int *output) { // To avoid error caused by the floating number, use the following pseudo code // // float x = lowerX + thisX * stepX; // float y = lowerY + thisY * stepY; int i = blockIdx.x * blockDim.x + threadIdx.x; int j = blockIdx.y * blockDim.y + threadIdx.y; float c_re = lowerX + i * stepX; float c_im = lowerY + j * stepY; int idx; float z_re = c_re, z_im = c_im; for (idx = 0; idx < count; ++idx) { if (z_re * z_re + z_im * z_im > 4.f) break; float new_re = z_re * z_re - z_im * z_im; float new_im = 2.f * z_re * z_im; z_re = c_re + new_re; z_im = c_im + new_im; } int* row = (int*)((char*)output + j * width); row[i] = idx; } // Host front-end function that allocates the memory and launches the GPU kernel void hostFE (float upperX, float upperY, float lowerX, float lowerY, int* img, int resX, int resY, int maxIterations) { int size = resX * resY * sizeof(int); float stepX = (upperX - lowerX) / resX; float stepY = (upperY - lowerY) / resY; // allocate memory in host & device int *host_mem, *dev_mem; size_t pitch; cudaHostAlloc(&host_mem, size, cudaHostAllocDefault); cudaMallocPitch(&dev_mem, &pitch, resX * sizeof(int), resY); // GPU processing dim3 num_block(resX / XBLOCK_SIZE, resY / YBLOCK_SIZE); dim3 block_size(XBLOCK_SIZE, YBLOCK_SIZE); mandelKernel<<<num_block, block_size>>>(lowerX, lowerY, stepX, stepY, pitch, maxIterations, dev_mem); cudaDeviceSynchronize(); // GPU translate result data back cudaMemcpy2D(host_mem, size/resY, dev_mem, pitch, resX * sizeof(int), resY, cudaMemcpyDeviceToHost); memcpy(img, host_mem, size); cudaFreeHost(host_mem); cudaFree(dev_mem); }
2f0fdea8a43e254956b9034f87fa617683910b96.hip
// !!! This is a file automatically generated by hipify!!! #include <stdio.h> #include <string.h> #include <stdlib.h> #include <hip/hip_runtime.h> #include <hipsparse.h> #include "common.h" const char* version_name = "cuSPARSE SpTRSV";\ #define CHECK_CUSPARSE(ret) if(ret != HIPSPARSE_STATUS_SUCCESS) { fprintf(stderr, "error in line %d\n", __LINE__);} typedef struct { hipsparseHandle_t handle; hipsparseMatDescr_t descrA; csrsv2Info_t info; void *pBuffer; } additional_info_t; typedef additional_info_t *info_ptr_t; void preprocess(dist_matrix_t *mat) { info_ptr_t p = (info_ptr_t)malloc(sizeof(additional_info_t)); int pBufferSize; hipsparseCreate(&p->handle); hipsparseSetPointerMode(p->handle, HIPSPARSE_POINTER_MODE_HOST); hipsparseCreateMatDescr(&p->descrA); hipsparseSetMatFillMode(p->descrA, HIPSPARSE_FILL_MODE_LOWER); hipsparseSetMatDiagType(p->descrA, HIPSPARSE_DIAG_TYPE_NON_UNIT); //hipsparseSetMatIndexBase(p->descrA, HIPSPARSE_INDEX_BASE_ZERO); hipsparseCreateCsrsv2Info(&p->info); hipsparseDcsrsv2_bufferSize(p->handle, HIPSPARSE_OPERATION_NON_TRANSPOSE, mat->global_m, \ mat->global_nnz, p->descrA, mat->gpu_values, mat->gpu_r_pos, \ mat->gpu_c_idx, p->info, &pBufferSize); hipMalloc(&p->pBuffer, pBufferSize); hipsparseDcsrsv2_analysis(p->handle, HIPSPARSE_OPERATION_NON_TRANSPOSE, mat->global_m, \ mat->global_nnz, p->descrA, mat->gpu_values, mat->gpu_r_pos, \ mat->gpu_c_idx, p->info, HIPSPARSE_SOLVE_POLICY_USE_LEVEL, p->pBuffer); mat->additional_info = p; mat->perm = (int*) malloc(sizeof(int) * mat->global_m); for(int i = 0; i < mat->global_m; ++i) { mat->perm[i] = i; } } void destroy_additional_info(void *additional_info) { info_ptr_t p = (info_ptr_t)additional_info; hipFree(p->pBuffer); hipsparseDestroyCsrsv2Info(p->info); hipsparseDestroyMatDescr(p->descrA); hipsparseDestroy(p->handle); free(p); } void sptrsv(dist_matrix_t *mat, const data_t* b, data_t* x) { int m = mat->global_m, nnz = mat->global_nnz; const data_t alpha = 1.0; info_ptr_t p = (info_ptr_t)mat->additional_info; hipsparseDcsrsv2_solve(p->handle, HIPSPARSE_OPERATION_NON_TRANSPOSE, m, nnz, &alpha, \ p->descrA, mat->gpu_values, mat->gpu_r_pos, mat->gpu_c_idx, \ p->info, b, x, HIPSPARSE_SOLVE_POLICY_USE_LEVEL, p->pBuffer); }
2f0fdea8a43e254956b9034f87fa617683910b96.cu
#include <stdio.h> #include <string.h> #include <stdlib.h> #include <cuda.h> #include <cusparse.h> #include "common.h" const char* version_name = "cuSPARSE SpTRSV";\ #define CHECK_CUSPARSE(ret) if(ret != CUSPARSE_STATUS_SUCCESS) { fprintf(stderr, "error in line %d\n", __LINE__);} typedef struct { cusparseHandle_t handle; cusparseMatDescr_t descrA; csrsv2Info_t info; void *pBuffer; } additional_info_t; typedef additional_info_t *info_ptr_t; void preprocess(dist_matrix_t *mat) { info_ptr_t p = (info_ptr_t)malloc(sizeof(additional_info_t)); int pBufferSize; cusparseCreate(&p->handle); cusparseSetPointerMode(p->handle, CUSPARSE_POINTER_MODE_HOST); cusparseCreateMatDescr(&p->descrA); cusparseSetMatFillMode(p->descrA, CUSPARSE_FILL_MODE_LOWER); cusparseSetMatDiagType(p->descrA, CUSPARSE_DIAG_TYPE_NON_UNIT); //cusparseSetMatIndexBase(p->descrA, CUSPARSE_INDEX_BASE_ZERO); cusparseCreateCsrsv2Info(&p->info); cusparseDcsrsv2_bufferSize(p->handle, CUSPARSE_OPERATION_NON_TRANSPOSE, mat->global_m, \ mat->global_nnz, p->descrA, mat->gpu_values, mat->gpu_r_pos, \ mat->gpu_c_idx, p->info, &pBufferSize); cudaMalloc(&p->pBuffer, pBufferSize); cusparseDcsrsv2_analysis(p->handle, CUSPARSE_OPERATION_NON_TRANSPOSE, mat->global_m, \ mat->global_nnz, p->descrA, mat->gpu_values, mat->gpu_r_pos, \ mat->gpu_c_idx, p->info, CUSPARSE_SOLVE_POLICY_USE_LEVEL, p->pBuffer); mat->additional_info = p; mat->perm = (int*) malloc(sizeof(int) * mat->global_m); for(int i = 0; i < mat->global_m; ++i) { mat->perm[i] = i; } } void destroy_additional_info(void *additional_info) { info_ptr_t p = (info_ptr_t)additional_info; cudaFree(p->pBuffer); cusparseDestroyCsrsv2Info(p->info); cusparseDestroyMatDescr(p->descrA); cusparseDestroy(p->handle); free(p); } void sptrsv(dist_matrix_t *mat, const data_t* b, data_t* x) { int m = mat->global_m, nnz = mat->global_nnz; const data_t alpha = 1.0; info_ptr_t p = (info_ptr_t)mat->additional_info; cusparseDcsrsv2_solve(p->handle, CUSPARSE_OPERATION_NON_TRANSPOSE, m, nnz, &alpha, \ p->descrA, mat->gpu_values, mat->gpu_r_pos, mat->gpu_c_idx, \ p->info, b, x, CUSPARSE_SOLVE_POLICY_USE_LEVEL, p->pBuffer); }
a49b3920c61f687fa277b5b5b6f673fd0d670505.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" // ------------------------------------------------------------------ // Faster R-CNN // Copyright (c) 2015 Microsoft // Licensed under The MIT License [see fast-rcnn/LICENSE for details] // Written by Shaoqing Ren // ------------------------------------------------------------------ #include "caffe/util/gpu_nms.hpp" #include "caffe/common.hpp" #include <vector> #include <iostream> namespace caffe { #define DIVUP(m,n) ((m) / (n) + ((m) % (n) > 0)) int const threadsPerBlock = sizeof(unsigned long long) * 8; __device__ inline float devIoU(float const * const a, float const * const b) { float left = max(a[0], b[0]), right = min(a[2], b[2]); float top = max(a[1], b[1]), bottom = min(a[3], b[3]); float width = max(right - left + 1, 0.f), height = max(bottom - top + 1, 0.f); float interS = width * height; float Sa = (a[2] - a[0] + 1) * (a[3] - a[1] + 1); float Sb = (b[2] - b[0] + 1) * (b[3] - b[1] + 1); return interS / (Sa + Sb - interS); } __global__ void nms_kernel(const int n_boxes, const float nms_overlap_thresh, const float *dev_boxes, unsigned long long *dev_mask) { const int row_start = blockIdx.y; const int col_start = blockIdx.x; // if (row_start > col_start) return; const int row_size = min(n_boxes - row_start * threadsPerBlock, threadsPerBlock); const int col_size = min(n_boxes - col_start * threadsPerBlock, threadsPerBlock); __shared__ float block_boxes[threadsPerBlock * 4]; if (threadIdx.x < col_size) { block_boxes[threadIdx.x * 4 + 0] = dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 4 + 0]; block_boxes[threadIdx.x * 4 + 1] = dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 4 + 1]; block_boxes[threadIdx.x * 4 + 2] = dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 4 + 2]; block_boxes[threadIdx.x * 4 + 3] = dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 4 + 3]; //block_boxes[threadIdx.x * 5 + 4] = // dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 4]; } __syncthreads(); if (threadIdx.x < row_size) { const int cur_box_idx = threadsPerBlock * row_start + threadIdx.x; const float *cur_box = dev_boxes + cur_box_idx * 4; int i = 0; unsigned long long t = 0; int start = 0; if (row_start == col_start) { start = threadIdx.x + 1; } for (i = start; i < col_size; i++) { if (devIoU(cur_box, block_boxes + i * 4) > nms_overlap_thresh) { t |= 1ULL << i; } } const int col_blocks = DIVUP(n_boxes, threadsPerBlock); dev_mask[cur_box_idx * col_blocks + col_start] = t; } } void _set_device(int device_id) { if (device_id<=0) return; int current_device; CUDA_CHECK(hipGetDevice(&current_device)); if (current_device == device_id) { return; } // The call to hipSetDevice must come before any calls to Get, which // may perform initialization using the GPU. CUDA_CHECK(hipSetDevice(device_id)); } void gpu_nms(int* keep_out, int* num_out, const float* boxes_dev, int boxes_num, int boxes_dim, float nms_overlap_thresh, int device_id) { _set_device(device_id); // float* boxes_dev = NULL; unsigned long long* mask_dev = NULL; const int col_blocks = DIVUP(boxes_num, threadsPerBlock); // CUDA_CHECK(hipMalloc(&boxes_dev, // boxes_num * boxes_dim * sizeof(float))); // CUDA_CHECK(hipMemcpy(boxes_dev, // boxes_host, // boxes_num * boxes_dim * sizeof(float), // hipMemcpyHostToDevice)); CUDA_CHECK(hipMalloc(&mask_dev, boxes_num * col_blocks * sizeof(unsigned long long))); dim3 blocks(DIVUP(boxes_num, threadsPerBlock), DIVUP(boxes_num, threadsPerBlock)); dim3 threads(threadsPerBlock); hipLaunchKernelGGL(( nms_kernel), dim3(blocks), dim3(threads), 0, 0, boxes_num, nms_overlap_thresh, boxes_dev, mask_dev); std::vector<unsigned long long> mask_host(boxes_num * col_blocks); CUDA_CHECK(hipMemcpy(&mask_host[0], mask_dev, sizeof(unsigned long long) * boxes_num * col_blocks, hipMemcpyDeviceToHost)); std::vector<unsigned long long> remv(col_blocks); memset(&remv[0], 0, sizeof(unsigned long long) * col_blocks); int num_to_keep = 0; for (int i = 0; i < boxes_num; i++) { int nblock = i / threadsPerBlock; int inblock = i % threadsPerBlock; if (!(remv[nblock] & (1ULL << inblock))) { keep_out[num_to_keep++] = i; unsigned long long *p = &mask_host[0] + i * col_blocks; for (int j = nblock; j < col_blocks; j++) { remv[j] |= p[j]; } } } *num_out = num_to_keep; // CUDA_CHECK(hipFree(boxes_dev)); CUDA_CHECK(hipFree(mask_dev)); } } // namespace caffe
a49b3920c61f687fa277b5b5b6f673fd0d670505.cu
// ------------------------------------------------------------------ // Faster R-CNN // Copyright (c) 2015 Microsoft // Licensed under The MIT License [see fast-rcnn/LICENSE for details] // Written by Shaoqing Ren // ------------------------------------------------------------------ #include "caffe/util/gpu_nms.hpp" #include "caffe/common.hpp" #include <vector> #include <iostream> namespace caffe { #define DIVUP(m,n) ((m) / (n) + ((m) % (n) > 0)) int const threadsPerBlock = sizeof(unsigned long long) * 8; __device__ inline float devIoU(float const * const a, float const * const b) { float left = max(a[0], b[0]), right = min(a[2], b[2]); float top = max(a[1], b[1]), bottom = min(a[3], b[3]); float width = max(right - left + 1, 0.f), height = max(bottom - top + 1, 0.f); float interS = width * height; float Sa = (a[2] - a[0] + 1) * (a[3] - a[1] + 1); float Sb = (b[2] - b[0] + 1) * (b[3] - b[1] + 1); return interS / (Sa + Sb - interS); } __global__ void nms_kernel(const int n_boxes, const float nms_overlap_thresh, const float *dev_boxes, unsigned long long *dev_mask) { const int row_start = blockIdx.y; const int col_start = blockIdx.x; // if (row_start > col_start) return; const int row_size = min(n_boxes - row_start * threadsPerBlock, threadsPerBlock); const int col_size = min(n_boxes - col_start * threadsPerBlock, threadsPerBlock); __shared__ float block_boxes[threadsPerBlock * 4]; if (threadIdx.x < col_size) { block_boxes[threadIdx.x * 4 + 0] = dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 4 + 0]; block_boxes[threadIdx.x * 4 + 1] = dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 4 + 1]; block_boxes[threadIdx.x * 4 + 2] = dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 4 + 2]; block_boxes[threadIdx.x * 4 + 3] = dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 4 + 3]; //block_boxes[threadIdx.x * 5 + 4] = // dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 4]; } __syncthreads(); if (threadIdx.x < row_size) { const int cur_box_idx = threadsPerBlock * row_start + threadIdx.x; const float *cur_box = dev_boxes + cur_box_idx * 4; int i = 0; unsigned long long t = 0; int start = 0; if (row_start == col_start) { start = threadIdx.x + 1; } for (i = start; i < col_size; i++) { if (devIoU(cur_box, block_boxes + i * 4) > nms_overlap_thresh) { t |= 1ULL << i; } } const int col_blocks = DIVUP(n_boxes, threadsPerBlock); dev_mask[cur_box_idx * col_blocks + col_start] = t; } } void _set_device(int device_id) { if (device_id<=0) return; int current_device; CUDA_CHECK(cudaGetDevice(&current_device)); if (current_device == device_id) { return; } // The call to cudaSetDevice must come before any calls to Get, which // may perform initialization using the GPU. CUDA_CHECK(cudaSetDevice(device_id)); } void gpu_nms(int* keep_out, int* num_out, const float* boxes_dev, int boxes_num, int boxes_dim, float nms_overlap_thresh, int device_id) { _set_device(device_id); // float* boxes_dev = NULL; unsigned long long* mask_dev = NULL; const int col_blocks = DIVUP(boxes_num, threadsPerBlock); // CUDA_CHECK(cudaMalloc(&boxes_dev, // boxes_num * boxes_dim * sizeof(float))); // CUDA_CHECK(cudaMemcpy(boxes_dev, // boxes_host, // boxes_num * boxes_dim * sizeof(float), // cudaMemcpyHostToDevice)); CUDA_CHECK(cudaMalloc(&mask_dev, boxes_num * col_blocks * sizeof(unsigned long long))); dim3 blocks(DIVUP(boxes_num, threadsPerBlock), DIVUP(boxes_num, threadsPerBlock)); dim3 threads(threadsPerBlock); nms_kernel<<<blocks, threads>>>(boxes_num, nms_overlap_thresh, boxes_dev, mask_dev); std::vector<unsigned long long> mask_host(boxes_num * col_blocks); CUDA_CHECK(cudaMemcpy(&mask_host[0], mask_dev, sizeof(unsigned long long) * boxes_num * col_blocks, cudaMemcpyDeviceToHost)); std::vector<unsigned long long> remv(col_blocks); memset(&remv[0], 0, sizeof(unsigned long long) * col_blocks); int num_to_keep = 0; for (int i = 0; i < boxes_num; i++) { int nblock = i / threadsPerBlock; int inblock = i % threadsPerBlock; if (!(remv[nblock] & (1ULL << inblock))) { keep_out[num_to_keep++] = i; unsigned long long *p = &mask_host[0] + i * col_blocks; for (int j = nblock; j < col_blocks; j++) { remv[j] |= p[j]; } } } *num_out = num_to_keep; // CUDA_CHECK(cudaFree(boxes_dev)); CUDA_CHECK(cudaFree(mask_dev)); } } // namespace caffe
43dfa92cfd5ae9114e4ba2a81d7c53ae001f8414.hip
// !!! This is a file automatically generated by hipify!!! // EMD approximation module (based on auction algorithm) // author: Renwu Li // torch version: https://github.com/Colin97/MSN-Point-Cloud-Completion/blob/HEAD/emd/ #include <stdio.h> #include <hip/hip_runtime.h> #include <iostream> #include <hip/hip_runtime.h> __device__ __forceinline__ float atomicMax(float *address, float val) { int ret = __float_as_int(*address); while(val > __int_as_float(ret)) { int old = ret; if((ret = atomicCAS((int *)address, old, __float_as_int(val))) == old) break; } return __int_as_float(ret); } __global__ void clear(int b, int * cnt_tmp, int * unass_cnt) { for (int i = threadIdx.x; i < b; i += blockDim.x) { cnt_tmp[i] = 0; unass_cnt[i] = 0; } } __global__ void calc_unass_cnt(int b, int n, int * assignment, int * unass_cnt) { // count the number of unassigned points in each batch const int BLOCK_SIZE = 1024; __shared__ int scan_array[BLOCK_SIZE]; for (int i = blockIdx.x; i < b; i += gridDim.x) { scan_array[threadIdx.x] = assignment[i * n + blockIdx.y * BLOCK_SIZE + threadIdx.x] == -1 ? 1 : 0; __syncthreads(); int stride = 1; while(stride <= BLOCK_SIZE / 2) { int index = (threadIdx.x + 1) * stride * 2 - 1; if(index < BLOCK_SIZE) scan_array[index] += scan_array[index - stride]; stride = stride * 2; __syncthreads(); } __syncthreads(); if (threadIdx.x == BLOCK_SIZE - 1) { atomicAdd(&unass_cnt[i], scan_array[threadIdx.x]); } __syncthreads(); } } __global__ void calc_unass_cnt_sum(int b, int * unass_cnt, int * unass_cnt_sum) { // count the cumulative sum over over unass_cnt const int BLOCK_SIZE = 512; // batch_size <= 512 __shared__ int scan_array[BLOCK_SIZE]; scan_array[threadIdx.x] = unass_cnt[threadIdx.x]; __syncthreads(); int stride = 1; while(stride <= BLOCK_SIZE / 2) { int index = (threadIdx.x + 1) * stride * 2 - 1; if(index < BLOCK_SIZE) scan_array[index] += scan_array[index - stride]; stride = stride * 2; __syncthreads(); } __syncthreads(); stride = BLOCK_SIZE / 4; while(stride > 0) { int index = (threadIdx.x + 1) * stride * 2 - 1; if((index + stride) < BLOCK_SIZE) scan_array[index + stride] += scan_array[index]; stride = stride / 2; __syncthreads(); } __syncthreads(); unass_cnt_sum[threadIdx.x] = scan_array[threadIdx.x]; } __global__ void calc_unass_idx(int b, int n, int * assignment, int * unass_idx, int * unass_cnt, int * unass_cnt_sum, int * cnt_tmp) { // list all the unassigned points for (int i = blockIdx.x; i < b; i += gridDim.x) { if (assignment[i * n + blockIdx.y * 1024 + threadIdx.x] == -1) { int idx = atomicAdd(&cnt_tmp[i], 1); unass_idx[unass_cnt_sum[i] - unass_cnt[i] + idx] = blockIdx.y * 1024 + threadIdx.x; } } } __global__ void Bid(int b, int n, const float * xyz1, const float * xyz2, float eps, int * assignment, int * assignment_inv, float * price, int * bid, float * bid_increments, float * max_increments, int * unass_cnt, int * unass_cnt_sum, int * unass_idx) { const int batch = 2048, block_size = 1024, block_cnt = n / 1024; __shared__ float xyz2_buf[batch * 3]; __shared__ float price_buf[batch]; __shared__ float best_buf[block_size]; __shared__ float better_buf[block_size]; __shared__ int best_i_buf[block_size]; for (int i = blockIdx.x; i < b; i += gridDim.x) { int _unass_cnt = unass_cnt[i]; if (_unass_cnt == 0) continue; int _unass_cnt_sum = unass_cnt_sum[i]; int unass_per_block = (_unass_cnt + block_cnt - 1) / block_cnt; int thread_per_unass = block_size / unass_per_block; int unass_this_block = max(min(_unass_cnt - (int) blockIdx.y * unass_per_block, unass_per_block), 0); float x1, y1, z1, best = -1e9, better = -1e9; int best_i = -1, _unass_id = -1, thread_in_unass; if (threadIdx.x < thread_per_unass * unass_this_block) { _unass_id = unass_per_block * blockIdx.y + threadIdx.x / thread_per_unass + _unass_cnt_sum - _unass_cnt; _unass_id = unass_idx[_unass_id]; thread_in_unass = threadIdx.x % thread_per_unass; x1 = xyz1[(i * n + _unass_id) * 3 + 0]; y1 = xyz1[(i * n + _unass_id) * 3 + 1]; z1 = xyz1[(i * n + _unass_id) * 3 + 2]; } for (int k2 = 0; k2 < n; k2 += batch) { int end_k = min(n, k2 + batch) - k2; for (int j = threadIdx.x; j < end_k * 3; j += blockDim.x) { xyz2_buf[j] = xyz2[(i * n + k2) * 3 + j]; } for (int j = threadIdx.x; j < end_k; j += blockDim.x) { price_buf[j] = price[i * n + k2 + j]; } __syncthreads(); if (_unass_id != -1) { int delta = (end_k + thread_per_unass - 1) / thread_per_unass; int l = thread_in_unass * delta; int r = min((thread_in_unass + 1) * delta, end_k); for (int k = l; k < r; k++) //if (!last || assignment_inv[i * n + k + k2] == -1) { float x2 = xyz2_buf[k * 3 + 0] - x1; float y2 = xyz2_buf[k * 3 + 1] - y1; float z2 = xyz2_buf[k * 3 + 2] - z1; // the coordinates of points should be normalized to [0, 1] float d = 3.0 - sqrtf(x2 * x2 + y2 * y2 + z2 * z2) - price_buf[k]; if (d > best) { better = best; best = d; best_i = k + k2; } else if (d > better) { better = d; } } } __syncthreads(); } best_buf[threadIdx.x] = best; better_buf[threadIdx.x] = better; best_i_buf[threadIdx.x] = best_i; __syncthreads(); if (_unass_id != -1 && thread_in_unass == 0) { for (int j = threadIdx.x + 1; j < threadIdx.x + thread_per_unass; j++) { if (best_buf[j] > best) { better = max(best, better_buf[j]); best = best_buf[j]; best_i = best_i_buf[j]; } else better = max(better, best_buf[j]); } bid[i * n + _unass_id] = best_i; bid_increments[i * n + _unass_id] = best - better + eps; atomicMax(&max_increments[i * n + best_i], best - better + eps); } } } __global__ void GetMax(int b, int n, int * assignment, int * bid, float * bid_increments, float * max_increments, int * max_idx) { for (int i = blockIdx.x; i < b; i += gridDim.x) { int j = threadIdx.x + blockIdx.y * blockDim.x; if (assignment[i * n + j] == -1) { int bid_id = bid[i * n + j]; float bid_inc = bid_increments[i * n + j]; float max_inc = max_increments[i * n + bid_id]; if (bid_inc - 1e-6 <= max_inc && max_inc <= bid_inc + 1e-6) { max_idx[i * n + bid_id] = j; } } } } __global__ void Assign(int b, int n, int * assignment, int * assignment_inv, float * price, int * bid, float * bid_increments, float * max_increments, int * max_idx, bool last) { for (int i = blockIdx.x; i < b; i += gridDim.x) { int j = threadIdx.x + blockIdx.y * blockDim.x; if (assignment[i * n + j] == -1) { int bid_id = bid[i * n + j]; if (last || max_idx[i * n + bid_id] == j) { float bid_inc = bid_increments[i * n + j]; int ass_inv = assignment_inv[i * n + bid_id]; if (!last && ass_inv != -1) { assignment[i * n + ass_inv] = -1; } assignment_inv[i * n + bid_id] = j; assignment[i * n + j] = bid_id; price[i * n + bid_id] += bid_inc; max_increments[i * n + bid_id] = -1e9; } } } } __global__ void CalcDist(int b, int n, const float * xyz1, const float * xyz2, float * dist, const int * assignment) { for (int i = blockIdx.x; i < b; i += gridDim.x) { int j = threadIdx.x + blockIdx.y * blockDim.x; int k = assignment[i * n + j]; float deltax = xyz1[(i * n + j) * 3 + 0] - xyz2[(i * n + k) * 3 + 0]; float deltay = xyz1[(i * n + j) * 3 + 1] - xyz2[(i * n + k) * 3 + 1]; float deltaz = xyz1[(i * n + j) * 3 + 2] - xyz2[(i * n + k) * 3 + 2]; dist[i * n + j] = deltax * deltax + deltay * deltay + deltaz * deltaz; } } int emdMatchLauncher(int b, int n, int m, \ const float* xyz1, \ const float* xyz2, \ int* assignment, \ float* price, \ int* assignment_inv, \ int* bid, \ float* bid_increments, \ float* max_increments, \ int* unass_idx, \ int* unass_cnt, \ int* unass_cnt_sum, \ int* cnt_tmp, \ int* max_idx, \ const float* cu_eps, const int* cu_iters ) { if (n != m) { printf("Input error! The two point clouds should have the same size!\n"); return -1; } if (b > 512) { printf("Input error! The batch size should not exceed 512!\n"); return -1; } if (n % 1024 != 0) { printf("Input error! The size of the input point clouds should be a multiple of 1024.\n"); return -1; } hipMemset(assignment, -1, b * n * sizeof(int)); hipMemset(assignment_inv, -1, b * n * sizeof(int)); hipMemset(price, 0, b * m * sizeof(float)); hipMemset(bid, 0, b * n * sizeof(int)); hipMemset(bid_increments, 0, b * n * sizeof(float)); hipMemset(max_increments, 0, b * m * sizeof(float)); hipMemset(unass_idx, 0, b * n * sizeof(int)); hipMemset(max_idx, 0, b * m * sizeof(int)); hipMemset(unass_cnt, 0, 512 * sizeof(int)); hipMemset(unass_cnt_sum, 0, 512 * sizeof(int)); hipMemset(cnt_tmp, 0, 512 * sizeof(int)); int eps; int iters; hipMemcpy(&eps, cu_eps, sizeof(int), hipMemcpyDeviceToHost); hipMemcpy(&iters, cu_iters, sizeof(float), hipMemcpyDeviceToHost); for (int i = 0; i < iters; i++) { hipLaunchKernelGGL(( clear), dim3(1), dim3(b), 0, 0, b, cnt_tmp, unass_cnt); hipLaunchKernelGGL(( calc_unass_cnt), dim3(dim3(b, n / 1024, 1)), dim3(1024), 0, 0, b, n, assignment, unass_cnt); hipLaunchKernelGGL(( calc_unass_cnt_sum), dim3(1), dim3(b), 0, 0, b, unass_cnt, unass_cnt_sum); hipLaunchKernelGGL(( calc_unass_idx), dim3(dim3(b, n / 1024, 1)), dim3(1024), 0, 0, b, n, assignment, unass_idx, unass_cnt, unass_cnt_sum, cnt_tmp); hipLaunchKernelGGL(( Bid), dim3(dim3(b, n / 1024, 1)), dim3(1024), 0, 0, b, n, xyz1, xyz2, eps, assignment, assignment_inv, price, bid, bid_increments, max_increments, unass_cnt, unass_cnt_sum, unass_idx); hipLaunchKernelGGL(( GetMax), dim3(dim3(b, n / 1024, 1)), dim3(1024), 0, 0, b, n, assignment, bid, bid_increments, max_increments, max_idx); hipLaunchKernelGGL(( Assign), dim3(dim3(b, n / 1024, 1)), dim3(1024), 0, 0, b, n, assignment, assignment_inv, price, bid, bid_increments, max_increments, max_idx, i == iters - 1); } hipError_t err = hipGetLastError(); if (err != hipSuccess) { printf("Error in nnd Output: %s\n", hipGetErrorString(err)); return 0; } return 1; } int emdCostLauncher(int b, int n, const float* xyz1, const float* xyz2, float* dist, const int* assignment) { hipLaunchKernelGGL(( CalcDist), dim3(dim3(b, n / 1024, 1)), dim3(1024), 0, 0, b, n, xyz1, xyz2, dist, assignment); hipError_t err = hipGetLastError(); if (err != hipSuccess) { printf("Error in nnd Output: %s\n", hipGetErrorString(err)); return 0; } return 1; } __global__ void emdcostGrad(int b, int n, int m, const float* xyz1, const float* xyz2, const float* grad_dist, const int* assignment, float* grad_xyz1, float* grad_xyz2) { for (int i = blockIdx.x; i < b; i += gridDim.x) { for (int j = threadIdx.x + blockIdx.y * blockDim.x; j < n; j += blockDim.x * gridDim.y) { float x1 = xyz1[(i * n + j) * 3 + 0]; float y1 = xyz1[(i * n + j) * 3 + 1]; float z1 = xyz1[(i * n + j) * 3 + 2]; int j2 = assignment[i * n + j]; float x2 = xyz2[(i * n + j2) * 3 + 0]; float y2 = xyz2[(i * n + j2) * 3 + 1]; float z2 = xyz2[(i * n + j2) * 3 + 2]; float g = grad_dist[i * n + j] * 2; atomicAdd(&(grad_xyz1[(i * n + j) * 3 + 0]), g * (x1 - x2)); atomicAdd(&(grad_xyz1[(i * n + j) * 3 + 1]), g * (y1 - y2)); atomicAdd(&(grad_xyz1[(i * n + j) * 3 + 2]), g * (z1 - z2)); atomicAdd(&(grad_xyz2[(i * n + j2) * 3 + 0]), -g * (x1 - x2)); atomicAdd(&(grad_xyz2[(i * n + j2) * 3 + 1]), -g * (y1 - y2)); atomicAdd(&(grad_xyz2[(i * n + j2) * 3 + 2]), -g * (z1 - z2)); } } } void emdcostGradLauncher(int b, int n, int m, const float* xyz1, const float* xyz2, const float* grad_cost, const int* assignment, float* grad_xyz1, float* grad_xyz2) { hipMemset(grad_xyz1, 0, b * n * 3 * sizeof(float)); hipMemset(grad_xyz2, 0, b * n * 3 * sizeof(float)); hipLaunchKernelGGL(( emdcostGrad), dim3(dim3(b, n / 1024, 1)), dim3(1024), 0, 0, b, n, m, xyz1, xyz2, grad_cost, assignment, grad_xyz1, grad_xyz2); }
43dfa92cfd5ae9114e4ba2a81d7c53ae001f8414.cu
// EMD approximation module (based on auction algorithm) // author: Renwu Li // torch version: https://github.com/Colin97/MSN-Point-Cloud-Completion/blob/HEAD/emd/ #include <stdio.h> #include <cuda.h> #include <iostream> #include <cuda_runtime.h> __device__ __forceinline__ float atomicMax(float *address, float val) { int ret = __float_as_int(*address); while(val > __int_as_float(ret)) { int old = ret; if((ret = atomicCAS((int *)address, old, __float_as_int(val))) == old) break; } return __int_as_float(ret); } __global__ void clear(int b, int * cnt_tmp, int * unass_cnt) { for (int i = threadIdx.x; i < b; i += blockDim.x) { cnt_tmp[i] = 0; unass_cnt[i] = 0; } } __global__ void calc_unass_cnt(int b, int n, int * assignment, int * unass_cnt) { // count the number of unassigned points in each batch const int BLOCK_SIZE = 1024; __shared__ int scan_array[BLOCK_SIZE]; for (int i = blockIdx.x; i < b; i += gridDim.x) { scan_array[threadIdx.x] = assignment[i * n + blockIdx.y * BLOCK_SIZE + threadIdx.x] == -1 ? 1 : 0; __syncthreads(); int stride = 1; while(stride <= BLOCK_SIZE / 2) { int index = (threadIdx.x + 1) * stride * 2 - 1; if(index < BLOCK_SIZE) scan_array[index] += scan_array[index - stride]; stride = stride * 2; __syncthreads(); } __syncthreads(); if (threadIdx.x == BLOCK_SIZE - 1) { atomicAdd(&unass_cnt[i], scan_array[threadIdx.x]); } __syncthreads(); } } __global__ void calc_unass_cnt_sum(int b, int * unass_cnt, int * unass_cnt_sum) { // count the cumulative sum over over unass_cnt const int BLOCK_SIZE = 512; // batch_size <= 512 __shared__ int scan_array[BLOCK_SIZE]; scan_array[threadIdx.x] = unass_cnt[threadIdx.x]; __syncthreads(); int stride = 1; while(stride <= BLOCK_SIZE / 2) { int index = (threadIdx.x + 1) * stride * 2 - 1; if(index < BLOCK_SIZE) scan_array[index] += scan_array[index - stride]; stride = stride * 2; __syncthreads(); } __syncthreads(); stride = BLOCK_SIZE / 4; while(stride > 0) { int index = (threadIdx.x + 1) * stride * 2 - 1; if((index + stride) < BLOCK_SIZE) scan_array[index + stride] += scan_array[index]; stride = stride / 2; __syncthreads(); } __syncthreads(); unass_cnt_sum[threadIdx.x] = scan_array[threadIdx.x]; } __global__ void calc_unass_idx(int b, int n, int * assignment, int * unass_idx, int * unass_cnt, int * unass_cnt_sum, int * cnt_tmp) { // list all the unassigned points for (int i = blockIdx.x; i < b; i += gridDim.x) { if (assignment[i * n + blockIdx.y * 1024 + threadIdx.x] == -1) { int idx = atomicAdd(&cnt_tmp[i], 1); unass_idx[unass_cnt_sum[i] - unass_cnt[i] + idx] = blockIdx.y * 1024 + threadIdx.x; } } } __global__ void Bid(int b, int n, const float * xyz1, const float * xyz2, float eps, int * assignment, int * assignment_inv, float * price, int * bid, float * bid_increments, float * max_increments, int * unass_cnt, int * unass_cnt_sum, int * unass_idx) { const int batch = 2048, block_size = 1024, block_cnt = n / 1024; __shared__ float xyz2_buf[batch * 3]; __shared__ float price_buf[batch]; __shared__ float best_buf[block_size]; __shared__ float better_buf[block_size]; __shared__ int best_i_buf[block_size]; for (int i = blockIdx.x; i < b; i += gridDim.x) { int _unass_cnt = unass_cnt[i]; if (_unass_cnt == 0) continue; int _unass_cnt_sum = unass_cnt_sum[i]; int unass_per_block = (_unass_cnt + block_cnt - 1) / block_cnt; int thread_per_unass = block_size / unass_per_block; int unass_this_block = max(min(_unass_cnt - (int) blockIdx.y * unass_per_block, unass_per_block), 0); float x1, y1, z1, best = -1e9, better = -1e9; int best_i = -1, _unass_id = -1, thread_in_unass; if (threadIdx.x < thread_per_unass * unass_this_block) { _unass_id = unass_per_block * blockIdx.y + threadIdx.x / thread_per_unass + _unass_cnt_sum - _unass_cnt; _unass_id = unass_idx[_unass_id]; thread_in_unass = threadIdx.x % thread_per_unass; x1 = xyz1[(i * n + _unass_id) * 3 + 0]; y1 = xyz1[(i * n + _unass_id) * 3 + 1]; z1 = xyz1[(i * n + _unass_id) * 3 + 2]; } for (int k2 = 0; k2 < n; k2 += batch) { int end_k = min(n, k2 + batch) - k2; for (int j = threadIdx.x; j < end_k * 3; j += blockDim.x) { xyz2_buf[j] = xyz2[(i * n + k2) * 3 + j]; } for (int j = threadIdx.x; j < end_k; j += blockDim.x) { price_buf[j] = price[i * n + k2 + j]; } __syncthreads(); if (_unass_id != -1) { int delta = (end_k + thread_per_unass - 1) / thread_per_unass; int l = thread_in_unass * delta; int r = min((thread_in_unass + 1) * delta, end_k); for (int k = l; k < r; k++) //if (!last || assignment_inv[i * n + k + k2] == -1) { float x2 = xyz2_buf[k * 3 + 0] - x1; float y2 = xyz2_buf[k * 3 + 1] - y1; float z2 = xyz2_buf[k * 3 + 2] - z1; // the coordinates of points should be normalized to [0, 1] float d = 3.0 - sqrtf(x2 * x2 + y2 * y2 + z2 * z2) - price_buf[k]; if (d > best) { better = best; best = d; best_i = k + k2; } else if (d > better) { better = d; } } } __syncthreads(); } best_buf[threadIdx.x] = best; better_buf[threadIdx.x] = better; best_i_buf[threadIdx.x] = best_i; __syncthreads(); if (_unass_id != -1 && thread_in_unass == 0) { for (int j = threadIdx.x + 1; j < threadIdx.x + thread_per_unass; j++) { if (best_buf[j] > best) { better = max(best, better_buf[j]); best = best_buf[j]; best_i = best_i_buf[j]; } else better = max(better, best_buf[j]); } bid[i * n + _unass_id] = best_i; bid_increments[i * n + _unass_id] = best - better + eps; atomicMax(&max_increments[i * n + best_i], best - better + eps); } } } __global__ void GetMax(int b, int n, int * assignment, int * bid, float * bid_increments, float * max_increments, int * max_idx) { for (int i = blockIdx.x; i < b; i += gridDim.x) { int j = threadIdx.x + blockIdx.y * blockDim.x; if (assignment[i * n + j] == -1) { int bid_id = bid[i * n + j]; float bid_inc = bid_increments[i * n + j]; float max_inc = max_increments[i * n + bid_id]; if (bid_inc - 1e-6 <= max_inc && max_inc <= bid_inc + 1e-6) { max_idx[i * n + bid_id] = j; } } } } __global__ void Assign(int b, int n, int * assignment, int * assignment_inv, float * price, int * bid, float * bid_increments, float * max_increments, int * max_idx, bool last) { for (int i = blockIdx.x; i < b; i += gridDim.x) { int j = threadIdx.x + blockIdx.y * blockDim.x; if (assignment[i * n + j] == -1) { int bid_id = bid[i * n + j]; if (last || max_idx[i * n + bid_id] == j) { float bid_inc = bid_increments[i * n + j]; int ass_inv = assignment_inv[i * n + bid_id]; if (!last && ass_inv != -1) { assignment[i * n + ass_inv] = -1; } assignment_inv[i * n + bid_id] = j; assignment[i * n + j] = bid_id; price[i * n + bid_id] += bid_inc; max_increments[i * n + bid_id] = -1e9; } } } } __global__ void CalcDist(int b, int n, const float * xyz1, const float * xyz2, float * dist, const int * assignment) { for (int i = blockIdx.x; i < b; i += gridDim.x) { int j = threadIdx.x + blockIdx.y * blockDim.x; int k = assignment[i * n + j]; float deltax = xyz1[(i * n + j) * 3 + 0] - xyz2[(i * n + k) * 3 + 0]; float deltay = xyz1[(i * n + j) * 3 + 1] - xyz2[(i * n + k) * 3 + 1]; float deltaz = xyz1[(i * n + j) * 3 + 2] - xyz2[(i * n + k) * 3 + 2]; dist[i * n + j] = deltax * deltax + deltay * deltay + deltaz * deltaz; } } int emdMatchLauncher(int b, int n, int m, \ const float* xyz1, \ const float* xyz2, \ int* assignment, \ float* price, \ int* assignment_inv, \ int* bid, \ float* bid_increments, \ float* max_increments, \ int* unass_idx, \ int* unass_cnt, \ int* unass_cnt_sum, \ int* cnt_tmp, \ int* max_idx, \ const float* cu_eps, const int* cu_iters ) { if (n != m) { printf("Input error! The two point clouds should have the same size!\n"); return -1; } if (b > 512) { printf("Input error! The batch size should not exceed 512!\n"); return -1; } if (n % 1024 != 0) { printf("Input error! The size of the input point clouds should be a multiple of 1024.\n"); return -1; } cudaMemset(assignment, -1, b * n * sizeof(int)); cudaMemset(assignment_inv, -1, b * n * sizeof(int)); cudaMemset(price, 0, b * m * sizeof(float)); cudaMemset(bid, 0, b * n * sizeof(int)); cudaMemset(bid_increments, 0, b * n * sizeof(float)); cudaMemset(max_increments, 0, b * m * sizeof(float)); cudaMemset(unass_idx, 0, b * n * sizeof(int)); cudaMemset(max_idx, 0, b * m * sizeof(int)); cudaMemset(unass_cnt, 0, 512 * sizeof(int)); cudaMemset(unass_cnt_sum, 0, 512 * sizeof(int)); cudaMemset(cnt_tmp, 0, 512 * sizeof(int)); int eps; int iters; cudaMemcpy(&eps, cu_eps, sizeof(int), cudaMemcpyDeviceToHost); cudaMemcpy(&iters, cu_iters, sizeof(float), cudaMemcpyDeviceToHost); for (int i = 0; i < iters; i++) { clear<<<1, b>>>(b, cnt_tmp, unass_cnt); calc_unass_cnt<<<dim3(b, n / 1024, 1), 1024>>>(b, n, assignment, unass_cnt); calc_unass_cnt_sum<<<1, b>>>(b, unass_cnt, unass_cnt_sum); calc_unass_idx<<<dim3(b, n / 1024, 1), 1024>>>(b, n, assignment, unass_idx, unass_cnt, unass_cnt_sum, cnt_tmp); Bid<<<dim3(b, n / 1024, 1), 1024>>>(b, n, xyz1, xyz2, eps, assignment, assignment_inv, price, bid, bid_increments, max_increments, unass_cnt, unass_cnt_sum, unass_idx); GetMax<<<dim3(b, n / 1024, 1), 1024>>>(b, n, assignment, bid, bid_increments, max_increments, max_idx); Assign<<<dim3(b, n / 1024, 1), 1024>>>(b, n, assignment, assignment_inv, price, bid, bid_increments, max_increments, max_idx, i == iters - 1); } cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { printf("Error in nnd Output: %s\n", cudaGetErrorString(err)); return 0; } return 1; } int emdCostLauncher(int b, int n, const float* xyz1, const float* xyz2, float* dist, const int* assignment) { CalcDist<<<dim3(b, n / 1024, 1), 1024>>>(b, n, xyz1, xyz2, dist, assignment); cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { printf("Error in nnd Output: %s\n", cudaGetErrorString(err)); return 0; } return 1; } __global__ void emdcostGrad(int b, int n, int m, const float* xyz1, const float* xyz2, const float* grad_dist, const int* assignment, float* grad_xyz1, float* grad_xyz2) { for (int i = blockIdx.x; i < b; i += gridDim.x) { for (int j = threadIdx.x + blockIdx.y * blockDim.x; j < n; j += blockDim.x * gridDim.y) { float x1 = xyz1[(i * n + j) * 3 + 0]; float y1 = xyz1[(i * n + j) * 3 + 1]; float z1 = xyz1[(i * n + j) * 3 + 2]; int j2 = assignment[i * n + j]; float x2 = xyz2[(i * n + j2) * 3 + 0]; float y2 = xyz2[(i * n + j2) * 3 + 1]; float z2 = xyz2[(i * n + j2) * 3 + 2]; float g = grad_dist[i * n + j] * 2; atomicAdd(&(grad_xyz1[(i * n + j) * 3 + 0]), g * (x1 - x2)); atomicAdd(&(grad_xyz1[(i * n + j) * 3 + 1]), g * (y1 - y2)); atomicAdd(&(grad_xyz1[(i * n + j) * 3 + 2]), g * (z1 - z2)); atomicAdd(&(grad_xyz2[(i * n + j2) * 3 + 0]), -g * (x1 - x2)); atomicAdd(&(grad_xyz2[(i * n + j2) * 3 + 1]), -g * (y1 - y2)); atomicAdd(&(grad_xyz2[(i * n + j2) * 3 + 2]), -g * (z1 - z2)); } } } void emdcostGradLauncher(int b, int n, int m, const float* xyz1, const float* xyz2, const float* grad_cost, const int* assignment, float* grad_xyz1, float* grad_xyz2) { cudaMemset(grad_xyz1, 0, b * n * 3 * sizeof(float)); cudaMemset(grad_xyz2, 0, b * n * 3 * sizeof(float)); emdcostGrad<<<dim3(b, n / 1024, 1), 1024>>>(b, n, m, xyz1, xyz2, grad_cost, assignment, grad_xyz1, grad_xyz2); }
86cb22a0dd02469c22eefe6cbab9c604283f6255.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "device_launch_parameters.h" #include <thrust\device_vector.h> #include <thrust\host_vector.h> #include <stdio.h> #include <iostream> using namespace std; __global__ void kernel(int *, const int N) { int i = blockDim.x * blockIdx.x + threadIdx.x; if (i < N) { a[i] = a[i] + 3; } } void showArray(int *a, const int N) { for (int i = 0; i < N; i++) { cout << a[i] << ", "; } cout << endl; } void run() { const int N = 20; static int h_a[N]; int *d_a; int size = N * sizeof(int); dim3 blocks(10); dim3 threads(2); int count; cudaDeviceCount(&count); cudaDeviceProperties prop; if (count == 1) { hipGetDeviceProperties(&prop, count - 1); } if (!prop.canMapHostMemory) { // cudaHostMalloc(&h_a, size, hipHostMallocMapped); printf("cannot use map memory") return; } cudaHostMalloc(&h_a, size, hipHostMallocMapped); hipHostGetDevicePointer(&d_a, h_a, 0); hipLaunchKernelGGL(( kernel), dim3(blocks), dim3(threads), 0, 0, d_a, N); hipDeviceSynchronize(); hipHostFree(h_a); cout << "result: " << endl; showArray(h_a, N); system("pause"); return 0; }
86cb22a0dd02469c22eefe6cbab9c604283f6255.cu
#include "cuda_runtime.h" #include "device_launch_parameters.h" #include <thrust\device_vector.h> #include <thrust\host_vector.h> #include <stdio.h> #include <iostream> using namespace std; __global__ void kernel(int *, const int N) { int i = blockDim.x * blockIdx.x + threadIdx.x; if (i < N) { a[i] = a[i] + 3; } } void showArray(int *a, const int N) { for (int i = 0; i < N; i++) { cout << a[i] << ", "; } cout << endl; } void run() { const int N = 20; static int h_a[N]; int *d_a; int size = N * sizeof(int); dim3 blocks(10); dim3 threads(2); int count; cudaDeviceCount(&count); cudaDeviceProperties prop; if (count == 1) { cudaGetDeviceProperties(&prop, count - 1); } if (!prop.canMapHostMemory) { // cudaHostMalloc(&h_a, size, cudaHostAllocMapped); printf("cannot use map memory") return; } cudaHostMalloc(&h_a, size, cudaHostAllocMapped); cudaHostGetDevicePointer(&d_a, h_a, 0); kernel<<<blocks, threads>>>(d_a, N); cudaDeviceSynchronize(); cudaFreeHost(h_a); cout << "result: " << endl; showArray(h_a, N); system("pause"); return 0; }
f571e0b1d8ccd1acbb70de551cfdea82b0510be2.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <stdio.h> #include <stdlib.h> #include <time.h> #include <assert.h> #define BLOCK_SIZE 256 #define STR_SIZE 256 #define DEVICE 0 #define HALO 1 // halo width along one direction when advancing to the next iteration #define BENCH_PRINT void run(int argc, char** argv); long long int rows, cols; int* data; int** wall; int* result; #define M_SEED 9 int pyramid_height; //#define BENCH_PRINT void init(int argc, char** argv) { if(argc==4){ cols = atoll(argv[1]); rows = atoll(argv[2]); pyramid_height=atoi(argv[3]); }else{ printf("Usage: dynproc row_len col_len pyramid_height\n"); exit(0); } data = new int[rows*cols]; wall = new int*[rows]; for(long long n=0; n<rows; n++) wall[n]=data+cols*n; result = new int[cols]; int seed = M_SEED; srand(seed); for (long long i = 0; i < rows; i++) { for (long long j = 0; j < cols; j++) { wall[i][j] = rand() % 10; } } #ifdef BENCH_PRINT /* for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { printf("%d ",wall[i][j]) ; } printf("\n") ; } */ #endif } void fatal(char *s) { fprintf(stderr, "error: %s\n", s); } #define IN_RANGE(x, min, max) ((x)>=(min) && (x)<=(max)) #define CLAMP_RANGE(x, min, max) x = (x<(min)) ? min : ((x>(max)) ? max : x ) #define MIN(a, b) ((a)<=(b) ? (a) : (b)) __global__ void dynproc_kernel( int iteration, int *gpuWall, int *gpuSrc, int *gpuResults, int cols, int rows, int startStep, int border) { __shared__ int prev[BLOCK_SIZE]; __shared__ int result[BLOCK_SIZE]; int bx = blockIdx.x; int tx=threadIdx.x; // each block finally computes result for a small block // after N iterations. // it is the non-overlapping small blocks that cover // all the input data // calculate the small block size int small_block_cols = BLOCK_SIZE-iteration*HALO*2; // calculate the boundary for the block according to // the boundary of its small block int blkX = small_block_cols*bx-border; int blkXmax = blkX+BLOCK_SIZE-1; // calculate the global thread coordination int xidx = blkX+tx; // effective range within this block that falls within // the valid range of the input data // used to rule out computation outside the boundary. int validXmin = (blkX < 0) ? -blkX : 0; int validXmax = (blkXmax > cols-1) ? BLOCK_SIZE-1-(blkXmax-cols+1) : BLOCK_SIZE-1; int W = tx-1; int E = tx+1; W = (W < validXmin) ? validXmin : W; E = (E > validXmax) ? validXmax : E; bool isValid = IN_RANGE(tx, validXmin, validXmax); if(IN_RANGE(xidx, 0, cols-1)){ prev[tx] = gpuSrc[xidx]; } __syncthreads(); // [Ronny] Added sync to avoid race on prev Aug. 14 2012 bool computed; for (int i=0; i<iteration ; i++){ computed = false; if( IN_RANGE(tx, i+1, BLOCK_SIZE-i-2) && \ isValid){ computed = true; int left = prev[W]; int up = prev[tx]; int right = prev[E]; int shortest = MIN(left, up); shortest = MIN(shortest, right); int index = cols*(startStep+i)+xidx; result[tx] = shortest + gpuWall[index]; } __syncthreads(); if(i==iteration-1) break; if(computed) //Assign the computation range prev[tx]= result[tx]; __syncthreads(); // [Ronny] Added sync to avoid race on prev Aug. 14 2012 } // update the global memory // after the last iteration, only threads coordinated within the // small block perform the calculation and switch on ``computed'' if (computed){ gpuResults[xidx]=result[tx]; } } /* compute N time steps */ int calc_path(int *gpuWall, int *gpuResult[2], int rows, int cols, \ int pyramid_height, int blockCols, int borderCols) { dim3 dimBlock(BLOCK_SIZE); dim3 dimGrid(blockCols); int src = 1, dst = 0; for (int t = 0; t < rows-1; t+=pyramid_height) { int temp = src; src = dst; dst = temp; hipLaunchKernelGGL(( dynproc_kernel), dim3(dimGrid), dim3(dimBlock), 0, 0, MIN(pyramid_height, rows-t-1), gpuWall, gpuResult[src], gpuResult[dst], cols,rows, t, borderCols); } return dst; } int main(int argc, char** argv) { int num_devices; hipGetDeviceCount(&num_devices); if (num_devices > 1) hipSetDevice(DEVICE); run(argc,argv); return EXIT_SUCCESS; } void run(int argc, char** argv) { init(argc, argv); /* --------------- pyramid parameters --------------- */ int borderCols = (pyramid_height)*HALO; int smallBlockCol = BLOCK_SIZE-(pyramid_height)*HALO*2; int blockCols = cols/smallBlockCol+((cols%smallBlockCol==0)?0:1); //printf("pyramidHeight: %d\ngridSize: [%d]\nborder:[%d]\nblockSize: %d\nblockGrid:[%d]\ntargetBlock:[%d]\n",\ pyramid_height, cols, borderCols, BLOCK_SIZE, blockCols, smallBlockCol); int *gpuWall, *gpuResult[2]; long long int size = rows*cols; hipMalloc((void**)&gpuResult[0], sizeof(int)*cols); hipMalloc((void**)&gpuResult[1], sizeof(int)*cols); hipMemcpy(gpuResult[0], data, sizeof(int)*cols, hipMemcpyHostToDevice); hipMalloc((void**)&gpuWall, sizeof(int)*(size-cols)); hipMemcpy(gpuWall, data+cols, sizeof(int)*(size-cols), hipMemcpyHostToDevice); int final_ret = calc_path(gpuWall, gpuResult, rows, cols, \ pyramid_height, blockCols, borderCols); hipMemcpy(result, gpuResult[final_ret], sizeof(int)*cols, hipMemcpyDeviceToHost); #ifdef BENCH_PRINT /* for (int i = 0; i < cols; i++) printf("%d ",data[i]) ; printf("\n") ; for (int i = 0; i < cols; i++) printf("%d ",result[i]) ; printf("\n") ; */ #endif hipFree(gpuWall); hipFree(gpuResult[0]); hipFree(gpuResult[1]); delete [] data; delete [] wall; delete [] result; }
f571e0b1d8ccd1acbb70de551cfdea82b0510be2.cu
#include <stdio.h> #include <stdlib.h> #include <time.h> #include <assert.h> #define BLOCK_SIZE 256 #define STR_SIZE 256 #define DEVICE 0 #define HALO 1 // halo width along one direction when advancing to the next iteration #define BENCH_PRINT void run(int argc, char** argv); long long int rows, cols; int* data; int** wall; int* result; #define M_SEED 9 int pyramid_height; //#define BENCH_PRINT void init(int argc, char** argv) { if(argc==4){ cols = atoll(argv[1]); rows = atoll(argv[2]); pyramid_height=atoi(argv[3]); }else{ printf("Usage: dynproc row_len col_len pyramid_height\n"); exit(0); } data = new int[rows*cols]; wall = new int*[rows]; for(long long n=0; n<rows; n++) wall[n]=data+cols*n; result = new int[cols]; int seed = M_SEED; srand(seed); for (long long i = 0; i < rows; i++) { for (long long j = 0; j < cols; j++) { wall[i][j] = rand() % 10; } } #ifdef BENCH_PRINT /* for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { printf("%d ",wall[i][j]) ; } printf("\n") ; } */ #endif } void fatal(char *s) { fprintf(stderr, "error: %s\n", s); } #define IN_RANGE(x, min, max) ((x)>=(min) && (x)<=(max)) #define CLAMP_RANGE(x, min, max) x = (x<(min)) ? min : ((x>(max)) ? max : x ) #define MIN(a, b) ((a)<=(b) ? (a) : (b)) __global__ void dynproc_kernel( int iteration, int *gpuWall, int *gpuSrc, int *gpuResults, int cols, int rows, int startStep, int border) { __shared__ int prev[BLOCK_SIZE]; __shared__ int result[BLOCK_SIZE]; int bx = blockIdx.x; int tx=threadIdx.x; // each block finally computes result for a small block // after N iterations. // it is the non-overlapping small blocks that cover // all the input data // calculate the small block size int small_block_cols = BLOCK_SIZE-iteration*HALO*2; // calculate the boundary for the block according to // the boundary of its small block int blkX = small_block_cols*bx-border; int blkXmax = blkX+BLOCK_SIZE-1; // calculate the global thread coordination int xidx = blkX+tx; // effective range within this block that falls within // the valid range of the input data // used to rule out computation outside the boundary. int validXmin = (blkX < 0) ? -blkX : 0; int validXmax = (blkXmax > cols-1) ? BLOCK_SIZE-1-(blkXmax-cols+1) : BLOCK_SIZE-1; int W = tx-1; int E = tx+1; W = (W < validXmin) ? validXmin : W; E = (E > validXmax) ? validXmax : E; bool isValid = IN_RANGE(tx, validXmin, validXmax); if(IN_RANGE(xidx, 0, cols-1)){ prev[tx] = gpuSrc[xidx]; } __syncthreads(); // [Ronny] Added sync to avoid race on prev Aug. 14 2012 bool computed; for (int i=0; i<iteration ; i++){ computed = false; if( IN_RANGE(tx, i+1, BLOCK_SIZE-i-2) && \ isValid){ computed = true; int left = prev[W]; int up = prev[tx]; int right = prev[E]; int shortest = MIN(left, up); shortest = MIN(shortest, right); int index = cols*(startStep+i)+xidx; result[tx] = shortest + gpuWall[index]; } __syncthreads(); if(i==iteration-1) break; if(computed) //Assign the computation range prev[tx]= result[tx]; __syncthreads(); // [Ronny] Added sync to avoid race on prev Aug. 14 2012 } // update the global memory // after the last iteration, only threads coordinated within the // small block perform the calculation and switch on ``computed'' if (computed){ gpuResults[xidx]=result[tx]; } } /* compute N time steps */ int calc_path(int *gpuWall, int *gpuResult[2], int rows, int cols, \ int pyramid_height, int blockCols, int borderCols) { dim3 dimBlock(BLOCK_SIZE); dim3 dimGrid(blockCols); int src = 1, dst = 0; for (int t = 0; t < rows-1; t+=pyramid_height) { int temp = src; src = dst; dst = temp; dynproc_kernel<<<dimGrid, dimBlock>>>( MIN(pyramid_height, rows-t-1), gpuWall, gpuResult[src], gpuResult[dst], cols,rows, t, borderCols); } return dst; } int main(int argc, char** argv) { int num_devices; cudaGetDeviceCount(&num_devices); if (num_devices > 1) cudaSetDevice(DEVICE); run(argc,argv); return EXIT_SUCCESS; } void run(int argc, char** argv) { init(argc, argv); /* --------------- pyramid parameters --------------- */ int borderCols = (pyramid_height)*HALO; int smallBlockCol = BLOCK_SIZE-(pyramid_height)*HALO*2; int blockCols = cols/smallBlockCol+((cols%smallBlockCol==0)?0:1); //printf("pyramidHeight: %d\ngridSize: [%d]\nborder:[%d]\nblockSize: %d\nblockGrid:[%d]\ntargetBlock:[%d]\n",\ pyramid_height, cols, borderCols, BLOCK_SIZE, blockCols, smallBlockCol); int *gpuWall, *gpuResult[2]; long long int size = rows*cols; cudaMalloc((void**)&gpuResult[0], sizeof(int)*cols); cudaMalloc((void**)&gpuResult[1], sizeof(int)*cols); cudaMemcpy(gpuResult[0], data, sizeof(int)*cols, cudaMemcpyHostToDevice); cudaMalloc((void**)&gpuWall, sizeof(int)*(size-cols)); cudaMemcpy(gpuWall, data+cols, sizeof(int)*(size-cols), cudaMemcpyHostToDevice); int final_ret = calc_path(gpuWall, gpuResult, rows, cols, \ pyramid_height, blockCols, borderCols); cudaMemcpy(result, gpuResult[final_ret], sizeof(int)*cols, cudaMemcpyDeviceToHost); #ifdef BENCH_PRINT /* for (int i = 0; i < cols; i++) printf("%d ",data[i]) ; printf("\n") ; for (int i = 0; i < cols; i++) printf("%d ",result[i]) ; printf("\n") ; */ #endif cudaFree(gpuWall); cudaFree(gpuResult[0]); cudaFree(gpuResult[1]); delete [] data; delete [] wall; delete [] result; }
b27aa0e5bc7dd26ea1b69f25329a7a079b110f90.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <ATen/ATen.h> #include <ATen/hip/HIPContext.h> #include <ATen/hip/impl/HIPGuardImplMasqueradingAsCUDA.h> #include <ATen/hip/HIPApplyUtils.cuh> #include "../box_iou_polygon_utils.h" // 2D block with 32 * 16 = 512 threads per block const int BLOCK_DIM_X = 32; const int BLOCK_DIM_Y = 16; template <typename T> __global__ void box_iou_polygon_cuda_kernel( const int n_boxes1, const int n_boxes2, const T* dev_boxes1, const T* dev_boxes2, T* dev_ious) { const int row_start = blockIdx.x * blockDim.x; const int col_start = blockIdx.y * blockDim.y; const int row_size = min(n_boxes1 - row_start, blockDim.x); const int col_size = min(n_boxes2 - col_start, blockDim.y); __shared__ float block_boxes1[BLOCK_DIM_X * 8]; __shared__ float block_boxes2[BLOCK_DIM_Y * 8]; // It's safe to copy using threadIdx.x since BLOCK_DIM_X >= BLOCK_DIM_Y if (threadIdx.x < row_size && threadIdx.y == 0) { block_boxes1[threadIdx.x * 8 + 0] = dev_boxes1[(row_start + threadIdx.x) * 8 + 0]; block_boxes1[threadIdx.x * 8 + 1] = dev_boxes1[(row_start + threadIdx.x) * 8 + 1]; block_boxes1[threadIdx.x * 8 + 2] = dev_boxes1[(row_start + threadIdx.x) * 8 + 2]; block_boxes1[threadIdx.x * 8 + 3] = dev_boxes1[(row_start + threadIdx.x) * 8 + 3]; block_boxes1[threadIdx.x * 8 + 4] = dev_boxes1[(row_start + threadIdx.x) * 8 + 4]; block_boxes1[threadIdx.x * 8 + 5] = dev_boxes1[(row_start + threadIdx.x) * 8 + 5]; block_boxes1[threadIdx.x * 8 + 6] = dev_boxes1[(row_start + threadIdx.x) * 8 + 6]; block_boxes1[threadIdx.x * 8 + 7] = dev_boxes1[(row_start + threadIdx.x) * 8 + 7]; } if (threadIdx.x < col_size && threadIdx.y == 0) { block_boxes2[threadIdx.x * 8 + 0] = dev_boxes2[(col_start + threadIdx.x) * 8 + 0]; block_boxes2[threadIdx.x * 8 + 1] = dev_boxes2[(col_start + threadIdx.x) * 8 + 1]; block_boxes2[threadIdx.x * 8 + 2] = dev_boxes2[(col_start + threadIdx.x) * 8 + 2]; block_boxes2[threadIdx.x * 8 + 3] = dev_boxes2[(col_start + threadIdx.x) * 8 + 3]; block_boxes2[threadIdx.x * 8 + 4] = dev_boxes2[(col_start + threadIdx.x) * 8 + 4]; block_boxes2[threadIdx.x * 8 + 5] = dev_boxes2[(col_start + threadIdx.x) * 8 + 5]; block_boxes2[threadIdx.x * 8 + 6] = dev_boxes2[(col_start + threadIdx.x) * 8 + 6]; block_boxes2[threadIdx.x * 8 + 7] = dev_boxes2[(col_start + threadIdx.x) * 8 + 7]; } __syncthreads(); if (threadIdx.x < row_size && threadIdx.y < col_size) { int offset = (row_start + threadIdx.x) * n_boxes2 + col_start + threadIdx.y; dev_ious[offset] = single_poly_iou<T>( block_boxes1 + threadIdx.x * 8, block_boxes2 + threadIdx.y * 8); } } at::Tensor box_iou_polygon_cuda( const at::Tensor& boxes1, const at::Tensor& boxes2) { using scalar_t = float; AT_ASSERTM(boxes1.type().is_cuda(), "boxes1 must be a CUDA tensor"); AT_ASSERTM(boxes2.type().is_cuda(), "boxes2 must be a CUDA tensor"); at::hip::HIPGuardMasqueradingAsCUDA device_guard(boxes1.device()); int num_boxes1 = boxes1.size(0); int num_boxes2 = boxes2.size(0); at::Tensor ious = at::empty({num_boxes1 * num_boxes2}, boxes1.options().dtype(at::kFloat)); if (num_boxes1 > 0 && num_boxes2 > 0) { const int blocks_x = at::cuda::ATenCeilDiv(num_boxes1, BLOCK_DIM_X); const int blocks_y = at::cuda::ATenCeilDiv(num_boxes2, BLOCK_DIM_Y); dim3 blocks(blocks_x, blocks_y); dim3 threads(BLOCK_DIM_X, BLOCK_DIM_Y); hipStream_t stream = at::hip::getCurrentHIPStreamMasqueradingAsCUDA(); hipLaunchKernelGGL(( box_iou_polygon_cuda_kernel<scalar_t>), dim3(blocks), dim3(threads), 0, stream, num_boxes1, num_boxes2, // boxes1.data_ptr<scalar_t>(), // boxes2.data_ptr<scalar_t>(), // (scalar_t*)ious.data_ptr<scalar_t>()); boxes1.data<scalar_t>(), boxes2.data<scalar_t>(), (scalar_t*)ious.data<scalar_t>()); AT_CUDA_CHECK(hipGetLastError()); } auto shape = std::vector<int64_t>{num_boxes1, num_boxes2}; return ious.reshape(shape); }
b27aa0e5bc7dd26ea1b69f25329a7a079b110f90.cu
#include <ATen/ATen.h> #include <ATen/cuda/CUDAContext.h> #include <c10/cuda/CUDAGuard.h> #include <ATen/cuda/CUDAApplyUtils.cuh> #include "../box_iou_polygon_utils.h" // 2D block with 32 * 16 = 512 threads per block const int BLOCK_DIM_X = 32; const int BLOCK_DIM_Y = 16; template <typename T> __global__ void box_iou_polygon_cuda_kernel( const int n_boxes1, const int n_boxes2, const T* dev_boxes1, const T* dev_boxes2, T* dev_ious) { const int row_start = blockIdx.x * blockDim.x; const int col_start = blockIdx.y * blockDim.y; const int row_size = min(n_boxes1 - row_start, blockDim.x); const int col_size = min(n_boxes2 - col_start, blockDim.y); __shared__ float block_boxes1[BLOCK_DIM_X * 8]; __shared__ float block_boxes2[BLOCK_DIM_Y * 8]; // It's safe to copy using threadIdx.x since BLOCK_DIM_X >= BLOCK_DIM_Y if (threadIdx.x < row_size && threadIdx.y == 0) { block_boxes1[threadIdx.x * 8 + 0] = dev_boxes1[(row_start + threadIdx.x) * 8 + 0]; block_boxes1[threadIdx.x * 8 + 1] = dev_boxes1[(row_start + threadIdx.x) * 8 + 1]; block_boxes1[threadIdx.x * 8 + 2] = dev_boxes1[(row_start + threadIdx.x) * 8 + 2]; block_boxes1[threadIdx.x * 8 + 3] = dev_boxes1[(row_start + threadIdx.x) * 8 + 3]; block_boxes1[threadIdx.x * 8 + 4] = dev_boxes1[(row_start + threadIdx.x) * 8 + 4]; block_boxes1[threadIdx.x * 8 + 5] = dev_boxes1[(row_start + threadIdx.x) * 8 + 5]; block_boxes1[threadIdx.x * 8 + 6] = dev_boxes1[(row_start + threadIdx.x) * 8 + 6]; block_boxes1[threadIdx.x * 8 + 7] = dev_boxes1[(row_start + threadIdx.x) * 8 + 7]; } if (threadIdx.x < col_size && threadIdx.y == 0) { block_boxes2[threadIdx.x * 8 + 0] = dev_boxes2[(col_start + threadIdx.x) * 8 + 0]; block_boxes2[threadIdx.x * 8 + 1] = dev_boxes2[(col_start + threadIdx.x) * 8 + 1]; block_boxes2[threadIdx.x * 8 + 2] = dev_boxes2[(col_start + threadIdx.x) * 8 + 2]; block_boxes2[threadIdx.x * 8 + 3] = dev_boxes2[(col_start + threadIdx.x) * 8 + 3]; block_boxes2[threadIdx.x * 8 + 4] = dev_boxes2[(col_start + threadIdx.x) * 8 + 4]; block_boxes2[threadIdx.x * 8 + 5] = dev_boxes2[(col_start + threadIdx.x) * 8 + 5]; block_boxes2[threadIdx.x * 8 + 6] = dev_boxes2[(col_start + threadIdx.x) * 8 + 6]; block_boxes2[threadIdx.x * 8 + 7] = dev_boxes2[(col_start + threadIdx.x) * 8 + 7]; } __syncthreads(); if (threadIdx.x < row_size && threadIdx.y < col_size) { int offset = (row_start + threadIdx.x) * n_boxes2 + col_start + threadIdx.y; dev_ious[offset] = single_poly_iou<T>( block_boxes1 + threadIdx.x * 8, block_boxes2 + threadIdx.y * 8); } } at::Tensor box_iou_polygon_cuda( const at::Tensor& boxes1, const at::Tensor& boxes2) { using scalar_t = float; AT_ASSERTM(boxes1.type().is_cuda(), "boxes1 must be a CUDA tensor"); AT_ASSERTM(boxes2.type().is_cuda(), "boxes2 must be a CUDA tensor"); at::cuda::CUDAGuard device_guard(boxes1.device()); int num_boxes1 = boxes1.size(0); int num_boxes2 = boxes2.size(0); at::Tensor ious = at::empty({num_boxes1 * num_boxes2}, boxes1.options().dtype(at::kFloat)); if (num_boxes1 > 0 && num_boxes2 > 0) { const int blocks_x = at::cuda::ATenCeilDiv(num_boxes1, BLOCK_DIM_X); const int blocks_y = at::cuda::ATenCeilDiv(num_boxes2, BLOCK_DIM_Y); dim3 blocks(blocks_x, blocks_y); dim3 threads(BLOCK_DIM_X, BLOCK_DIM_Y); cudaStream_t stream = at::cuda::getCurrentCUDAStream(); box_iou_polygon_cuda_kernel<scalar_t><<<blocks, threads, 0, stream>>>( num_boxes1, num_boxes2, // boxes1.data_ptr<scalar_t>(), // boxes2.data_ptr<scalar_t>(), // (scalar_t*)ious.data_ptr<scalar_t>()); boxes1.data<scalar_t>(), boxes2.data<scalar_t>(), (scalar_t*)ious.data<scalar_t>()); AT_CUDA_CHECK(cudaGetLastError()); } auto shape = std::vector<int64_t>{num_boxes1, num_boxes2}; return ious.reshape(shape); }
dd642f160341724abda4996b8798590700e331a1.hip
// !!! This is a file automatically generated by hipify!!! /* * Copyright (c) 2020-2021, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <traversal/bfs_ref.h> #include <utilities/base_fixture.hpp> #include <utilities/test_utilities.hpp> #include <raft/error.hpp> #include <raft/handle.hpp> #include <thrust/device_vector.h> #include <thrust/host_vector.h> #include <gmock/gmock.h> #include <cugraph/algorithms.hpp> #include <cugraph/graph.hpp> #include <fstream> #include <queue> #include <stack> #include <utility> #ifndef TEST_EPSILON #define TEST_EPSILON 0.0001 #endif // NOTE: Defines under which values the difference should be discarded when // considering values are close to zero // i.e: Do we consider that the difference between 1.3e-9 and 8.e-12 is // significant #ifndef TEST_ZERO_THRESHOLD #define TEST_ZERO_THRESHOLD 1e-10 #endif // ============================================================================ // C++ Reference Implementation // ============================================================================ template <typename vertex_t, typename edge_t, typename weight_t, typename result_t> edge_t get_edge_index_from_source_and_destination(vertex_t source_vertex, vertex_t destination_vertex, vertex_t const *indices, edge_t const *offsets) { edge_t index = -1; edge_t first_edge_idx = offsets[source_vertex]; edge_t last_edge_idx = offsets[source_vertex + 1]; auto index_it = std::find(indices + first_edge_idx, indices + last_edge_idx, destination_vertex); if (index_it != (indices + last_edge_idx)) { index = std::distance(indices, index_it); } return index; } template <typename vertex_t, typename edge_t, typename weight_t, typename result_t> void ref_accumulation(result_t *result, vertex_t const *indices, edge_t const *offsets, vertex_t const number_of_vertices, std::stack<vertex_t> &S, std::vector<std::vector<vertex_t>> &pred, std::vector<double> &sigmas, std::vector<double> &deltas, vertex_t source) { for (vertex_t v = 0; v < number_of_vertices; ++v) { deltas[v] = 0; } while (!S.empty()) { vertex_t w = S.top(); S.pop(); for (vertex_t v : pred[w]) { edge_t edge_idx = get_edge_index_from_source_and_destination<vertex_t, edge_t, weight_t, result_t>( v, w, indices, offsets); double coefficient = (sigmas[v] / sigmas[w]) * (1.0 + deltas[w]); deltas[v] += coefficient; result[edge_idx] += coefficient; } } } // Algorithm 1: Shortest-path vertex betweenness, (Brandes, 2001) template <typename vertex_t, typename edge_t, typename weight_t, typename result_t> void reference_edge_betweenness_centrality_impl(vertex_t *indices, edge_t *offsets, vertex_t const number_of_vertices, result_t *result, vertex_t const *sources, vertex_t const number_of_sources) { std::queue<vertex_t> Q; std::stack<vertex_t> S; // NOTE: dist is of type vertex_t not weight_t std::vector<vertex_t> dist(number_of_vertices); std::vector<std::vector<vertex_t>> pred(number_of_vertices); std::vector<double> sigmas(number_of_vertices); std::vector<double> deltas(number_of_vertices); std::vector<vertex_t> neighbors; if (sources) { for (vertex_t source_idx = 0; source_idx < number_of_sources; ++source_idx) { vertex_t s = sources[source_idx]; // Step 1: Single-source shortest-paths problem // a. Initialization ref_bfs<vertex_t, edge_t>(indices, offsets, number_of_vertices, Q, S, dist, pred, sigmas, s); // Step 2: Accumulation // Back propagation of dependencies ref_accumulation<vertex_t, edge_t, weight_t, result_t>( result, indices, offsets, number_of_vertices, S, pred, sigmas, deltas, s); } } else { for (vertex_t s = 0; s < number_of_vertices; ++s) { // Step 1: Single-source shortest-paths problem // a. Initialization ref_bfs<vertex_t, edge_t>(indices, offsets, number_of_vertices, Q, S, dist, pred, sigmas, s); // Step 2: Accumulation // Back propagation of dependencies ref_accumulation<vertex_t, edge_t, weight_t, result_t>( result, indices, offsets, number_of_vertices, S, pred, sigmas, deltas, s); } } } template <typename vertex_t, typename edge_t, typename weight_t, typename result_t> void reference_rescale(result_t *result, bool directed, bool normalize, vertex_t const number_of_vertices, edge_t const number_of_edges) { result_t rescale_factor = static_cast<result_t>(1); result_t casted_number_of_vertices = static_cast<result_t>(number_of_vertices); if (normalize) { if (number_of_vertices > 1) { rescale_factor /= ((casted_number_of_vertices) * (casted_number_of_vertices - 1)); } } else { if (!directed) { rescale_factor /= static_cast<result_t>(2); } } for (auto idx = 0; idx < number_of_edges; ++idx) { result[idx] *= rescale_factor; } } template <typename vertex_t, typename edge_t, typename weight_t, typename result_t> void reference_edge_betweenness_centrality( cugraph::GraphCSRView<vertex_t, edge_t, weight_t> const &graph, result_t *result, bool normalize, vertex_t const number_of_sources, vertex_t const *sources) { vertex_t number_of_vertices = graph.number_of_vertices; edge_t number_of_edges = graph.number_of_edges; thrust::host_vector<vertex_t> h_indices(number_of_edges); thrust::host_vector<edge_t> h_offsets(number_of_vertices + 1); thrust::device_ptr<vertex_t> d_indices((vertex_t *)&graph.indices[0]); thrust::device_ptr<edge_t> d_offsets((edge_t *)&graph.offsets[0]); thrust::copy(d_indices, d_indices + number_of_edges, h_indices.begin()); thrust::copy(d_offsets, d_offsets + (number_of_vertices + 1), h_offsets.begin()); hipDeviceSynchronize(); reference_edge_betweenness_centrality_impl<vertex_t, edge_t, weight_t, result_t>( &h_indices[0], &h_offsets[0], number_of_vertices, result, sources, number_of_sources); reference_rescale<vertex_t, edge_t, weight_t, result_t>( result, graph.prop.directed, normalize, number_of_vertices, number_of_edges); } // ============================================================================= // Utility functions // ============================================================================= // Compare while allowing relatie error of epsilon // zero_threshold indicates when we should drop comparison for small numbers template <typename T, typename precision_t> bool compare_close(const T &a, const T &b, const precision_t epsilon, precision_t zero_threshold) { return ((zero_threshold > a && zero_threshold > b)) || (a >= b * (1.0 - epsilon)) && (a <= b * (1.0 + epsilon)); } // ============================================================================= // Test Suite // ============================================================================= // Defines Betweenness Centrality UseCase // SSSP's test suite code uses type of Graph parameter that could be used // (MTX / RMAT) typedef struct EdgeBC_Usecase_t { std::string config_; // Path to graph file std::string file_path_; // Complete path to graph using dataset_root_dir int number_of_sources_; // Starting point from the traversal EdgeBC_Usecase_t(const std::string &config, int number_of_sources) : config_(config), number_of_sources_(number_of_sources) { // assume relative paths are relative to RAPIDS_DATASET_ROOT_DIR // FIXME: Use platform independent stuff from c++14/17 on compiler update const std::string &rapidsDatasetRootDir = cugraph::test::get_rapids_dataset_root_dir(); if ((config_ != "") && (config_[0] != '/')) { file_path_ = rapidsDatasetRootDir + "/" + config_; } else { file_path_ = config_; } }; } EdgeBC_Usecase; class Tests_EdgeBC : public ::testing::TestWithParam<EdgeBC_Usecase> { raft::handle_t handle; public: Tests_EdgeBC() {} static void SetupTestCase() {} static void TearDownTestCase() {} virtual void SetUp() {} virtual void TearDown() {} // FIXME: Should normalize be part of the configuration instead? // vertex_t vertex identifier data type // edge_t edge identifier data type // weight_t edge weight data type // result_t result data type // normalize should the result be normalized template <typename vertex_t, typename edge_t, typename weight_t, typename result_t, bool normalize> void run_current_test(const EdgeBC_Usecase &configuration) { // Step 1: Construction of the graph based on configuration bool is_directed = false; auto csr = cugraph::test::generate_graph_csr_from_mm<vertex_t, edge_t, weight_t>( is_directed, configuration.file_path_); hipDeviceSynchronize(); cugraph::GraphCSRView<vertex_t, edge_t, weight_t> G = csr->view(); G.prop.directed = is_directed; CUDA_TRY(hipGetLastError()); std::vector<result_t> result(G.number_of_edges, 0); std::vector<result_t> expected(G.number_of_edges, 0); // Step 2: Generation of sources based on configuration // if number_of_sources_ is 0 then sources must be nullptr // Otherwise we only use the first k values ASSERT_TRUE(configuration.number_of_sources_ >= 0 && configuration.number_of_sources_ <= G.number_of_vertices) << "Number number of sources should be >= 0 and" << " less than the number of vertices in the graph"; std::vector<vertex_t> sources(configuration.number_of_sources_); thrust::sequence(thrust::host, sources.begin(), sources.end(), 0); vertex_t *sources_ptr = nullptr; if (configuration.number_of_sources_ > 0) { sources_ptr = sources.data(); } reference_edge_betweenness_centrality( G, expected.data(), normalize, configuration.number_of_sources_, sources_ptr); sources_ptr = nullptr; if (configuration.number_of_sources_ > 0) { sources_ptr = sources.data(); } rmm::device_vector<result_t> d_result(G.number_of_edges); cugraph::edge_betweenness_centrality(handle, G, d_result.data().get(), normalize, static_cast<weight_t *>(nullptr), configuration.number_of_sources_, sources_ptr); CUDA_TRY(hipMemcpy(result.data(), d_result.data().get(), sizeof(result_t) * G.number_of_edges, hipMemcpyDeviceToHost)); for (int i = 0; i < G.number_of_edges; ++i) EXPECT_TRUE(compare_close(result[i], expected[i], TEST_EPSILON, TEST_ZERO_THRESHOLD)) << "[MISMATCH] vaid = " << i << ", cugraph = " << result[i] << " expected = " << expected[i]; } }; // ============================================================================ // Tests // ============================================================================ // Verifiy Un-Normalized results TEST_P(Tests_EdgeBC, CheckFP32_NO_NORMALIZE) { run_current_test<int, int, float, float, false>(GetParam()); } #if 0 // Temporarily disable some of the test combinations // Full solution will be explored for issue #1555 TEST_P(Tests_EdgeBC, CheckFP64_NO_NORMALIZE) { run_current_test<int, int, double, double, false>(GetParam()); } // Verifiy Normalized results TEST_P(Tests_EdgeBC, CheckFP32_NORMALIZE) { run_current_test<int, int, float, float, true>(GetParam()); } #endif TEST_P(Tests_EdgeBC, CheckFP64_NORMALIZE) { run_current_test<int, int, double, double, true>(GetParam()); } #if 0 // Temporarily disable some of the test combinations // Full solution will be explored for issue #1555 INSTANTIATE_TEST_SUITE_P(simple_test, Tests_EdgeBC, ::testing::Values(EdgeBC_Usecase("test/datasets/karate.mtx", 0), EdgeBC_Usecase("test/datasets/netscience.mtx", 0), EdgeBC_Usecase("test/datasets/netscience.mtx", 4), EdgeBC_Usecase("test/datasets/wiki2003.mtx", 4), EdgeBC_Usecase("test/datasets/wiki-Talk.mtx", 4))); #else INSTANTIATE_TEST_SUITE_P(simple_test, Tests_EdgeBC, ::testing::Values(EdgeBC_Usecase("test/datasets/karate.mtx", 0), EdgeBC_Usecase("test/datasets/netscience.mtx", 0), EdgeBC_Usecase("test/datasets/netscience.mtx", 4))); #endif CUGRAPH_TEST_PROGRAM_MAIN()
dd642f160341724abda4996b8798590700e331a1.cu
/* * Copyright (c) 2020-2021, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <traversal/bfs_ref.h> #include <utilities/base_fixture.hpp> #include <utilities/test_utilities.hpp> #include <raft/error.hpp> #include <raft/handle.hpp> #include <thrust/device_vector.h> #include <thrust/host_vector.h> #include <gmock/gmock.h> #include <cugraph/algorithms.hpp> #include <cugraph/graph.hpp> #include <fstream> #include <queue> #include <stack> #include <utility> #ifndef TEST_EPSILON #define TEST_EPSILON 0.0001 #endif // NOTE: Defines under which values the difference should be discarded when // considering values are close to zero // i.e: Do we consider that the difference between 1.3e-9 and 8.e-12 is // significant #ifndef TEST_ZERO_THRESHOLD #define TEST_ZERO_THRESHOLD 1e-10 #endif // ============================================================================ // C++ Reference Implementation // ============================================================================ template <typename vertex_t, typename edge_t, typename weight_t, typename result_t> edge_t get_edge_index_from_source_and_destination(vertex_t source_vertex, vertex_t destination_vertex, vertex_t const *indices, edge_t const *offsets) { edge_t index = -1; edge_t first_edge_idx = offsets[source_vertex]; edge_t last_edge_idx = offsets[source_vertex + 1]; auto index_it = std::find(indices + first_edge_idx, indices + last_edge_idx, destination_vertex); if (index_it != (indices + last_edge_idx)) { index = std::distance(indices, index_it); } return index; } template <typename vertex_t, typename edge_t, typename weight_t, typename result_t> void ref_accumulation(result_t *result, vertex_t const *indices, edge_t const *offsets, vertex_t const number_of_vertices, std::stack<vertex_t> &S, std::vector<std::vector<vertex_t>> &pred, std::vector<double> &sigmas, std::vector<double> &deltas, vertex_t source) { for (vertex_t v = 0; v < number_of_vertices; ++v) { deltas[v] = 0; } while (!S.empty()) { vertex_t w = S.top(); S.pop(); for (vertex_t v : pred[w]) { edge_t edge_idx = get_edge_index_from_source_and_destination<vertex_t, edge_t, weight_t, result_t>( v, w, indices, offsets); double coefficient = (sigmas[v] / sigmas[w]) * (1.0 + deltas[w]); deltas[v] += coefficient; result[edge_idx] += coefficient; } } } // Algorithm 1: Shortest-path vertex betweenness, (Brandes, 2001) template <typename vertex_t, typename edge_t, typename weight_t, typename result_t> void reference_edge_betweenness_centrality_impl(vertex_t *indices, edge_t *offsets, vertex_t const number_of_vertices, result_t *result, vertex_t const *sources, vertex_t const number_of_sources) { std::queue<vertex_t> Q; std::stack<vertex_t> S; // NOTE: dist is of type vertex_t not weight_t std::vector<vertex_t> dist(number_of_vertices); std::vector<std::vector<vertex_t>> pred(number_of_vertices); std::vector<double> sigmas(number_of_vertices); std::vector<double> deltas(number_of_vertices); std::vector<vertex_t> neighbors; if (sources) { for (vertex_t source_idx = 0; source_idx < number_of_sources; ++source_idx) { vertex_t s = sources[source_idx]; // Step 1: Single-source shortest-paths problem // a. Initialization ref_bfs<vertex_t, edge_t>(indices, offsets, number_of_vertices, Q, S, dist, pred, sigmas, s); // Step 2: Accumulation // Back propagation of dependencies ref_accumulation<vertex_t, edge_t, weight_t, result_t>( result, indices, offsets, number_of_vertices, S, pred, sigmas, deltas, s); } } else { for (vertex_t s = 0; s < number_of_vertices; ++s) { // Step 1: Single-source shortest-paths problem // a. Initialization ref_bfs<vertex_t, edge_t>(indices, offsets, number_of_vertices, Q, S, dist, pred, sigmas, s); // Step 2: Accumulation // Back propagation of dependencies ref_accumulation<vertex_t, edge_t, weight_t, result_t>( result, indices, offsets, number_of_vertices, S, pred, sigmas, deltas, s); } } } template <typename vertex_t, typename edge_t, typename weight_t, typename result_t> void reference_rescale(result_t *result, bool directed, bool normalize, vertex_t const number_of_vertices, edge_t const number_of_edges) { result_t rescale_factor = static_cast<result_t>(1); result_t casted_number_of_vertices = static_cast<result_t>(number_of_vertices); if (normalize) { if (number_of_vertices > 1) { rescale_factor /= ((casted_number_of_vertices) * (casted_number_of_vertices - 1)); } } else { if (!directed) { rescale_factor /= static_cast<result_t>(2); } } for (auto idx = 0; idx < number_of_edges; ++idx) { result[idx] *= rescale_factor; } } template <typename vertex_t, typename edge_t, typename weight_t, typename result_t> void reference_edge_betweenness_centrality( cugraph::GraphCSRView<vertex_t, edge_t, weight_t> const &graph, result_t *result, bool normalize, vertex_t const number_of_sources, vertex_t const *sources) { vertex_t number_of_vertices = graph.number_of_vertices; edge_t number_of_edges = graph.number_of_edges; thrust::host_vector<vertex_t> h_indices(number_of_edges); thrust::host_vector<edge_t> h_offsets(number_of_vertices + 1); thrust::device_ptr<vertex_t> d_indices((vertex_t *)&graph.indices[0]); thrust::device_ptr<edge_t> d_offsets((edge_t *)&graph.offsets[0]); thrust::copy(d_indices, d_indices + number_of_edges, h_indices.begin()); thrust::copy(d_offsets, d_offsets + (number_of_vertices + 1), h_offsets.begin()); cudaDeviceSynchronize(); reference_edge_betweenness_centrality_impl<vertex_t, edge_t, weight_t, result_t>( &h_indices[0], &h_offsets[0], number_of_vertices, result, sources, number_of_sources); reference_rescale<vertex_t, edge_t, weight_t, result_t>( result, graph.prop.directed, normalize, number_of_vertices, number_of_edges); } // ============================================================================= // Utility functions // ============================================================================= // Compare while allowing relatie error of epsilon // zero_threshold indicates when we should drop comparison for small numbers template <typename T, typename precision_t> bool compare_close(const T &a, const T &b, const precision_t epsilon, precision_t zero_threshold) { return ((zero_threshold > a && zero_threshold > b)) || (a >= b * (1.0 - epsilon)) && (a <= b * (1.0 + epsilon)); } // ============================================================================= // Test Suite // ============================================================================= // Defines Betweenness Centrality UseCase // SSSP's test suite code uses type of Graph parameter that could be used // (MTX / RMAT) typedef struct EdgeBC_Usecase_t { std::string config_; // Path to graph file std::string file_path_; // Complete path to graph using dataset_root_dir int number_of_sources_; // Starting point from the traversal EdgeBC_Usecase_t(const std::string &config, int number_of_sources) : config_(config), number_of_sources_(number_of_sources) { // assume relative paths are relative to RAPIDS_DATASET_ROOT_DIR // FIXME: Use platform independent stuff from c++14/17 on compiler update const std::string &rapidsDatasetRootDir = cugraph::test::get_rapids_dataset_root_dir(); if ((config_ != "") && (config_[0] != '/')) { file_path_ = rapidsDatasetRootDir + "/" + config_; } else { file_path_ = config_; } }; } EdgeBC_Usecase; class Tests_EdgeBC : public ::testing::TestWithParam<EdgeBC_Usecase> { raft::handle_t handle; public: Tests_EdgeBC() {} static void SetupTestCase() {} static void TearDownTestCase() {} virtual void SetUp() {} virtual void TearDown() {} // FIXME: Should normalize be part of the configuration instead? // vertex_t vertex identifier data type // edge_t edge identifier data type // weight_t edge weight data type // result_t result data type // normalize should the result be normalized template <typename vertex_t, typename edge_t, typename weight_t, typename result_t, bool normalize> void run_current_test(const EdgeBC_Usecase &configuration) { // Step 1: Construction of the graph based on configuration bool is_directed = false; auto csr = cugraph::test::generate_graph_csr_from_mm<vertex_t, edge_t, weight_t>( is_directed, configuration.file_path_); cudaDeviceSynchronize(); cugraph::GraphCSRView<vertex_t, edge_t, weight_t> G = csr->view(); G.prop.directed = is_directed; CUDA_TRY(cudaGetLastError()); std::vector<result_t> result(G.number_of_edges, 0); std::vector<result_t> expected(G.number_of_edges, 0); // Step 2: Generation of sources based on configuration // if number_of_sources_ is 0 then sources must be nullptr // Otherwise we only use the first k values ASSERT_TRUE(configuration.number_of_sources_ >= 0 && configuration.number_of_sources_ <= G.number_of_vertices) << "Number number of sources should be >= 0 and" << " less than the number of vertices in the graph"; std::vector<vertex_t> sources(configuration.number_of_sources_); thrust::sequence(thrust::host, sources.begin(), sources.end(), 0); vertex_t *sources_ptr = nullptr; if (configuration.number_of_sources_ > 0) { sources_ptr = sources.data(); } reference_edge_betweenness_centrality( G, expected.data(), normalize, configuration.number_of_sources_, sources_ptr); sources_ptr = nullptr; if (configuration.number_of_sources_ > 0) { sources_ptr = sources.data(); } rmm::device_vector<result_t> d_result(G.number_of_edges); cugraph::edge_betweenness_centrality(handle, G, d_result.data().get(), normalize, static_cast<weight_t *>(nullptr), configuration.number_of_sources_, sources_ptr); CUDA_TRY(cudaMemcpy(result.data(), d_result.data().get(), sizeof(result_t) * G.number_of_edges, cudaMemcpyDeviceToHost)); for (int i = 0; i < G.number_of_edges; ++i) EXPECT_TRUE(compare_close(result[i], expected[i], TEST_EPSILON, TEST_ZERO_THRESHOLD)) << "[MISMATCH] vaid = " << i << ", cugraph = " << result[i] << " expected = " << expected[i]; } }; // ============================================================================ // Tests // ============================================================================ // Verifiy Un-Normalized results TEST_P(Tests_EdgeBC, CheckFP32_NO_NORMALIZE) { run_current_test<int, int, float, float, false>(GetParam()); } #if 0 // Temporarily disable some of the test combinations // Full solution will be explored for issue #1555 TEST_P(Tests_EdgeBC, CheckFP64_NO_NORMALIZE) { run_current_test<int, int, double, double, false>(GetParam()); } // Verifiy Normalized results TEST_P(Tests_EdgeBC, CheckFP32_NORMALIZE) { run_current_test<int, int, float, float, true>(GetParam()); } #endif TEST_P(Tests_EdgeBC, CheckFP64_NORMALIZE) { run_current_test<int, int, double, double, true>(GetParam()); } #if 0 // Temporarily disable some of the test combinations // Full solution will be explored for issue #1555 INSTANTIATE_TEST_SUITE_P(simple_test, Tests_EdgeBC, ::testing::Values(EdgeBC_Usecase("test/datasets/karate.mtx", 0), EdgeBC_Usecase("test/datasets/netscience.mtx", 0), EdgeBC_Usecase("test/datasets/netscience.mtx", 4), EdgeBC_Usecase("test/datasets/wiki2003.mtx", 4), EdgeBC_Usecase("test/datasets/wiki-Talk.mtx", 4))); #else INSTANTIATE_TEST_SUITE_P(simple_test, Tests_EdgeBC, ::testing::Values(EdgeBC_Usecase("test/datasets/karate.mtx", 0), EdgeBC_Usecase("test/datasets/netscience.mtx", 0), EdgeBC_Usecase("test/datasets/netscience.mtx", 4))); #endif CUGRAPH_TEST_PROGRAM_MAIN()
716d1f09c8fea0063369e6c41cd7cbf38bf6806c.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /* * Copyright (c) 2020, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <nv_gpu_cache.hpp> #include <hip/hip_cooperative_groups.h> namespace cg = cooperative_groups; // Overload CUDA atomic for other 64bit unsinged/signed integer type __forceinline__ __device__ long atomicAdd(long* address, long val) { return (long)atomicAdd((unsigned long long*)address, (unsigned long long)val); } __forceinline__ __device__ long long atomicAdd(long long* address, long long val) { return (long long)atomicAdd((unsigned long long*)address, (unsigned long long)val); } __forceinline__ __device__ unsigned long atomicAdd(unsigned long* address, unsigned long val) { return (unsigned long)atomicAdd((unsigned long long*)address, (unsigned long long)val); } namespace gpu_cache { #ifdef LIBCUDACXX_VERSION template<int warp_size> __forceinline__ __device__ void warp_tile_copy(const size_t lane_idx, const size_t emb_vec_size_in_float, float* d_dst, const float* d_src){ #pragma unroll for(size_t i = lane_idx; i < emb_vec_size_in_float; i += warp_size){ d_dst[i] = d_src[i]; } } #else template<int warp_size> __forceinline__ __device__ void warp_tile_copy(const size_t lane_idx, const size_t emb_vec_size_in_float, volatile float* d_dst, volatile float* d_src){ #pragma unroll for(size_t i = lane_idx; i < emb_vec_size_in_float; i += warp_size){ d_dst[i] = d_src[i]; } } #endif #ifdef LIBCUDACXX_VERSION // Will be called by multiple thread_block_tile((sub-)warp) on the same mutex // Expect only one thread_block_tile return to execute critical section at any time template<typename mutex, int warp_size> __forceinline__ __device__ void warp_lock_mutex(const cg::thread_block_tile<warp_size>& warp_tile, mutex& set_mutex){ // The first thread of this (sub-)warp to acquire the lock if(warp_tile.thread_rank() == 0){ set_mutex.acquire(); } warp_tile.sync(); // Synchronize the threads in the (sub-)warp. Execution barrier + memory fence } // The (sub-)warp holding the mutex will unlock the mutex after finishing the critical section on a set // Expect any following (sub-)warp that acquire the mutex can see its modification done in the critical section template<typename mutex, int warp_size> __forceinline__ __device__ void warp_unlock_mutex(const cg::thread_block_tile<warp_size>& warp_tile, mutex& set_mutex){ warp_tile.sync(); // Synchronize the threads in the (sub-)warp. Execution barrier + memory fence // The first thread of this (sub-)warp to release the lock if(warp_tile.thread_rank() == 0){ set_mutex.release(); } } #else // Will be called by multiple thread_block_tile((sub-)warp) on the same mutex // Expect only one thread_block_tile return to execute critical section at any time template<int warp_size> __forceinline__ __device__ void warp_lock_mutex(const cg::thread_block_tile<warp_size>& warp_tile, volatile int& set_mutex){ // The first thread of this (sub-)warp to acquire the lock if(warp_tile.thread_rank() == 0){ while (0 == atomicCAS((int*)&set_mutex, 1, 0)) ; } __threadfence(); warp_tile.sync(); // Synchronize the threads in the (sub-)warp. Execution barrier + memory fence } // The (sub-)warp holding the mutex will unlock the mutex after finishing the critical section on a set // Expect any following (sub-)warp that acquire the mutex can see its modification done in the critical section template<int warp_size> __forceinline__ __device__ void warp_unlock_mutex(const cg::thread_block_tile<warp_size>& warp_tile, volatile int& set_mutex){ __threadfence(); warp_tile.sync(); // Synchronize the threads in the (sub-)warp. Execution barrier + memory fence // The first thread of this (sub-)warp to release the lock if(warp_tile.thread_rank() == 0){ atomicExch((int*)&set_mutex, 1); } } #endif // The (sub-)warp doing all reduction to find the slot with min slot_counter // The slot with min slot_counter is the LR slot. template<typename ref_counter_type, int warp_size> __forceinline__ __device__ void warp_min_reduction(const cg::thread_block_tile<warp_size>& warp_tile, ref_counter_type& min_slot_counter_val, size_t& slab_distance, size_t& slot_distance){ const size_t lane_idx = warp_tile.thread_rank(); slot_distance = lane_idx; for(size_t i = (warp_tile.size() >> 1); i > 0 ; i = i >> 1){ ref_counter_type input_slot_counter_val = warp_tile.shfl_xor(min_slot_counter_val, (int)i); size_t input_slab_distance = warp_tile.shfl_xor(slab_distance, (int)i); size_t input_slot_distance = warp_tile.shfl_xor(slot_distance, (int)i); if(input_slot_counter_val == min_slot_counter_val){ if(input_slab_distance == slab_distance){ if(input_slot_distance < slot_distance){ slot_distance = input_slot_distance; } } else if(input_slab_distance < slab_distance){ slab_distance = input_slab_distance; slot_distance = input_slot_distance; } } else if(input_slot_counter_val < min_slot_counter_val){ min_slot_counter_val = input_slot_counter_val; slab_distance = input_slab_distance; slot_distance = input_slot_distance; } } } /////////////////////////////////////////////////////////////////////////////////////////////////// #ifdef LIBCUDACXX_VERSION // Kernel to initialize the GPU cache // Init every entry of the cache with <unused_key, value> pair template<typename slabset, typename ref_counter_type, typename atomic_ref_counter_type, typename key_type, typename mutex> __global__ void init_cache(slabset* keys, ref_counter_type* slot_counter, atomic_ref_counter_type* global_counter, const size_t num_slot, const key_type empty_key, mutex* set_mutex, const size_t capacity_in_set) { const size_t idx = blockIdx.x * blockDim.x + threadIdx.x; if ( idx < num_slot ) { // Set the key of this slot to unused key // Flatten the cache key_type * key_slot = (key_type *)keys; key_slot[idx] = empty_key; // Clear the counter for this slot slot_counter[idx] = 0; } // First CUDA thread clear the global counter if( idx == 0 ){ new(global_counter) atomic_ref_counter_type(0); } // First capacity_in_set CUDA thread initialize mutex if( idx < capacity_in_set ){ new(set_mutex + idx) mutex(1); } } template<typename atomic_ref_counter_type, typename mutex> __global__ void destruct_kernel(atomic_ref_counter_type* global_counter, mutex* set_mutex, const size_t capacity_in_set) { const size_t idx = blockIdx.x * blockDim.x + threadIdx.x; // First CUDA thread destruct the global_counter if( idx == 0 ){ global_counter -> ~atomic_ref_counter_type(); } // First capacity_in_set CUDA thread destruct the set mutex if( idx < capacity_in_set ){ (set_mutex + idx) -> ~mutex(); } } #else // Kernel to initialize the GPU cache // Init every entry of the cache with <unused_key, value> pair template<typename slabset, typename ref_counter_type, typename key_type> __global__ void init_cache(slabset* keys, ref_counter_type* slot_counter, ref_counter_type* global_counter, const size_t num_slot, const key_type empty_key, int* set_mutex, const size_t capacity_in_set) { const size_t idx = blockIdx.x * blockDim.x + threadIdx.x; if ( idx < num_slot ) { // Set the key of this slot to unused key // Flatten the cache key_type * key_slot = (key_type *)keys; key_slot[idx] = empty_key; // Clear the counter for this slot slot_counter[idx] = 0; } // First CUDA thread clear the global counter if( idx == 0 ){ global_counter[idx] = 0; } // First capacity_in_set CUDA thread initialize mutex if( idx < capacity_in_set ){ set_mutex[idx] = 1; } } #endif // Kernel to update global counter // Resolve distance overflow issue as well #ifdef LIBCUDACXX_VERSION template<typename atomic_ref_counter_type> __global__ void update_kernel_overflow_ignore(atomic_ref_counter_type* global_counter, size_t* d_missing_len){ // Update global counter global_counter -> fetch_add(1, cuda::std::memory_order_relaxed); *d_missing_len = 0; } #else template<typename ref_counter_type> __global__ void update_kernel_overflow_ignore(ref_counter_type* global_counter, size_t* d_missing_len){ // Update global counter atomicAdd(global_counter, 1); *d_missing_len = 0; } #endif #ifdef LIBCUDACXX_VERSION // Kernel to read from cache // Also update locality information for touched slot template<typename key_type, typename ref_counter_type, typename atomic_ref_counter_type, typename slabset, typename set_hasher, typename slab_hasher, typename mutex, key_type empty_key, int set_associativity, int warp_size> __global__ void get_kernel(const key_type* d_keys, const size_t len, float* d_values, const size_t embedding_vec_size, uint64_t* d_missing_index, key_type* d_missing_keys, size_t* d_missing_len, const atomic_ref_counter_type* global_counter, ref_counter_type* slot_counter, const size_t capacity_in_set, const slabset* keys, const float* vals, mutex* set_mutex){ // Lane(thread) global ID const size_t idx = blockIdx.x * blockDim.x + threadIdx.x; // Lane(thread) ID within a warp_tile cg::thread_block_tile<warp_size> warp_tile = cg::tiled_partition<warp_size>(cg::this_thread_block()); const size_t lane_idx = warp_tile.thread_rank(); // The assigned key for this lane(thread) key_type key; // The dst slabset and the dst slab inside this set size_t src_set; size_t src_slab; // The variable that contains the missing key key_type missing_key; // The variable that contains the index for the missing key uint64_t missing_index; // The counter for counting the missing key in this warp uint8_t warp_missing_counter = 0; // Active flag: whether current lane(thread) has unfinished task bool active = false; if( idx < len ){ active = true; key = d_keys[idx]; src_set = set_hasher::hash(key) % capacity_in_set; src_slab = slab_hasher::hash(key) % set_associativity; } // Lane participate in warp_tile ballot to produce warp-level work queue unsigned active_mask = warp_tile.ballot(active); // The warp-level outer loop: finish all the tasks within the work queue while(active_mask != 0){ // Next task in the work quere, start from lower index lane(thread) int next_lane = __ffs(active_mask) - 1; // Broadcast the task and the global index to all lane in the warp_tile key_type next_key = warp_tile.shfl(key, next_lane); size_t next_idx = warp_tile.shfl(idx, next_lane); size_t next_set = warp_tile.shfl(src_set, next_lane); size_t next_slab = warp_tile.shfl(src_slab, next_lane); // Counter to record how many slab have been searched size_t counter = 0; // Working queue before task started const unsigned old_active_mask = active_mask; // Lock the slabset before operating the slabset warp_lock_mutex<mutex, warp_size>(warp_tile, set_mutex[next_set]); // The warp-level inner loop: finish a single task in the work queue while(active_mask == old_active_mask){ // When all the slabs inside a slabset have been searched, mark missing task, task is completed if(counter >= set_associativity){ if(lane_idx == warp_missing_counter){ missing_key = next_key; missing_index = next_idx; } if(lane_idx == (size_t)next_lane){ active = false; } warp_missing_counter++; active_mask = warp_tile.ballot(active); break; } // The warp_tile read out the slab key_type read_key = keys[next_set].set_[next_slab].slab_[lane_idx]; // Compare the slab data with the target key int found_lane = __ffs(warp_tile.ballot(read_key == next_key)) - 1; // If found, mark hit task, copy the founded data, the task is completed if(found_lane >= 0){ size_t found_offset = (next_set * set_associativity + next_slab) * warp_size + found_lane; if(lane_idx == (size_t)next_lane){ slot_counter[found_offset] = global_counter -> load(cuda::std::memory_order_relaxed); active = false; } warp_tile_copy<warp_size>(lane_idx, embedding_vec_size, d_values + next_idx * embedding_vec_size, vals + found_offset * embedding_vec_size); active_mask = warp_tile.ballot(active); break; } // Compare the slab data with empty key, if found empty key, mark missing task, task is completed if(warp_tile.ballot(read_key == empty_key) != 0){ if(lane_idx == warp_missing_counter){ missing_key = next_key; missing_index = next_idx; } if(lane_idx == (size_t)next_lane){ active = false; } warp_missing_counter++; active_mask = warp_tile.ballot(active); break; } // Not found in this slab, the task is not completed, goto searching next slab counter++; next_slab = (next_slab + 1) % set_associativity; } // Unlock the slabset after operating the slabset warp_unlock_mutex<mutex, warp_size>(warp_tile, set_mutex[next_set]); } // After warp_tile complete the working queue, save the result for output // First thread of the warp_tile accumulate the missing length to global variable size_t warp_position; if(lane_idx == 0){ warp_position = atomicAdd(d_missing_len, (size_t)warp_missing_counter); } warp_position = warp_tile.shfl(warp_position, 0); if(lane_idx < warp_missing_counter){ d_missing_keys[warp_position + lane_idx] = missing_key; d_missing_index[warp_position + lane_idx] = missing_index; } } #else // Kernel to read from cache // Also update locality information for touched slot template<typename key_type, typename ref_counter_type, typename slabset, typename set_hasher, typename slab_hasher, key_type empty_key, int set_associativity, int warp_size> __global__ void get_kernel(const key_type* d_keys, const size_t len, float* d_values, const size_t embedding_vec_size, uint64_t* d_missing_index, key_type* d_missing_keys, size_t* d_missing_len, ref_counter_type* global_counter, volatile ref_counter_type* slot_counter, const size_t capacity_in_set, volatile slabset* keys, volatile float* vals, volatile int* set_mutex){ // Lane(thread) global ID const size_t idx = blockIdx.x * blockDim.x + threadIdx.x; // Lane(thread) ID within a warp_tile cg::thread_block_tile<warp_size> warp_tile = cg::tiled_partition<warp_size>(cg::this_thread_block()); const size_t lane_idx = warp_tile.thread_rank(); // The assigned key for this lane(thread) key_type key; // The dst slabset and the dst slab inside this set size_t src_set; size_t src_slab; // The variable that contains the missing key key_type missing_key; // The variable that contains the index for the missing key uint64_t missing_index; // The counter for counting the missing key in this warp uint8_t warp_missing_counter = 0; // Active flag: whether current lane(thread) has unfinished task bool active = false; if( idx < len ){ active = true; key = d_keys[idx]; src_set = set_hasher::hash(key) % capacity_in_set; src_slab = slab_hasher::hash(key) % set_associativity; } // Lane participate in warp_tile ballot to produce warp-level work queue unsigned active_mask = warp_tile.ballot(active); // The warp-level outer loop: finish all the tasks within the work queue while(active_mask != 0){ // Next task in the work quere, start from lower index lane(thread) int next_lane = __ffs(active_mask) - 1; // Broadcast the task and the global index to all lane in the warp_tile key_type next_key = warp_tile.shfl(key, next_lane); size_t next_idx = warp_tile.shfl(idx, next_lane); size_t next_set = warp_tile.shfl(src_set, next_lane); size_t next_slab = warp_tile.shfl(src_slab, next_lane); // Counter to record how many slab have been searched size_t counter = 0; // Working queue before task started const unsigned old_active_mask = active_mask; // Lock the slabset before operating the slabset warp_lock_mutex<warp_size>(warp_tile, set_mutex[next_set]); // The warp-level inner loop: finish a single task in the work queue while(active_mask == old_active_mask){ // When all the slabs inside a slabset have been searched, mark missing task, task is completed if(counter >= set_associativity){ if(lane_idx == warp_missing_counter){ missing_key = next_key; missing_index = next_idx; } if(lane_idx == (size_t)next_lane){ active = false; } warp_missing_counter++; active_mask = warp_tile.ballot(active); break; } // The warp_tile read out the slab key_type read_key = ((volatile key_type*)(keys[next_set].set_[next_slab].slab_))[lane_idx]; // Compare the slab data with the target key int found_lane = __ffs(warp_tile.ballot(read_key == next_key)) - 1; // If found, mark hit task, copy the founded data, the task is completed if(found_lane >= 0){ size_t found_offset = (next_set * set_associativity + next_slab) * warp_size + found_lane; if(lane_idx == (size_t)next_lane){ slot_counter[found_offset] = atomicAdd(global_counter, 0); active = false; } warp_tile_copy<warp_size>(lane_idx, embedding_vec_size, (volatile float*)(d_values + next_idx * embedding_vec_size), (volatile float*)(vals + found_offset * embedding_vec_size)); active_mask = warp_tile.ballot(active); break; } // Compare the slab data with empty key, if found empty key, mark missing task, task is completed if(warp_tile.ballot(read_key == empty_key) != 0){ if(lane_idx == warp_missing_counter){ missing_key = next_key; missing_index = next_idx; } if(lane_idx == (size_t)next_lane){ active = false; } warp_missing_counter++; active_mask = warp_tile.ballot(active); break; } // Not found in this slab, the task is not completed, goto searching next slab counter++; next_slab = (next_slab + 1) % set_associativity; } // Unlock the slabset after operating the slabset warp_unlock_mutex<warp_size>(warp_tile, set_mutex[next_set]); } // After warp_tile complete the working queue, save the result for output // First thread of the warp_tile accumulate the missing length to global variable size_t warp_position; if(lane_idx == 0){ warp_position = atomicAdd(d_missing_len, (size_t)warp_missing_counter); } warp_position = warp_tile.shfl(warp_position, 0); if(lane_idx < warp_missing_counter){ d_missing_keys[warp_position + lane_idx] = missing_key; d_missing_index[warp_position + lane_idx] = missing_index; } } #endif #ifdef LIBCUDACXX_VERSION // Kernel to insert or replace the <k,v> pairs into the cache template<typename key_type, typename slabset, typename ref_counter_type, typename mutex, typename atomic_ref_counter_type, typename set_hasher, typename slab_hasher, key_type empty_key, int set_associativity, int warp_size, ref_counter_type max_ref_counter_type = std::numeric_limits<ref_counter_type>::max(), size_t max_slab_distance = std::numeric_limits<size_t>::max()> __global__ void insert_replace_kernel(const key_type* d_keys, const float* d_values, const size_t embedding_vec_size, const size_t len, slabset* keys, float* vals, ref_counter_type* slot_counter, mutex* set_mutex, const atomic_ref_counter_type* global_counter, const size_t capacity_in_set){ // Lane(thread) global ID const size_t idx = blockIdx.x * blockDim.x + threadIdx.x; // Lane(thread) ID within a warp_tile cg::thread_block_tile<warp_size> warp_tile = cg::tiled_partition<warp_size>(cg::this_thread_block()); const size_t lane_idx = warp_tile.thread_rank(); // The assigned key for this lane(thread) key_type key; // The dst slabset and the dst slab inside this set size_t src_set; size_t src_slab; // Active flag: whether current lane(thread) has unfinished task bool active = false; if( idx < len ){ active = true; key = d_keys[idx]; src_set = set_hasher::hash(key) % capacity_in_set; src_slab = slab_hasher::hash(key) % set_associativity; } // Lane participate in warp_tile ballot to produce warp-level work queue unsigned active_mask = warp_tile.ballot(active); // The warp-level outer loop: finish all the tasks within the work queue while(active_mask != 0){ // Next task in the work quere, start from lower index lane(thread) int next_lane = __ffs(active_mask) - 1; // Broadcast the task, the global index and the src slabset and slab to all lane in a warp_tile key_type next_key = warp_tile.shfl(key, next_lane); size_t next_idx = warp_tile.shfl(idx, next_lane); size_t next_set = warp_tile.shfl(src_set, next_lane); size_t next_slab = warp_tile.shfl(src_slab, next_lane); size_t first_slab = next_slab; // Counter to record how many slab have been searched size_t counter = 0; // Variable to keep the min slot counter during the probing ref_counter_type min_slot_counter_val = max_ref_counter_type; // Variable to keep the slab distance for slot with min counter size_t slab_distance = max_slab_distance; // Variable to keep the slot distance for slot with min counter within the slab size_t slot_distance; // Working queue before task started const unsigned old_active_mask = active_mask; // Lock the slabset before operating the slabset warp_lock_mutex<mutex, warp_size>(warp_tile, set_mutex[next_set]); // The warp-level inner loop: finish a single task in the work queue while(active_mask == old_active_mask){ // When all the slabs inside a slabset have been searched // and no empty slots or target slots are found. Replace with LRU if(counter >= set_associativity){ // (sub)Warp all-reduction, the reduction result store in all threads warp_min_reduction<ref_counter_type, warp_size>(warp_tile, min_slot_counter_val, slab_distance, slot_distance); // Calculate the position of LR slot size_t target_slab = (first_slab + slab_distance) % set_associativity; size_t slot_index = (next_set * set_associativity + target_slab) * warp_size + slot_distance; // Replace the LR slot if(lane_idx == (size_t)next_lane){ keys[next_set].set_[target_slab].slab_[slot_distance] = key; slot_counter[slot_index] = global_counter -> load(cuda::std::memory_order_relaxed); } warp_tile_copy<warp_size>(lane_idx, embedding_vec_size, vals + slot_index * embedding_vec_size, d_values + next_idx * embedding_vec_size); // Replace complete, mark this task completed if(lane_idx == (size_t)next_lane){ active = false; } active_mask = warp_tile.ballot(active); break; } // The warp_tile read out the slab key_type read_key = keys[next_set].set_[next_slab].slab_[lane_idx]; // Compare the slab data with the target key int found_lane = __ffs(warp_tile.ballot(read_key == next_key)) - 1; // If found target key, the insertion/replace is no longer needed. // Refresh the slot, the task is completed if(found_lane >= 0){ size_t found_offset = (next_set * set_associativity + next_slab) * warp_size + found_lane; if(lane_idx == (size_t)next_lane){ slot_counter[found_offset] = global_counter -> load(cuda::std::memory_order_relaxed); active = false; } active_mask = warp_tile.ballot(active); break; } // Compare the slab data with empty key. // If found empty key, do insertion,the task is complete found_lane = __ffs(warp_tile.ballot(read_key == empty_key)) - 1; if(found_lane >= 0){ size_t found_offset = (next_set * set_associativity + next_slab) * warp_size + found_lane; if(lane_idx == (size_t)next_lane){ keys[next_set].set_[next_slab].slab_[found_lane] = key; slot_counter[found_offset] = global_counter -> load(cuda::std::memory_order_relaxed); } warp_tile_copy<warp_size>(lane_idx, embedding_vec_size, vals + found_offset * embedding_vec_size, d_values + next_idx * embedding_vec_size); if(lane_idx == (size_t)next_lane){ active = false; } active_mask = warp_tile.ballot(active); break; } // If no target or unused slot found in this slab, // Refresh LR info, continue probing ref_counter_type read_slot_counter = slot_counter[(next_set * set_associativity + next_slab) * warp_size + lane_idx]; if(read_slot_counter < min_slot_counter_val){ min_slot_counter_val = read_slot_counter; slab_distance = counter; } counter++; next_slab = (next_slab + 1) % set_associativity; } // Unlock the slabset after operating the slabset warp_unlock_mutex<mutex, warp_size>(warp_tile, set_mutex[next_set]); } } #else // Kernel to insert or replace the <k,v> pairs into the cache template<typename key_type, typename slabset, typename ref_counter_type, typename set_hasher, typename slab_hasher, key_type empty_key, int set_associativity, int warp_size, ref_counter_type max_ref_counter_type = std::numeric_limits<ref_counter_type>::max(), size_t max_slab_distance = std::numeric_limits<size_t>::max()> __global__ void insert_replace_kernel(const key_type* d_keys, const float* d_values, const size_t embedding_vec_size, const size_t len, volatile slabset* keys, volatile float* vals, volatile ref_counter_type* slot_counter, volatile int* set_mutex, ref_counter_type* global_counter, const size_t capacity_in_set){ // Lane(thread) global ID const size_t idx = blockIdx.x * blockDim.x + threadIdx.x; // Lane(thread) ID within a warp_tile cg::thread_block_tile<warp_size> warp_tile = cg::tiled_partition<warp_size>(cg::this_thread_block()); const size_t lane_idx = warp_tile.thread_rank(); // The assigned key for this lane(thread) key_type key; // The dst slabset and the dst slab inside this set size_t src_set; size_t src_slab; // Active flag: whether current lane(thread) has unfinished task bool active = false; if( idx < len ){ active = true; key = d_keys[idx]; src_set = set_hasher::hash(key) % capacity_in_set; src_slab = slab_hasher::hash(key) % set_associativity; } // Lane participate in warp_tile ballot to produce warp-level work queue unsigned active_mask = warp_tile.ballot(active); // The warp-level outer loop: finish all the tasks within the work queue while(active_mask != 0){ // Next task in the work quere, start from lower index lane(thread) int next_lane = __ffs(active_mask) - 1; // Broadcast the task, the global index and the src slabset and slab to all lane in a warp_tile key_type next_key = warp_tile.shfl(key, next_lane); size_t next_idx = warp_tile.shfl(idx, next_lane); size_t next_set = warp_tile.shfl(src_set, next_lane); size_t next_slab = warp_tile.shfl(src_slab, next_lane); size_t first_slab = next_slab; // Counter to record how many slab have been searched size_t counter = 0; // Variable to keep the min slot counter during the probing ref_counter_type min_slot_counter_val = max_ref_counter_type; // Variable to keep the slab distance for slot with min counter size_t slab_distance = max_slab_distance; // Variable to keep the slot distance for slot with min counter within the slab size_t slot_distance; // Working queue before task started const unsigned old_active_mask = active_mask; // Lock the slabset before operating the slabset warp_lock_mutex<warp_size>(warp_tile, set_mutex[next_set]); // The warp-level inner loop: finish a single task in the work queue while(active_mask == old_active_mask){ // When all the slabs inside a slabset have been searched // and no empty slots or target slots are found. Replace with LRU if(counter >= set_associativity){ // (sub)Warp all-reduction, the reduction result store in all threads warp_min_reduction<ref_counter_type, warp_size>(warp_tile, min_slot_counter_val, slab_distance, slot_distance); // Calculate the position of LR slot size_t target_slab = (first_slab + slab_distance) % set_associativity; size_t slot_index = (next_set * set_associativity + target_slab) * warp_size + slot_distance; // Replace the LR slot if(lane_idx == (size_t)next_lane){ ((volatile key_type*)(keys[next_set].set_[target_slab].slab_))[slot_distance] = key; slot_counter[slot_index] = atomicAdd(global_counter, 0); } warp_tile_copy<warp_size>(lane_idx, embedding_vec_size, (volatile float*)(vals + slot_index * embedding_vec_size), (volatile float*)(d_values + next_idx * embedding_vec_size)); // Replace complete, mark this task completed if(lane_idx == (size_t)next_lane){ active = false; } active_mask = warp_tile.ballot(active); break; } // The warp_tile read out the slab key_type read_key = ((volatile key_type*)(keys[next_set].set_[next_slab].slab_))[lane_idx]; // Compare the slab data with the target key int found_lane = __ffs(warp_tile.ballot(read_key == next_key)) - 1; // If found target key, the insertion/replace is no longer needed. // Refresh the slot, the task is completed if(found_lane >= 0){ size_t found_offset = (next_set * set_associativity + next_slab) * warp_size + found_lane; if(lane_idx == (size_t)next_lane){ slot_counter[found_offset] = atomicAdd(global_counter, 0); active = false; } active_mask = warp_tile.ballot(active); break; } // Compare the slab data with empty key. // If found empty key, do insertion,the task is complete found_lane = __ffs(warp_tile.ballot(read_key == empty_key)) - 1; if(found_lane >= 0){ size_t found_offset = (next_set * set_associativity + next_slab) * warp_size + found_lane; if(lane_idx == (size_t)next_lane){ ((volatile key_type*)(keys[next_set].set_[next_slab].slab_))[found_lane] = key; slot_counter[found_offset] = atomicAdd(global_counter, 0); } warp_tile_copy<warp_size>(lane_idx, embedding_vec_size, (volatile float*)(vals + found_offset * embedding_vec_size), (volatile float*)(d_values + next_idx * embedding_vec_size)); if(lane_idx == (size_t)next_lane){ active = false; } active_mask = warp_tile.ballot(active); break; } // If no target or unused slot found in this slab, // Refresh LR info, continue probing ref_counter_type read_slot_counter = slot_counter[(next_set * set_associativity + next_slab) * warp_size + lane_idx]; if(read_slot_counter < min_slot_counter_val){ min_slot_counter_val = read_slot_counter; slab_distance = counter; } counter++; next_slab = (next_slab + 1) % set_associativity; } // Unlock the slabset after operating the slabset warp_unlock_mutex<warp_size>(warp_tile, set_mutex[next_set]); } } #endif /////////////////////////////////////////////////////////////////////////////////////////////////// #ifdef LIBCUDACXX_VERSION template<typename key_type, typename ref_counter_type, key_type empty_key, int set_associativity, int warp_size, typename set_hasher, typename slab_hasher> gpu_cache<key_type, ref_counter_type, empty_key, set_associativity, warp_size, set_hasher, slab_hasher>::gpu_cache(const size_t capacity_in_set, const size_t embedding_vec_size) :capacity_in_set_(capacity_in_set), embedding_vec_size_(embedding_vec_size){ // Check parameter if(capacity_in_set_ == 0){ printf("Error: Invalid value for capacity_in_set.\n"); return; } if(embedding_vec_size_ == 0){ printf("Error: Invalid value for embedding_vec_size.\n"); return; } if(set_associativity <= 0){ printf("Error: Invalid value for set_associativity.\n"); return; } if(warp_size != 1 && warp_size != 2 && warp_size != 4 && warp_size != 8 && warp_size != 16 && warp_size != 32){ printf("Error: Invalid value for warp_size.\n"); return; } // Get the current CUDA dev CUDA_CHECK(hipGetDevice( &dev_ )); // Calculate # of slot num_slot_ = capacity_in_set_ * set_associativity * warp_size; // Allocate GPU memory for cache CUDA_CHECK(hipMalloc((void**)&keys_, sizeof(slabset) * capacity_in_set_)); CUDA_CHECK(hipMalloc((void**)&vals_, sizeof(float) * embedding_vec_size_ * num_slot_)); CUDA_CHECK(hipMalloc((void**)&slot_counter_, sizeof(ref_counter_type) * num_slot_)); CUDA_CHECK(hipMalloc((void**)&global_counter_, sizeof(atomic_ref_counter_type))); // Allocate GPU memory for set mutex CUDA_CHECK(hipMalloc((void**)&set_mutex_, sizeof(mutex) * capacity_in_set_)); // Initialize the cache, set all entry to unused <K,V> hipLaunchKernelGGL(( init_cache), dim3(((num_slot_-1)/BLOCK_SIZE_)+1), dim3(BLOCK_SIZE_), 0, 0, keys_, slot_counter_, global_counter_, num_slot_, empty_key, set_mutex_, capacity_in_set_); // Wait for initialization to finish CUDA_CHECK(hipStreamSynchronize(0)); CUDA_CHECK(hipGetLastError()); } #else template<typename key_type, typename ref_counter_type, key_type empty_key, int set_associativity, int warp_size, typename set_hasher, typename slab_hasher> gpu_cache<key_type, ref_counter_type, empty_key, set_associativity, warp_size, set_hasher, slab_hasher>::gpu_cache(const size_t capacity_in_set, const size_t embedding_vec_size) :capacity_in_set_(capacity_in_set), embedding_vec_size_(embedding_vec_size){ // Check parameter if(capacity_in_set_ == 0){ printf("Error: Invalid value for capacity_in_set.\n"); return; } if(embedding_vec_size_ == 0){ printf("Error: Invalid value for embedding_vec_size.\n"); return; } if(set_associativity <= 0){ printf("Error: Invalid value for set_associativity.\n"); return; } if(warp_size != 1 && warp_size != 2 && warp_size != 4 && warp_size != 8 && warp_size != 16 && warp_size != 32){ printf("Error: Invalid value for warp_size.\n"); return; } // Get the current CUDA dev CUDA_CHECK(hipGetDevice( &dev_ )); // Calculate # of slot num_slot_ = capacity_in_set_ * set_associativity * warp_size; // Allocate GPU memory for cache CUDA_CHECK(hipMalloc((void**)&keys_, sizeof(slabset) * capacity_in_set_)); CUDA_CHECK(hipMalloc((void**)&vals_, sizeof(float) * embedding_vec_size_ * num_slot_)); CUDA_CHECK(hipMalloc((void**)&slot_counter_, sizeof(ref_counter_type) * num_slot_)); CUDA_CHECK(hipMalloc((void**)&global_counter_, sizeof(ref_counter_type))); // Allocate GPU memory for set mutex CUDA_CHECK(hipMalloc((void**)&set_mutex_, sizeof(int) * capacity_in_set_)); // Initialize the cache, set all entry to unused <K,V> hipLaunchKernelGGL(( init_cache), dim3(((num_slot_-1)/BLOCK_SIZE_)+1), dim3(BLOCK_SIZE_), 0, 0, keys_, slot_counter_, global_counter_, num_slot_, empty_key, set_mutex_, capacity_in_set_); // Wait for initialization to finish CUDA_CHECK(hipStreamSynchronize(0)); CUDA_CHECK(hipGetLastError()); } #endif #ifdef LIBCUDACXX_VERSION template<typename key_type, typename ref_counter_type, key_type empty_key, int set_associativity, int warp_size, typename set_hasher, typename slab_hasher> gpu_cache<key_type, ref_counter_type, empty_key, set_associativity, warp_size, set_hasher, slab_hasher>::~gpu_cache(){ // Device Restorer nv::CudaDeviceRestorer dev_restorer; // Set device CUDA_CHECK(hipSetDevice(dev_)); // Destruct CUDA std object hipLaunchKernelGGL(( destruct_kernel), dim3(((capacity_in_set_-1)/BLOCK_SIZE_)+1), dim3(BLOCK_SIZE_), 0, 0, global_counter_, set_mutex_, capacity_in_set_); // Wait for destruction to finish CUDA_CHECK(hipStreamSynchronize(0)); // Free GPU memory for cache CUDA_CHECK(hipFree( keys_ )); CUDA_CHECK(hipFree( vals_ )); CUDA_CHECK(hipFree( slot_counter_ )); CUDA_CHECK(hipFree( global_counter_ )); // Free GPU memory for set mutex CUDA_CHECK(hipFree( set_mutex_ )); } #else template<typename key_type, typename ref_counter_type, key_type empty_key, int set_associativity, int warp_size, typename set_hasher, typename slab_hasher> gpu_cache<key_type, ref_counter_type, empty_key, set_associativity, warp_size, set_hasher, slab_hasher>::~gpu_cache() noexcept(false) { // Device Restorer nv::CudaDeviceRestorer dev_restorer; // Set device CUDA_CHECK(hipSetDevice(dev_)); // Free GPU memory for cache CUDA_CHECK(hipFree( keys_ )); CUDA_CHECK(hipFree( vals_ )); CUDA_CHECK(hipFree( slot_counter_ )); CUDA_CHECK(hipFree( global_counter_ )); // Free GPU memory for set mutex CUDA_CHECK(hipFree( set_mutex_ )); } #endif #ifdef LIBCUDACXX_VERSION template<typename key_type, typename ref_counter_type, key_type empty_key, int set_associativity, int warp_size, typename set_hasher, typename slab_hasher> void gpu_cache<key_type, ref_counter_type, empty_key, set_associativity, warp_size, set_hasher, slab_hasher>:: Query(const key_type* d_keys, const size_t len, float* d_values, uint64_t* d_missing_index, key_type* d_missing_keys, size_t* d_missing_len, hipStream_t stream){ // Device Restorer nv::CudaDeviceRestorer dev_restorer; // Set to the device of this cache CUDA_CHECK(hipSetDevice(dev_)); // Check if it is a valid query if(len == 0){ // Set the d_missing_len to 0 before return CUDA_CHECK(hipMemsetAsync(d_missing_len, 0, sizeof(size_t), stream)); return; } // Update the global counter as user perform a new(most recent) read operation to the cache // Resolve distance overflow issue as well. hipLaunchKernelGGL(( update_kernel_overflow_ignore<atomic_ref_counter_type>), dim3(1), dim3(1), 0, stream, global_counter_, d_missing_len); // Read from the cache // Touch and refresh the hitting slot hipLaunchKernelGGL(( get_kernel<key_type, ref_counter_type, atomic_ref_counter_type, slabset, set_hasher, slab_hasher, mutex, empty_key, set_associativity, warp_size>) , dim3(((len-1)/BLOCK_SIZE_)+1), dim3(BLOCK_SIZE_), 0, stream, d_keys, len, d_values, embedding_vec_size_, d_missing_index, d_missing_keys, d_missing_len, global_counter_, slot_counter_, capacity_in_set_, keys_, vals_, set_mutex_); // Check for GPU error before return CUDA_CHECK(hipGetLastError()); } #else template<typename key_type, typename ref_counter_type, key_type empty_key, int set_associativity, int warp_size, typename set_hasher, typename slab_hasher> void gpu_cache<key_type, ref_counter_type, empty_key, set_associativity, warp_size, set_hasher, slab_hasher>:: Query(const key_type* d_keys, const size_t len, float* d_values, uint64_t* d_missing_index, key_type* d_missing_keys, size_t* d_missing_len, hipStream_t stream){ // Device Restorer nv::CudaDeviceRestorer dev_restorer; // Set to the device of this cache CUDA_CHECK(hipSetDevice(dev_)); // Check if it is a valid query if(len == 0){ // Set the d_missing_len to 0 before return CUDA_CHECK(hipMemsetAsync(d_missing_len, 0, sizeof(size_t), stream)); return; } // Update the global counter as user perform a new(most recent) read operation to the cache // Resolve distance overflow issue as well. hipLaunchKernelGGL(( update_kernel_overflow_ignore<ref_counter_type>), dim3(1), dim3(1), 0, stream, global_counter_, d_missing_len); // Read from the cache // Touch and refresh the hitting slot hipLaunchKernelGGL(( get_kernel<key_type, ref_counter_type, slabset, set_hasher, slab_hasher, empty_key, set_associativity, warp_size>) , dim3(((len-1)/BLOCK_SIZE_)+1), dim3(BLOCK_SIZE_), 0, stream, d_keys, len, d_values, embedding_vec_size_, d_missing_index, d_missing_keys, d_missing_len, global_counter_, slot_counter_, capacity_in_set_, keys_, vals_, set_mutex_); // Check for GPU error before return CUDA_CHECK(hipGetLastError()); } #endif #ifdef LIBCUDACXX_VERSION template<typename key_type, typename ref_counter_type, key_type empty_key, int set_associativity, int warp_size, typename set_hasher, typename slab_hasher> void gpu_cache<key_type, ref_counter_type, empty_key, set_associativity, warp_size, set_hasher, slab_hasher>:: Replace(const key_type* d_keys, const size_t len, const float* d_values, hipStream_t stream){ // Check if it is a valid replacement if(len == 0){ return; } // Device Restorer nv::CudaDeviceRestorer dev_restorer; // Set to the device of this cache CUDA_CHECK(hipSetDevice(dev_)); // Try to insert the <k,v> paris into the cache as long as there are unused slot // Then replace the <k,v> pairs into the cache hipLaunchKernelGGL(( insert_replace_kernel<key_type, slabset, ref_counter_type, mutex, atomic_ref_counter_type, set_hasher, slab_hasher, empty_key, set_associativity, warp_size>) , dim3(((len-1)/BLOCK_SIZE_)+1), dim3(BLOCK_SIZE_), 0, stream, d_keys, d_values, embedding_vec_size_, len, keys_, vals_, slot_counter_, set_mutex_, global_counter_, capacity_in_set_); // Check for GPU error before return CUDA_CHECK(hipGetLastError()); } #else template<typename key_type, typename ref_counter_type, key_type empty_key, int set_associativity, int warp_size, typename set_hasher, typename slab_hasher> void gpu_cache<key_type, ref_counter_type, empty_key, set_associativity, warp_size, set_hasher, slab_hasher>:: Replace(const key_type* d_keys, const size_t len, const float* d_values, hipStream_t stream){ // Check if it is a valid replacement if(len == 0){ return; } // Device Restorer nv::CudaDeviceRestorer dev_restorer; // Set to the device of this cache CUDA_CHECK(hipSetDevice(dev_)); // Try to insert the <k,v> paris into the cache as long as there are unused slot // Then replace the <k,v> pairs into the cache hipLaunchKernelGGL(( insert_replace_kernel<key_type, slabset, ref_counter_type, set_hasher, slab_hasher, empty_key, set_associativity, warp_size>) , dim3(((len-1)/BLOCK_SIZE_)+1), dim3(BLOCK_SIZE_), 0, stream, d_keys, d_values, embedding_vec_size_, len, keys_, vals_, slot_counter_, set_mutex_, global_counter_, capacity_in_set_); // Check for GPU error before return CUDA_CHECK(hipGetLastError()); } #endif template class gpu_cache<unsigned int, uint64_t, std::numeric_limits<unsigned int>::max(), SET_ASSOCIATIVITY, SLAB_SIZE>; template class gpu_cache<long long, uint64_t, std::numeric_limits<long long>::max(), SET_ASSOCIATIVITY, SLAB_SIZE>; } // namespace gpu_cache
716d1f09c8fea0063369e6c41cd7cbf38bf6806c.cu
/* * Copyright (c) 2020, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <nv_gpu_cache.hpp> #include <cooperative_groups.h> namespace cg = cooperative_groups; // Overload CUDA atomic for other 64bit unsinged/signed integer type __forceinline__ __device__ long atomicAdd(long* address, long val) { return (long)atomicAdd((unsigned long long*)address, (unsigned long long)val); } __forceinline__ __device__ long long atomicAdd(long long* address, long long val) { return (long long)atomicAdd((unsigned long long*)address, (unsigned long long)val); } __forceinline__ __device__ unsigned long atomicAdd(unsigned long* address, unsigned long val) { return (unsigned long)atomicAdd((unsigned long long*)address, (unsigned long long)val); } namespace gpu_cache { #ifdef LIBCUDACXX_VERSION template<int warp_size> __forceinline__ __device__ void warp_tile_copy(const size_t lane_idx, const size_t emb_vec_size_in_float, float* d_dst, const float* d_src){ #pragma unroll for(size_t i = lane_idx; i < emb_vec_size_in_float; i += warp_size){ d_dst[i] = d_src[i]; } } #else template<int warp_size> __forceinline__ __device__ void warp_tile_copy(const size_t lane_idx, const size_t emb_vec_size_in_float, volatile float* d_dst, volatile float* d_src){ #pragma unroll for(size_t i = lane_idx; i < emb_vec_size_in_float; i += warp_size){ d_dst[i] = d_src[i]; } } #endif #ifdef LIBCUDACXX_VERSION // Will be called by multiple thread_block_tile((sub-)warp) on the same mutex // Expect only one thread_block_tile return to execute critical section at any time template<typename mutex, int warp_size> __forceinline__ __device__ void warp_lock_mutex(const cg::thread_block_tile<warp_size>& warp_tile, mutex& set_mutex){ // The first thread of this (sub-)warp to acquire the lock if(warp_tile.thread_rank() == 0){ set_mutex.acquire(); } warp_tile.sync(); // Synchronize the threads in the (sub-)warp. Execution barrier + memory fence } // The (sub-)warp holding the mutex will unlock the mutex after finishing the critical section on a set // Expect any following (sub-)warp that acquire the mutex can see its modification done in the critical section template<typename mutex, int warp_size> __forceinline__ __device__ void warp_unlock_mutex(const cg::thread_block_tile<warp_size>& warp_tile, mutex& set_mutex){ warp_tile.sync(); // Synchronize the threads in the (sub-)warp. Execution barrier + memory fence // The first thread of this (sub-)warp to release the lock if(warp_tile.thread_rank() == 0){ set_mutex.release(); } } #else // Will be called by multiple thread_block_tile((sub-)warp) on the same mutex // Expect only one thread_block_tile return to execute critical section at any time template<int warp_size> __forceinline__ __device__ void warp_lock_mutex(const cg::thread_block_tile<warp_size>& warp_tile, volatile int& set_mutex){ // The first thread of this (sub-)warp to acquire the lock if(warp_tile.thread_rank() == 0){ while (0 == atomicCAS((int*)&set_mutex, 1, 0)) ; } __threadfence(); warp_tile.sync(); // Synchronize the threads in the (sub-)warp. Execution barrier + memory fence } // The (sub-)warp holding the mutex will unlock the mutex after finishing the critical section on a set // Expect any following (sub-)warp that acquire the mutex can see its modification done in the critical section template<int warp_size> __forceinline__ __device__ void warp_unlock_mutex(const cg::thread_block_tile<warp_size>& warp_tile, volatile int& set_mutex){ __threadfence(); warp_tile.sync(); // Synchronize the threads in the (sub-)warp. Execution barrier + memory fence // The first thread of this (sub-)warp to release the lock if(warp_tile.thread_rank() == 0){ atomicExch((int*)&set_mutex, 1); } } #endif // The (sub-)warp doing all reduction to find the slot with min slot_counter // The slot with min slot_counter is the LR slot. template<typename ref_counter_type, int warp_size> __forceinline__ __device__ void warp_min_reduction(const cg::thread_block_tile<warp_size>& warp_tile, ref_counter_type& min_slot_counter_val, size_t& slab_distance, size_t& slot_distance){ const size_t lane_idx = warp_tile.thread_rank(); slot_distance = lane_idx; for(size_t i = (warp_tile.size() >> 1); i > 0 ; i = i >> 1){ ref_counter_type input_slot_counter_val = warp_tile.shfl_xor(min_slot_counter_val, (int)i); size_t input_slab_distance = warp_tile.shfl_xor(slab_distance, (int)i); size_t input_slot_distance = warp_tile.shfl_xor(slot_distance, (int)i); if(input_slot_counter_val == min_slot_counter_val){ if(input_slab_distance == slab_distance){ if(input_slot_distance < slot_distance){ slot_distance = input_slot_distance; } } else if(input_slab_distance < slab_distance){ slab_distance = input_slab_distance; slot_distance = input_slot_distance; } } else if(input_slot_counter_val < min_slot_counter_val){ min_slot_counter_val = input_slot_counter_val; slab_distance = input_slab_distance; slot_distance = input_slot_distance; } } } /////////////////////////////////////////////////////////////////////////////////////////////////// #ifdef LIBCUDACXX_VERSION // Kernel to initialize the GPU cache // Init every entry of the cache with <unused_key, value> pair template<typename slabset, typename ref_counter_type, typename atomic_ref_counter_type, typename key_type, typename mutex> __global__ void init_cache(slabset* keys, ref_counter_type* slot_counter, atomic_ref_counter_type* global_counter, const size_t num_slot, const key_type empty_key, mutex* set_mutex, const size_t capacity_in_set) { const size_t idx = blockIdx.x * blockDim.x + threadIdx.x; if ( idx < num_slot ) { // Set the key of this slot to unused key // Flatten the cache key_type * key_slot = (key_type *)keys; key_slot[idx] = empty_key; // Clear the counter for this slot slot_counter[idx] = 0; } // First CUDA thread clear the global counter if( idx == 0 ){ new(global_counter) atomic_ref_counter_type(0); } // First capacity_in_set CUDA thread initialize mutex if( idx < capacity_in_set ){ new(set_mutex + idx) mutex(1); } } template<typename atomic_ref_counter_type, typename mutex> __global__ void destruct_kernel(atomic_ref_counter_type* global_counter, mutex* set_mutex, const size_t capacity_in_set) { const size_t idx = blockIdx.x * blockDim.x + threadIdx.x; // First CUDA thread destruct the global_counter if( idx == 0 ){ global_counter -> ~atomic_ref_counter_type(); } // First capacity_in_set CUDA thread destruct the set mutex if( idx < capacity_in_set ){ (set_mutex + idx) -> ~mutex(); } } #else // Kernel to initialize the GPU cache // Init every entry of the cache with <unused_key, value> pair template<typename slabset, typename ref_counter_type, typename key_type> __global__ void init_cache(slabset* keys, ref_counter_type* slot_counter, ref_counter_type* global_counter, const size_t num_slot, const key_type empty_key, int* set_mutex, const size_t capacity_in_set) { const size_t idx = blockIdx.x * blockDim.x + threadIdx.x; if ( idx < num_slot ) { // Set the key of this slot to unused key // Flatten the cache key_type * key_slot = (key_type *)keys; key_slot[idx] = empty_key; // Clear the counter for this slot slot_counter[idx] = 0; } // First CUDA thread clear the global counter if( idx == 0 ){ global_counter[idx] = 0; } // First capacity_in_set CUDA thread initialize mutex if( idx < capacity_in_set ){ set_mutex[idx] = 1; } } #endif // Kernel to update global counter // Resolve distance overflow issue as well #ifdef LIBCUDACXX_VERSION template<typename atomic_ref_counter_type> __global__ void update_kernel_overflow_ignore(atomic_ref_counter_type* global_counter, size_t* d_missing_len){ // Update global counter global_counter -> fetch_add(1, cuda::std::memory_order_relaxed); *d_missing_len = 0; } #else template<typename ref_counter_type> __global__ void update_kernel_overflow_ignore(ref_counter_type* global_counter, size_t* d_missing_len){ // Update global counter atomicAdd(global_counter, 1); *d_missing_len = 0; } #endif #ifdef LIBCUDACXX_VERSION // Kernel to read from cache // Also update locality information for touched slot template<typename key_type, typename ref_counter_type, typename atomic_ref_counter_type, typename slabset, typename set_hasher, typename slab_hasher, typename mutex, key_type empty_key, int set_associativity, int warp_size> __global__ void get_kernel(const key_type* d_keys, const size_t len, float* d_values, const size_t embedding_vec_size, uint64_t* d_missing_index, key_type* d_missing_keys, size_t* d_missing_len, const atomic_ref_counter_type* global_counter, ref_counter_type* slot_counter, const size_t capacity_in_set, const slabset* keys, const float* vals, mutex* set_mutex){ // Lane(thread) global ID const size_t idx = blockIdx.x * blockDim.x + threadIdx.x; // Lane(thread) ID within a warp_tile cg::thread_block_tile<warp_size> warp_tile = cg::tiled_partition<warp_size>(cg::this_thread_block()); const size_t lane_idx = warp_tile.thread_rank(); // The assigned key for this lane(thread) key_type key; // The dst slabset and the dst slab inside this set size_t src_set; size_t src_slab; // The variable that contains the missing key key_type missing_key; // The variable that contains the index for the missing key uint64_t missing_index; // The counter for counting the missing key in this warp uint8_t warp_missing_counter = 0; // Active flag: whether current lane(thread) has unfinished task bool active = false; if( idx < len ){ active = true; key = d_keys[idx]; src_set = set_hasher::hash(key) % capacity_in_set; src_slab = slab_hasher::hash(key) % set_associativity; } // Lane participate in warp_tile ballot to produce warp-level work queue unsigned active_mask = warp_tile.ballot(active); // The warp-level outer loop: finish all the tasks within the work queue while(active_mask != 0){ // Next task in the work quere, start from lower index lane(thread) int next_lane = __ffs(active_mask) - 1; // Broadcast the task and the global index to all lane in the warp_tile key_type next_key = warp_tile.shfl(key, next_lane); size_t next_idx = warp_tile.shfl(idx, next_lane); size_t next_set = warp_tile.shfl(src_set, next_lane); size_t next_slab = warp_tile.shfl(src_slab, next_lane); // Counter to record how many slab have been searched size_t counter = 0; // Working queue before task started const unsigned old_active_mask = active_mask; // Lock the slabset before operating the slabset warp_lock_mutex<mutex, warp_size>(warp_tile, set_mutex[next_set]); // The warp-level inner loop: finish a single task in the work queue while(active_mask == old_active_mask){ // When all the slabs inside a slabset have been searched, mark missing task, task is completed if(counter >= set_associativity){ if(lane_idx == warp_missing_counter){ missing_key = next_key; missing_index = next_idx; } if(lane_idx == (size_t)next_lane){ active = false; } warp_missing_counter++; active_mask = warp_tile.ballot(active); break; } // The warp_tile read out the slab key_type read_key = keys[next_set].set_[next_slab].slab_[lane_idx]; // Compare the slab data with the target key int found_lane = __ffs(warp_tile.ballot(read_key == next_key)) - 1; // If found, mark hit task, copy the founded data, the task is completed if(found_lane >= 0){ size_t found_offset = (next_set * set_associativity + next_slab) * warp_size + found_lane; if(lane_idx == (size_t)next_lane){ slot_counter[found_offset] = global_counter -> load(cuda::std::memory_order_relaxed); active = false; } warp_tile_copy<warp_size>(lane_idx, embedding_vec_size, d_values + next_idx * embedding_vec_size, vals + found_offset * embedding_vec_size); active_mask = warp_tile.ballot(active); break; } // Compare the slab data with empty key, if found empty key, mark missing task, task is completed if(warp_tile.ballot(read_key == empty_key) != 0){ if(lane_idx == warp_missing_counter){ missing_key = next_key; missing_index = next_idx; } if(lane_idx == (size_t)next_lane){ active = false; } warp_missing_counter++; active_mask = warp_tile.ballot(active); break; } // Not found in this slab, the task is not completed, goto searching next slab counter++; next_slab = (next_slab + 1) % set_associativity; } // Unlock the slabset after operating the slabset warp_unlock_mutex<mutex, warp_size>(warp_tile, set_mutex[next_set]); } // After warp_tile complete the working queue, save the result for output // First thread of the warp_tile accumulate the missing length to global variable size_t warp_position; if(lane_idx == 0){ warp_position = atomicAdd(d_missing_len, (size_t)warp_missing_counter); } warp_position = warp_tile.shfl(warp_position, 0); if(lane_idx < warp_missing_counter){ d_missing_keys[warp_position + lane_idx] = missing_key; d_missing_index[warp_position + lane_idx] = missing_index; } } #else // Kernel to read from cache // Also update locality information for touched slot template<typename key_type, typename ref_counter_type, typename slabset, typename set_hasher, typename slab_hasher, key_type empty_key, int set_associativity, int warp_size> __global__ void get_kernel(const key_type* d_keys, const size_t len, float* d_values, const size_t embedding_vec_size, uint64_t* d_missing_index, key_type* d_missing_keys, size_t* d_missing_len, ref_counter_type* global_counter, volatile ref_counter_type* slot_counter, const size_t capacity_in_set, volatile slabset* keys, volatile float* vals, volatile int* set_mutex){ // Lane(thread) global ID const size_t idx = blockIdx.x * blockDim.x + threadIdx.x; // Lane(thread) ID within a warp_tile cg::thread_block_tile<warp_size> warp_tile = cg::tiled_partition<warp_size>(cg::this_thread_block()); const size_t lane_idx = warp_tile.thread_rank(); // The assigned key for this lane(thread) key_type key; // The dst slabset and the dst slab inside this set size_t src_set; size_t src_slab; // The variable that contains the missing key key_type missing_key; // The variable that contains the index for the missing key uint64_t missing_index; // The counter for counting the missing key in this warp uint8_t warp_missing_counter = 0; // Active flag: whether current lane(thread) has unfinished task bool active = false; if( idx < len ){ active = true; key = d_keys[idx]; src_set = set_hasher::hash(key) % capacity_in_set; src_slab = slab_hasher::hash(key) % set_associativity; } // Lane participate in warp_tile ballot to produce warp-level work queue unsigned active_mask = warp_tile.ballot(active); // The warp-level outer loop: finish all the tasks within the work queue while(active_mask != 0){ // Next task in the work quere, start from lower index lane(thread) int next_lane = __ffs(active_mask) - 1; // Broadcast the task and the global index to all lane in the warp_tile key_type next_key = warp_tile.shfl(key, next_lane); size_t next_idx = warp_tile.shfl(idx, next_lane); size_t next_set = warp_tile.shfl(src_set, next_lane); size_t next_slab = warp_tile.shfl(src_slab, next_lane); // Counter to record how many slab have been searched size_t counter = 0; // Working queue before task started const unsigned old_active_mask = active_mask; // Lock the slabset before operating the slabset warp_lock_mutex<warp_size>(warp_tile, set_mutex[next_set]); // The warp-level inner loop: finish a single task in the work queue while(active_mask == old_active_mask){ // When all the slabs inside a slabset have been searched, mark missing task, task is completed if(counter >= set_associativity){ if(lane_idx == warp_missing_counter){ missing_key = next_key; missing_index = next_idx; } if(lane_idx == (size_t)next_lane){ active = false; } warp_missing_counter++; active_mask = warp_tile.ballot(active); break; } // The warp_tile read out the slab key_type read_key = ((volatile key_type*)(keys[next_set].set_[next_slab].slab_))[lane_idx]; // Compare the slab data with the target key int found_lane = __ffs(warp_tile.ballot(read_key == next_key)) - 1; // If found, mark hit task, copy the founded data, the task is completed if(found_lane >= 0){ size_t found_offset = (next_set * set_associativity + next_slab) * warp_size + found_lane; if(lane_idx == (size_t)next_lane){ slot_counter[found_offset] = atomicAdd(global_counter, 0); active = false; } warp_tile_copy<warp_size>(lane_idx, embedding_vec_size, (volatile float*)(d_values + next_idx * embedding_vec_size), (volatile float*)(vals + found_offset * embedding_vec_size)); active_mask = warp_tile.ballot(active); break; } // Compare the slab data with empty key, if found empty key, mark missing task, task is completed if(warp_tile.ballot(read_key == empty_key) != 0){ if(lane_idx == warp_missing_counter){ missing_key = next_key; missing_index = next_idx; } if(lane_idx == (size_t)next_lane){ active = false; } warp_missing_counter++; active_mask = warp_tile.ballot(active); break; } // Not found in this slab, the task is not completed, goto searching next slab counter++; next_slab = (next_slab + 1) % set_associativity; } // Unlock the slabset after operating the slabset warp_unlock_mutex<warp_size>(warp_tile, set_mutex[next_set]); } // After warp_tile complete the working queue, save the result for output // First thread of the warp_tile accumulate the missing length to global variable size_t warp_position; if(lane_idx == 0){ warp_position = atomicAdd(d_missing_len, (size_t)warp_missing_counter); } warp_position = warp_tile.shfl(warp_position, 0); if(lane_idx < warp_missing_counter){ d_missing_keys[warp_position + lane_idx] = missing_key; d_missing_index[warp_position + lane_idx] = missing_index; } } #endif #ifdef LIBCUDACXX_VERSION // Kernel to insert or replace the <k,v> pairs into the cache template<typename key_type, typename slabset, typename ref_counter_type, typename mutex, typename atomic_ref_counter_type, typename set_hasher, typename slab_hasher, key_type empty_key, int set_associativity, int warp_size, ref_counter_type max_ref_counter_type = std::numeric_limits<ref_counter_type>::max(), size_t max_slab_distance = std::numeric_limits<size_t>::max()> __global__ void insert_replace_kernel(const key_type* d_keys, const float* d_values, const size_t embedding_vec_size, const size_t len, slabset* keys, float* vals, ref_counter_type* slot_counter, mutex* set_mutex, const atomic_ref_counter_type* global_counter, const size_t capacity_in_set){ // Lane(thread) global ID const size_t idx = blockIdx.x * blockDim.x + threadIdx.x; // Lane(thread) ID within a warp_tile cg::thread_block_tile<warp_size> warp_tile = cg::tiled_partition<warp_size>(cg::this_thread_block()); const size_t lane_idx = warp_tile.thread_rank(); // The assigned key for this lane(thread) key_type key; // The dst slabset and the dst slab inside this set size_t src_set; size_t src_slab; // Active flag: whether current lane(thread) has unfinished task bool active = false; if( idx < len ){ active = true; key = d_keys[idx]; src_set = set_hasher::hash(key) % capacity_in_set; src_slab = slab_hasher::hash(key) % set_associativity; } // Lane participate in warp_tile ballot to produce warp-level work queue unsigned active_mask = warp_tile.ballot(active); // The warp-level outer loop: finish all the tasks within the work queue while(active_mask != 0){ // Next task in the work quere, start from lower index lane(thread) int next_lane = __ffs(active_mask) - 1; // Broadcast the task, the global index and the src slabset and slab to all lane in a warp_tile key_type next_key = warp_tile.shfl(key, next_lane); size_t next_idx = warp_tile.shfl(idx, next_lane); size_t next_set = warp_tile.shfl(src_set, next_lane); size_t next_slab = warp_tile.shfl(src_slab, next_lane); size_t first_slab = next_slab; // Counter to record how many slab have been searched size_t counter = 0; // Variable to keep the min slot counter during the probing ref_counter_type min_slot_counter_val = max_ref_counter_type; // Variable to keep the slab distance for slot with min counter size_t slab_distance = max_slab_distance; // Variable to keep the slot distance for slot with min counter within the slab size_t slot_distance; // Working queue before task started const unsigned old_active_mask = active_mask; // Lock the slabset before operating the slabset warp_lock_mutex<mutex, warp_size>(warp_tile, set_mutex[next_set]); // The warp-level inner loop: finish a single task in the work queue while(active_mask == old_active_mask){ // When all the slabs inside a slabset have been searched // and no empty slots or target slots are found. Replace with LRU if(counter >= set_associativity){ // (sub)Warp all-reduction, the reduction result store in all threads warp_min_reduction<ref_counter_type, warp_size>(warp_tile, min_slot_counter_val, slab_distance, slot_distance); // Calculate the position of LR slot size_t target_slab = (first_slab + slab_distance) % set_associativity; size_t slot_index = (next_set * set_associativity + target_slab) * warp_size + slot_distance; // Replace the LR slot if(lane_idx == (size_t)next_lane){ keys[next_set].set_[target_slab].slab_[slot_distance] = key; slot_counter[slot_index] = global_counter -> load(cuda::std::memory_order_relaxed); } warp_tile_copy<warp_size>(lane_idx, embedding_vec_size, vals + slot_index * embedding_vec_size, d_values + next_idx * embedding_vec_size); // Replace complete, mark this task completed if(lane_idx == (size_t)next_lane){ active = false; } active_mask = warp_tile.ballot(active); break; } // The warp_tile read out the slab key_type read_key = keys[next_set].set_[next_slab].slab_[lane_idx]; // Compare the slab data with the target key int found_lane = __ffs(warp_tile.ballot(read_key == next_key)) - 1; // If found target key, the insertion/replace is no longer needed. // Refresh the slot, the task is completed if(found_lane >= 0){ size_t found_offset = (next_set * set_associativity + next_slab) * warp_size + found_lane; if(lane_idx == (size_t)next_lane){ slot_counter[found_offset] = global_counter -> load(cuda::std::memory_order_relaxed); active = false; } active_mask = warp_tile.ballot(active); break; } // Compare the slab data with empty key. // If found empty key, do insertion,the task is complete found_lane = __ffs(warp_tile.ballot(read_key == empty_key)) - 1; if(found_lane >= 0){ size_t found_offset = (next_set * set_associativity + next_slab) * warp_size + found_lane; if(lane_idx == (size_t)next_lane){ keys[next_set].set_[next_slab].slab_[found_lane] = key; slot_counter[found_offset] = global_counter -> load(cuda::std::memory_order_relaxed); } warp_tile_copy<warp_size>(lane_idx, embedding_vec_size, vals + found_offset * embedding_vec_size, d_values + next_idx * embedding_vec_size); if(lane_idx == (size_t)next_lane){ active = false; } active_mask = warp_tile.ballot(active); break; } // If no target or unused slot found in this slab, // Refresh LR info, continue probing ref_counter_type read_slot_counter = slot_counter[(next_set * set_associativity + next_slab) * warp_size + lane_idx]; if(read_slot_counter < min_slot_counter_val){ min_slot_counter_val = read_slot_counter; slab_distance = counter; } counter++; next_slab = (next_slab + 1) % set_associativity; } // Unlock the slabset after operating the slabset warp_unlock_mutex<mutex, warp_size>(warp_tile, set_mutex[next_set]); } } #else // Kernel to insert or replace the <k,v> pairs into the cache template<typename key_type, typename slabset, typename ref_counter_type, typename set_hasher, typename slab_hasher, key_type empty_key, int set_associativity, int warp_size, ref_counter_type max_ref_counter_type = std::numeric_limits<ref_counter_type>::max(), size_t max_slab_distance = std::numeric_limits<size_t>::max()> __global__ void insert_replace_kernel(const key_type* d_keys, const float* d_values, const size_t embedding_vec_size, const size_t len, volatile slabset* keys, volatile float* vals, volatile ref_counter_type* slot_counter, volatile int* set_mutex, ref_counter_type* global_counter, const size_t capacity_in_set){ // Lane(thread) global ID const size_t idx = blockIdx.x * blockDim.x + threadIdx.x; // Lane(thread) ID within a warp_tile cg::thread_block_tile<warp_size> warp_tile = cg::tiled_partition<warp_size>(cg::this_thread_block()); const size_t lane_idx = warp_tile.thread_rank(); // The assigned key for this lane(thread) key_type key; // The dst slabset and the dst slab inside this set size_t src_set; size_t src_slab; // Active flag: whether current lane(thread) has unfinished task bool active = false; if( idx < len ){ active = true; key = d_keys[idx]; src_set = set_hasher::hash(key) % capacity_in_set; src_slab = slab_hasher::hash(key) % set_associativity; } // Lane participate in warp_tile ballot to produce warp-level work queue unsigned active_mask = warp_tile.ballot(active); // The warp-level outer loop: finish all the tasks within the work queue while(active_mask != 0){ // Next task in the work quere, start from lower index lane(thread) int next_lane = __ffs(active_mask) - 1; // Broadcast the task, the global index and the src slabset and slab to all lane in a warp_tile key_type next_key = warp_tile.shfl(key, next_lane); size_t next_idx = warp_tile.shfl(idx, next_lane); size_t next_set = warp_tile.shfl(src_set, next_lane); size_t next_slab = warp_tile.shfl(src_slab, next_lane); size_t first_slab = next_slab; // Counter to record how many slab have been searched size_t counter = 0; // Variable to keep the min slot counter during the probing ref_counter_type min_slot_counter_val = max_ref_counter_type; // Variable to keep the slab distance for slot with min counter size_t slab_distance = max_slab_distance; // Variable to keep the slot distance for slot with min counter within the slab size_t slot_distance; // Working queue before task started const unsigned old_active_mask = active_mask; // Lock the slabset before operating the slabset warp_lock_mutex<warp_size>(warp_tile, set_mutex[next_set]); // The warp-level inner loop: finish a single task in the work queue while(active_mask == old_active_mask){ // When all the slabs inside a slabset have been searched // and no empty slots or target slots are found. Replace with LRU if(counter >= set_associativity){ // (sub)Warp all-reduction, the reduction result store in all threads warp_min_reduction<ref_counter_type, warp_size>(warp_tile, min_slot_counter_val, slab_distance, slot_distance); // Calculate the position of LR slot size_t target_slab = (first_slab + slab_distance) % set_associativity; size_t slot_index = (next_set * set_associativity + target_slab) * warp_size + slot_distance; // Replace the LR slot if(lane_idx == (size_t)next_lane){ ((volatile key_type*)(keys[next_set].set_[target_slab].slab_))[slot_distance] = key; slot_counter[slot_index] = atomicAdd(global_counter, 0); } warp_tile_copy<warp_size>(lane_idx, embedding_vec_size, (volatile float*)(vals + slot_index * embedding_vec_size), (volatile float*)(d_values + next_idx * embedding_vec_size)); // Replace complete, mark this task completed if(lane_idx == (size_t)next_lane){ active = false; } active_mask = warp_tile.ballot(active); break; } // The warp_tile read out the slab key_type read_key = ((volatile key_type*)(keys[next_set].set_[next_slab].slab_))[lane_idx]; // Compare the slab data with the target key int found_lane = __ffs(warp_tile.ballot(read_key == next_key)) - 1; // If found target key, the insertion/replace is no longer needed. // Refresh the slot, the task is completed if(found_lane >= 0){ size_t found_offset = (next_set * set_associativity + next_slab) * warp_size + found_lane; if(lane_idx == (size_t)next_lane){ slot_counter[found_offset] = atomicAdd(global_counter, 0); active = false; } active_mask = warp_tile.ballot(active); break; } // Compare the slab data with empty key. // If found empty key, do insertion,the task is complete found_lane = __ffs(warp_tile.ballot(read_key == empty_key)) - 1; if(found_lane >= 0){ size_t found_offset = (next_set * set_associativity + next_slab) * warp_size + found_lane; if(lane_idx == (size_t)next_lane){ ((volatile key_type*)(keys[next_set].set_[next_slab].slab_))[found_lane] = key; slot_counter[found_offset] = atomicAdd(global_counter, 0); } warp_tile_copy<warp_size>(lane_idx, embedding_vec_size, (volatile float*)(vals + found_offset * embedding_vec_size), (volatile float*)(d_values + next_idx * embedding_vec_size)); if(lane_idx == (size_t)next_lane){ active = false; } active_mask = warp_tile.ballot(active); break; } // If no target or unused slot found in this slab, // Refresh LR info, continue probing ref_counter_type read_slot_counter = slot_counter[(next_set * set_associativity + next_slab) * warp_size + lane_idx]; if(read_slot_counter < min_slot_counter_val){ min_slot_counter_val = read_slot_counter; slab_distance = counter; } counter++; next_slab = (next_slab + 1) % set_associativity; } // Unlock the slabset after operating the slabset warp_unlock_mutex<warp_size>(warp_tile, set_mutex[next_set]); } } #endif /////////////////////////////////////////////////////////////////////////////////////////////////// #ifdef LIBCUDACXX_VERSION template<typename key_type, typename ref_counter_type, key_type empty_key, int set_associativity, int warp_size, typename set_hasher, typename slab_hasher> gpu_cache<key_type, ref_counter_type, empty_key, set_associativity, warp_size, set_hasher, slab_hasher>::gpu_cache(const size_t capacity_in_set, const size_t embedding_vec_size) :capacity_in_set_(capacity_in_set), embedding_vec_size_(embedding_vec_size){ // Check parameter if(capacity_in_set_ == 0){ printf("Error: Invalid value for capacity_in_set.\n"); return; } if(embedding_vec_size_ == 0){ printf("Error: Invalid value for embedding_vec_size.\n"); return; } if(set_associativity <= 0){ printf("Error: Invalid value for set_associativity.\n"); return; } if(warp_size != 1 && warp_size != 2 && warp_size != 4 && warp_size != 8 && warp_size != 16 && warp_size != 32){ printf("Error: Invalid value for warp_size.\n"); return; } // Get the current CUDA dev CUDA_CHECK(cudaGetDevice( &dev_ )); // Calculate # of slot num_slot_ = capacity_in_set_ * set_associativity * warp_size; // Allocate GPU memory for cache CUDA_CHECK(cudaMalloc((void**)&keys_, sizeof(slabset) * capacity_in_set_)); CUDA_CHECK(cudaMalloc((void**)&vals_, sizeof(float) * embedding_vec_size_ * num_slot_)); CUDA_CHECK(cudaMalloc((void**)&slot_counter_, sizeof(ref_counter_type) * num_slot_)); CUDA_CHECK(cudaMalloc((void**)&global_counter_, sizeof(atomic_ref_counter_type))); // Allocate GPU memory for set mutex CUDA_CHECK(cudaMalloc((void**)&set_mutex_, sizeof(mutex) * capacity_in_set_)); // Initialize the cache, set all entry to unused <K,V> init_cache<<<((num_slot_-1)/BLOCK_SIZE_)+1, BLOCK_SIZE_>>>(keys_, slot_counter_, global_counter_, num_slot_, empty_key, set_mutex_, capacity_in_set_); // Wait for initialization to finish CUDA_CHECK(cudaStreamSynchronize(0)); CUDA_CHECK(cudaGetLastError()); } #else template<typename key_type, typename ref_counter_type, key_type empty_key, int set_associativity, int warp_size, typename set_hasher, typename slab_hasher> gpu_cache<key_type, ref_counter_type, empty_key, set_associativity, warp_size, set_hasher, slab_hasher>::gpu_cache(const size_t capacity_in_set, const size_t embedding_vec_size) :capacity_in_set_(capacity_in_set), embedding_vec_size_(embedding_vec_size){ // Check parameter if(capacity_in_set_ == 0){ printf("Error: Invalid value for capacity_in_set.\n"); return; } if(embedding_vec_size_ == 0){ printf("Error: Invalid value for embedding_vec_size.\n"); return; } if(set_associativity <= 0){ printf("Error: Invalid value for set_associativity.\n"); return; } if(warp_size != 1 && warp_size != 2 && warp_size != 4 && warp_size != 8 && warp_size != 16 && warp_size != 32){ printf("Error: Invalid value for warp_size.\n"); return; } // Get the current CUDA dev CUDA_CHECK(cudaGetDevice( &dev_ )); // Calculate # of slot num_slot_ = capacity_in_set_ * set_associativity * warp_size; // Allocate GPU memory for cache CUDA_CHECK(cudaMalloc((void**)&keys_, sizeof(slabset) * capacity_in_set_)); CUDA_CHECK(cudaMalloc((void**)&vals_, sizeof(float) * embedding_vec_size_ * num_slot_)); CUDA_CHECK(cudaMalloc((void**)&slot_counter_, sizeof(ref_counter_type) * num_slot_)); CUDA_CHECK(cudaMalloc((void**)&global_counter_, sizeof(ref_counter_type))); // Allocate GPU memory for set mutex CUDA_CHECK(cudaMalloc((void**)&set_mutex_, sizeof(int) * capacity_in_set_)); // Initialize the cache, set all entry to unused <K,V> init_cache<<<((num_slot_-1)/BLOCK_SIZE_)+1, BLOCK_SIZE_>>>(keys_, slot_counter_, global_counter_, num_slot_, empty_key, set_mutex_, capacity_in_set_); // Wait for initialization to finish CUDA_CHECK(cudaStreamSynchronize(0)); CUDA_CHECK(cudaGetLastError()); } #endif #ifdef LIBCUDACXX_VERSION template<typename key_type, typename ref_counter_type, key_type empty_key, int set_associativity, int warp_size, typename set_hasher, typename slab_hasher> gpu_cache<key_type, ref_counter_type, empty_key, set_associativity, warp_size, set_hasher, slab_hasher>::~gpu_cache(){ // Device Restorer nv::CudaDeviceRestorer dev_restorer; // Set device CUDA_CHECK(cudaSetDevice(dev_)); // Destruct CUDA std object destruct_kernel<<<((capacity_in_set_-1)/BLOCK_SIZE_)+1, BLOCK_SIZE_>>>(global_counter_, set_mutex_, capacity_in_set_); // Wait for destruction to finish CUDA_CHECK(cudaStreamSynchronize(0)); // Free GPU memory for cache CUDA_CHECK(cudaFree( keys_ )); CUDA_CHECK(cudaFree( vals_ )); CUDA_CHECK(cudaFree( slot_counter_ )); CUDA_CHECK(cudaFree( global_counter_ )); // Free GPU memory for set mutex CUDA_CHECK(cudaFree( set_mutex_ )); } #else template<typename key_type, typename ref_counter_type, key_type empty_key, int set_associativity, int warp_size, typename set_hasher, typename slab_hasher> gpu_cache<key_type, ref_counter_type, empty_key, set_associativity, warp_size, set_hasher, slab_hasher>::~gpu_cache() noexcept(false) { // Device Restorer nv::CudaDeviceRestorer dev_restorer; // Set device CUDA_CHECK(cudaSetDevice(dev_)); // Free GPU memory for cache CUDA_CHECK(cudaFree( keys_ )); CUDA_CHECK(cudaFree( vals_ )); CUDA_CHECK(cudaFree( slot_counter_ )); CUDA_CHECK(cudaFree( global_counter_ )); // Free GPU memory for set mutex CUDA_CHECK(cudaFree( set_mutex_ )); } #endif #ifdef LIBCUDACXX_VERSION template<typename key_type, typename ref_counter_type, key_type empty_key, int set_associativity, int warp_size, typename set_hasher, typename slab_hasher> void gpu_cache<key_type, ref_counter_type, empty_key, set_associativity, warp_size, set_hasher, slab_hasher>:: Query(const key_type* d_keys, const size_t len, float* d_values, uint64_t* d_missing_index, key_type* d_missing_keys, size_t* d_missing_len, cudaStream_t stream){ // Device Restorer nv::CudaDeviceRestorer dev_restorer; // Set to the device of this cache CUDA_CHECK(cudaSetDevice(dev_)); // Check if it is a valid query if(len == 0){ // Set the d_missing_len to 0 before return CUDA_CHECK(cudaMemsetAsync(d_missing_len, 0, sizeof(size_t), stream)); return; } // Update the global counter as user perform a new(most recent) read operation to the cache // Resolve distance overflow issue as well. update_kernel_overflow_ignore<atomic_ref_counter_type><<<1, 1, 0, stream>>>(global_counter_, d_missing_len); // Read from the cache // Touch and refresh the hitting slot get_kernel<key_type, ref_counter_type, atomic_ref_counter_type, slabset, set_hasher, slab_hasher, mutex, empty_key, set_associativity, warp_size> <<<((len-1)/BLOCK_SIZE_)+1, BLOCK_SIZE_, 0, stream>>>(d_keys, len, d_values, embedding_vec_size_, d_missing_index, d_missing_keys, d_missing_len, global_counter_, slot_counter_, capacity_in_set_, keys_, vals_, set_mutex_); // Check for GPU error before return CUDA_CHECK(cudaGetLastError()); } #else template<typename key_type, typename ref_counter_type, key_type empty_key, int set_associativity, int warp_size, typename set_hasher, typename slab_hasher> void gpu_cache<key_type, ref_counter_type, empty_key, set_associativity, warp_size, set_hasher, slab_hasher>:: Query(const key_type* d_keys, const size_t len, float* d_values, uint64_t* d_missing_index, key_type* d_missing_keys, size_t* d_missing_len, cudaStream_t stream){ // Device Restorer nv::CudaDeviceRestorer dev_restorer; // Set to the device of this cache CUDA_CHECK(cudaSetDevice(dev_)); // Check if it is a valid query if(len == 0){ // Set the d_missing_len to 0 before return CUDA_CHECK(cudaMemsetAsync(d_missing_len, 0, sizeof(size_t), stream)); return; } // Update the global counter as user perform a new(most recent) read operation to the cache // Resolve distance overflow issue as well. update_kernel_overflow_ignore<ref_counter_type><<<1, 1, 0, stream>>>(global_counter_, d_missing_len); // Read from the cache // Touch and refresh the hitting slot get_kernel<key_type, ref_counter_type, slabset, set_hasher, slab_hasher, empty_key, set_associativity, warp_size> <<<((len-1)/BLOCK_SIZE_)+1, BLOCK_SIZE_, 0, stream>>>(d_keys, len, d_values, embedding_vec_size_, d_missing_index, d_missing_keys, d_missing_len, global_counter_, slot_counter_, capacity_in_set_, keys_, vals_, set_mutex_); // Check for GPU error before return CUDA_CHECK(cudaGetLastError()); } #endif #ifdef LIBCUDACXX_VERSION template<typename key_type, typename ref_counter_type, key_type empty_key, int set_associativity, int warp_size, typename set_hasher, typename slab_hasher> void gpu_cache<key_type, ref_counter_type, empty_key, set_associativity, warp_size, set_hasher, slab_hasher>:: Replace(const key_type* d_keys, const size_t len, const float* d_values, cudaStream_t stream){ // Check if it is a valid replacement if(len == 0){ return; } // Device Restorer nv::CudaDeviceRestorer dev_restorer; // Set to the device of this cache CUDA_CHECK(cudaSetDevice(dev_)); // Try to insert the <k,v> paris into the cache as long as there are unused slot // Then replace the <k,v> pairs into the cache insert_replace_kernel<key_type, slabset, ref_counter_type, mutex, atomic_ref_counter_type, set_hasher, slab_hasher, empty_key, set_associativity, warp_size> <<<((len-1)/BLOCK_SIZE_)+1, BLOCK_SIZE_, 0, stream>>> (d_keys, d_values, embedding_vec_size_, len, keys_, vals_, slot_counter_, set_mutex_, global_counter_, capacity_in_set_); // Check for GPU error before return CUDA_CHECK(cudaGetLastError()); } #else template<typename key_type, typename ref_counter_type, key_type empty_key, int set_associativity, int warp_size, typename set_hasher, typename slab_hasher> void gpu_cache<key_type, ref_counter_type, empty_key, set_associativity, warp_size, set_hasher, slab_hasher>:: Replace(const key_type* d_keys, const size_t len, const float* d_values, cudaStream_t stream){ // Check if it is a valid replacement if(len == 0){ return; } // Device Restorer nv::CudaDeviceRestorer dev_restorer; // Set to the device of this cache CUDA_CHECK(cudaSetDevice(dev_)); // Try to insert the <k,v> paris into the cache as long as there are unused slot // Then replace the <k,v> pairs into the cache insert_replace_kernel<key_type, slabset, ref_counter_type, set_hasher, slab_hasher, empty_key, set_associativity, warp_size> <<<((len-1)/BLOCK_SIZE_)+1, BLOCK_SIZE_, 0, stream>>> (d_keys, d_values, embedding_vec_size_, len, keys_, vals_, slot_counter_, set_mutex_, global_counter_, capacity_in_set_); // Check for GPU error before return CUDA_CHECK(cudaGetLastError()); } #endif template class gpu_cache<unsigned int, uint64_t, std::numeric_limits<unsigned int>::max(), SET_ASSOCIATIVITY, SLAB_SIZE>; template class gpu_cache<long long, uint64_t, std::numeric_limits<long long>::max(), SET_ASSOCIATIVITY, SLAB_SIZE>; } // namespace gpu_cache
ca961cfe7e742cf1d443e00c751a9dbc737502de.hip
// !!! This is a file automatically generated by hipify!!! /* * Copyright 2019-2020 NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "../src/cudapoa_add_alignment.cuh" //addAlignment, CUDAPOA_MAX_NODE_EDGES, CUDAPOA_MAX_NODE_ALIGNMENTS #include "basic_graph.hpp" //BasicGraph #include <claraparabricks/genomeworks/cudapoa/batch.hpp> #include <claraparabricks/genomeworks/utils/cudautils.hpp> //GW_CU_CHECK_ERR #include <claraparabricks/genomeworks/utils/stringutils.hpp> //array_to_string #include <claraparabricks/genomeworks/utils/signed_integer_utils.hpp> // get_size #include "gtest/gtest.h" namespace claraparabricks { namespace genomeworks { namespace cudapoa { class BasicAlignment { public: BasicAlignment(std::vector<uint8_t> nodes, Int16Vec2D outgoing_edges, Int16Vec2D node_alignments, std::vector<uint16_t> node_coverage_counts, std::vector<uint8_t> read, std::vector<int8_t> base_weights, std::vector<int16_t> alignment_graph, std::vector<int16_t> alignment_read) : graph(nodes, outgoing_edges, node_alignments, node_coverage_counts) , read_(read) , alignment_graph_(alignment_graph) , alignment_read_(alignment_read) { //do nothing for now } void get_alignments(int16_t* alignment_graph, int16_t* alignment_read, int16_t* alignment_length) const { for (int i = 0; i < get_size(alignment_graph_); i++) { alignment_graph[i] = alignment_graph_[i]; alignment_read[i] = alignment_read_[i]; } *alignment_length = get_size(alignment_graph_); } void get_read(uint8_t* read) const { for (int i = 0; i < get_size(read_); i++) { read[i] = read_[i]; } } void get_base_weights(int8_t* base_weights) const { for (int i = 0; i < get_size(base_weights_); i++) { base_weights[i] = base_weights_[i]; } } void get_graph_buffers(int16_t* incoming_edges, uint16_t* incoming_edge_count, int16_t* outgoing_edges, uint16_t* outgoing_edge_count, uint8_t* nodes, int16_t* node_count, int16_t* node_alignments, uint16_t* node_alignment_count, uint16_t* node_coverage_counts) const { if (!graph.is_complete()) { throw "graph is incomplete; unable to fill the buffers."; } graph.get_edges(incoming_edges, incoming_edge_count, outgoing_edges, outgoing_edge_count); graph.get_nodes(nodes, node_count); graph.get_node_alignments(node_alignments, node_alignment_count); graph.get_node_coverage_counts(node_coverage_counts); } void get_alignment_buffers(int16_t* alignment_graph, int16_t* alignment_read, int16_t* alignment_length, uint8_t* read, int8_t* base_weights) const { get_alignments(alignment_graph, alignment_read, alignment_length); get_read(read); get_base_weights(base_weights); } protected: BasicGraph graph; std::vector<uint8_t> read_; std::vector<int8_t> base_weights_; std::vector<int16_t> alignment_graph_; std::vector<int16_t> alignment_read_; }; typedef std::pair<BasicGraph, BasicAlignment> AddAlginmentTestPair; // create a vector of test cases std::vector<AddAlginmentTestPair> getAddAlignmentTestCases() { std::vector<AddAlginmentTestPair> test_cases; /* * read: A A T A * graph: A A A A * alignment graph: 0 1 2 3 * alignment read: 0 1 2 3 * T * / \ * final graph A A A * \ / * A */ BasicGraph ans_1(Int16Vec2D({{}, {0}, {1}, {2, 4}, {1}})); BasicAlignment ali_1({'A', 'A', 'A', 'A'}, //nodes {{}, {0}, {1}, {2}}, //outgoing_edges {{}, {}, {}, {}}, //node_alignments {1, 1, 1, 1}, //node_coverage_counts {'A', 'A', 'T', 'A'}, //read {0, 0, 1, 2}, //base weights {0, 1, 2, 3}, //alignment_graph {0, 1, 2, 3}); //alignment_read test_cases.emplace_back(std::move(ans_1), std::move(ali_1)); /* * read: A T C G A * graph: A T C G * alignment graph: 0 1 2 3 -1 * alignment read: 0 1 2 3 4 * * final graph A T C G A * */ BasicGraph ans_2(Int16Vec2D({{}, {0}, {1}, {2}, {3}})); BasicAlignment ali_2({'A', 'T', 'C', 'G'}, //nodes {{}, {0}, {1}, {2}}, //outgoing_edges {{}, {}, {}, {}}, //node_alignments {1, 1, 1, 1}, //node_coverage_counts {'A', 'T', 'C', 'G', 'A'}, //read {0, 1, 2, 3, 4}, //base weights {0, 1, 2, 3, -1}, //alignment_graph {0, 1, 2, 3, 4}); //alignment_read test_cases.emplace_back(std::move(ans_2), std::move(ali_2)); /* * read: A T C G * A * / \ * graph: A C C G * alignment graph: 0 4 2 3 * alignment read: 0 1 2 3 * T * / \ * final graph A C C G * \ / * A */ BasicGraph ans_3(Int16Vec2D({{}, {0}, {1, 4, 5}, {2}, {0}, {0}})); BasicAlignment ali_3({'A', 'A', 'C', 'G', 'C'}, //nodes {{}, {0}, {1, 4}, {2}, {0}}, //outgoing_edges {{}, {}, {}, {}}, //node_alignments {2, 1, 2, 2, 1}, //node_coverage_counts {'A', 'T', 'C', 'G'}, //read {0, 1, 1, 5}, //base weights {0, 4, 2, 3}, //alignment_graph {0, 1, 2, 3}); //alignment_read test_cases.emplace_back(std::move(ans_3), std::move(ali_3)); /* * read: A A * graph: A T T G A * alignment graph: 0 1 2 3 4 * alignment read: 0 -1 -1 -1 1 * * final graph A T T G A * \_____________/ * */ BasicGraph ans_4(Int16Vec2D({{}, {0}, {1}, {2}, {3, 0}})); BasicAlignment ali_4({'A', 'T', 'T', 'G', 'A'}, //nodes {{}, {0}, {1}, {2}, {3}}, //outgoing_edges {{}, {}, {}, {}}, //node_alignments {1, 1, 1, 1, 1}, //node_coverage_counts {'A', 'A'}, //read {5, 1}, //base weights {0, 1, 2, 3, 4}, //alignment_graph {0, -1, -1, -1, 1}); //alignment_read test_cases.emplace_back(std::move(ans_4), std::move(ali_4)); /* * read: A C T T A * T G * / \ * graph: A C A T A * alignment graph: 0 5 6 3 4 * alignment read: 0 1 2 3 4 * T G * / \ * final graph A C A T A * \ / * T * */ BasicGraph ans_5(Int16Vec2D({{}, {0}, {1}, {2, 6, 7}, {3}, {0}, {5}, {5}})); BasicAlignment ali_5({'A', 'T', 'G', 'T', 'A', 'C', 'A'}, //nodes {{}, {0}, {1}, {2, 6}, {3}, {0}, {5}}, //outgoing_edges {{}, {}, {}, {}}, //node_alignments {2, 1, 1, 2, 2, 1, 1}, //node_coverage_counts {'A', 'C', 'T', 'T', 'A'}, //read {10, 9, 8, 7, 6}, //base weights {0, 5, 6, 3, 4}, //alignment_graph {0, 1, 2, 3, 4}); //alignment_read test_cases.emplace_back(std::move(ans_5), std::move(ali_5)); //add more test cases below return test_cases; } // host function for calling the kernel to test topsort device function. BasicGraph testAddAlignment(const BasicAlignment& obj) { //declare device buffer uint8_t* nodes = nullptr; int16_t* node_count = nullptr; int16_t* node_alignments = nullptr; uint16_t* node_alignment_count = nullptr; int16_t* incoming_edges = nullptr; uint16_t* incoming_edge_count = nullptr; int16_t* outgoing_edges = nullptr; uint16_t* outgoing_edge_count = nullptr; uint16_t* incoming_edge_w = nullptr; uint16_t* outgoing_edge_w = nullptr; int16_t* alignment_length = nullptr; int16_t* graph = nullptr; int16_t* alignment_graph = nullptr; uint8_t* read = nullptr; int8_t* base_weights = nullptr; int16_t* alignment_read = nullptr; uint16_t* node_coverage_counts = nullptr; int16_t* sequence_begin_nodes_ids = nullptr; uint16_t* outgoing_edges_coverage = nullptr; uint16_t* outgoing_edges_coverage_count = nullptr; uint16_t s = 0; BatchConfig batch_size; // default max_sequence_size = 1024, max_sequences_per_poa = 100 //allocate unified memory so they can be accessed by both host and device. GW_CU_CHECK_ERR(hipMallocManaged(&nodes, batch_size.max_nodes_per_graph * sizeof(uint8_t))); GW_CU_CHECK_ERR(hipMallocManaged(&node_count, sizeof(int16_t))); GW_CU_CHECK_ERR(hipMallocManaged(&node_alignments, batch_size.max_nodes_per_graph * CUDAPOA_MAX_NODE_ALIGNMENTS * sizeof(int16_t))); GW_CU_CHECK_ERR(hipMallocManaged(&node_alignment_count, batch_size.max_nodes_per_graph * sizeof(uint16_t))); GW_CU_CHECK_ERR(hipMallocManaged(&incoming_edges, batch_size.max_nodes_per_graph * CUDAPOA_MAX_NODE_EDGES * sizeof(int16_t))); GW_CU_CHECK_ERR(hipMallocManaged(&incoming_edge_count, batch_size.max_nodes_per_graph * sizeof(uint16_t))); GW_CU_CHECK_ERR(hipMallocManaged(&outgoing_edges, batch_size.max_nodes_per_graph * CUDAPOA_MAX_NODE_EDGES * sizeof(int16_t))); GW_CU_CHECK_ERR(hipMallocManaged(&outgoing_edge_count, batch_size.max_nodes_per_graph * sizeof(uint16_t))); GW_CU_CHECK_ERR(hipMallocManaged(&incoming_edge_w, batch_size.max_nodes_per_graph * CUDAPOA_MAX_NODE_EDGES * sizeof(uint16_t))); GW_CU_CHECK_ERR(hipMallocManaged(&outgoing_edge_w, batch_size.max_nodes_per_graph * CUDAPOA_MAX_NODE_EDGES * sizeof(uint16_t))); GW_CU_CHECK_ERR(hipMallocManaged(&alignment_length, sizeof(int16_t))); GW_CU_CHECK_ERR(hipMallocManaged(&graph, batch_size.max_nodes_per_graph * sizeof(int16_t))); GW_CU_CHECK_ERR(hipMallocManaged(&alignment_graph, batch_size.max_sequence_size * sizeof(int16_t))); GW_CU_CHECK_ERR(hipMallocManaged(&read, batch_size.max_sequence_size * sizeof(uint8_t))); GW_CU_CHECK_ERR(hipMallocManaged(&base_weights, batch_size.max_sequence_size * sizeof(int8_t))); GW_CU_CHECK_ERR(hipMallocManaged(&alignment_read, batch_size.max_sequence_size * sizeof(int16_t))); GW_CU_CHECK_ERR(hipMallocManaged(&node_coverage_counts, batch_size.max_nodes_per_graph * sizeof(int16_t))); GW_CU_CHECK_ERR(hipMallocManaged(&sequence_begin_nodes_ids, batch_size.max_sequences_per_poa * sizeof(int16_t))); GW_CU_CHECK_ERR(hipMallocManaged(&outgoing_edges_coverage, batch_size.max_nodes_per_graph * CUDAPOA_MAX_NODE_EDGES * batch_size.max_sequences_per_poa * sizeof(uint16_t))); GW_CU_CHECK_ERR(hipMallocManaged(&outgoing_edges_coverage_count, batch_size.max_nodes_per_graph * CUDAPOA_MAX_NODE_EDGES * sizeof(uint16_t))); //initialize all 'count' buffers memset(node_alignment_count, 0, batch_size.max_nodes_per_graph * sizeof(uint16_t)); memset(incoming_edge_count, 0, batch_size.max_nodes_per_graph * sizeof(uint16_t)); memset(outgoing_edge_count, 0, batch_size.max_nodes_per_graph * sizeof(uint16_t)); memset(node_coverage_counts, 0, batch_size.max_nodes_per_graph * sizeof(uint16_t)); //calculate edge counts on host //3 buffers are disregarded because they don't affect correctness -- incoming_edge_w, outgoing_edge_w, graph obj.get_graph_buffers(incoming_edges, incoming_edge_count, outgoing_edges, outgoing_edge_count, nodes, node_count, node_alignments, node_alignment_count, node_coverage_counts); obj.get_alignment_buffers(alignment_graph, alignment_read, alignment_length, read, base_weights); // call the host wrapper of topsort kernel addAlignment(nodes, node_count, node_alignments, node_alignment_count, incoming_edges, incoming_edge_count, outgoing_edges, outgoing_edge_count, incoming_edge_w, alignment_length, graph, alignment_graph, read, alignment_read, node_coverage_counts, base_weights, sequence_begin_nodes_ids, outgoing_edges_coverage, outgoing_edges_coverage_count, s, batch_size.max_sequences_per_poa, batch_size.max_nodes_per_graph); GW_CU_CHECK_ERR(hipDeviceSynchronize()); //input and output buffers are the same ones in unified memory, so the results are updated in place //create and return a new BasicGraph object that encodes the resulting graph structure after adding the alignment BasicGraph res(outgoing_edges, outgoing_edge_count, *node_count); GW_CU_CHECK_ERR(hipFree(nodes)); GW_CU_CHECK_ERR(hipFree(node_count)); GW_CU_CHECK_ERR(hipFree(node_alignments)); GW_CU_CHECK_ERR(hipFree(node_alignment_count)); GW_CU_CHECK_ERR(hipFree(incoming_edges)); GW_CU_CHECK_ERR(hipFree(incoming_edge_count)); GW_CU_CHECK_ERR(hipFree(outgoing_edges)); GW_CU_CHECK_ERR(hipFree(outgoing_edge_count)); GW_CU_CHECK_ERR(hipFree(incoming_edge_w)); GW_CU_CHECK_ERR(hipFree(outgoing_edge_w)); GW_CU_CHECK_ERR(hipFree(alignment_length)); GW_CU_CHECK_ERR(hipFree(graph)); GW_CU_CHECK_ERR(hipFree(alignment_graph)); GW_CU_CHECK_ERR(hipFree(read)); GW_CU_CHECK_ERR(hipFree(base_weights)); GW_CU_CHECK_ERR(hipFree(alignment_read)); GW_CU_CHECK_ERR(hipFree(node_coverage_counts)); GW_CU_CHECK_ERR(hipFree(sequence_begin_nodes_ids)); GW_CU_CHECK_ERR(hipFree(outgoing_edges_coverage)); GW_CU_CHECK_ERR(hipFree(outgoing_edges_coverage_count)); return res; } using ::testing::TestWithParam; using ::testing::ValuesIn; class AddAlignmentTest : public TestWithParam<AddAlginmentTestPair> { public: void SetUp() {} BasicGraph runAddAlignment(const BasicAlignment& ali) { return testAddAlignment(ali); } }; TEST_P(AddAlignmentTest, TestAddAlignmentCorrectness) { const auto test_case = GetParam(); EXPECT_EQ(test_case.first, runAddAlignment(test_case.second)); } INSTANTIATE_TEST_SUITE_P(TestAddAlginment, AddAlignmentTest, ValuesIn(getAddAlignmentTestCases())); } // namespace cudapoa } // namespace genomeworks } // namespace claraparabricks
ca961cfe7e742cf1d443e00c751a9dbc737502de.cu
/* * Copyright 2019-2020 NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "../src/cudapoa_add_alignment.cuh" //addAlignment, CUDAPOA_MAX_NODE_EDGES, CUDAPOA_MAX_NODE_ALIGNMENTS #include "basic_graph.hpp" //BasicGraph #include <claraparabricks/genomeworks/cudapoa/batch.hpp> #include <claraparabricks/genomeworks/utils/cudautils.hpp> //GW_CU_CHECK_ERR #include <claraparabricks/genomeworks/utils/stringutils.hpp> //array_to_string #include <claraparabricks/genomeworks/utils/signed_integer_utils.hpp> // get_size #include "gtest/gtest.h" namespace claraparabricks { namespace genomeworks { namespace cudapoa { class BasicAlignment { public: BasicAlignment(std::vector<uint8_t> nodes, Int16Vec2D outgoing_edges, Int16Vec2D node_alignments, std::vector<uint16_t> node_coverage_counts, std::vector<uint8_t> read, std::vector<int8_t> base_weights, std::vector<int16_t> alignment_graph, std::vector<int16_t> alignment_read) : graph(nodes, outgoing_edges, node_alignments, node_coverage_counts) , read_(read) , alignment_graph_(alignment_graph) , alignment_read_(alignment_read) { //do nothing for now } void get_alignments(int16_t* alignment_graph, int16_t* alignment_read, int16_t* alignment_length) const { for (int i = 0; i < get_size(alignment_graph_); i++) { alignment_graph[i] = alignment_graph_[i]; alignment_read[i] = alignment_read_[i]; } *alignment_length = get_size(alignment_graph_); } void get_read(uint8_t* read) const { for (int i = 0; i < get_size(read_); i++) { read[i] = read_[i]; } } void get_base_weights(int8_t* base_weights) const { for (int i = 0; i < get_size(base_weights_); i++) { base_weights[i] = base_weights_[i]; } } void get_graph_buffers(int16_t* incoming_edges, uint16_t* incoming_edge_count, int16_t* outgoing_edges, uint16_t* outgoing_edge_count, uint8_t* nodes, int16_t* node_count, int16_t* node_alignments, uint16_t* node_alignment_count, uint16_t* node_coverage_counts) const { if (!graph.is_complete()) { throw "graph is incomplete; unable to fill the buffers."; } graph.get_edges(incoming_edges, incoming_edge_count, outgoing_edges, outgoing_edge_count); graph.get_nodes(nodes, node_count); graph.get_node_alignments(node_alignments, node_alignment_count); graph.get_node_coverage_counts(node_coverage_counts); } void get_alignment_buffers(int16_t* alignment_graph, int16_t* alignment_read, int16_t* alignment_length, uint8_t* read, int8_t* base_weights) const { get_alignments(alignment_graph, alignment_read, alignment_length); get_read(read); get_base_weights(base_weights); } protected: BasicGraph graph; std::vector<uint8_t> read_; std::vector<int8_t> base_weights_; std::vector<int16_t> alignment_graph_; std::vector<int16_t> alignment_read_; }; typedef std::pair<BasicGraph, BasicAlignment> AddAlginmentTestPair; // create a vector of test cases std::vector<AddAlginmentTestPair> getAddAlignmentTestCases() { std::vector<AddAlginmentTestPair> test_cases; /* * read: A A T A * graph: A — A — A — A * alignment graph: 0 1 2 3 * alignment read: 0 1 2 3 * T * / \ * final graph A — A A * \ / * A */ BasicGraph ans_1(Int16Vec2D({{}, {0}, {1}, {2, 4}, {1}})); BasicAlignment ali_1({'A', 'A', 'A', 'A'}, //nodes {{}, {0}, {1}, {2}}, //outgoing_edges {{}, {}, {}, {}}, //node_alignments {1, 1, 1, 1}, //node_coverage_counts {'A', 'A', 'T', 'A'}, //read {0, 0, 1, 2}, //base weights {0, 1, 2, 3}, //alignment_graph {0, 1, 2, 3}); //alignment_read test_cases.emplace_back(std::move(ans_1), std::move(ali_1)); /* * read: A T C G A * graph: A — T — C — G * alignment graph: 0 1 2 3 -1 * alignment read: 0 1 2 3 4 * * final graph A — T — C — G — A * */ BasicGraph ans_2(Int16Vec2D({{}, {0}, {1}, {2}, {3}})); BasicAlignment ali_2({'A', 'T', 'C', 'G'}, //nodes {{}, {0}, {1}, {2}}, //outgoing_edges {{}, {}, {}, {}}, //node_alignments {1, 1, 1, 1}, //node_coverage_counts {'A', 'T', 'C', 'G', 'A'}, //read {0, 1, 2, 3, 4}, //base weights {0, 1, 2, 3, -1}, //alignment_graph {0, 1, 2, 3, 4}); //alignment_read test_cases.emplace_back(std::move(ans_2), std::move(ali_2)); /* * read: A T C G * A * / \ * graph: A — C — C — G * alignment graph: 0 4 2 3 * alignment read: 0 1 2 3 * T * / \ * final graph A — C — C — G * \ / * A */ BasicGraph ans_3(Int16Vec2D({{}, {0}, {1, 4, 5}, {2}, {0}, {0}})); BasicAlignment ali_3({'A', 'A', 'C', 'G', 'C'}, //nodes {{}, {0}, {1, 4}, {2}, {0}}, //outgoing_edges {{}, {}, {}, {}}, //node_alignments {2, 1, 2, 2, 1}, //node_coverage_counts {'A', 'T', 'C', 'G'}, //read {0, 1, 1, 5}, //base weights {0, 4, 2, 3}, //alignment_graph {0, 1, 2, 3}); //alignment_read test_cases.emplace_back(std::move(ans_3), std::move(ali_3)); /* * read: A A * graph: A — T — T — G — A * alignment graph: 0 1 2 3 4 * alignment read: 0 -1 -1 -1 1 * * final graph A — T — T — G — A * \_____________/ * */ BasicGraph ans_4(Int16Vec2D({{}, {0}, {1}, {2}, {3, 0}})); BasicAlignment ali_4({'A', 'T', 'T', 'G', 'A'}, //nodes {{}, {0}, {1}, {2}, {3}}, //outgoing_edges {{}, {}, {}, {}}, //node_alignments {1, 1, 1, 1, 1}, //node_coverage_counts {'A', 'A'}, //read {5, 1}, //base weights {0, 1, 2, 3, 4}, //alignment_graph {0, -1, -1, -1, 1}); //alignment_read test_cases.emplace_back(std::move(ans_4), std::move(ali_4)); /* * read: A C T T A * T — G * / \ * graph: A — C — A — T — A * alignment graph: 0 5 6 3 4 * alignment read: 0 1 2 3 4 * T — G * / \ * final graph A — C — A — T — A * \ / * T * */ BasicGraph ans_5(Int16Vec2D({{}, {0}, {1}, {2, 6, 7}, {3}, {0}, {5}, {5}})); BasicAlignment ali_5({'A', 'T', 'G', 'T', 'A', 'C', 'A'}, //nodes {{}, {0}, {1}, {2, 6}, {3}, {0}, {5}}, //outgoing_edges {{}, {}, {}, {}}, //node_alignments {2, 1, 1, 2, 2, 1, 1}, //node_coverage_counts {'A', 'C', 'T', 'T', 'A'}, //read {10, 9, 8, 7, 6}, //base weights {0, 5, 6, 3, 4}, //alignment_graph {0, 1, 2, 3, 4}); //alignment_read test_cases.emplace_back(std::move(ans_5), std::move(ali_5)); //add more test cases below return test_cases; } // host function for calling the kernel to test topsort device function. BasicGraph testAddAlignment(const BasicAlignment& obj) { //declare device buffer uint8_t* nodes = nullptr; int16_t* node_count = nullptr; int16_t* node_alignments = nullptr; uint16_t* node_alignment_count = nullptr; int16_t* incoming_edges = nullptr; uint16_t* incoming_edge_count = nullptr; int16_t* outgoing_edges = nullptr; uint16_t* outgoing_edge_count = nullptr; uint16_t* incoming_edge_w = nullptr; uint16_t* outgoing_edge_w = nullptr; int16_t* alignment_length = nullptr; int16_t* graph = nullptr; int16_t* alignment_graph = nullptr; uint8_t* read = nullptr; int8_t* base_weights = nullptr; int16_t* alignment_read = nullptr; uint16_t* node_coverage_counts = nullptr; int16_t* sequence_begin_nodes_ids = nullptr; uint16_t* outgoing_edges_coverage = nullptr; uint16_t* outgoing_edges_coverage_count = nullptr; uint16_t s = 0; BatchConfig batch_size; // default max_sequence_size = 1024, max_sequences_per_poa = 100 //allocate unified memory so they can be accessed by both host and device. GW_CU_CHECK_ERR(cudaMallocManaged(&nodes, batch_size.max_nodes_per_graph * sizeof(uint8_t))); GW_CU_CHECK_ERR(cudaMallocManaged(&node_count, sizeof(int16_t))); GW_CU_CHECK_ERR(cudaMallocManaged(&node_alignments, batch_size.max_nodes_per_graph * CUDAPOA_MAX_NODE_ALIGNMENTS * sizeof(int16_t))); GW_CU_CHECK_ERR(cudaMallocManaged(&node_alignment_count, batch_size.max_nodes_per_graph * sizeof(uint16_t))); GW_CU_CHECK_ERR(cudaMallocManaged(&incoming_edges, batch_size.max_nodes_per_graph * CUDAPOA_MAX_NODE_EDGES * sizeof(int16_t))); GW_CU_CHECK_ERR(cudaMallocManaged(&incoming_edge_count, batch_size.max_nodes_per_graph * sizeof(uint16_t))); GW_CU_CHECK_ERR(cudaMallocManaged(&outgoing_edges, batch_size.max_nodes_per_graph * CUDAPOA_MAX_NODE_EDGES * sizeof(int16_t))); GW_CU_CHECK_ERR(cudaMallocManaged(&outgoing_edge_count, batch_size.max_nodes_per_graph * sizeof(uint16_t))); GW_CU_CHECK_ERR(cudaMallocManaged(&incoming_edge_w, batch_size.max_nodes_per_graph * CUDAPOA_MAX_NODE_EDGES * sizeof(uint16_t))); GW_CU_CHECK_ERR(cudaMallocManaged(&outgoing_edge_w, batch_size.max_nodes_per_graph * CUDAPOA_MAX_NODE_EDGES * sizeof(uint16_t))); GW_CU_CHECK_ERR(cudaMallocManaged(&alignment_length, sizeof(int16_t))); GW_CU_CHECK_ERR(cudaMallocManaged(&graph, batch_size.max_nodes_per_graph * sizeof(int16_t))); GW_CU_CHECK_ERR(cudaMallocManaged(&alignment_graph, batch_size.max_sequence_size * sizeof(int16_t))); GW_CU_CHECK_ERR(cudaMallocManaged(&read, batch_size.max_sequence_size * sizeof(uint8_t))); GW_CU_CHECK_ERR(cudaMallocManaged(&base_weights, batch_size.max_sequence_size * sizeof(int8_t))); GW_CU_CHECK_ERR(cudaMallocManaged(&alignment_read, batch_size.max_sequence_size * sizeof(int16_t))); GW_CU_CHECK_ERR(cudaMallocManaged(&node_coverage_counts, batch_size.max_nodes_per_graph * sizeof(int16_t))); GW_CU_CHECK_ERR(cudaMallocManaged(&sequence_begin_nodes_ids, batch_size.max_sequences_per_poa * sizeof(int16_t))); GW_CU_CHECK_ERR(cudaMallocManaged(&outgoing_edges_coverage, batch_size.max_nodes_per_graph * CUDAPOA_MAX_NODE_EDGES * batch_size.max_sequences_per_poa * sizeof(uint16_t))); GW_CU_CHECK_ERR(cudaMallocManaged(&outgoing_edges_coverage_count, batch_size.max_nodes_per_graph * CUDAPOA_MAX_NODE_EDGES * sizeof(uint16_t))); //initialize all 'count' buffers memset(node_alignment_count, 0, batch_size.max_nodes_per_graph * sizeof(uint16_t)); memset(incoming_edge_count, 0, batch_size.max_nodes_per_graph * sizeof(uint16_t)); memset(outgoing_edge_count, 0, batch_size.max_nodes_per_graph * sizeof(uint16_t)); memset(node_coverage_counts, 0, batch_size.max_nodes_per_graph * sizeof(uint16_t)); //calculate edge counts on host //3 buffers are disregarded because they don't affect correctness -- incoming_edge_w, outgoing_edge_w, graph obj.get_graph_buffers(incoming_edges, incoming_edge_count, outgoing_edges, outgoing_edge_count, nodes, node_count, node_alignments, node_alignment_count, node_coverage_counts); obj.get_alignment_buffers(alignment_graph, alignment_read, alignment_length, read, base_weights); // call the host wrapper of topsort kernel addAlignment(nodes, node_count, node_alignments, node_alignment_count, incoming_edges, incoming_edge_count, outgoing_edges, outgoing_edge_count, incoming_edge_w, alignment_length, graph, alignment_graph, read, alignment_read, node_coverage_counts, base_weights, sequence_begin_nodes_ids, outgoing_edges_coverage, outgoing_edges_coverage_count, s, batch_size.max_sequences_per_poa, batch_size.max_nodes_per_graph); GW_CU_CHECK_ERR(cudaDeviceSynchronize()); //input and output buffers are the same ones in unified memory, so the results are updated in place //create and return a new BasicGraph object that encodes the resulting graph structure after adding the alignment BasicGraph res(outgoing_edges, outgoing_edge_count, *node_count); GW_CU_CHECK_ERR(cudaFree(nodes)); GW_CU_CHECK_ERR(cudaFree(node_count)); GW_CU_CHECK_ERR(cudaFree(node_alignments)); GW_CU_CHECK_ERR(cudaFree(node_alignment_count)); GW_CU_CHECK_ERR(cudaFree(incoming_edges)); GW_CU_CHECK_ERR(cudaFree(incoming_edge_count)); GW_CU_CHECK_ERR(cudaFree(outgoing_edges)); GW_CU_CHECK_ERR(cudaFree(outgoing_edge_count)); GW_CU_CHECK_ERR(cudaFree(incoming_edge_w)); GW_CU_CHECK_ERR(cudaFree(outgoing_edge_w)); GW_CU_CHECK_ERR(cudaFree(alignment_length)); GW_CU_CHECK_ERR(cudaFree(graph)); GW_CU_CHECK_ERR(cudaFree(alignment_graph)); GW_CU_CHECK_ERR(cudaFree(read)); GW_CU_CHECK_ERR(cudaFree(base_weights)); GW_CU_CHECK_ERR(cudaFree(alignment_read)); GW_CU_CHECK_ERR(cudaFree(node_coverage_counts)); GW_CU_CHECK_ERR(cudaFree(sequence_begin_nodes_ids)); GW_CU_CHECK_ERR(cudaFree(outgoing_edges_coverage)); GW_CU_CHECK_ERR(cudaFree(outgoing_edges_coverage_count)); return res; } using ::testing::TestWithParam; using ::testing::ValuesIn; class AddAlignmentTest : public TestWithParam<AddAlginmentTestPair> { public: void SetUp() {} BasicGraph runAddAlignment(const BasicAlignment& ali) { return testAddAlignment(ali); } }; TEST_P(AddAlignmentTest, TestAddAlignmentCorrectness) { const auto test_case = GetParam(); EXPECT_EQ(test_case.first, runAddAlignment(test_case.second)); } INSTANTIATE_TEST_SUITE_P(TestAddAlginment, AddAlignmentTest, ValuesIn(getAddAlignmentTestCases())); } // namespace cudapoa } // namespace genomeworks } // namespace claraparabricks
200443a57c6c84bf753ce736e2a18bfe1842b89f.hip
// !!! This is a file automatically generated by hipify!!! /*========================================================================= Program: Robarts Visualization Toolkit Copyright (c) John SH Baxter, Robarts Research Institute This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "CUDA_commonKernels.h" #include "CUDA_hierarchicalmaxflowdecomp.h" #include "hip/hip_runtime.h" #include "stdio.h" #include "vtkCudaCommon.h" __global__ void kern_GHMFD_GradientBuffer(float* buffer, float* gradBuffer, int3 dims, int size) { int idx = CUDASTDOFFSET; int3 idxN = { idx % dims.x, (idx / dims.x) % dims.y, idx / (dims.x*dims.y) }; float gradMagSquared = 0.0f; float cur = buffer[idx]; float XHi = (idxN.x == dims.x-1) ? cur: buffer[idx+1]; float XLo = (idxN.x == 0) ? cur: buffer[idx-1]; gradMagSquared += (XHi-XLo)*(XHi-XLo); float YHi = (idxN.y == dims.y-1) ? cur: buffer[idx+dims.x]; float YLo = (idxN.y == 0) ? cur: buffer[idx-dims.x]; gradMagSquared += (YHi-YLo)*(YHi-YLo); float ZHi = (idxN.z == dims.z-1) ? cur: buffer[idx+dims.x*dims.y]; float ZLo = (idxN.z == 0) ? cur: buffer[idx-dims.x*dims.y]; gradMagSquared += (ZHi-ZLo)*(ZHi-ZLo); if(idx < size) { gradBuffer[idx] = 0.5f * sqrt( gradMagSquared ); } } double CUDA_GHMFD_DataTermForLabel(float* data, float* label, int size, hipStream_t* stream) { //allocate GPU buffers float* devDataTermBuffer = 0; float* devLabelBuffer = 0; hipMalloc( &devDataTermBuffer, sizeof(float)*size ); hipMalloc( &devLabelBuffer, sizeof(float)*size ); hipMemcpyAsync( devDataTermBuffer, data, sizeof(float)*size, hipMemcpyHostToDevice, *stream ); hipMemcpyAsync( devLabelBuffer, label, sizeof(float)*size, hipMemcpyHostToDevice, *stream ); float retVal = 0.0f; //multiply buffers dim3 threads(NUMTHREADS,1,1); dim3 grid = GetGrid(size); hipLaunchKernelGGL(( MultiplyBuffers), dim3(grid),dim3(threads),0,*stream, devDataTermBuffer, devLabelBuffer, size); //reduce buffer by summation int i = 1; while(i < size/2) { i+=i; } for(; i >= NUMTHREADS; i = i/2) { dim3 tempGrid( i>NUMTHREADS ? i/NUMTHREADS : 1, 1, 1); hipLaunchKernelGGL(( SumOverLargeBuffer), dim3(tempGrid), dim3(threads), 0, *stream, devDataTermBuffer, i, size ); #ifdef DEBUG_VTKCUDAHMFD hipDeviceSynchronize(); std::cout << "Reduce: " << hipGetErrorString( hipGetLastError() ) << std::endl; #endif } SumData( min(NUMTHREADS,size), min(NUMTHREADS,size), 1, devDataTermBuffer, stream ); //return result to CPU hipMemcpyAsync( &retVal, devDataTermBuffer, sizeof(float), hipMemcpyDeviceToHost, *stream ); hipStreamSynchronize(*stream); //deallocate GPU buffers hipFree( devDataTermBuffer ); hipFree( devLabelBuffer ); //return to main class return (double) retVal; } double CUDA_GHMFD_LeafSmoothnessForLabel(float* smoothness, float* label, int x, int y, int z, int size, float* GPUParentLabel, float* devGradBuffer, hipStream_t* stream) { //allocate GPU buffers float* devSmoothnessBuffer = 0; float* devLabelBuffer = 0; hipMalloc( &devSmoothnessBuffer, sizeof(float)*size ); hipMalloc( &devLabelBuffer, sizeof(float)*size ); hipMemcpyAsync( devSmoothnessBuffer, smoothness, sizeof(float)*size, hipMemcpyHostToDevice, *stream ); hipMemcpyAsync( devLabelBuffer, label, sizeof(float)*size, hipMemcpyHostToDevice, *stream ); //find gradient dim3 threads(NUMTHREADS,1,1); dim3 grid = GetGrid(size); int3 dims = {x,y,z}; hipLaunchKernelGGL(( kern_GHMFD_GradientBuffer), dim3(grid),dim3(threads),0,*stream, devLabelBuffer, devGradBuffer, dims, size); //multiply buffers hipLaunchKernelGGL(( MultiplyBuffers), dim3(grid),dim3(threads),0,*stream, devSmoothnessBuffer, devGradBuffer, size); //reduce buffer by summation int i = 1; while(i < size/2) { i+=i; } for(; i >= NUMTHREADS; i = i/2) { dim3 tempGrid( i>NUMTHREADS ? i/NUMTHREADS : 1, 1, 1); hipLaunchKernelGGL(( SumOverLargeBuffer), dim3(tempGrid), dim3(threads), 0, *stream, devSmoothnessBuffer, i, size ); } SumData( min(NUMTHREADS,size), min(NUMTHREADS,size), 1, devSmoothnessBuffer, stream ); //return result to CPU float retVal = 0.0f; hipMemcpyAsync( &retVal, devSmoothnessBuffer, sizeof(float), hipMemcpyDeviceToHost, *stream ); hipStreamSynchronize(*stream); //add to parent buffer if present if( GPUParentLabel ) { hipLaunchKernelGGL(( SumBuffers), dim3(grid),dim3(threads),0,*stream, GPUParentLabel, devLabelBuffer, size); } //deallocate GPU buffers hipFree( devSmoothnessBuffer ); hipFree( devLabelBuffer ); //return to main class return (double) retVal; } double CUDA_GHMFD_LeafNoSmoothnessForLabel(float* label, int x, int y, int z, int size, float* GPUParentLabel, float* devGradBuffer, hipStream_t* stream) { //allocate GPU buffers float* devLabelBuffer = 0; hipMalloc( &devLabelBuffer, sizeof(float)*size ); hipMemcpyAsync( devLabelBuffer, label, sizeof(float)*size, hipMemcpyHostToDevice, *stream ); //find gradient dim3 threads(NUMTHREADS,1,1); dim3 grid = GetGrid(size); int3 dims = {x,y,z}; hipLaunchKernelGGL(( kern_GHMFD_GradientBuffer), dim3(grid),dim3(threads),0,*stream, devLabelBuffer, devGradBuffer, dims, size); //reduce buffer by summation int i = 1; while(i < size/2) { i+=i; } for(; i >= NUMTHREADS; i = i/2) { dim3 tempGrid( i>NUMTHREADS ? i/NUMTHREADS : 1, 1, 1); hipLaunchKernelGGL(( SumOverLargeBuffer), dim3(tempGrid), dim3(threads), 0, *stream, devGradBuffer, i, size ); } SumData( min(NUMTHREADS,size), min(NUMTHREADS,size), 1, devGradBuffer, stream ); //return result to CPU float retVal = 0.0f; hipMemcpyAsync( &retVal, devGradBuffer, sizeof(float), hipMemcpyDeviceToHost, *stream ); hipStreamSynchronize(*stream); //add to parent buffer if present if( GPUParentLabel ) { hipLaunchKernelGGL(( SumBuffers), dim3(grid),dim3(threads),0,*stream, GPUParentLabel, devLabelBuffer, size); } //deallocate GPU buffers hipFree( devLabelBuffer ); //return to main class return (double) retVal; } double CUDA_GHMFD_BranchSmoothnessForLabel(float* smoothness, float* devLabelBuffer, int x, int y, int z, int size, float* GPUParentLabel, float* devGradBuffer, hipStream_t* stream) { //allocate GPU buffers float* devSmoothnessBuffer = 0; hipMalloc( &devSmoothnessBuffer, sizeof(float)*size ); hipMemcpyAsync( devSmoothnessBuffer, smoothness, sizeof(float)*size, hipMemcpyHostToDevice, *stream ); //find gradient dim3 threads(NUMTHREADS,1,1); dim3 grid = GetGrid(size); int3 dims = {x,y,z}; hipLaunchKernelGGL(( kern_GHMFD_GradientBuffer), dim3(grid),dim3(threads),0,*stream, devLabelBuffer, devGradBuffer, dims, size); //multiply buffers hipLaunchKernelGGL(( MultiplyBuffers), dim3(grid),dim3(threads),0,*stream, devSmoothnessBuffer, devGradBuffer, size); //reduce buffer by summation int i = 1; while(i < size/2) { i+=i; } for(; i >= NUMTHREADS; i = i/2) { dim3 tempGrid( i>NUMTHREADS ? i/NUMTHREADS : 1, 1, 1); hipLaunchKernelGGL(( SumOverLargeBuffer), dim3(tempGrid), dim3(threads), 0, *stream, devSmoothnessBuffer, i, size ); } SumData( min(NUMTHREADS,size), min(NUMTHREADS,size), 1, devSmoothnessBuffer, stream ); //return result to CPU float retVal = 0.0f; hipMemcpyAsync( &retVal, devSmoothnessBuffer, sizeof(float), hipMemcpyDeviceToHost, *stream ); hipStreamSynchronize(*stream); //add to parent buffer if present if( GPUParentLabel ) { hipLaunchKernelGGL(( SumBuffers), dim3(grid),dim3(threads),0,*stream, GPUParentLabel, devLabelBuffer, size); } //deallocate GPU buffers hipFree( devSmoothnessBuffer ); //return to main class return (double) retVal; } double CUDA_GHMFD_BranchNoSmoothnessForLabel(float* devLabelBuffer, int x, int y, int z, int size, float* GPUParentLabel, float* devGradBuffer, hipStream_t* stream) { //find gradient dim3 threads(NUMTHREADS,1,1); dim3 grid = GetGrid(size); int3 dims = {x,y,z}; hipLaunchKernelGGL(( kern_GHMFD_GradientBuffer), dim3(grid),dim3(threads),0,*stream, devLabelBuffer, devGradBuffer, dims, size); //reduce buffer by summation int i = 1; while(i < size/2) { i+=i; } for(; i >= NUMTHREADS; i = i/2) { dim3 tempGrid( i>NUMTHREADS ? i/NUMTHREADS : 1, 1, 1); hipLaunchKernelGGL(( SumOverLargeBuffer), dim3(tempGrid), dim3(threads), 0, *stream, devGradBuffer, i, size ); } SumData( min(NUMTHREADS,size), min(NUMTHREADS,size), 1, devGradBuffer, stream ); //return result to CPU float retVal = 0.0f; hipMemcpyAsync( &retVal, devGradBuffer, sizeof(float), hipMemcpyDeviceToHost, *stream ); hipStreamSynchronize(*stream); //add to parent buffer if present if( GPUParentLabel ) { hipLaunchKernelGGL(( SumBuffers), dim3(grid),dim3(threads),0,*stream, GPUParentLabel, devLabelBuffer, size); } //return to main class return (double) retVal; } float* CUDA_GHMFD_GetBuffer(int size, hipStream_t* stream) { dim3 threads(NUMTHREADS,1,1); dim3 grid = GetGrid(size); float* buffer = 0; hipMalloc(&buffer,size*sizeof(float)); hipLaunchKernelGGL(( ZeroOutBuffer), dim3(grid),dim3(threads),0,*stream, buffer, size); return buffer; } void CUDA_GHMFD_ReturnBuffer(float* buffer) { hipFree(buffer); }
200443a57c6c84bf753ce736e2a18bfe1842b89f.cu
/*========================================================================= Program: Robarts Visualization Toolkit Copyright (c) John SH Baxter, Robarts Research Institute This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "CUDA_commonKernels.h" #include "CUDA_hierarchicalmaxflowdecomp.h" #include "cuda.h" #include "stdio.h" #include "vtkCudaCommon.h" __global__ void kern_GHMFD_GradientBuffer(float* buffer, float* gradBuffer, int3 dims, int size) { int idx = CUDASTDOFFSET; int3 idxN = { idx % dims.x, (idx / dims.x) % dims.y, idx / (dims.x*dims.y) }; float gradMagSquared = 0.0f; float cur = buffer[idx]; float XHi = (idxN.x == dims.x-1) ? cur: buffer[idx+1]; float XLo = (idxN.x == 0) ? cur: buffer[idx-1]; gradMagSquared += (XHi-XLo)*(XHi-XLo); float YHi = (idxN.y == dims.y-1) ? cur: buffer[idx+dims.x]; float YLo = (idxN.y == 0) ? cur: buffer[idx-dims.x]; gradMagSquared += (YHi-YLo)*(YHi-YLo); float ZHi = (idxN.z == dims.z-1) ? cur: buffer[idx+dims.x*dims.y]; float ZLo = (idxN.z == 0) ? cur: buffer[idx-dims.x*dims.y]; gradMagSquared += (ZHi-ZLo)*(ZHi-ZLo); if(idx < size) { gradBuffer[idx] = 0.5f * sqrt( gradMagSquared ); } } double CUDA_GHMFD_DataTermForLabel(float* data, float* label, int size, cudaStream_t* stream) { //allocate GPU buffers float* devDataTermBuffer = 0; float* devLabelBuffer = 0; cudaMalloc( &devDataTermBuffer, sizeof(float)*size ); cudaMalloc( &devLabelBuffer, sizeof(float)*size ); cudaMemcpyAsync( devDataTermBuffer, data, sizeof(float)*size, cudaMemcpyHostToDevice, *stream ); cudaMemcpyAsync( devLabelBuffer, label, sizeof(float)*size, cudaMemcpyHostToDevice, *stream ); float retVal = 0.0f; //multiply buffers dim3 threads(NUMTHREADS,1,1); dim3 grid = GetGrid(size); MultiplyBuffers<<<grid,threads,0,*stream>>>(devDataTermBuffer, devLabelBuffer, size); //reduce buffer by summation int i = 1; while(i < size/2) { i+=i; } for(; i >= NUMTHREADS; i = i/2) { dim3 tempGrid( i>NUMTHREADS ? i/NUMTHREADS : 1, 1, 1); SumOverLargeBuffer<<<tempGrid, threads, 0, *stream>>>(devDataTermBuffer, i, size ); #ifdef DEBUG_VTKCUDAHMFD cudaThreadSynchronize(); std::cout << "Reduce: " << cudaGetErrorString( cudaGetLastError() ) << std::endl; #endif } SumData( min(NUMTHREADS,size), min(NUMTHREADS,size), 1, devDataTermBuffer, stream ); //return result to CPU cudaMemcpyAsync( &retVal, devDataTermBuffer, sizeof(float), cudaMemcpyDeviceToHost, *stream ); cudaStreamSynchronize(*stream); //deallocate GPU buffers cudaFree( devDataTermBuffer ); cudaFree( devLabelBuffer ); //return to main class return (double) retVal; } double CUDA_GHMFD_LeafSmoothnessForLabel(float* smoothness, float* label, int x, int y, int z, int size, float* GPUParentLabel, float* devGradBuffer, cudaStream_t* stream) { //allocate GPU buffers float* devSmoothnessBuffer = 0; float* devLabelBuffer = 0; cudaMalloc( &devSmoothnessBuffer, sizeof(float)*size ); cudaMalloc( &devLabelBuffer, sizeof(float)*size ); cudaMemcpyAsync( devSmoothnessBuffer, smoothness, sizeof(float)*size, cudaMemcpyHostToDevice, *stream ); cudaMemcpyAsync( devLabelBuffer, label, sizeof(float)*size, cudaMemcpyHostToDevice, *stream ); //find gradient dim3 threads(NUMTHREADS,1,1); dim3 grid = GetGrid(size); int3 dims = {x,y,z}; kern_GHMFD_GradientBuffer<<<grid,threads,0,*stream>>>(devLabelBuffer, devGradBuffer, dims, size); //multiply buffers MultiplyBuffers<<<grid,threads,0,*stream>>>(devSmoothnessBuffer, devGradBuffer, size); //reduce buffer by summation int i = 1; while(i < size/2) { i+=i; } for(; i >= NUMTHREADS; i = i/2) { dim3 tempGrid( i>NUMTHREADS ? i/NUMTHREADS : 1, 1, 1); SumOverLargeBuffer<<<tempGrid, threads, 0, *stream>>>(devSmoothnessBuffer, i, size ); } SumData( min(NUMTHREADS,size), min(NUMTHREADS,size), 1, devSmoothnessBuffer, stream ); //return result to CPU float retVal = 0.0f; cudaMemcpyAsync( &retVal, devSmoothnessBuffer, sizeof(float), cudaMemcpyDeviceToHost, *stream ); cudaStreamSynchronize(*stream); //add to parent buffer if present if( GPUParentLabel ) { SumBuffers<<<grid,threads,0,*stream>>>(GPUParentLabel, devLabelBuffer, size); } //deallocate GPU buffers cudaFree( devSmoothnessBuffer ); cudaFree( devLabelBuffer ); //return to main class return (double) retVal; } double CUDA_GHMFD_LeafNoSmoothnessForLabel(float* label, int x, int y, int z, int size, float* GPUParentLabel, float* devGradBuffer, cudaStream_t* stream) { //allocate GPU buffers float* devLabelBuffer = 0; cudaMalloc( &devLabelBuffer, sizeof(float)*size ); cudaMemcpyAsync( devLabelBuffer, label, sizeof(float)*size, cudaMemcpyHostToDevice, *stream ); //find gradient dim3 threads(NUMTHREADS,1,1); dim3 grid = GetGrid(size); int3 dims = {x,y,z}; kern_GHMFD_GradientBuffer<<<grid,threads,0,*stream>>>(devLabelBuffer, devGradBuffer, dims, size); //reduce buffer by summation int i = 1; while(i < size/2) { i+=i; } for(; i >= NUMTHREADS; i = i/2) { dim3 tempGrid( i>NUMTHREADS ? i/NUMTHREADS : 1, 1, 1); SumOverLargeBuffer<<<tempGrid, threads, 0, *stream>>>(devGradBuffer, i, size ); } SumData( min(NUMTHREADS,size), min(NUMTHREADS,size), 1, devGradBuffer, stream ); //return result to CPU float retVal = 0.0f; cudaMemcpyAsync( &retVal, devGradBuffer, sizeof(float), cudaMemcpyDeviceToHost, *stream ); cudaStreamSynchronize(*stream); //add to parent buffer if present if( GPUParentLabel ) { SumBuffers<<<grid,threads,0,*stream>>>(GPUParentLabel, devLabelBuffer, size); } //deallocate GPU buffers cudaFree( devLabelBuffer ); //return to main class return (double) retVal; } double CUDA_GHMFD_BranchSmoothnessForLabel(float* smoothness, float* devLabelBuffer, int x, int y, int z, int size, float* GPUParentLabel, float* devGradBuffer, cudaStream_t* stream) { //allocate GPU buffers float* devSmoothnessBuffer = 0; cudaMalloc( &devSmoothnessBuffer, sizeof(float)*size ); cudaMemcpyAsync( devSmoothnessBuffer, smoothness, sizeof(float)*size, cudaMemcpyHostToDevice, *stream ); //find gradient dim3 threads(NUMTHREADS,1,1); dim3 grid = GetGrid(size); int3 dims = {x,y,z}; kern_GHMFD_GradientBuffer<<<grid,threads,0,*stream>>>(devLabelBuffer, devGradBuffer, dims, size); //multiply buffers MultiplyBuffers<<<grid,threads,0,*stream>>>(devSmoothnessBuffer, devGradBuffer, size); //reduce buffer by summation int i = 1; while(i < size/2) { i+=i; } for(; i >= NUMTHREADS; i = i/2) { dim3 tempGrid( i>NUMTHREADS ? i/NUMTHREADS : 1, 1, 1); SumOverLargeBuffer<<<tempGrid, threads, 0, *stream>>>(devSmoothnessBuffer, i, size ); } SumData( min(NUMTHREADS,size), min(NUMTHREADS,size), 1, devSmoothnessBuffer, stream ); //return result to CPU float retVal = 0.0f; cudaMemcpyAsync( &retVal, devSmoothnessBuffer, sizeof(float), cudaMemcpyDeviceToHost, *stream ); cudaStreamSynchronize(*stream); //add to parent buffer if present if( GPUParentLabel ) { SumBuffers<<<grid,threads,0,*stream>>>(GPUParentLabel, devLabelBuffer, size); } //deallocate GPU buffers cudaFree( devSmoothnessBuffer ); //return to main class return (double) retVal; } double CUDA_GHMFD_BranchNoSmoothnessForLabel(float* devLabelBuffer, int x, int y, int z, int size, float* GPUParentLabel, float* devGradBuffer, cudaStream_t* stream) { //find gradient dim3 threads(NUMTHREADS,1,1); dim3 grid = GetGrid(size); int3 dims = {x,y,z}; kern_GHMFD_GradientBuffer<<<grid,threads,0,*stream>>>(devLabelBuffer, devGradBuffer, dims, size); //reduce buffer by summation int i = 1; while(i < size/2) { i+=i; } for(; i >= NUMTHREADS; i = i/2) { dim3 tempGrid( i>NUMTHREADS ? i/NUMTHREADS : 1, 1, 1); SumOverLargeBuffer<<<tempGrid, threads, 0, *stream>>>(devGradBuffer, i, size ); } SumData( min(NUMTHREADS,size), min(NUMTHREADS,size), 1, devGradBuffer, stream ); //return result to CPU float retVal = 0.0f; cudaMemcpyAsync( &retVal, devGradBuffer, sizeof(float), cudaMemcpyDeviceToHost, *stream ); cudaStreamSynchronize(*stream); //add to parent buffer if present if( GPUParentLabel ) { SumBuffers<<<grid,threads,0,*stream>>>(GPUParentLabel, devLabelBuffer, size); } //return to main class return (double) retVal; } float* CUDA_GHMFD_GetBuffer(int size, cudaStream_t* stream) { dim3 threads(NUMTHREADS,1,1); dim3 grid = GetGrid(size); float* buffer = 0; cudaMalloc(&buffer,size*sizeof(float)); ZeroOutBuffer<<<grid,threads,0,*stream>>>(buffer, size); return buffer; } void CUDA_GHMFD_ReturnBuffer(float* buffer) { cudaFree(buffer); }
26abc402388e7e32fd4b0c0e6a8e5e8297406ec9.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" // Homework 1 // Color to Greyscale Conversion //A common way to represent color images is known as RGBA - the color //is specified by how much Red, Grean and Blue is in it. //The 'A' stands for Alpha and is used for transparency, it will be //ignored in this homework. //Each channel Red, Blue, Green and Alpha is represented by one byte. //Since we are using one byte for each color there are 256 different //possible values for each color. This means we use 4 bytes per pixel. //Greyscale images are represented by a single intensity value per pixel //which is one byte in size. //To convert an image from color to grayscale one simple method is to //set the intensity to the average of the RGB channels. But we will //use a more sophisticated method that takes into account how the eye //perceives color and weights the channels unequally. //The eye responds most strongly to green followed by red and then blue. //The NTSC (National Television System Committee) recommends the following //formula for color to greyscale conversion: //I = .299f * R + .587f * G + .114f * B //Notice the trailing f's on the numbers which indicate that they are //single precision floating point constants and not double precision //constants. //You should fill in the kernel as well as set the block and grid sizes //so that the entire image is processed. #include "utils.h" __global__ void rgba_to_greyscale(const uchar4* const rgbaImage, unsigned char* const greyImage, int numRows, int numCols) { //TODO //Fill in the kernel to convert from color to greyscale //the mapping from components of a uchar4 to RGBA is: // .x -> R ; .y -> G ; .z -> B ; .w -> A // //The output (greyImage) at each pixel should be the result of //applying the formula: output = .299f * R + .587f * G + .114f * B; //Note: We will be ignoring the alpha channel for this conversion int x = threadIdx.x + blockDim.x * blockIdx.x; int y = threadIdx.y + blockDim.y * blockIdx.y; if (y < numCols && x < numRows) { int index = numRows*y + x; uchar4 rgba = rgbaImage[index]; greyImage[index] = (unsigned char)(0.299f*rgba.x+ 0.587f*rgba.y + 0.114f*rgba.z);; } } void your_rgba_to_greyscale(const uchar4 * const h_rgbaImage, uchar4 * const d_rgbaImage, unsigned char* const d_greyImage, size_t numRows, size_t numCols) { //You must fill in the correct sizes for the blockSize and gridSize //currently only one block with one thread is being launched int blockWidth = 32; const dim3 blockSize(blockWidth, blockWidth, 1); int grid_x_dim = numRows/blockWidth+1; int grid_y_dim = numCols/blockWidth+1; const dim3 gridSize(grid_x_dim, grid_y_dim, 1); hipLaunchKernelGGL(( rgba_to_greyscale), dim3(gridSize), dim3(blockSize), 0, 0, d_rgbaImage, d_greyImage, numRows, numCols); hipDeviceSynchronize(); checkCudaErrors(hipGetLastError()); }
26abc402388e7e32fd4b0c0e6a8e5e8297406ec9.cu
// Homework 1 // Color to Greyscale Conversion //A common way to represent color images is known as RGBA - the color //is specified by how much Red, Grean and Blue is in it. //The 'A' stands for Alpha and is used for transparency, it will be //ignored in this homework. //Each channel Red, Blue, Green and Alpha is represented by one byte. //Since we are using one byte for each color there are 256 different //possible values for each color. This means we use 4 bytes per pixel. //Greyscale images are represented by a single intensity value per pixel //which is one byte in size. //To convert an image from color to grayscale one simple method is to //set the intensity to the average of the RGB channels. But we will //use a more sophisticated method that takes into account how the eye //perceives color and weights the channels unequally. //The eye responds most strongly to green followed by red and then blue. //The NTSC (National Television System Committee) recommends the following //formula for color to greyscale conversion: //I = .299f * R + .587f * G + .114f * B //Notice the trailing f's on the numbers which indicate that they are //single precision floating point constants and not double precision //constants. //You should fill in the kernel as well as set the block and grid sizes //so that the entire image is processed. #include "utils.h" __global__ void rgba_to_greyscale(const uchar4* const rgbaImage, unsigned char* const greyImage, int numRows, int numCols) { //TODO //Fill in the kernel to convert from color to greyscale //the mapping from components of a uchar4 to RGBA is: // .x -> R ; .y -> G ; .z -> B ; .w -> A // //The output (greyImage) at each pixel should be the result of //applying the formula: output = .299f * R + .587f * G + .114f * B; //Note: We will be ignoring the alpha channel for this conversion int x = threadIdx.x + blockDim.x * blockIdx.x; int y = threadIdx.y + blockDim.y * blockIdx.y; if (y < numCols && x < numRows) { int index = numRows*y + x; uchar4 rgba = rgbaImage[index]; greyImage[index] = (unsigned char)(0.299f*rgba.x+ 0.587f*rgba.y + 0.114f*rgba.z);; } } void your_rgba_to_greyscale(const uchar4 * const h_rgbaImage, uchar4 * const d_rgbaImage, unsigned char* const d_greyImage, size_t numRows, size_t numCols) { //You must fill in the correct sizes for the blockSize and gridSize //currently only one block with one thread is being launched int blockWidth = 32; const dim3 blockSize(blockWidth, blockWidth, 1); int grid_x_dim = numRows/blockWidth+1; int grid_y_dim = numCols/blockWidth+1; const dim3 gridSize(grid_x_dim, grid_y_dim, 1); rgba_to_greyscale<<<gridSize, blockSize>>>(d_rgbaImage, d_greyImage, numRows, numCols); cudaDeviceSynchronize(); checkCudaErrors(cudaGetLastError()); }
dea2c1a31a082be6ed00f2c9868d7373b304a401.hip
// !!! This is a file automatically generated by hipify!!! #include "CudaInitStatus.h" #include "CudaMesh.h" #include "CudaAnimation.h" #include <time.h> void initTriTetQuality( RealD& t_pointlist, PointTypeD& t_pointtypelist, RealD& t_weightlist, IntD& t_trifacelist, RealD& t_trifacecent, TriStatusD& t_tristatus, IntD& t_tetlist, TetStatusD& t_tetstatus, MESHCR* criteria, int numoftrifaces, int numoftets ) { // Init triface quality int numberofblocks = (ceil)((float)numoftrifaces / BLOCK_SIZE); kernelInitTriQuality << <numberofblocks, BLOCK_SIZE >> >( thrust::raw_pointer_cast(&t_pointlist[0]), thrust::raw_pointer_cast(&t_pointtypelist[0]), thrust::raw_pointer_cast(&t_weightlist[0]), thrust::raw_pointer_cast(&t_trifacelist[0]), thrust::raw_pointer_cast(&t_trifacecent[0]), thrust::raw_pointer_cast(&t_tristatus[0]), criteria->facet_angle, criteria->facet_size, criteria->facet_distance, numoftrifaces ); // Init tet quality numberofblocks = (ceil)((float)numoftets / BLOCK_SIZE); kernelInitTetQuality << <numberofblocks, BLOCK_SIZE >> > ( thrust::raw_pointer_cast(&t_pointlist[0]), thrust::raw_pointer_cast(&t_weightlist[0]), thrust::raw_pointer_cast(&t_tetlist[0]), thrust::raw_pointer_cast(&t_tetstatus[0]), criteria->cell_radius_edge_ratio, criteria->cell_size, numoftets ); } // Init triface and its neighbors void initTristatus( IntD& t_aabbnodeleft, IntD& t_aabbnoderight, RealD& t_aabbnodebbs, RealD& t_aabbpmcoord, RealD& t_aabbpmbbs, RealD& t_pointlist, PointTypeD& t_pointtypelist, RealD& t_weightlist, IntD& t_trifacelist, RealD& t_trifacecent, TriStatusD& t_tristatus, TetHandleD& t_tri2tetlist, IntD& t_tetlist, TriHandleD& t_tet2trilist, TetHandleD& t_neighborlist, MESHCR* criteria, int& numoftrifaces, int numoftets ) { #ifdef GQM3D_INIT_PROFILING clock_t tv[2]; tv[0] = clock(); #endif IntD trifacecount(4 * numoftets, 0); IntD trifaceindices(4 * numoftets, 0); RealD trifaceipt(4 * 3 * numoftets); #ifdef GQM3D_INIT_PROFILING hipDeviceSynchronize(); tv[1] = clock(); printf(" initTristatus vector initialization time = %f\n", (REAL)(tv[1] - tv[0])); tv[0] = tv[1]; #endif // Mark initial trifaces int numberofblocks = (ceil)((float)numoftets / BLOCK_SIZE); kernelMarkInitialTrifaces << <numberofblocks, BLOCK_SIZE >> >( thrust::raw_pointer_cast(&t_aabbnodeleft[0]), thrust::raw_pointer_cast(&t_aabbnoderight[0]), thrust::raw_pointer_cast(&t_aabbnodebbs[0]), thrust::raw_pointer_cast(&t_aabbpmcoord[0]), thrust::raw_pointer_cast(&t_aabbpmbbs[0]), thrust::raw_pointer_cast(&t_pointlist[0]), thrust::raw_pointer_cast(&t_weightlist[0]), thrust::raw_pointer_cast(&trifacecount[0]), thrust::raw_pointer_cast(&trifaceipt[0]), thrust::raw_pointer_cast(&t_tetlist[0]), thrust::raw_pointer_cast(&t_neighborlist[0]), numoftets ); #ifdef GQM3D_INIT_PROFILING hipDeviceSynchronize(); tv[1] = clock(); printf(" kernelMarkInitialTrifaces time = %f\n", (REAL)(tv[1] - tv[0])); tv[0] = tv[1]; #endif // Set up memory numoftrifaces = thrust::count(trifacecount.begin(), trifacecount.end(), 1); printf(" Number of trifaces = %d\n", numoftrifaces); t_trifacelist.resize(3 * numoftrifaces); t_trifacecent.resize(3 * numoftrifaces); t_tristatus.resize(numoftrifaces, tristatus(1)); t_tri2tetlist.resize(2 * numoftrifaces); thrust::exclusive_scan(trifacecount.begin(), trifacecount.end(), trifaceindices.begin()); #ifdef GQM3D_INIT_PROFILING hipDeviceSynchronize(); tv[1] = clock(); printf(" initTristatus prepare vector time = %f\n", (REAL)(tv[1] - tv[0])); tv[0] = tv[1]; #endif // Append triface lists kernelAppendInitialTrifaces << <numberofblocks, BLOCK_SIZE >> > ( thrust::raw_pointer_cast(&trifacecount[0]), thrust::raw_pointer_cast(&trifaceindices[0]), thrust::raw_pointer_cast(&trifaceipt[0]), thrust::raw_pointer_cast(&t_pointlist[0]), thrust::raw_pointer_cast(&t_pointtypelist[0]), thrust::raw_pointer_cast(&t_weightlist[0]), thrust::raw_pointer_cast(&t_trifacelist[0]), thrust::raw_pointer_cast(&t_trifacecent[0]), thrust::raw_pointer_cast(&t_tristatus[0]), thrust::raw_pointer_cast(&t_tri2tetlist[0]), thrust::raw_pointer_cast(&t_tetlist[0]), thrust::raw_pointer_cast(&t_neighborlist[0]), thrust::raw_pointer_cast(&t_tet2trilist[0]), criteria->facet_angle, criteria->facet_size, criteria->facet_distance, numoftets ); #ifdef GQM3D_INIT_PROFILING hipDeviceSynchronize(); tv[1] = clock(); printf(" kernelAppendInitialTrifaces time = %f\n", (REAL)(tv[1] - tv[0])); #endif int numofbadfacet = thrust::count_if(t_tristatus.begin(), t_tristatus.end(), isBadTri()); printf(" Number of bad trifaces = %d\n", numofbadfacet); } void initTetstatus( IntD& t_aabbnodeleft, IntD& t_aabbnoderight, RealD& t_aabbnodebbs, RealD& t_aabbpmcoord, RealD& t_aabbpmbbs, RealD& t_pointlist, RealD& t_weightlist, IntD& t_tetlist, TetStatusD& t_tetstatus, MESHCR* criteria, REAL aabb_diglen, int numoftets ) { #ifdef GQM3D_INIT_PROFILING clock_t tv[2]; tv[0] = clock(); #endif // Init tet status int numberofblocks = (ceil)((float)numoftets / BLOCK_SIZE); kernelInitTetStatus << <numberofblocks, BLOCK_SIZE >> > ( thrust::raw_pointer_cast(&t_aabbnodeleft[0]), thrust::raw_pointer_cast(&t_aabbnoderight[0]), thrust::raw_pointer_cast(&t_aabbnodebbs[0]), thrust::raw_pointer_cast(&t_aabbpmcoord[0]), thrust::raw_pointer_cast(&t_aabbpmbbs[0]), thrust::raw_pointer_cast(&t_pointlist[0]), thrust::raw_pointer_cast(&t_weightlist[0]), thrust::raw_pointer_cast(&t_tetlist[0]), thrust::raw_pointer_cast(&t_tetstatus[0]), criteria->cell_radius_edge_ratio, criteria->cell_size, aabb_diglen, numoftets ); #ifdef GQM3D_INIT_PROFILING hipDeviceSynchronize(); tv[1] = clock(); printf(" kernelInitTetStatus time = %f\n", (REAL)(tv[1] - tv[0])); int numofcells = thrust::count_if(t_tetstatus.begin(), t_tetstatus.end(), isTetInDomain()); printf(" Number of tets in domain = %d\n", numofcells); int numofbadcells = thrust::count_if(t_tetstatus.begin(), t_tetstatus.end(), isBadTet()); printf(" Number of bad tets in domain = %d\n", numofbadcells); #endif } void initTetstatus2( IntD& t_aabbnodeleft, IntD& t_aabbnoderight, RealD& t_aabbnodebbs, RealD& t_aabbpmcoord, RealD& t_aabbpmbbs, RealD& t_pointlist, RealD& t_weightlist, IntD& t_tetlist, TetStatusD& t_tetstatus, MESHCR* criteria, MESHIO* inputmesh, int numoftets ) { //gpuMemoryCheck(); #ifdef GQM3D_INIT_PROFILING clock_t tv[2]; tv[0] = clock(); #endif int curhandlesize; TetHandleD::iterator last_iterator; IntD t_domaincount(numoftets, 0);// counter for in/out domain test TetHandleD t_domainhandle; RealD t_domainsegment; IntD t_domainthreadlist; IntD t_domainnode; int numberofthreads; int numberofblocks; int basenum = 256; int winsize = 3000 * basenum; double free_mb; getFreeMemory(free_mb); #ifdef GQM3D_INIT_DEBUG printf("free_mb = %lf\n", free_mb); #endif int maxreserve = 3 * 100 * 1000 * 1000; int reservesize = free_mb * 1024 * 1024 / 3 / sizeof(tethandle); if (reservesize > maxreserve) reservesize = maxreserve; #ifdef GQM3D_INIT_DEBUG printf("reservesize = %d\n", reservesize); #endif try { t_domainhandle.reserve(reservesize); t_domainnode.reserve(reservesize); } catch (thrust::system_error &e) { // output an error message and exit std::cerr << "Error: " << e.what() << std::endl; exit(-1); } //gpuMemoryCheck(); int offset = 0; while (true) { numberofthreads = numoftets - offset; if (numberofthreads > winsize) numberofthreads = winsize; else if (numberofthreads <= 0) break; #ifdef GQM3D_INIT_DEBUG printf("numberofthreads = %d, offset = %d, winsize = %d\n", numberofthreads, offset, winsize); #endif numberofblocks = (ceil)((float)numberofthreads / BLOCK_SIZE); t_domainhandle.resize(numberofthreads); thrust::fill(t_domainhandle.begin(), t_domainhandle.begin() + numberofthreads, tethandle(-1, 11)); kernelInitDomainHandle_Tet << <numberofblocks, BLOCK_SIZE >> > ( thrust::raw_pointer_cast(&t_domainhandle[0]), thrust::raw_pointer_cast(&t_tetlist[0]), thrust::raw_pointer_cast(&t_tetstatus[0]), offset, numberofthreads ); #ifdef GQM3D_INIT_DEBUG gpuErrchk(hipPeekAtLastError()); gpuErrchk(hipDeviceSynchronize()); #endif last_iterator = thrust::remove_if(t_domainhandle.begin(), t_domainhandle.begin() + numberofthreads, isInvalidTetHandle()); curhandlesize = thrust::distance(t_domainhandle.begin(), last_iterator); #ifdef GQM3D_INIT_DEBUG printf("curhandlesize = %d\n", curhandlesize); #endif try { t_domainsegment.resize(6 * curhandlesize); t_domainthreadlist.resize(curhandlesize); // thread indice list to store new tet thread indice } catch (thrust::system_error &e) { // output an error message and exit std::cerr << "Error: " << e.what() << std::endl; exit(-1); } numberofthreads = curhandlesize; numberofblocks = (ceil)((float)numberofthreads / BLOCK_SIZE); kernelInitDomainSegment_Tet << <numberofblocks, BLOCK_SIZE >> > ( thrust::raw_pointer_cast(&t_aabbnodebbs[0]), thrust::raw_pointer_cast(&t_aabbpmcoord[0]), thrust::raw_pointer_cast(&t_aabbpmbbs[0]), thrust::raw_pointer_cast(&t_domainhandle[0]), thrust::raw_pointer_cast(&t_domainsegment[0]), thrust::raw_pointer_cast(&t_domainthreadlist[0]), thrust::raw_pointer_cast(&t_pointlist[0]), thrust::raw_pointer_cast(&t_weightlist[0]), thrust::raw_pointer_cast(&t_tetlist[0]), inputmesh->aabb_diglen, numberofthreads ); #ifdef GQM3D_INIT_DEBUG gpuErrchk(hipPeekAtLastError()); gpuErrchk(hipDeviceSynchronize()); #endif last_iterator = // remove degenerate cases and fast check cases thrust::remove_if(t_domainhandle.begin(), t_domainhandle.begin() + numberofthreads, isInvalidTetHandle()); curhandlesize = thrust::distance(t_domainhandle.begin(), last_iterator); #ifdef GQM3D_INIT_DEBUG printf("curhandlesize = %d\n", curhandlesize); #endif if (curhandlesize == 0) return; t_domainnode.resize(t_domainhandle.size()); thrust::fill(t_domainnode.begin(), t_domainnode.begin() + curhandlesize, 1); numberofthreads = curhandlesize; numberofblocks = (ceil)((float)numberofthreads / BLOCK_SIZE); int numofemptyhandleslot; int domainexpanditer = 0; bool halfwinsize = false; while (true) { #ifdef GQM3D_INIT_DEBUG printf("Domain search iteration = %d, curhandlesize = %d\n", domainexpanditer, curhandlesize); #endif kernelDomainSegmentAndBoxCheck << <numberofblocks, BLOCK_SIZE >> > ( thrust::raw_pointer_cast(&t_aabbnodebbs[0]), thrust::raw_pointer_cast(&t_domainhandle[0]), thrust::raw_pointer_cast(&t_domainnode[0]), thrust::raw_pointer_cast(&t_domainsegment[0]), numberofthreads ); // remove the handles that do not intersect with node bounding boxes typedef thrust::zip_iterator<thrust::tuple<TetHandleD::iterator, IntD::iterator>> ZipIterator; ZipIterator first_iterator = thrust::make_zip_iterator(thrust::make_tuple(t_domainhandle.begin(), t_domainnode.begin())); auto last_iterator = thrust::remove_if(first_iterator, thrust::make_zip_iterator(thrust::make_tuple(t_domainhandle.begin() + numberofthreads, t_domainnode.begin() + numberofthreads)), isInvalidDomainTuple()); curhandlesize = thrust::distance(first_iterator, last_iterator); if (curhandlesize == 0) break; if (domainexpanditer == inputmesh->aabb_level) break; // prepare enough space for new handles and nodes numofemptyhandleslot = t_domainhandle.size() - curhandlesize; if (numofemptyhandleslot < curhandlesize) { try { if (2 * curhandlesize > reservesize) // possible to run out of memory { // half the window size #ifdef GQM3D_INIT_DEBUG printf("half the window size\n"); #endif winsize /= 2; halfwinsize = true; break; } t_domainhandle.resize(2 * curhandlesize); t_domainnode.resize(2 * curhandlesize); } catch (thrust::system_error &e) { // output an error message and exit std::cerr << "Error: " << e.what() << std::endl; exit(-1); } } thrust::fill(t_domainhandle.begin() + curhandlesize, t_domainhandle.begin() + 2 * curhandlesize, tethandle(-1, 11)); thrust::fill(t_domainnode.begin() + curhandlesize, t_domainnode.begin() + 2 * curhandlesize, 0); numberofthreads = curhandlesize; numberofblocks = (ceil)((float)numberofthreads / BLOCK_SIZE); kernelDomainHandleAppend << <numberofblocks, BLOCK_SIZE >> > ( thrust::raw_pointer_cast(&t_aabbnodeleft[0]), thrust::raw_pointer_cast(&t_aabbnoderight[0]), thrust::raw_pointer_cast(&t_domainhandle[0]), thrust::raw_pointer_cast(&t_domainnode[0]), numberofthreads ); curhandlesize = 2 * curhandlesize; numberofthreads = curhandlesize; numberofblocks = (ceil)((float)numberofthreads / BLOCK_SIZE); domainexpanditer++; } if (halfwinsize) continue; numberofthreads = curhandlesize; numberofblocks = (ceil)((float)numberofthreads / BLOCK_SIZE); kernelDomainSegmentAndPrimitiveCheck_Tet << <numberofblocks, BLOCK_SIZE >> > ( thrust::raw_pointer_cast(&t_aabbpmcoord[0]), thrust::raw_pointer_cast(&t_aabbpmbbs[0]), thrust::raw_pointer_cast(&t_domainhandle[0]), thrust::raw_pointer_cast(&t_domainnode[0]), thrust::raw_pointer_cast(&t_domainsegment[0]), thrust::raw_pointer_cast(&t_domaincount[0]), thrust::raw_pointer_cast(&t_domainthreadlist[0]), thrust::raw_pointer_cast(&t_pointlist[0]), thrust::raw_pointer_cast(&t_weightlist[0]), thrust::raw_pointer_cast(&t_tetlist[0]), numberofthreads ); #ifdef GQM3D_INIT_DEBUG gpuErrchk(hipPeekAtLastError()); gpuErrchk(hipDeviceSynchronize()); #endif numberofthreads = numoftets - offset; if (numberofthreads > winsize) numberofthreads = winsize; numberofblocks = (ceil)((float)numberofthreads / BLOCK_SIZE); kernelSetTetStatus << <numberofblocks, BLOCK_SIZE >> > ( thrust::raw_pointer_cast(&t_domaincount[0]), thrust::raw_pointer_cast(&t_pointlist[0]), thrust::raw_pointer_cast(&t_weightlist[0]), thrust::raw_pointer_cast(&t_tetlist[0]), thrust::raw_pointer_cast(&t_tetstatus[0]), criteria->cell_radius_edge_ratio, criteria->cell_size, offset, numberofthreads ); #ifdef GQM3D_INIT_DEBUG gpuErrchk(hipPeekAtLastError()); gpuErrchk(hipDeviceSynchronize()); #endif offset += winsize; } #ifdef GQM3D_INIT_PROFILING hipDeviceSynchronize(); tv[1] = clock(); printf(" Tet in/out domain test time = %f\n", (REAL)(tv[1] - tv[0])); #endif }
dea2c1a31a082be6ed00f2c9868d7373b304a401.cu
#include "CudaInitStatus.h" #include "CudaMesh.h" #include "CudaAnimation.h" #include <time.h> void initTriTetQuality( RealD& t_pointlist, PointTypeD& t_pointtypelist, RealD& t_weightlist, IntD& t_trifacelist, RealD& t_trifacecent, TriStatusD& t_tristatus, IntD& t_tetlist, TetStatusD& t_tetstatus, MESHCR* criteria, int numoftrifaces, int numoftets ) { // Init triface quality int numberofblocks = (ceil)((float)numoftrifaces / BLOCK_SIZE); kernelInitTriQuality << <numberofblocks, BLOCK_SIZE >> >( thrust::raw_pointer_cast(&t_pointlist[0]), thrust::raw_pointer_cast(&t_pointtypelist[0]), thrust::raw_pointer_cast(&t_weightlist[0]), thrust::raw_pointer_cast(&t_trifacelist[0]), thrust::raw_pointer_cast(&t_trifacecent[0]), thrust::raw_pointer_cast(&t_tristatus[0]), criteria->facet_angle, criteria->facet_size, criteria->facet_distance, numoftrifaces ); // Init tet quality numberofblocks = (ceil)((float)numoftets / BLOCK_SIZE); kernelInitTetQuality << <numberofblocks, BLOCK_SIZE >> > ( thrust::raw_pointer_cast(&t_pointlist[0]), thrust::raw_pointer_cast(&t_weightlist[0]), thrust::raw_pointer_cast(&t_tetlist[0]), thrust::raw_pointer_cast(&t_tetstatus[0]), criteria->cell_radius_edge_ratio, criteria->cell_size, numoftets ); } // Init triface and its neighbors void initTristatus( IntD& t_aabbnodeleft, IntD& t_aabbnoderight, RealD& t_aabbnodebbs, RealD& t_aabbpmcoord, RealD& t_aabbpmbbs, RealD& t_pointlist, PointTypeD& t_pointtypelist, RealD& t_weightlist, IntD& t_trifacelist, RealD& t_trifacecent, TriStatusD& t_tristatus, TetHandleD& t_tri2tetlist, IntD& t_tetlist, TriHandleD& t_tet2trilist, TetHandleD& t_neighborlist, MESHCR* criteria, int& numoftrifaces, int numoftets ) { #ifdef GQM3D_INIT_PROFILING clock_t tv[2]; tv[0] = clock(); #endif IntD trifacecount(4 * numoftets, 0); IntD trifaceindices(4 * numoftets, 0); RealD trifaceipt(4 * 3 * numoftets); #ifdef GQM3D_INIT_PROFILING cudaDeviceSynchronize(); tv[1] = clock(); printf(" initTristatus vector initialization time = %f\n", (REAL)(tv[1] - tv[0])); tv[0] = tv[1]; #endif // Mark initial trifaces int numberofblocks = (ceil)((float)numoftets / BLOCK_SIZE); kernelMarkInitialTrifaces << <numberofblocks, BLOCK_SIZE >> >( thrust::raw_pointer_cast(&t_aabbnodeleft[0]), thrust::raw_pointer_cast(&t_aabbnoderight[0]), thrust::raw_pointer_cast(&t_aabbnodebbs[0]), thrust::raw_pointer_cast(&t_aabbpmcoord[0]), thrust::raw_pointer_cast(&t_aabbpmbbs[0]), thrust::raw_pointer_cast(&t_pointlist[0]), thrust::raw_pointer_cast(&t_weightlist[0]), thrust::raw_pointer_cast(&trifacecount[0]), thrust::raw_pointer_cast(&trifaceipt[0]), thrust::raw_pointer_cast(&t_tetlist[0]), thrust::raw_pointer_cast(&t_neighborlist[0]), numoftets ); #ifdef GQM3D_INIT_PROFILING cudaDeviceSynchronize(); tv[1] = clock(); printf(" kernelMarkInitialTrifaces time = %f\n", (REAL)(tv[1] - tv[0])); tv[0] = tv[1]; #endif // Set up memory numoftrifaces = thrust::count(trifacecount.begin(), trifacecount.end(), 1); printf(" Number of trifaces = %d\n", numoftrifaces); t_trifacelist.resize(3 * numoftrifaces); t_trifacecent.resize(3 * numoftrifaces); t_tristatus.resize(numoftrifaces, tristatus(1)); t_tri2tetlist.resize(2 * numoftrifaces); thrust::exclusive_scan(trifacecount.begin(), trifacecount.end(), trifaceindices.begin()); #ifdef GQM3D_INIT_PROFILING cudaDeviceSynchronize(); tv[1] = clock(); printf(" initTristatus prepare vector time = %f\n", (REAL)(tv[1] - tv[0])); tv[0] = tv[1]; #endif // Append triface lists kernelAppendInitialTrifaces << <numberofblocks, BLOCK_SIZE >> > ( thrust::raw_pointer_cast(&trifacecount[0]), thrust::raw_pointer_cast(&trifaceindices[0]), thrust::raw_pointer_cast(&trifaceipt[0]), thrust::raw_pointer_cast(&t_pointlist[0]), thrust::raw_pointer_cast(&t_pointtypelist[0]), thrust::raw_pointer_cast(&t_weightlist[0]), thrust::raw_pointer_cast(&t_trifacelist[0]), thrust::raw_pointer_cast(&t_trifacecent[0]), thrust::raw_pointer_cast(&t_tristatus[0]), thrust::raw_pointer_cast(&t_tri2tetlist[0]), thrust::raw_pointer_cast(&t_tetlist[0]), thrust::raw_pointer_cast(&t_neighborlist[0]), thrust::raw_pointer_cast(&t_tet2trilist[0]), criteria->facet_angle, criteria->facet_size, criteria->facet_distance, numoftets ); #ifdef GQM3D_INIT_PROFILING cudaDeviceSynchronize(); tv[1] = clock(); printf(" kernelAppendInitialTrifaces time = %f\n", (REAL)(tv[1] - tv[0])); #endif int numofbadfacet = thrust::count_if(t_tristatus.begin(), t_tristatus.end(), isBadTri()); printf(" Number of bad trifaces = %d\n", numofbadfacet); } void initTetstatus( IntD& t_aabbnodeleft, IntD& t_aabbnoderight, RealD& t_aabbnodebbs, RealD& t_aabbpmcoord, RealD& t_aabbpmbbs, RealD& t_pointlist, RealD& t_weightlist, IntD& t_tetlist, TetStatusD& t_tetstatus, MESHCR* criteria, REAL aabb_diglen, int numoftets ) { #ifdef GQM3D_INIT_PROFILING clock_t tv[2]; tv[0] = clock(); #endif // Init tet status int numberofblocks = (ceil)((float)numoftets / BLOCK_SIZE); kernelInitTetStatus << <numberofblocks, BLOCK_SIZE >> > ( thrust::raw_pointer_cast(&t_aabbnodeleft[0]), thrust::raw_pointer_cast(&t_aabbnoderight[0]), thrust::raw_pointer_cast(&t_aabbnodebbs[0]), thrust::raw_pointer_cast(&t_aabbpmcoord[0]), thrust::raw_pointer_cast(&t_aabbpmbbs[0]), thrust::raw_pointer_cast(&t_pointlist[0]), thrust::raw_pointer_cast(&t_weightlist[0]), thrust::raw_pointer_cast(&t_tetlist[0]), thrust::raw_pointer_cast(&t_tetstatus[0]), criteria->cell_radius_edge_ratio, criteria->cell_size, aabb_diglen, numoftets ); #ifdef GQM3D_INIT_PROFILING cudaDeviceSynchronize(); tv[1] = clock(); printf(" kernelInitTetStatus time = %f\n", (REAL)(tv[1] - tv[0])); int numofcells = thrust::count_if(t_tetstatus.begin(), t_tetstatus.end(), isTetInDomain()); printf(" Number of tets in domain = %d\n", numofcells); int numofbadcells = thrust::count_if(t_tetstatus.begin(), t_tetstatus.end(), isBadTet()); printf(" Number of bad tets in domain = %d\n", numofbadcells); #endif } void initTetstatus2( IntD& t_aabbnodeleft, IntD& t_aabbnoderight, RealD& t_aabbnodebbs, RealD& t_aabbpmcoord, RealD& t_aabbpmbbs, RealD& t_pointlist, RealD& t_weightlist, IntD& t_tetlist, TetStatusD& t_tetstatus, MESHCR* criteria, MESHIO* inputmesh, int numoftets ) { //gpuMemoryCheck(); #ifdef GQM3D_INIT_PROFILING clock_t tv[2]; tv[0] = clock(); #endif int curhandlesize; TetHandleD::iterator last_iterator; IntD t_domaincount(numoftets, 0);// counter for in/out domain test TetHandleD t_domainhandle; RealD t_domainsegment; IntD t_domainthreadlist; IntD t_domainnode; int numberofthreads; int numberofblocks; int basenum = 256; int winsize = 3000 * basenum; double free_mb; getFreeMemory(free_mb); #ifdef GQM3D_INIT_DEBUG printf("free_mb = %lf\n", free_mb); #endif int maxreserve = 3 * 100 * 1000 * 1000; int reservesize = free_mb * 1024 * 1024 / 3 / sizeof(tethandle); if (reservesize > maxreserve) reservesize = maxreserve; #ifdef GQM3D_INIT_DEBUG printf("reservesize = %d\n", reservesize); #endif try { t_domainhandle.reserve(reservesize); t_domainnode.reserve(reservesize); } catch (thrust::system_error &e) { // output an error message and exit std::cerr << "Error: " << e.what() << std::endl; exit(-1); } //gpuMemoryCheck(); int offset = 0; while (true) { numberofthreads = numoftets - offset; if (numberofthreads > winsize) numberofthreads = winsize; else if (numberofthreads <= 0) break; #ifdef GQM3D_INIT_DEBUG printf("numberofthreads = %d, offset = %d, winsize = %d\n", numberofthreads, offset, winsize); #endif numberofblocks = (ceil)((float)numberofthreads / BLOCK_SIZE); t_domainhandle.resize(numberofthreads); thrust::fill(t_domainhandle.begin(), t_domainhandle.begin() + numberofthreads, tethandle(-1, 11)); kernelInitDomainHandle_Tet << <numberofblocks, BLOCK_SIZE >> > ( thrust::raw_pointer_cast(&t_domainhandle[0]), thrust::raw_pointer_cast(&t_tetlist[0]), thrust::raw_pointer_cast(&t_tetstatus[0]), offset, numberofthreads ); #ifdef GQM3D_INIT_DEBUG gpuErrchk(cudaPeekAtLastError()); gpuErrchk(cudaDeviceSynchronize()); #endif last_iterator = thrust::remove_if(t_domainhandle.begin(), t_domainhandle.begin() + numberofthreads, isInvalidTetHandle()); curhandlesize = thrust::distance(t_domainhandle.begin(), last_iterator); #ifdef GQM3D_INIT_DEBUG printf("curhandlesize = %d\n", curhandlesize); #endif try { t_domainsegment.resize(6 * curhandlesize); t_domainthreadlist.resize(curhandlesize); // thread indice list to store new tet thread indice } catch (thrust::system_error &e) { // output an error message and exit std::cerr << "Error: " << e.what() << std::endl; exit(-1); } numberofthreads = curhandlesize; numberofblocks = (ceil)((float)numberofthreads / BLOCK_SIZE); kernelInitDomainSegment_Tet << <numberofblocks, BLOCK_SIZE >> > ( thrust::raw_pointer_cast(&t_aabbnodebbs[0]), thrust::raw_pointer_cast(&t_aabbpmcoord[0]), thrust::raw_pointer_cast(&t_aabbpmbbs[0]), thrust::raw_pointer_cast(&t_domainhandle[0]), thrust::raw_pointer_cast(&t_domainsegment[0]), thrust::raw_pointer_cast(&t_domainthreadlist[0]), thrust::raw_pointer_cast(&t_pointlist[0]), thrust::raw_pointer_cast(&t_weightlist[0]), thrust::raw_pointer_cast(&t_tetlist[0]), inputmesh->aabb_diglen, numberofthreads ); #ifdef GQM3D_INIT_DEBUG gpuErrchk(cudaPeekAtLastError()); gpuErrchk(cudaDeviceSynchronize()); #endif last_iterator = // remove degenerate cases and fast check cases thrust::remove_if(t_domainhandle.begin(), t_domainhandle.begin() + numberofthreads, isInvalidTetHandle()); curhandlesize = thrust::distance(t_domainhandle.begin(), last_iterator); #ifdef GQM3D_INIT_DEBUG printf("curhandlesize = %d\n", curhandlesize); #endif if (curhandlesize == 0) return; t_domainnode.resize(t_domainhandle.size()); thrust::fill(t_domainnode.begin(), t_domainnode.begin() + curhandlesize, 1); numberofthreads = curhandlesize; numberofblocks = (ceil)((float)numberofthreads / BLOCK_SIZE); int numofemptyhandleslot; int domainexpanditer = 0; bool halfwinsize = false; while (true) { #ifdef GQM3D_INIT_DEBUG printf("Domain search iteration = %d, curhandlesize = %d\n", domainexpanditer, curhandlesize); #endif kernelDomainSegmentAndBoxCheck << <numberofblocks, BLOCK_SIZE >> > ( thrust::raw_pointer_cast(&t_aabbnodebbs[0]), thrust::raw_pointer_cast(&t_domainhandle[0]), thrust::raw_pointer_cast(&t_domainnode[0]), thrust::raw_pointer_cast(&t_domainsegment[0]), numberofthreads ); // remove the handles that do not intersect with node bounding boxes typedef thrust::zip_iterator<thrust::tuple<TetHandleD::iterator, IntD::iterator>> ZipIterator; ZipIterator first_iterator = thrust::make_zip_iterator(thrust::make_tuple(t_domainhandle.begin(), t_domainnode.begin())); auto last_iterator = thrust::remove_if(first_iterator, thrust::make_zip_iterator(thrust::make_tuple(t_domainhandle.begin() + numberofthreads, t_domainnode.begin() + numberofthreads)), isInvalidDomainTuple()); curhandlesize = thrust::distance(first_iterator, last_iterator); if (curhandlesize == 0) break; if (domainexpanditer == inputmesh->aabb_level) break; // prepare enough space for new handles and nodes numofemptyhandleslot = t_domainhandle.size() - curhandlesize; if (numofemptyhandleslot < curhandlesize) { try { if (2 * curhandlesize > reservesize) // possible to run out of memory { // half the window size #ifdef GQM3D_INIT_DEBUG printf("half the window size\n"); #endif winsize /= 2; halfwinsize = true; break; } t_domainhandle.resize(2 * curhandlesize); t_domainnode.resize(2 * curhandlesize); } catch (thrust::system_error &e) { // output an error message and exit std::cerr << "Error: " << e.what() << std::endl; exit(-1); } } thrust::fill(t_domainhandle.begin() + curhandlesize, t_domainhandle.begin() + 2 * curhandlesize, tethandle(-1, 11)); thrust::fill(t_domainnode.begin() + curhandlesize, t_domainnode.begin() + 2 * curhandlesize, 0); numberofthreads = curhandlesize; numberofblocks = (ceil)((float)numberofthreads / BLOCK_SIZE); kernelDomainHandleAppend << <numberofblocks, BLOCK_SIZE >> > ( thrust::raw_pointer_cast(&t_aabbnodeleft[0]), thrust::raw_pointer_cast(&t_aabbnoderight[0]), thrust::raw_pointer_cast(&t_domainhandle[0]), thrust::raw_pointer_cast(&t_domainnode[0]), numberofthreads ); curhandlesize = 2 * curhandlesize; numberofthreads = curhandlesize; numberofblocks = (ceil)((float)numberofthreads / BLOCK_SIZE); domainexpanditer++; } if (halfwinsize) continue; numberofthreads = curhandlesize; numberofblocks = (ceil)((float)numberofthreads / BLOCK_SIZE); kernelDomainSegmentAndPrimitiveCheck_Tet << <numberofblocks, BLOCK_SIZE >> > ( thrust::raw_pointer_cast(&t_aabbpmcoord[0]), thrust::raw_pointer_cast(&t_aabbpmbbs[0]), thrust::raw_pointer_cast(&t_domainhandle[0]), thrust::raw_pointer_cast(&t_domainnode[0]), thrust::raw_pointer_cast(&t_domainsegment[0]), thrust::raw_pointer_cast(&t_domaincount[0]), thrust::raw_pointer_cast(&t_domainthreadlist[0]), thrust::raw_pointer_cast(&t_pointlist[0]), thrust::raw_pointer_cast(&t_weightlist[0]), thrust::raw_pointer_cast(&t_tetlist[0]), numberofthreads ); #ifdef GQM3D_INIT_DEBUG gpuErrchk(cudaPeekAtLastError()); gpuErrchk(cudaDeviceSynchronize()); #endif numberofthreads = numoftets - offset; if (numberofthreads > winsize) numberofthreads = winsize; numberofblocks = (ceil)((float)numberofthreads / BLOCK_SIZE); kernelSetTetStatus << <numberofblocks, BLOCK_SIZE >> > ( thrust::raw_pointer_cast(&t_domaincount[0]), thrust::raw_pointer_cast(&t_pointlist[0]), thrust::raw_pointer_cast(&t_weightlist[0]), thrust::raw_pointer_cast(&t_tetlist[0]), thrust::raw_pointer_cast(&t_tetstatus[0]), criteria->cell_radius_edge_ratio, criteria->cell_size, offset, numberofthreads ); #ifdef GQM3D_INIT_DEBUG gpuErrchk(cudaPeekAtLastError()); gpuErrchk(cudaDeviceSynchronize()); #endif offset += winsize; } #ifdef GQM3D_INIT_PROFILING cudaDeviceSynchronize(); tv[1] = clock(); printf(" Tet in/out domain test time = %f\n", (REAL)(tv[1] - tv[0])); #endif }
b7ca86e7666589c17b16783cdeaed19b833262f2.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" // ScanArray.cu // #include "ScanArray.h" #include "OperationFunctor.h" #include <iostream> #include <stdio.h> using namespace std; #define BLOCK_SIZE 1024 // NUM_BANKS // bank #define NUM_BANKS 16 // LOG_NUM_BANKS // bank #define LOG_NUM_BANKS 4 // Kernel : _scanNaiveKer // scan log(n) // n * (log(n) - 1) 2 * n template < class T, class Operation > __global__ void // Kernel _scanNaiveKer( T *outarray, // T *inarray, // T *blocksum, // // int n, // Operation op, // bool backward // ); // Kernel : _scanWorkEfficientKer // scan O(log(n)) // O(n) n balanced tree // Blelloch1990 "Prefix Sums and Their Applications" // http://www.cs.cmu.edu/~blelloch/papers/Ble93.pdf // Prins and Chatterjee PRAM course notes // https://www.cs.unc.edu/~prins/Classes/633/Handouts/pram.pdf template < class T, class Operation > __global__ void // Kernel _scanWorkEfficientKer( T *outarray, // T *inarray, // T *blocksum, // // int n, // Operation op, // bool backward // ); // Kernel : _scanOptKer // scan O(log(n)) // O(n) // balanced tree // Blelloch1990 "Prefix Sums and Their Applications" // http://www.cs.cmu.edu/~blelloch/papers/Ble93.pdf // Prins and Chatterjee PRAM course notes // https://www.cs.unc.edu/~prins/Classes/633/Handouts/pram.pdf template < class T, class Operation > __global__ void // Kernel _scanOptKer( T *outarray, // T *inarray, // T *blocksum, // // int n, // Operation op, // bool backward // ); // Kernel : _scanBetterKer // scan O(log(n)) // O(n) n + n / NUM_BANKS // balanced tree // Blelloch1990 "Prefix Sums and Their Applications" // http://www.cs.cmu.edu/~blelloch/papers/Ble93.pdf // Prins and Chatterjee PRAM course notes // https://www.cs.unc.edu/~prins/Classes/633/Handouts/pram.pdf template < class T, class Operation > __global__ void // Kernel _scanBetterKer( T *outarray, // T *inarray, // T *blocksum, // // int n, // Operation op, // bool backward // ); // scanComputeGoldCPU inclusive // template < class T, class Operation > __host__ int // // NO_ERROR scanComputeGold( T *inarray, // T *reference, // const unsigned int len, // Operation op, // bool backward // ); // Kernel : _addBackKer // // template < class T, class Operation > __global__ void // Kernel _addBackKer( T *array, // T *lastelemarray, // // int n, // int packnum, // // Operation op, // bool backward // ); // Kernel : _scanNaiveKer template < class T, class Operation > __global__ void _scanNaiveKer(T *outarray, T *inarray, T *blocksum, int n, Operation op, bool backward) { // extern __shared__ unsigned char sharedmemo[]; // T *sharedmem = (T *)sharedmemo; // threadIdx.x int idx = blockIdx.x * blockDim.x + threadIdx.x; // // pout pin T *pout = sharedmem; T *pin = sharedmem + blockDim.x; // 0 if (idx < n) pout[threadIdx.x] = inarray[idx]; else pout[threadIdx.x] = op.identity(); // // 2 scan // if (!backward) { for (int offset = 1; offset < blockDim.x; offset *= 2) { // pout pin // T *ptemp; ptemp = pout; pout = pin; pin = ptemp; __syncthreads(); // scan // double buffer pout[threadIdx.x] = pin[threadIdx.x]; // // if (threadIdx.x >= offset) pout[threadIdx.x] = op(pout[threadIdx.x], pin[threadIdx.x - offset]); } // __syncthreads(); // n if (idx >= n) return; // outarray[idx] = pout[threadIdx.x]; // if (blocksum == NULL) return; // // if (threadIdx.x == blockDim.x - 1 && blockIdx.x < gridDim.x - 1) { blocksum[blockIdx.x] = pout[threadIdx.x]; } } else { for (int offset = 1; offset < blockDim.x; offset *= 2) { // pout pin // T *ptemp; ptemp = pout; pout = pin; pin = ptemp; __syncthreads(); // scan // double buffer pout[threadIdx.x] = pin[threadIdx.x]; // // if (threadIdx.x + offset < blockDim.x) pout[threadIdx.x] = op(pin[threadIdx.x], pin[threadIdx.x + offset]); } // __syncthreads(); // n if (idx >= n) return; // outarray[idx] = pout[threadIdx.x]; // if (blocksum == NULL) return; // // if (threadIdx.x == 0 && blockIdx.x > 0) { blocksum[blockIdx.x - 1] = pout[threadIdx.x]; } } } // Kernel : _scanWorkEfficientKer template < class T, class Operation > __global__ void _scanWorkEfficientKer(T *outarray, T *inarray, T *blocksum, int n, Operation op, bool backward) { // extern __shared__ unsigned char sharedmemo[]; // T *sharedmem = (T *)sharedmemo; // int baseidx = 2 * blockIdx.x * blockDim.x; int inidx = 2 * threadIdx.x; int idx = baseidx + inidx; // offset int offset = 1; // int length = blockDim.x * 2; // sharedmem[inidx] = (idx < n) ? inarray[idx] : op.identity(); sharedmem[inidx + 1] = (idx + 1 < n) ? inarray[idx + 1] : op.identity(); // scan if (!backward) { for (int d = blockDim.x; d > 0; d >>= 1) { // __syncthreads(); // d if (threadIdx.x < d) { // int ai = offset * (inidx + 1) - 1; int bi = offset * (inidx + 2) - 1; // scan // sharedmem[bi] = op(sharedmem[bi], sharedmem[ai]); } // 2 offset *= 2; } // if (threadIdx.x == 0) { // sharedmem[length - 1] = op.identity(); } // scan // for (int d = 1; d < length; d *= 2) { // 2 offset >>= 1; // __syncthreads(); // d if (threadIdx.x < d) { // int ai = offset * (inidx + 1) - 1; int bi = offset * (inidx + 2) - 1; // ai bi ai bi T t = sharedmem[ai]; sharedmem[ai] = sharedmem[bi]; sharedmem[bi] = op(sharedmem[bi], t); } } // __syncthreads(); // n if (idx >= n) return; // outarray[idx] = sharedmem[inidx + 1]; // n if (idx + 1 >= n) return; // if ((inidx + 1) == (2 * blockDim.x - 1)) // outarray[idx + 1] = op(sharedmem[inidx + 1], inarray[idx + 1]); else // outarray[idx + 1] = sharedmem[inidx + 2]; // if (blocksum == NULL) return; // // if (threadIdx.x == blockDim.x - 1 && blockIdx.x < gridDim.x - 1) { blocksum[blockIdx.x] = outarray[idx + 1]; } } else { for (int d = blockDim.x; d > 0; d >>= 1) { // __syncthreads(); // d if (threadIdx.x < d) { // int ai = offset * inidx; int bi = offset * (inidx + 1); // scan // sharedmem[ai] = op(sharedmem[bi], sharedmem[ai]); } // 2 offset *= 2; } // if (threadIdx.x == 0) { // sharedmem[0] = op.identity(); } // scan // for (int d = 1; d < length; d *= 2) { // 2 offset >>= 1; // __syncthreads(); // d if (threadIdx.x < d) { // int ai = offset * inidx; int bi = offset * (inidx + 1); // bi ai bi ai T t = sharedmem[bi]; sharedmem[bi] = sharedmem[ai]; sharedmem[ai] = op(sharedmem[ai], t); } } // __syncthreads(); // n if (idx >= n) return; // if (inidx == 0) // outarray[idx] = op(sharedmem[inidx], inarray[idx]); else // outarray[idx] = sharedmem[inidx - 1]; // n if (idx + 1 < n) { // outarray[idx + 1] = sharedmem[inidx]; } // if (blocksum == NULL) return; // // if (threadIdx.x == 0 && blockIdx.x > 0) { blocksum[blockIdx.x - 1] = outarray[idx]; } } } // Kernel : _scanOptKer template < class T, class Operation > __global__ void _scanOptKer(T *outarray, T *inarray, T *blocksum, int n, Operation op, bool backward) { // extern __shared__ unsigned char sharedmemo[]; // T *sharedmem = (T *)sharedmemo; // int baseidx = 2 * blockIdx.x * blockDim.x; // int length = blockDim.x * 2; // int ai = threadIdx.x; int bi = threadIdx.x + blockDim.x; // int aindex = baseidx + ai; int bindex = baseidx + bi; // sharedmem[ai] = (aindex < n) ? inarray[aindex] : op.identity(); sharedmem[bi] = (bindex < n) ? inarray[bindex] : op.identity(); // offset int offset = 1; if (!backward) { // scan for (int d = blockDim.x; d > 0; d >>= 1) { // __syncthreads(); // d if (threadIdx.x < d) { // int ai = offset * (2 * threadIdx.x + 1) - 1; int bi = offset * (2 * threadIdx.x + 2) - 1; // scan // sharedmem[bi] = op(sharedmem[bi], sharedmem[ai]); } // 2 offset *= 2; } // if (threadIdx.x == 0) { int index = length - 1; // sharedmem[index] = op.identity(); } // scan // for (int d = 1; d < length; d *= 2) { // 2 offset /= 2; // __syncthreads(); // d if (threadIdx.x < d) { // int ai = offset * (2 * threadIdx.x + 1) - 1; int bi = offset * (2 * threadIdx.x + 2) - 1; // ai bi ai bi T t = sharedmem[ai]; sharedmem[ai] = sharedmem[bi]; sharedmem[bi] = op(sharedmem[bi], t); } } // __syncthreads(); // n if (aindex >= n) return; // outarray[aindex] = sharedmem[ai + 1]; // n if (bindex >= n) return; // if (bi == (2 * blockDim.x - 1)) // outarray[bindex] = op(sharedmem[bi], inarray[bindex]); else // outarray[bindex] = sharedmem[bi + 1]; // if (blocksum == NULL) return; // // if (threadIdx.x == blockDim.x - 1 && blockIdx.x < gridDim.x - 1) { blocksum[blockIdx.x] = outarray[bindex]; } } else { // scan for (int d = blockDim.x; d > 0; d >>= 1) { // __syncthreads(); // d if (threadIdx.x < d) { // int ai = offset * 2 * threadIdx.x; int bi = offset * (2 * threadIdx.x + 1); // scan // sharedmem[ai] = op(sharedmem[bi], sharedmem[ai]); } // 2 offset *= 2; } // if (threadIdx.x == 0) { int index = 0; // sharedmem[index] = op.identity(); } // scan // for (int d = 1; d < length; d *= 2) { // 2 offset /= 2; // __syncthreads(); // d if (threadIdx.x < d) { // int ai = offset * 2 * threadIdx.x; int bi = offset * (2 * threadIdx.x + 1); // bi ai bi ai T t = sharedmem[bi]; sharedmem[bi] = sharedmem[ai]; sharedmem[ai] = op(sharedmem[ai], t); } } // __syncthreads(); // n if (aindex >= n) return; // if (ai == 0) // outarray[aindex] = op(sharedmem[ai], inarray[aindex]); else // outarray[aindex] = sharedmem[ai - 1]; // n if (bindex < n) { // outarray[bindex] = sharedmem[bi - 1]; } // if (blocksum == NULL) return; // // if (threadIdx.x == 0 && blockIdx.x > 0) { blocksum[blockIdx.x - 1] = outarray[aindex]; } } } // CONFLICT_FREE_OFFSET // bank conflicts #ifdef ZERO_BANK_CONFLICTS # define CONFLICT_FREE_OFFSET(index) \ (((index) >> LOG_NUM_BANKS) + ((index) >> (2 * LOG_NUM_BANKS))) #else # define CONFLICT_FREE_OFFSET(index) ((index) >> LOG_NUM_BANKS) #endif // Kernel : _scanBetterKerBetter template < class T, class Operation > __global__ void _scanBetterKer(T *outarray, T *inarray, T *blocksum, int n, Operation op, bool backward) { // extern __shared__ unsigned char sharedmemo[]; // T *sharedmem = (T *)sharedmemo; // int baseidx = 2 * blockIdx.x * blockDim.x; int idx = threadIdx.x + blockDim.x; // int length = blockDim.x * 2; // bankOffset int ai = threadIdx.x + CONFLICT_FREE_OFFSET(threadIdx.x); int bi = idx + CONFLICT_FREE_OFFSET(idx); // int aindex = baseidx + threadIdx.x; int bindex = aindex + blockDim.x; // sharedmem[ai] = (aindex < n) ? inarray[aindex] : op.identity(); sharedmem[bi] = (bindex < n) ? inarray[bindex] : op.identity(); // offset int offset = 1; if (!backward) { // scan for (int d = blockDim.x; d > 0; d >>= 1) { // __syncthreads(); // d if (threadIdx.x < d) { // int ci = offset * (2 * threadIdx.x + 1) - 1; int di = offset * (2 * threadIdx.x + 2) - 1; // bank conflicts ci += CONFLICT_FREE_OFFSET(ci); di += CONFLICT_FREE_OFFSET(di); // scan // sharedmem[di] = op(sharedmem[di], sharedmem[ci]); } // 2 offset *= 2; } // if (threadIdx.x == 0) { int index = length - 1; // bank conflicts index += CONFLICT_FREE_OFFSET(index); // sharedmem[index] = op.identity(); } // scan // for (int d = 1; d < length; d *= 2) { // 2 offset /= 2; // __syncthreads(); // d if (threadIdx.x < d) { // int ci = offset * (2 * threadIdx.x + 1) - 1; int di = offset * (2 * threadIdx.x + 2) - 1; // bank conflicts ci += CONFLICT_FREE_OFFSET(ci); di += CONFLICT_FREE_OFFSET(di); // ai bi ai bi T t = sharedmem[ci]; sharedmem[ci] = sharedmem[di]; sharedmem[di] = op(sharedmem[di], t); } } // __syncthreads(); // n if (aindex >= n) return; // outarray[aindex] = op(sharedmem[ai], inarray[aindex]); // n if (bindex >= n) return; // outarray[bindex] = op(sharedmem[bi], inarray[bindex]); // if (blocksum == NULL) return; // // if (threadIdx.x == blockDim.x - 1 && blockIdx.x < gridDim.x - 1) { blocksum[blockIdx.x] = outarray[bindex]; } } else { // scan for (int d = blockDim.x; d > 0; d >>= 1) { // __syncthreads(); // d if (threadIdx.x < d) { // int ci = offset * 2 * threadIdx.x; int di = offset * (2 * threadIdx.x + 1); // bank conflicts ci += CONFLICT_FREE_OFFSET(ci); di += CONFLICT_FREE_OFFSET(di); // scan // sharedmem[ci] = op(sharedmem[di], sharedmem[ci]); } // 2 offset *= 2; } // if (threadIdx.x == 0) { int index = 0; // bank conflicts index += CONFLICT_FREE_OFFSET(index); // sharedmem[index] = op.identity(); } // scan // for (int d = 1; d < length; d *= 2) { // 2 offset /= 2; // __syncthreads(); // d if (threadIdx.x < d) { // int ci = offset * 2 * threadIdx.x; int di = offset * (2 * threadIdx.x + 1); // bank conflicts ci += CONFLICT_FREE_OFFSET(ci); di += CONFLICT_FREE_OFFSET(di); // di ci di ci T t = sharedmem[di]; sharedmem[di] = sharedmem[ci]; sharedmem[ci] = op(sharedmem[ci], t); } } // __syncthreads(); // n if (aindex >= n) return; // outarray[aindex] = op(sharedmem[ai], inarray[aindex]); // n if (bindex < n) { // outarray[bindex] = op(sharedmem[bi], inarray[bindex]); } // if (blocksum == NULL) return; // // if (threadIdx.x == 0 && blockIdx.x > 0) { blocksum[blockIdx.x - 1] = outarray[baseidx]; } } } // scanComputeGoldCPU inclusive template < class T, class Operation > __host__ int scanComputeGold(T *inarray, T *reference, const unsigned int len, Operation op, bool backward) { // int i; if (!backward) { // inarray[0] reference[0] = inarray[0]; for (i = 1; i < len; ++i) { // reference[i] = op(inarray[i], reference[i-1]); } } else { // inarray[len - 1] reference[len - 1] = inarray[len - 1]; for (i = len - 2; i >= 0; i--) { // reference[i] = op(inarray[i], reference[i+1]); } } // return NO_ERROR; } // Kernel : _addBackKer template < class T, class Operation > __global__ void _addBackKer(T *array, T *lastelemarray, int n, int packnum, Operation op, bool backward) { // // __shared__ T lastelement[1]; if (!backward) { // // if (threadIdx.x == 0) lastelement[0] = lastelemarray[blockIdx.x]; // unsigned int idx = (blockIdx.x + 1) * (blockDim.x * packnum) + threadIdx.x; // __syncthreads(); // for (int i = 0; i < packnum; i++) { // if (idx >= n) break; // array[idx] = op(array[idx],lastelement[0]); // idx += blockDim.x; } } else { // // if (threadIdx.x == 0) { lastelement[0] = lastelemarray[blockIdx.x]; } // unsigned int idx = blockIdx.x * (blockDim.x * packnum) + threadIdx.x; // __syncthreads(); // for (int i = 0; i < packnum; i++) { // if (idx >= n) break; // array[idx] = op(array[idx], lastelement[0]); // idx += blockDim.x; } } } // Host addBackfloat template< class Operation > __host__ int ScanArray::addBack(float *array, float *lastelemarray, int numelements, int blocksize, int packnum, Operation op, bool backward) { // NULL NULL if (array == NULL || lastelemarray == NULL) return NULL_POINTER; // 0 if (numelements < 0) return INVALID_DATA; // int gridsize = (numelements + blocksize * packnum - 1) / (blocksize * packnum) - 1; // gridsize 1 if (gridsize < 1) return NO_ERROR; // _addBackKer hipLaunchKernelGGL(( _addBackKer), dim3(gridsize), dim3(blocksize), 0, 0, array, lastelemarray, numelements, packnum, op, backward); // if (hipGetLastError() != hipSuccess) return CUDA_ERROR; // return NO_ERROR; } // Host addBackint template< class Operation > __host__ int ScanArray::addBack(int *array, int *lastelemarray, int numelements, int blocksize, int packnum, Operation op, bool backward) { // NULL NULL if (array == NULL || lastelemarray == NULL) return NULL_POINTER; // 0 if (numelements < 0) return INVALID_DATA; // int gridsize = (numelements + blocksize * packnum - 1) / (blocksize * packnum) - 1; // gridsize 1 if (gridsize < 1) return NO_ERROR; // _addBackKer hipLaunchKernelGGL(( _addBackKer), dim3(gridsize), dim3(blocksize), 0, 0, array, lastelemarray, numelements, packnum, op, backward); // if (hipGetLastError() != hipSuccess) return CUDA_ERROR; // return NO_ERROR; } // SCANFREE // #define SCANFREE do { \ if (gridsize > 1) \ hipFree(blocksumDev); \ if (hostinarray) \ hipFree(inarrayDev); \ if (hostoutarray) \ hipFree(outarrayDev); \ if (!hostinarray) \ delete inarrayHost; \ if (!hostoutarray) \ delete outarrayHost; \ } while (0) // Host scanArrayfloat template< class Operation > __host__ int ScanArray::scanArray(float *inarray, float *outarray, int numelements, Operation op, bool backward, bool hostinarray, bool hostoutarray) { // NULL NULL if (inarray == NULL || outarray == NULL) return NULL_POINTER; // 4 if (numelements < 0) return INVALID_DATA; // hipError_t cuerrcode; int errcode; // const unsigned int memsize = sizeof (float) * numelements; unsigned int extraspace; // unsigned int sharedmemsize = 0; // Host // float *inarrayDev = NULL; float *outarrayDev = NULL; // Device // float *inarrayHost = NULL; float *outarrayHost = NULL; // scan gridsize 1 // Kernel // int gridsize; int blocksize; // float *blocksumDev = NULL; // int blocksumsize; // scan int packnum; // CPU if (scanType == CPU_IN_SCAN) { // inarray Host Host // Host if (!hostinarray) { // Host inarrayHost = new float[memsize]; // cuerrcode = hipMemcpy(inarrayHost, inarray, memsize, hipMemcpyDeviceToHost); if (cuerrcode != hipSuccess) return cuerrcode; } else { // inarrayHost = inarray; } // outarray Host Host // Host if (!hostoutarray) { // Host outarrayHost = new float[memsize]; // cuerrcode = hipMemcpy(outarrayHost, outarray, memsize, hipMemcpyDeviceToHost); if (cuerrcode != hipSuccess) return cuerrcode; } else { // outarrayHost = outarray; } // inclusive scan errcode = scanComputeGold<float>(inarrayHost, outarrayHost, numelements, op, backward); // if (errcode != NO_ERROR) { // SCANFREE; return errcode; } // return NO_ERROR; } // inarray Host Device // Device if (hostinarray) { // cuerrcode = hipMalloc((void **)&inarrayDev, memsize); if (cuerrcode != hipSuccess) return cuerrcode; // cuerrcode = hipMemcpy(inarrayDev, inarray, memsize, hipMemcpyHostToDevice); if (cuerrcode != hipSuccess) return cuerrcode; } else { // inarrayDev = inarray; } // outarray Host Device // Device if (hostoutarray) { // cuerrcode = hipMalloc((void **)&outarrayDev, memsize); if (cuerrcode != hipSuccess) return cuerrcode; } else { // outarrayDev = outarray; } // switch(scanType) { // scan case NAIVE_SCAN: // Kernel // blocksize = BLOCK_SIZE; packnum = 1; // gridsize = max(1, (numelements + blocksize * packnum - 1) / blocksize); sharedmemsize = sizeof (float) * blocksize * packnum; // grid 1 // if (gridsize > 1) { // blocksumsize = gridsize - 1; // cuerrcode = hipMalloc((void **)&blocksumDev, blocksumsize * sizeof(float)); if (cuerrcode != hipSuccess) { hipFree(blocksumDev); return cuerrcode; } } // Kernel // hipLaunchKernelGGL(( _scanNaiveKer<float>), dim3(gridsize), dim3(blocksize), 2 * sharedmemsize, 0, outarrayDev, inarrayDev, blocksumDev, numelements, op, backward); // if (hipGetLastError() != hipSuccess) { // SCANFREE; return CUDA_ERROR; } break; // scan case EFFICIENT_SCAN: // Kernel // blocksize = BLOCK_SIZE; packnum = 2; // sharedmemsize = sizeof (float) * (blocksize * packnum); gridsize = max(1, (numelements + packnum * blocksize - 1) / (packnum * blocksize)); // grid 1 // if (gridsize > 1) { // blocksumsize = gridsize - 1; // cuerrcode = hipMalloc((void **)&blocksumDev, blocksumsize * sizeof(float)); if (cuerrcode != hipSuccess) { hipFree(blocksumDev); return cuerrcode; } } // Kernel // hipLaunchKernelGGL(( _scanWorkEfficientKer<float>), dim3(gridsize), dim3(blocksize), sharedmemsize, 0, outarrayDev, inarrayDev, blocksumDev, numelements, op, backward); // if (hipGetLastError() != hipSuccess) { // SCANFREE; return CUDA_ERROR; } break; // scan case OPTIMIZE_SCAN: // Kernel // blocksize = BLOCK_SIZE; packnum = 2; // gridsize = max(1, (numelements + packnum * blocksize - 1) / (packnum * blocksize)); sharedmemsize = sizeof (float) * (blocksize * packnum); // grid 1 // if (gridsize > 1) { // blocksumsize = gridsize - 1; // cuerrcode = hipMalloc((void **)&blocksumDev, blocksumsize * sizeof(float)); if (cuerrcode != hipSuccess) { hipFree(blocksumDev); return cuerrcode; } } // Kernel // hipLaunchKernelGGL(( _scanOptKer<float>), dim3(gridsize), dim3(blocksize), sharedmemsize, 0, outarrayDev, inarrayDev, blocksumDev, numelements, op, backward); // if (hipGetLastError() != hipSuccess) { // SCANFREE; return CUDA_ERROR; } break; // scan case BETTER_SCAN: // Kernel // blocksize = BLOCK_SIZE; packnum = 2; // gridsize = max(1, (numelements + packnum * blocksize - 1) / (packnum * blocksize)); extraspace = blocksize * packnum / NUM_BANKS;; sharedmemsize = sizeof (float) * (blocksize * packnum + extraspace); // grid 1 // if (gridsize > 1) { // blocksumsize = gridsize - 1; // cuerrcode = hipMalloc((void **)&blocksumDev, blocksumsize * sizeof(float)); if (cuerrcode != hipSuccess) { hipFree(blocksumDev); return cuerrcode; } } // Kernel // hipLaunchKernelGGL(( _scanBetterKer<float>), dim3(gridsize), dim3(blocksize), sharedmemsize, 0, outarrayDev, inarrayDev, blocksumDev, numelements, op, backward); // if (hipGetLastError() != hipSuccess) { // SCANFREE; return CUDA_ERROR; } break; // default: if (hostinarray) hipFree(inarrayDev); if (hostoutarray) hipFree(outarrayDev); return INVALID_DATA; } // gird 1 scan // if (gridsize > 1) { // // errcode = scanArray(blocksumDev, blocksumDev, blocksumsize, op, backward, false, false); if (errcode != NO_ERROR) { // SCANFREE; return errcode; } // errcode = addBack(outarrayDev, blocksumDev, numelements, blocksize, packnum, op, backward); if (errcode != NO_ERROR) { // SCANFREE; return errcode; } // hipFree(blocksumDev); } // outarray Host if (hostoutarray) { // cuerrcode = hipMemcpy(outarray, outarrayDev, memsize, hipMemcpyDeviceToHost); if (cuerrcode != hipSuccess) { if (hostinarray) hipFree(inarrayDev); hipFree(outarrayDev); return cuerrcode; } } // Device host if (hostinarray) hipFree(inarrayDev); if (hostoutarray) hipFree(outarrayDev); // return NO_ERROR; } // Host scanArrayint template< class Operation > __host__ int ScanArray::scanArray(int *inarray, int *outarray, int numelements, Operation op, bool backward, bool hostinarray, bool hostoutarray) { // NULL NULL if (inarray == NULL || outarray == NULL) return NULL_POINTER; // 4 if (numelements < 0) return INVALID_DATA; // hipError_t cuerrcode; int errcode; // int memsize = sizeof (int) * numelements; int extraspace; // int sharedmemsize = 0; // Host // int *inarrayDev = NULL; int *outarrayDev = NULL; // Device // int *inarrayHost = NULL; int *outarrayHost = NULL; // scan gridsize 1 // Kernel // int gridsize; int blocksize; // int *blocksumDev = NULL; // int blocksumsize; // scan int packnum; // CPU if (scanType == CPU_IN_SCAN) { // inarray Host Host // Host if (!hostinarray) { // Host inarrayHost = new int[memsize]; // cuerrcode = hipMemcpy(inarrayHost, inarray, memsize, hipMemcpyDeviceToHost); if (cuerrcode != hipSuccess) return cuerrcode; } else { // inarrayHost = inarray; } // outarray Host Host // Host if (!hostoutarray) { // Host outarrayHost = new int[memsize]; // cuerrcode = hipMemcpy(outarrayHost, outarray, memsize, hipMemcpyDeviceToHost); if (cuerrcode != hipSuccess) return cuerrcode; } else { // outarrayHost = outarray; } // inclusive scan errcode = scanComputeGold<int>(inarrayHost, outarrayHost, numelements, op, backward); // if (errcode != NO_ERROR) { // SCANFREE; return errcode; } // return NO_ERROR; } // inarray Host Device // Device if (hostinarray) { // cuerrcode = hipMalloc((void **)&inarrayDev, memsize); if (cuerrcode != hipSuccess) return cuerrcode; // cuerrcode = hipMemcpy(inarrayDev, inarray, memsize, hipMemcpyHostToDevice); if (cuerrcode != hipSuccess) return cuerrcode; } else { // inarrayDev = inarray; } // outarray Host Device // Device if (hostoutarray) { // cuerrcode = hipMalloc((void **)&outarrayDev, memsize); if (cuerrcode != hipSuccess) return cuerrcode; } else { // outarrayDev = outarray; } // switch(scanType) { // scan case NAIVE_SCAN: // Kernel // blocksize = BLOCK_SIZE; packnum = 1; // gridsize = max(1, (numelements + blocksize * packnum - 1) / blocksize); sharedmemsize = sizeof (int) * blocksize * packnum; // grid 1 // if (gridsize > 1) { // blocksumsize = gridsize - 1; // cuerrcode = hipMalloc((void **)&blocksumDev, blocksumsize * sizeof(int)); if (cuerrcode != hipSuccess) { hipFree(blocksumDev); return cuerrcode; } } // Kernel // hipLaunchKernelGGL(( _scanNaiveKer<int>), dim3(gridsize), dim3(blocksize), 2 * sharedmemsize, 0, outarrayDev, inarrayDev, blocksumDev, numelements, op, backward); // if (hipGetLastError() != hipSuccess) { // SCANFREE; return CUDA_ERROR; } break; // scan case EFFICIENT_SCAN: // Kernel // blocksize = BLOCK_SIZE; packnum = 2; // sharedmemsize = sizeof (int) * (blocksize * packnum); gridsize = max(1, (numelements + packnum * blocksize - 1) / (packnum * blocksize)); // grid 1 // if (gridsize > 1) { // blocksumsize = gridsize - 1; // cuerrcode = hipMalloc((void **)&blocksumDev, blocksumsize * sizeof(int)); if (cuerrcode != hipSuccess) { hipFree(blocksumDev); return cuerrcode; } } // Kernel // hipLaunchKernelGGL(( _scanWorkEfficientKer<int>), dim3(gridsize), dim3(blocksize), sharedmemsize, 0, outarrayDev, inarrayDev, blocksumDev, numelements, op, backward); // if (hipGetLastError() != hipSuccess) { // SCANFREE; return CUDA_ERROR; } break; // scan case OPTIMIZE_SCAN: // Kernel // blocksize = BLOCK_SIZE; packnum = 2; // gridsize = max(1, (numelements + packnum * blocksize - 1) / (packnum * blocksize)); sharedmemsize = sizeof (int) * (blocksize * packnum); // grid 1 // if (gridsize > 1) { // blocksumsize = gridsize - 1; // cuerrcode = hipMalloc((void **)&blocksumDev, blocksumsize * sizeof(int)); if (cuerrcode != hipSuccess) { hipFree(blocksumDev); return cuerrcode; } } // Kernel // hipLaunchKernelGGL(( _scanOptKer<int>), dim3(gridsize), dim3(blocksize), sharedmemsize, 0, outarrayDev, inarrayDev, blocksumDev, numelements, op, backward); // if (hipGetLastError() != hipSuccess) { // SCANFREE; return CUDA_ERROR; } break; // scan case BETTER_SCAN: // Kernel // blocksize = BLOCK_SIZE; packnum = 2; // gridsize = max(1, (numelements + packnum * blocksize - 1) / (packnum * blocksize)); extraspace = blocksize * packnum / NUM_BANKS;; sharedmemsize = sizeof (int) * (blocksize * packnum + extraspace); // grid 1 // if (gridsize > 1) { // blocksumsize = gridsize - 1; // cuerrcode = hipMalloc((void **)&blocksumDev, blocksumsize * sizeof(int)); if (cuerrcode != hipSuccess) { hipFree(blocksumDev); return cuerrcode; } } // Kernel // hipLaunchKernelGGL(( _scanBetterKer<int>), dim3(gridsize), dim3(blocksize), sharedmemsize, 0, outarrayDev, inarrayDev, blocksumDev, numelements, op, backward); // if (hipGetLastError() != hipSuccess) { // SCANFREE; return CUDA_ERROR; } break; // default: if (hostinarray) hipFree(inarrayDev); if (hostoutarray) hipFree(outarrayDev); return INVALID_DATA; } // gird 1 scan // if (gridsize > 1) { // // errcode = scanArray(blocksumDev, blocksumDev, blocksumsize, op, backward, false, false); if (errcode != NO_ERROR) { // SCANFREE; return errcode; } // errcode = addBack(outarrayDev, blocksumDev, numelements, blocksize, packnum, op, backward); if (errcode != NO_ERROR) { // SCANFREE; return errcode; } // hipFree(blocksumDev); } // outarray Host if (hostoutarray) { // cuerrcode = hipMemcpy(outarray, outarrayDev, memsize, hipMemcpyDeviceToHost); if (cuerrcode != hipSuccess) { if (hostinarray) hipFree(inarrayDev); hipFree(outarrayDev); return cuerrcode; } } // Device host if (hostinarray) hipFree(inarrayDev); if (hostoutarray) hipFree(outarrayDev); // return NO_ERROR; } // void example() { // ScanArray ScanArray s; // unsigned int num_elements = 1024; // const unsigned int mem_size = sizeof(float) * num_elements; const unsigned int mem_size1 = sizeof(int) * num_elements; // float float *inarray = new float[mem_size]; float *outarray = new float[mem_size]; // int int *inarray1 = new int[mem_size1]; int *outarray1 = new int[mem_size1]; // NAIVE_SCAN s.setScanType(NAIVE_SCAN); // host bool inhost, outhost; inhost = true; outhost = true; // add_class<float> a; multi_class<float> m; max_class<float> max; min_class<float> min; add_class<int> a1; multi_class<int> m1; max_class<int> max1; min_class<int> min1; // float int s.scanArray(inarray, outarray, num_elements, a, false, inhost, outhost); s.scanArray(inarray1, outarray1, num_elements, a1, false, inhost, outhost); s.scanArray(inarray, outarray, num_elements, m, false, inhost, outhost); s.scanArray(inarray1, outarray1, num_elements, m1, false, inhost, outhost); s.scanArray(inarray, outarray, num_elements, max, false, inhost, outhost); s.scanArray(inarray1, outarray1, num_elements, max1, false, inhost, outhost); s.scanArray(inarray, outarray, num_elements, min, false, inhost, outhost); s.scanArray(inarray1, outarray1, num_elements, min1, false, inhost, outhost); } // #undef SCANFREE
b7ca86e7666589c17b16783cdeaed19b833262f2.cu
// ScanArray.cu // 找出图像中给定点集的包围矩形 #include "ScanArray.h" #include "OperationFunctor.h" #include <iostream> #include <stdio.h> using namespace std; #define BLOCK_SIZE 1024 // 宏:NUM_BANKS // 定义了bank的数量。 #define NUM_BANKS 16 // 宏:LOG_NUM_BANKS // 定义了bank的对数值。 #define LOG_NUM_BANKS 4 // Kernel 函数: _scanNaiveKer(数组扫描的简单版本) // 简单版本的 scan 实现,每个线程处理一个元素。运行 log(n) 步, // 加 n * (log(n) - 1) 次。需要 2 * n 长度的贡献内存。 template < class T, class Operation > __global__ void // Kernel 函数无返回值 _scanNaiveKer( T *outarray, // 输入数组 T *inarray, // 输出数组 T *blocksum, // 扫描的中间结果数组,用于存放每块扫描结果的最后一 // 个值,不处理最后一个线程块。少于一块时不处理。 int n, // 元素个数,数组长度 Operation op, // 运算符类型 bool backward // 判断是否为后序扫描 ); // Kernel 函数: _scanWorkEfficientKer(数组扫描的效率版本) // 效率版本的 scan 实现,每个线程处理两个元素。复杂度是 O(log(n)),需要加法的次 // 数为 O(n)。共享内存长度为 n,使用 balanced tree 算法。 // 来源一为:Blelloch,1990 "Prefix Sums and Their Applications"。 // http://www.cs.cmu.edu/~blelloch/papers/Ble93.pdf // 来源二为:Prins and Chatterjee PRAM course notes: // https://www.cs.unc.edu/~prins/Classes/633/Handouts/pram.pdf template < class T, class Operation > __global__ void // Kernel 函数无返回值 _scanWorkEfficientKer( T *outarray, // 输入数组 T *inarray, // 输出数组 T *blocksum, // 扫描的中间结果数组,用于存放每块扫描结果的最后一 // 个值,不处理最后一个线程块。少于一块时不处理。 int n, // 元素个数,数组长度 Operation op, // 运算符类型 bool backward // 判断是否为后序扫描 ); // Kernel 函数: _scanOptKer(数组扫描的优化版本) // 优化版本的 scan 实现,每个线程处理两个原色。复杂度是 O(log(n)),需要加法的次 // 数为 O(n)。共享内存不检查冲突。 // 使用 balanced tree 算法。 // 来源一为:Blelloch,1990 "Prefix Sums and Their Applications"。 // http://www.cs.cmu.edu/~blelloch/papers/Ble93.pdf // 来源二为:Prins and Chatterjee PRAM course notes: // https://www.cs.unc.edu/~prins/Classes/633/Handouts/pram.pdf template < class T, class Operation > __global__ void // Kernel 函数无返回值 _scanOptKer( T *outarray, // 输入数组 T *inarray, // 输出数组 T *blocksum, // 扫描的中间结果数组,用于存放每块扫描结果的最后一 // 个值,不处理最后一个线程块。少于一块时不处理。 int n, // 元素个数,数组长度 Operation op, // 运算类型 bool backward // 判断是否为后序扫描 ); // Kernel 函数: _scanBetterKer(数组扫描的较优版本) // 优化版本的 scan 实现,每个线程处理两个原色。复杂度是 O(log(n)),需要加法的次 // 数为 O(n)。共享内存的长度为了避免冲突,设计为 n + n / NUM_BANKS。 // 使用 balanced tree 算法。 // 来源一为:Blelloch,1990 "Prefix Sums and Their Applications"。 // http://www.cs.cmu.edu/~blelloch/papers/Ble93.pdf // 来源二为:Prins and Chatterjee PRAM course notes: // https://www.cs.unc.edu/~prins/Classes/633/Handouts/pram.pdf template < class T, class Operation > __global__ void // Kernel 函数无返回值 _scanBetterKer( T *outarray, // 输入数组 T *inarray, // 输出数组 T *blocksum, // 扫描的中间结果数组,用于存放每块扫描结果的最后一 // 个值,不处理最后一个线程块。少于一块时不处理。 int n, // 元素个数,数组长度 Operation op, // 运算类型 bool backward // 判断是否为后序扫描 ); // 函数:scanComputeGold(CPU 端的 inclusive 类型数组计算) // 对一个数组进行扫描,对所有元素进行某操作的遍历,操作包含自身。 template < class T, class Operation > __host__ int // 返回值:函数是否正确执行,若函数正确 // 执行,返回 NO_ERROR。 scanComputeGold( T *inarray, // 输入数组 T *reference, // 输出数组 const unsigned int len, // 数组的长度,处理元素的个数。 Operation op, // 运算类型 bool backward // 判断是否为后序扫描 ); // Kernel 函数: _addBackKer(中间结果数组加回操作) // 对一个数组进行初始扫描后,将中间结果的小数组(原扫描数组每段最后一个元素)加 // 回到原扫描数组。 template < class T, class Operation > __global__ void // Kernel 函数无返回值 _addBackKer( T *array, // 初始扫描后的数组。 T *lastelemarray, // 中间结果数组,原扫描数组每段的最后一个元素提 // 取出来即为中间结果数组。 int n, // 元素个数,数组长度 int packnum, // 扫描核函数每块计算能力,即核函数每块的处理长 // 度与线程块大小的比值。 Operation op, // 运算类型 bool backward // 判断是否为后序扫描 ); // Kernel 函数: _scanNaiveKer(数组扫描的简单版本) template < class T, class Operation > __global__ void _scanNaiveKer(T *outarray, T *inarray, T *blocksum, int n, Operation op, bool backward) { // 声明共享内存。 extern __shared__ unsigned char sharedmemo[]; // 转化为模板类型的共享内存。 T *sharedmem = (T *)sharedmemo; // 数组索引(块内索引为 threadIdx.x)。 int idx = blockIdx.x * blockDim.x + threadIdx.x; // 定义共享内存中计算位置的两个变量。 // 共享内存大小是两倍的输入长度,所以通过 pout 和 pin 指针来控制计算位置。 T *pout = sharedmem; T *pin = sharedmem + blockDim.x; // 将需要计算的值从输入加载到共享内存上。大于数组长度的位置置为 0。 if (idx < n) pout[threadIdx.x] = inarray[idx]; else pout[threadIdx.x] = op.identity(); // 扫描过程,通过偏移量的控制,在两倍输入长度的共享内存上进行切换计算。 // 每次循环偏移量扩大 2 倍,这样能够实现不断的层次累加。最终实现 scan 的处 // 理效果。 if (!backward) { for (int offset = 1; offset < blockDim.x; offset *= 2) { // 共享内存大小是两倍的输入长度,所以通过 pout 和 pin 指针交换来换位 // 置进行处理,即计算值不覆盖原值。 T *ptemp; ptemp = pout; pout = pin; pin = ptemp; __syncthreads(); // 将所有当前的 scan 计算值,从共享内存的一侧复制到另一侧 // 一侧指共享内存采用两倍的输入数组的长度,即 double buffer。 pout[threadIdx.x] = pin[threadIdx.x]; // 如果线程索引大于偏移,那么要计算当前位置和当前位置减去偏移量处的 // 加和 if (threadIdx.x >= offset) pout[threadIdx.x] = op(pout[threadIdx.x], pin[threadIdx.x - offset]); } // 进行块内同步。 __syncthreads(); // 超出数组长度 n 的值不进行写入,直接返回。 if (idx >= n) return; // 将结果从共享内存写入到输出。 outarray[idx] = pout[threadIdx.x]; // 如果中间结果数组为空,不进行处理直接返回。 if (blocksum == NULL) return; // 每块的最后一个线程,将每段处理的最后一个元素写入中间结果数组。最后一 // 个线程块不进行处理。 if (threadIdx.x == blockDim.x - 1 && blockIdx.x < gridDim.x - 1) { blocksum[blockIdx.x] = pout[threadIdx.x]; } } else { for (int offset = 1; offset < blockDim.x; offset *= 2) { // 共享内存大小是两倍的输入长度,所以通过 pout 和 pin 指针交换来换位 // 置进行处理,即计算值不覆盖原值。 T *ptemp; ptemp = pout; pout = pin; pin = ptemp; __syncthreads(); // 将所有当前的 scan 计算值,从共享内存的一侧复制到另一侧 // 一侧指共享内存采用两倍的输入数组的长度,即 double buffer。 pout[threadIdx.x] = pin[threadIdx.x]; // 如果线程索引加上偏移量小于块长,那么要计算当前位置和当前位置加上 // 偏移量处的加和 if (threadIdx.x + offset < blockDim.x) pout[threadIdx.x] = op(pin[threadIdx.x], pin[threadIdx.x + offset]); } // 进行块内同步。 __syncthreads(); // 超出数组长度 n 的值不进行写入,直接返回。 if (idx >= n) return; // 将结果从共享内存写入到输出。 outarray[idx] = pout[threadIdx.x]; // 如果中间结果数组为空,不进行处理直接返回。 if (blocksum == NULL) return; // 每块的第一个线程,将每段处理的第一个元素写入中间结果数组。第一个线 // 程块不进行处理。 if (threadIdx.x == 0 && blockIdx.x > 0) { blocksum[blockIdx.x - 1] = pout[threadIdx.x]; } } } // Kernel 函数: _scanWorkEfficientKer(数组扫描的效率版本) template < class T, class Operation > __global__ void _scanWorkEfficientKer(T *outarray, T *inarray, T *blocksum, int n, Operation op, bool backward) { // 声明共享内存。 extern __shared__ unsigned char sharedmemo[]; // 转化为模板类型的共享内存。 T *sharedmem = (T *)sharedmemo; // 定义块内索引。 int baseidx = 2 * blockIdx.x * blockDim.x; int inidx = 2 * threadIdx.x; int idx = baseidx + inidx; // 定义偏移量 offset。 int offset = 1; // 定义核函数每块的处理数组长度。 int length = blockDim.x * 2; // 将需要计算的值从输入加载到共享内存上。每个线程处理两个元素(相邻元素) sharedmem[inidx] = (idx < n) ? inarray[idx] : op.identity(); sharedmem[inidx + 1] = (idx + 1 < n) ? inarray[idx + 1] : op.identity(); // scan 的累加过程,自底向上进行累加操作。 if (!backward) { for (int d = blockDim.x; d > 0; d >>= 1) { // 进行块内同步。 __syncthreads(); // 当线程索引小于处理的范围 d,进行累加。 if (threadIdx.x < d) { // 计算处理位置的索引。 int ai = offset * (inidx + 1) - 1; int bi = offset * (inidx + 2) - 1; // 累加。通过这样的过程使得最终最后一位的值是之前所有值 scan 操 // 作的结果。 sharedmem[bi] = op(sharedmem[bi], sharedmem[ai]); } // 偏移量每次扩大 2 倍。 offset *= 2; } // 配合自顶向下的回扫过程,清除最后一个位置上的值。 if (threadIdx.x == 0) { // 根据运算类型不同,最后一个位置赋为不同的单位元。 sharedmem[length - 1] = op.identity(); } // 自顶向下回扫,这样能够使每一位上算出需要的 scan 值。 // 回扫即把上一步的计算结果进行累加。 for (int d = 1; d < length; d *= 2) { // 回扫过程中,每次偏移量缩小2倍。 offset >>= 1; // 进行块内同步。 __syncthreads(); // 当线程索引小于处理的范围 d,进行回扫累加的过程。 if (threadIdx.x < d) { // 计算处理位置的索引。 int ai = offset * (inidx + 1) - 1; int bi = offset * (inidx + 2) - 1; // 将 ai 位置处的值拷贝出来加到 bi 处,ai 的新值为 bi 原值。 T t = sharedmem[ai]; sharedmem[ai] = sharedmem[bi]; sharedmem[bi] = op(sharedmem[bi], t); } } // 进行块内同步。 __syncthreads(); // 超出数组长度 n 的值不进行写入,直接返回。 if (idx >= n) return; // 将结果从共享内存写入到输出。 outarray[idx] = sharedmem[inidx + 1]; // 超出数组长度 n 的值不进行写入,直接返回。 if (idx + 1 >= n) return; // 判断是否为当前块处理数组的最后一个元素 if ((inidx + 1) == (2 * blockDim.x - 1)) // 是最后一个元素的话,需要与对应输入数组位置上的元素进行运算 outarray[idx + 1] = op(sharedmem[inidx + 1], inarray[idx + 1]); else // 每个线程处理的下一个元素,将结果从共享内存写入到输出。 outarray[idx + 1] = sharedmem[inidx + 2]; // 如果中间结果数组为空,不进行处理直接返回。 if (blocksum == NULL) return; // 每块的最后一个线程,将每段处理的最后一个元素写入中间结果数组。最后一 // 个线程块不进行处理。 if (threadIdx.x == blockDim.x - 1 && blockIdx.x < gridDim.x - 1) { blocksum[blockIdx.x] = outarray[idx + 1]; } } else { for (int d = blockDim.x; d > 0; d >>= 1) { // 进行块内同步。 __syncthreads(); // 当线程索引小于处理的范围 d,进行累加。 if (threadIdx.x < d) { // 计算处理位置的索引。 int ai = offset * inidx; int bi = offset * (inidx + 1); // 累加。通过这样的过程使得最终第一位的值是之前所有值 scan 操 // 作的结果。 sharedmem[ai] = op(sharedmem[bi], sharedmem[ai]); } // 偏移量每次扩大 2 倍。 offset *= 2; } // 配合自顶向下的回扫过程,清除第一个位置上的值。 if (threadIdx.x == 0) { // 根据运算类型不同,第一个位置赋为不同的单位元。 sharedmem[0] = op.identity(); } // 自顶向下回扫,这样能够使每一位上算出需要的 scan 值。 // 回扫即把上一步的计算结果进行累加。 for (int d = 1; d < length; d *= 2) { // 回扫过程中,每次偏移量缩小2倍。 offset >>= 1; // 进行块内同步。 __syncthreads(); // 当线程索引小于处理的范围 d,进行回扫累加的过程。 if (threadIdx.x < d) { // 计算处理位置的索引。 int ai = offset * inidx; int bi = offset * (inidx + 1); // 将 bi 位置处的值拷贝出来加到 ai 处,bi 的新值为 ai 原值。 T t = sharedmem[bi]; sharedmem[bi] = sharedmem[ai]; sharedmem[ai] = op(sharedmem[ai], t); } } // 进行块内同步。 __syncthreads(); // 超出数组长度 n 的值不进行写入,直接返回。 if (idx >= n) return; // 判断是否为当前块处理数组的第一个元素 if (inidx == 0) // 是第一个元素的话,需要与对应输入数组位置上的元素进行运算 outarray[idx] = op(sharedmem[inidx], inarray[idx]); else // 将结果从共享内存写入到输出。 outarray[idx] = sharedmem[inidx - 1]; // 超出数组长度 n 的值不进行写入,直接返回。 if (idx + 1 < n) { // 每个线程处理的下一个元素,将结果从共享内存写入到输出。 outarray[idx + 1] = sharedmem[inidx]; } // 如果中间结果数组为空,不进行处理直接返回。 if (blocksum == NULL) return; // 每块的第一个线程,将每段处理的第一个元素写入中间结果数组。第一个线程 // 块不进行处理。 if (threadIdx.x == 0 && blockIdx.x > 0) { blocksum[blockIdx.x - 1] = outarray[idx]; } } } // Kernel 函数: _scanOptKer(数组扫描的优化版本) template < class T, class Operation > __global__ void _scanOptKer(T *outarray, T *inarray, T *blocksum, int n, Operation op, bool backward) { // 声明共享内存。 extern __shared__ unsigned char sharedmemo[]; // 转化为模板类型的共享内存。 T *sharedmem = (T *)sharedmemo; // 定义块内索引。 int baseidx = 2 * blockIdx.x * blockDim.x; // 定义核函数每块的处理数组长度。 int length = blockDim.x * 2; // 定义计算位置的索引(块内)。 int ai = threadIdx.x; int bi = threadIdx.x + blockDim.x; // 定义数组索引(块外)。 int aindex = baseidx + ai; int bindex = baseidx + bi; // 将需要计算的值从输入加载到共享内存上。每个线程处理两个元素。 sharedmem[ai] = (aindex < n) ? inarray[aindex] : op.identity(); sharedmem[bi] = (bindex < n) ? inarray[bindex] : op.identity(); // 定义偏移值 offset。 int offset = 1; if (!backward) { // scan 的累加过程,自底向上进行累加操作。 for (int d = blockDim.x; d > 0; d >>= 1) { // 进行块内同步。 __syncthreads(); // 当线程索引小于处理的范围 d,进行累加。 if (threadIdx.x < d) { // 计算处理位置的索引。 int ai = offset * (2 * threadIdx.x + 1) - 1; int bi = offset * (2 * threadIdx.x + 2) - 1; // 累加。通过这样的过程使得最终最后一位的值是之前所有值 scan 操 // 作的结果。 sharedmem[bi] = op(sharedmem[bi], sharedmem[ai]); } // 偏移量每次扩大 2 倍。 offset *= 2; } // 配合自顶向下的回扫过程,清除最后一个位置上的值。 if (threadIdx.x == 0) { int index = length - 1; // 根据运算符类型,数组最后一个位置设为不同的单位元 sharedmem[index] = op.identity(); } // 自顶向下回扫,这样能够使每一位上算出需要的 scan 值。 // 回扫即把上一步的计算结果进行累加。 for (int d = 1; d < length; d *= 2) { // 回扫过程中,每次偏移量缩小2倍。 offset /= 2; // 进行块内同步。 __syncthreads(); // 当线程索引小于处理的范围 d,进行回扫累加的过程。 if (threadIdx.x < d) { // 计算处理位置的索引。 int ai = offset * (2 * threadIdx.x + 1) - 1; int bi = offset * (2 * threadIdx.x + 2) - 1; // 将 ai 位置处的值拷贝出来加到 bi 处,ai 的新值为 bi 原值。 T t = sharedmem[ai]; sharedmem[ai] = sharedmem[bi]; sharedmem[bi] = op(sharedmem[bi], t); } } // 进行块内同步。 __syncthreads(); // 超出数组长度 n 的值不进行写入,直接返回。 if (aindex >= n) return; // 将结果从共享内存写入到输出。 outarray[aindex] = sharedmem[ai + 1]; // 超出数组长度 n 的值不进行写入,直接返回。 if (bindex >= n) return; // 判断是否为当前块处理数组的最后一个元素 if (bi == (2 * blockDim.x - 1)) // 是最后一个元素的话,需要与对应输入数组位置上的元素进行运算 outarray[bindex] = op(sharedmem[bi], inarray[bindex]); else // 每个线程处理的下一个元素,将结果从共享内存写入到输出。 outarray[bindex] = sharedmem[bi + 1]; // 如果中间结果数组为空,不进行处理直接返回。 if (blocksum == NULL) return; // 每块的最后一个线程,将每段处理的最后一个元素写入中间结果数组。最后一个线 // 程块不进行处理。 if (threadIdx.x == blockDim.x - 1 && blockIdx.x < gridDim.x - 1) { blocksum[blockIdx.x] = outarray[bindex]; } } else { // scan 的累加过程,自底向上进行累加操作。 for (int d = blockDim.x; d > 0; d >>= 1) { // 进行块内同步。 __syncthreads(); // 当线程索引小于处理的范围 d,进行累加。 if (threadIdx.x < d) { // 计算处理位置的索引。 int ai = offset * 2 * threadIdx.x; int bi = offset * (2 * threadIdx.x + 1); // 累加。通过这样的过程使得最终第一位的值是之前所有值 scan 操 // 作的结果。 sharedmem[ai] = op(sharedmem[bi], sharedmem[ai]); } // 偏移量每次扩大 2 倍。 offset *= 2; } // 配合自顶向下的回扫过程,清除第一个位置上的值。 if (threadIdx.x == 0) { int index = 0; // 根据运算符类型,数组第一个位置设为不同的单位元 sharedmem[index] = op.identity(); } // 自顶向下回扫,这样能够使每一位上算出需要的 scan 值。 // 回扫即把上一步的计算结果进行累加。 for (int d = 1; d < length; d *= 2) { // 回扫过程中,每次偏移量缩小2倍。 offset /= 2; // 进行块内同步。 __syncthreads(); // 当线程索引小于处理的范围 d,进行回扫累加的过程。 if (threadIdx.x < d) { // 计算处理位置的索引。 int ai = offset * 2 * threadIdx.x; int bi = offset * (2 * threadIdx.x + 1); // 将 bi 位置处的值拷贝出来加到 ai 处,bi 的新值为 ai 原值。 T t = sharedmem[bi]; sharedmem[bi] = sharedmem[ai]; sharedmem[ai] = op(sharedmem[ai], t); } } // 进行块内同步。 __syncthreads(); // 超出数组长度 n 的值不进行写入,直接返回。 if (aindex >= n) return; // 判断是否为当前块处理数组的第一个元素 if (ai == 0) // 是第一个元素的话,需要与对应输入数组位置上的元素进行运算 outarray[aindex] = op(sharedmem[ai], inarray[aindex]); else // 将结果从共享内存写入到输出。 outarray[aindex] = sharedmem[ai - 1]; // 超出数组长度 n 的值不进行写入,直接返回。 if (bindex < n) { // 每个线程处理的下一个元素,将结果从共享内存写入到输出。 outarray[bindex] = sharedmem[bi - 1]; } // 如果中间结果数组为空,不进行处理直接返回。 if (blocksum == NULL) return; // 每块的第一个线程,将每段处理的第一个元素写入中间结果数组。第一个线 // 程块不进行处理。 if (threadIdx.x == 0 && blockIdx.x > 0) { blocksum[blockIdx.x - 1] = outarray[aindex]; } } } // 宏:CONFLICT_FREE_OFFSET // 定义此是为了更严格的避免 bank conflicts,即使在树的低层上。 #ifdef ZERO_BANK_CONFLICTS # define CONFLICT_FREE_OFFSET(index) \ (((index) >> LOG_NUM_BANKS) + ((index) >> (2 * LOG_NUM_BANKS))) #else # define CONFLICT_FREE_OFFSET(index) ((index) >> LOG_NUM_BANKS) #endif // Kernel 函数: _scanBetterKer(数组扫描的Better版本) template < class T, class Operation > __global__ void _scanBetterKer(T *outarray, T *inarray, T *blocksum, int n, Operation op, bool backward) { // 声明共享内存。 extern __shared__ unsigned char sharedmemo[]; // 转化为模板类型的共享内存。 T *sharedmem = (T *)sharedmemo; // 本地变量,基索引。 int baseidx = 2 * blockIdx.x * blockDim.x; int idx = threadIdx.x + blockDim.x; // 定义核函数每块的处理数组长度。 int length = blockDim.x * 2; // 定义计算位置的索引(块内,加上 bankOffset)。 int ai = threadIdx.x + CONFLICT_FREE_OFFSET(threadIdx.x); int bi = idx + CONFLICT_FREE_OFFSET(idx); // 定义数组索引(块外)。 int aindex = baseidx + threadIdx.x; int bindex = aindex + blockDim.x; // 将需要计算的值从输入加载到共享内存上。每个线程处理两个元素。 sharedmem[ai] = (aindex < n) ? inarray[aindex] : op.identity(); sharedmem[bi] = (bindex < n) ? inarray[bindex] : op.identity(); // 定义偏移值 offset。 int offset = 1; if (!backward) { // scan 的累加过程,自底向上进行累加操作。 for (int d = blockDim.x; d > 0; d >>= 1) { // 进行块内同步。 __syncthreads(); // 当线程索引小于处理的范围 d,进行累加。 if (threadIdx.x < d) { // 计算处理位置的索引。 int ci = offset * (2 * threadIdx.x + 1) - 1; int di = offset * (2 * threadIdx.x + 2) - 1; // 避免 bank conflicts,修改计算位置索引。 ci += CONFLICT_FREE_OFFSET(ci); di += CONFLICT_FREE_OFFSET(di); // 累加。通过这样的过程使得最终最后一位的值是之前所有值 scan 操 // 作的结果。 sharedmem[di] = op(sharedmem[di], sharedmem[ci]); } // 偏移量每次扩大 2 倍。 offset *= 2; } // 配合自顶向下的回扫过程,清除最后一个位置上的值。 if (threadIdx.x == 0) { int index = length - 1; // 避免 bank conflicts,重新计算索引。 index += CONFLICT_FREE_OFFSET(index); // 根据运算符类型,数组最后一个位置设为不同的单位元。 sharedmem[index] = op.identity(); } // 自顶向下回扫,这样能够使每一位上算出需要的 scan 值。 // 回扫即把上一步的计算结果进行累加。 for (int d = 1; d < length; d *= 2) { // 回扫过程中,每次偏移量缩小2倍。 offset /= 2; // 进行块内同步。 __syncthreads(); // 当线程索引小于处理的范围 d,进行回扫累加的过程。 if (threadIdx.x < d) { // 计算处理位置的索引。 int ci = offset * (2 * threadIdx.x + 1) - 1; int di = offset * (2 * threadIdx.x + 2) - 1; // 避免 bank conflicts,重新计算索引。 ci += CONFLICT_FREE_OFFSET(ci); di += CONFLICT_FREE_OFFSET(di); // 将 ai 位置处的值拷贝出来加到 bi 处,ai 的新值为 bi 原值。 T t = sharedmem[ci]; sharedmem[ci] = sharedmem[di]; sharedmem[di] = op(sharedmem[di], t); } } // 进行块内同步。 __syncthreads(); // 超出数组长度 n 的值不进行写入,直接返回。 if (aindex >= n) return; // 将结果从共享内存写入到输出。 outarray[aindex] = op(sharedmem[ai], inarray[aindex]); // 超出数组长度 n 的值不进行写入,直接返回。 if (bindex >= n) return; // 每个线程处理的下一个元素,将结果从共享内存写入到输出。 outarray[bindex] = op(sharedmem[bi], inarray[bindex]); // 如果中间结果数组为空,不进行处理直接返回。 if (blocksum == NULL) return; // 每块的最后一个线程,将每段处理的最后一个元素写入中间结果数组。最后一个线 // 程块不进行处理。 if (threadIdx.x == blockDim.x - 1 && blockIdx.x < gridDim.x - 1) { blocksum[blockIdx.x] = outarray[bindex]; } } else { // scan 的累加过程,自底向上进行累加操作。 for (int d = blockDim.x; d > 0; d >>= 1) { // 进行块内同步。 __syncthreads(); // 当线程索引小于处理的范围 d,进行累加。 if (threadIdx.x < d) { // 计算处理位置的索引。 int ci = offset * 2 * threadIdx.x; int di = offset * (2 * threadIdx.x + 1); // 避免 bank conflicts,修改计算位置索引。 ci += CONFLICT_FREE_OFFSET(ci); di += CONFLICT_FREE_OFFSET(di); // 累加。通过这样的过程使得最终第一位的值是之前所有值 scan 操 // 作的结果。 sharedmem[ci] = op(sharedmem[di], sharedmem[ci]); } // 偏移量每次扩大 2 倍。 offset *= 2; } // 配合自顶向下的回扫过程,清除第一个位置上的值。 if (threadIdx.x == 0) { int index = 0; // 避免 bank conflicts,重新计算索引。 index += CONFLICT_FREE_OFFSET(index); // 根据运算符类型,数组第一个位置设为不同的单位元。 sharedmem[index] = op.identity(); } // 自顶向下回扫,这样能够使每一位上算出需要的 scan 值。 // 回扫即把上一步的计算结果进行累加。 for (int d = 1; d < length; d *= 2) { // 回扫过程中,每次偏移量缩小2倍。 offset /= 2; // 进行块内同步。 __syncthreads(); // 当线程索引小于处理的范围 d,进行回扫累加的过程。 if (threadIdx.x < d) { // 计算处理位置的索引。 int ci = offset * 2 * threadIdx.x; int di = offset * (2 * threadIdx.x + 1); // 避免 bank conflicts,重新计算索引。 ci += CONFLICT_FREE_OFFSET(ci); di += CONFLICT_FREE_OFFSET(di); // 将 di 位置处的值拷贝出来加到 ci 处,di 的新值为 ci 原值。 T t = sharedmem[di]; sharedmem[di] = sharedmem[ci]; sharedmem[ci] = op(sharedmem[ci], t); } } // 进行块内同步。 __syncthreads(); // 超出数组长度 n 的值不进行写入,直接返回。 if (aindex >= n) return; // 处理的第一个元素,需要与对应输入数组位置上的元素进行运算 outarray[aindex] = op(sharedmem[ai], inarray[aindex]); // 超出数组长度 n 的值不进行写入,直接返回。 if (bindex < n) { // 每个线程处理的下一个元素,将结果从共享内存写入到输出。 outarray[bindex] = op(sharedmem[bi], inarray[bindex]); } // 如果中间结果数组为空,不进行处理直接返回。 if (blocksum == NULL) return; // 每块的第一个线程,将每段处理的第一个元素写入中间结果数组。第一个线 // 程块不进行处理。 if (threadIdx.x == 0 && blockIdx.x > 0) { blocksum[blockIdx.x - 1] = outarray[baseidx]; } } } // 函数:scanComputeGold(CPU 端的 inclusive 类型数组计算) template < class T, class Operation > __host__ int scanComputeGold(T *inarray, T *reference, const unsigned int len, Operation op, bool backward) { // 计数器变量 int i; if (!backward) { // 初始化第一个输出元素为 inarray[0] reference[0] = inarray[0]; for (i = 1; i < len; ++i) { // 前序迭代累加计算 reference[i] = op(inarray[i], reference[i-1]); } } else { // 初始化最后一个输出元素为 inarray[len - 1] reference[len - 1] = inarray[len - 1]; for (i = len - 2; i >= 0; i--) { // 后序迭代累加计算 reference[i] = op(inarray[i], reference[i+1]); } } // 处理完毕退出。 return NO_ERROR; } // Kernel 函数: _addBackKer(中间结果数组加回操作) template < class T, class Operation > __global__ void _addBackKer(T *array, T *lastelemarray, int n, int packnum, Operation op, bool backward) { // 声明共享内存。用来存放中间结果小数组中的元素,也就是原数组的每段最后 // 一个或第一个元素。 __shared__ T lastelement[1]; if (!backward) { // 用每块的第一个线程来读取每块前一块的最后一个元素,从中间结果数组中读 // 取。 if (threadIdx.x == 0) lastelement[0] = lastelemarray[blockIdx.x]; // 计算需要进行块间累加位置索引(块外的数组索引)。 unsigned int idx = (blockIdx.x + 1) * (blockDim.x * packnum) + threadIdx.x; // 块内同步。 __syncthreads(); // 每个线程处理两个元素,将中间结果数组中的值加回到原数组。 for (int i = 0; i < packnum; i++) { // 如果索引大于处理数组长度,则退出。 if (idx >= n) break; // 将中间结果加回。 array[idx] = op(array[idx],lastelement[0]); // 计算每个线程处理的下一个元素的索引值。 idx += blockDim.x; } } else { // 用每块的第一个线程来读取每块后一块的第一个元素,从中间结果数组中读 // 取。 if (threadIdx.x == 0) { lastelement[0] = lastelemarray[blockIdx.x]; } // 计算需要进行块间累加位置索引(块外的数组索引)。 unsigned int idx = blockIdx.x * (blockDim.x * packnum) + threadIdx.x; // 块内同步。 __syncthreads(); // 每个线程处理两个元素,将中间结果数组中的值加回到原数组。 for (int i = 0; i < packnum; i++) { // 如果索引大于处理数组长度,则退出。 if (idx >= n) break; // 将中间结果加回。 array[idx] = op(array[idx], lastelement[0]); // 计算每个线程处理的下一个元素的索引值。 idx += blockDim.x; } } } // Host 成员方法:addBack(float 型的中间结果加回) template< class Operation > __host__ int ScanArray::addBack(float *array, float *lastelemarray, int numelements, int blocksize, int packnum, Operation op, bool backward) { // 检查输入和输出是否为 NULL,如果为 NULL 直接报错返回。 if (array == NULL || lastelemarray == NULL) return NULL_POINTER; // 检查处理的数组长度,如果小于 0 出错。 if (numelements < 0) return INVALID_DATA; // 计算线程块大小。 int gridsize = (numelements + blocksize * packnum - 1) / (blocksize * packnum) - 1; // 判断 gridsize 大小,如果小于 1,则不用进行加回操作。返回正确。 if (gridsize < 1) return NO_ERROR; // 调用 _addBackKer 核函数,将中间结果数组加回到原扫描数组。 _addBackKer<<<gridsize, blocksize>>>(array, lastelemarray, numelements, packnum, op, backward); // 判断是否出错。 if (cudaGetLastError() != cudaSuccess) return CUDA_ERROR; // 处理完毕退出。 return NO_ERROR; } // Host 成员方法:addBack(int 型的中间结果加回) template< class Operation > __host__ int ScanArray::addBack(int *array, int *lastelemarray, int numelements, int blocksize, int packnum, Operation op, bool backward) { // 检查输入和输出是否为 NULL,如果为 NULL 直接报错返回。 if (array == NULL || lastelemarray == NULL) return NULL_POINTER; // 检查处理的数组长度,如果小于 0 出错。 if (numelements < 0) return INVALID_DATA; // 计算线程块大小。 int gridsize = (numelements + blocksize * packnum - 1) / (blocksize * packnum) - 1; // 判断 gridsize 大小,如果小于 1,则不用进行加回操作。返回正确。 if (gridsize < 1) return NO_ERROR; // 调用 _addBackKer 核函数,将中间结果数组加回到原扫描数组。 _addBackKer<<<gridsize, blocksize>>>(array, lastelemarray, numelements, packnum, op, backward); // 判断是否出错。 if (cudaGetLastError() != cudaSuccess) return CUDA_ERROR; // 处理完毕退出。 return NO_ERROR; } // 宏:SCANFREE // 如果出错,就释放之前申请的内存。 #define SCANFREE do { \ if (gridsize > 1) \ cudaFree(blocksumDev); \ if (hostinarray) \ cudaFree(inarrayDev); \ if (hostoutarray) \ cudaFree(outarrayDev); \ if (!hostinarray) \ delete inarrayHost; \ if (!hostoutarray) \ delete outarrayHost; \ } while (0) // Host 成员方法:scanArray(float 型的数组扫描) template< class Operation > __host__ int ScanArray::scanArray(float *inarray, float *outarray, int numelements, Operation op, bool backward, bool hostinarray, bool hostoutarray) { // 检查输入和输出是否为 NULL,如果为 NULL 直接报错返回。 if (inarray == NULL || outarray == NULL) return NULL_POINTER; // 本程序实现的 4 种方法可处理的数组长度。必须加以判断控制。 if (numelements < 0) return INVALID_DATA; // 局部变量,错误码。 cudaError_t cuerrcode; int errcode; // 局部变量。 const unsigned int memsize = sizeof (float) * numelements; unsigned int extraspace; // 计算共享内存的长度。 unsigned int sharedmemsize = 0; // 定义设备端的输入输出数组指针,当输入输出指针在 Host 端时,在设备端申请对 // 应大小的数组。 float *inarrayDev = NULL; float *outarrayDev = NULL; // 定义主机端的输入输出数组指针,当输入输出指针在 Device 端时,在主机端申请 // 对应大小的数组。 float *inarrayHost = NULL; float *outarrayHost = NULL; // 这里 scan 实现只支持单个线程块的计算,这里的 gridsize 可以设置的大于 1, // 从而让多个线程块都运行相同程序来测速。计算调用 Kernel 函数的线程块的尺寸 // 和线程块的数量。 int gridsize; int blocksize; // 局部变量,中间结果存放数组。长度会根据线程块大小来确定。 float *blocksumDev = NULL; // 中间结果数组的长度。 int blocksumsize; // scan 算法中每个线程块的计算能力。核函数每块处理长度与线程块大小的比值。 int packnum; // 针对 CPU 端的实现类型,选择路径进行处理。 if (scanType == CPU_IN_SCAN) { // 判断当前 inarray 数组是否存储在 Host 端。若不是,则需要在 Host 端 // 为数组申请一段空间;若该数组是在 Host 端,则直接使用。 if (!hostinarray) { // 为输入数组在 Host 端申请内存。 inarrayHost = new float[memsize]; // 将输入数组拷贝到主机端内存。 cuerrcode = cudaMemcpy(inarrayHost, inarray, memsize, cudaMemcpyDeviceToHost); if (cuerrcode != cudaSuccess) return cuerrcode; } else { // 如果在主机端,则将指针传给主机端指针。 inarrayHost = inarray; } // 判断当前 outarray 数组是否存储在 Host 端。若不是,则需要在 Host 端 // 为数组申请一段空间;若该数组是在 Host 端,则直接使用。 if (!hostoutarray) { // 为输出数组在 Host 端申请内存。 outarrayHost = new float[memsize]; // 将输出数组拷贝到主机端内存。 cuerrcode = cudaMemcpy(outarrayHost, outarray, memsize, cudaMemcpyDeviceToHost); if (cuerrcode != cudaSuccess) return cuerrcode; } else { // 如果在主机端,则将指针传给主机端指针。 outarrayHost = outarray; } // 调用 inclusive 版的 scan 函数 errcode = scanComputeGold<float>(inarrayHost, outarrayHost, numelements, op, backward); // 出错则返回错误码。 if (errcode != NO_ERROR) { // 释放内存 SCANFREE; return errcode; } // 执行结束 return NO_ERROR; } // 判断当前 inarray 数组是否存储在 Host 端。若是,则需要在 Device 端为数组 // 申请一段空间;若该数组是在 Device端,则直接使用。 if (hostinarray) { // 为输入数组在设备端申请内存。 cuerrcode = cudaMalloc((void **)&inarrayDev, memsize); if (cuerrcode != cudaSuccess) return cuerrcode; // 将输入数组拷贝到设备端内存。 cuerrcode = cudaMemcpy(inarrayDev, inarray, memsize, cudaMemcpyHostToDevice); if (cuerrcode != cudaSuccess) return cuerrcode; } else { // 如果在设备端,则将指针传给对应的设备端统一指针。 inarrayDev = inarray; } // 判断当前 outarray 数组是否存储在 Host 端。若是,则需要在 Device 端为数组 // 申请一段空间;若该数组是在 Device端,则直接使用。 if (hostoutarray) { // 为输出数组在设备端申请内存。 cuerrcode = cudaMalloc((void **)&outarrayDev, memsize); if (cuerrcode != cudaSuccess) return cuerrcode; } else { // 如果在设备端,则将指针传给对应的设备端统一指针。 outarrayDev = outarray; } // 针对不同的实现类型,选择不同的路径进行处理。 switch(scanType) { // 使用简单版本的 scan 实现。 case NAIVE_SCAN: // 计算调用 Kernel 函数的线程块的尺寸和线程块的数量。 // 简单版本每个线程处理一个元素。 blocksize = BLOCK_SIZE; packnum = 1; // 计算线程块大小和共享内存长度。 gridsize = max(1, (numelements + blocksize * packnum - 1) / blocksize); sharedmemsize = sizeof (float) * blocksize * packnum; // 如果扫描所需要的线程的 grid 尺寸大于 1,就需要进行加回操作,就需要申 // 请存放中间结果的数组。 if (gridsize > 1) { // 需要将每段处理的最后一个元素取出,最后一个线程块不进行处理。 blocksumsize = gridsize - 1; // 为存放中间结果的数组在设备端申请内存。 cuerrcode = cudaMalloc((void **)&blocksumDev, blocksumsize * sizeof(float)); if (cuerrcode != cudaSuccess) { cudaFree(blocksumDev); return cuerrcode; } } // 调用 Kernel 函数,完成实际的数组扫描。 // 这里需要判断输入输出指针是否在设备端。 _scanNaiveKer<float><<<gridsize, blocksize, 2 * sharedmemsize>>>( outarrayDev, inarrayDev, blocksumDev, numelements, op, backward); // 判断核函数是否出错。 if (cudaGetLastError() != cudaSuccess) { // 释放之前申请的内存。 SCANFREE; return CUDA_ERROR; } break; // 使用效率版本的 scan 实现。 case EFFICIENT_SCAN: // 计算调用 Kernel 函数的线程块的尺寸和线程块的数量。 // 效率版本每个线程处理两个元素。 blocksize = BLOCK_SIZE; packnum = 2; // 计算线程块大小和共享内存长度。 sharedmemsize = sizeof (float) * (blocksize * packnum); gridsize = max(1, (numelements + packnum * blocksize - 1) / (packnum * blocksize)); // 如果扫描所需要的线程的 grid 尺寸大于 1,就需要进行加回操作,就需要申 // 请存放中间结果的数组。 if (gridsize > 1) { // 需要将每段处理的最后一个元素取出,最后一个线程块不进行处理。 blocksumsize = gridsize - 1; // 为存放中间结果的数组在设备端申请内存。 cuerrcode = cudaMalloc((void **)&blocksumDev, blocksumsize * sizeof(float)); if (cuerrcode != cudaSuccess) { cudaFree(blocksumDev); return cuerrcode; } } // 调用 Kernel 函数,完成实际的数组扫描。 // 这里需要判断输入输出指针是否在设备端。 _scanWorkEfficientKer<float><<<gridsize, blocksize, sharedmemsize>>>( outarrayDev, inarrayDev, blocksumDev, numelements, op, backward); // 判断是否出错。 if (cudaGetLastError() != cudaSuccess) { // 释放之前申请的内存。 SCANFREE; return CUDA_ERROR; } break; // 使用优化版本的 scan 实现。 case OPTIMIZE_SCAN: // 计算调用 Kernel 函数的线程块的尺寸和线程块的数量。 // 优化版本每个线程处理两个元素。 blocksize = BLOCK_SIZE; packnum = 2; // 计算线程块大小和共享内存长度。 gridsize = max(1, (numelements + packnum * blocksize - 1) / (packnum * blocksize)); sharedmemsize = sizeof (float) * (blocksize * packnum); // 如果扫描所需要的线程的 grid 尺寸大于 1,就需要进行加回操作,就需要申 // 请存放中间结果的数组。 if (gridsize > 1) { // 需要将每段处理的最后一个元素取出,最后一个线程块不进行处理。 blocksumsize = gridsize - 1; // 为存放中间结果的数组在设备端申请内存。 cuerrcode = cudaMalloc((void **)&blocksumDev, blocksumsize * sizeof(float)); if (cuerrcode != cudaSuccess) { cudaFree(blocksumDev); return cuerrcode; } } // 调用 Kernel 函数,完成实际的数组扫描。 // 这里需要判断输入输出指针是否在设备端。 _scanOptKer<float><<<gridsize, blocksize, sharedmemsize>>>( outarrayDev, inarrayDev, blocksumDev, numelements, op, backward); // 判断是否出错。 if (cudaGetLastError() != cudaSuccess) { // 释放之前申请的内存。 SCANFREE; return CUDA_ERROR; } break; // 使用优化版本的 scan 实现。 case BETTER_SCAN: // 计算调用 Kernel 函数的线程块的尺寸和线程块的数量。 // 优化版本每个线程处理两个元素。 blocksize = BLOCK_SIZE; packnum = 2; // 计算线程块大小和共享内存长度。 gridsize = max(1, (numelements + packnum * blocksize - 1) / (packnum * blocksize)); extraspace = blocksize * packnum / NUM_BANKS;; sharedmemsize = sizeof (float) * (blocksize * packnum + extraspace); // 如果扫描所需要的线程的 grid 尺寸大于 1,就需要进行加回操作,就需要申 // 请存放中间结果的数组。 if (gridsize > 1) { // 需要将每段处理的最后一个元素取出,最后一个线程块不进行处理。 blocksumsize = gridsize - 1; // 为存放中间结果的数组在设备端申请内存。 cuerrcode = cudaMalloc((void **)&blocksumDev, blocksumsize * sizeof(float)); if (cuerrcode != cudaSuccess) { cudaFree(blocksumDev); return cuerrcode; } } // 调用 Kernel 函数,完成实际的数组扫描。 // 这里需要判断输入输出指针是否在设备端。 _scanBetterKer<float><<<gridsize, blocksize, sharedmemsize>>>( outarrayDev, inarrayDev, blocksumDev, numelements, op, backward); // 判断是否出错。 if (cudaGetLastError() != cudaSuccess) { // 释放之前申请的内存。 SCANFREE; return CUDA_ERROR; } break; // 其他方式情况下,直接返回非法数据错误。 default: if (hostinarray) cudaFree(inarrayDev); if (hostoutarray) cudaFree(outarrayDev); return INVALID_DATA; } // 如果处理的 gird 尺寸大于 1,那么对于扫描中间结果数组进行一次 scan // 操作和加回操作。 if (gridsize > 1) { // 递归调用扫描函数。此时输入输出数组皆为中间结果数组。 // 这里的递归调用不会调用多次,数组的规模是指数倍减小的。 errcode = scanArray(blocksumDev, blocksumDev, blocksumsize, op, backward, false, false); if (errcode != NO_ERROR) { // 释放之前申请的内存。 SCANFREE; return errcode; } // 调用加回函数,将各块的扫描中间结果加回到输出数组。 errcode = addBack(outarrayDev, blocksumDev, numelements, blocksize, packnum, op, backward); if (errcode != NO_ERROR) { // 释放之前申请的内存。 SCANFREE; return errcode; } // 释放中间结果数组的设备端内存。 cudaFree(blocksumDev); } // 如果 outarray 在 Host 端,将结果拷贝到输出。 if (hostoutarray) { // 将结果从设备端内存拷贝到输出数组。 cuerrcode = cudaMemcpy(outarray, outarrayDev, memsize, cudaMemcpyDeviceToHost); if (cuerrcode != cudaSuccess) { if (hostinarray) cudaFree(inarrayDev); cudaFree(outarrayDev); return cuerrcode; } } // 释放 Device 内存。需要判断输入输出参数是否在 host 端。 if (hostinarray) cudaFree(inarrayDev); if (hostoutarray) cudaFree(outarrayDev); // 处理完毕退出。 return NO_ERROR; } // Host 成员方法:scanArray(int 型的数组扫描) template< class Operation > __host__ int ScanArray::scanArray(int *inarray, int *outarray, int numelements, Operation op, bool backward, bool hostinarray, bool hostoutarray) { // 检查输入和输出是否为 NULL,如果为 NULL 直接报错返回。 if (inarray == NULL || outarray == NULL) return NULL_POINTER; // 本程序实现的 4 种方法可处理的数组长度。必须加以判断控制。 if (numelements < 0) return INVALID_DATA; // 局部变量,错误码。 cudaError_t cuerrcode; int errcode; // 局部变量。 int memsize = sizeof (int) * numelements; int extraspace; // 计算共享内存的长度。 int sharedmemsize = 0; // 定义设备端的输入输出数组指针,当输入输出指针在 Host 端时,在设备端申请对 // 应大小的数组。 int *inarrayDev = NULL; int *outarrayDev = NULL; // 定义主机端的输入输出数组指针,当输入输出指针在 Device 端时,在主机端申请 // 对应大小的数组。 int *inarrayHost = NULL; int *outarrayHost = NULL; // 这里 scan 实现只支持单个线程块的计算,这里的 gridsize 可以设置的大于 1, // 从而让多个线程块都运行相同程序来测速。计算调用 Kernel 函数的线程块的尺寸 // 和线程块的数量。 int gridsize; int blocksize; // 局部变量,中间结果存放数组。长度会根据线程块大小来确定。 int *blocksumDev = NULL; // 中间结果数组的长度。 int blocksumsize; // scan 算法中每个线程块的计算能力。核函数每块处理长度与线程块大小的比值。 int packnum; // 针对 CPU 端实现类型,选择路径进行处理。 if (scanType == CPU_IN_SCAN) { // 判断当前 inarray 数组是否存储在 Host 端。若不是,则需要在 Host 端 // 为数组申请一段空间;若该数组是在 Host 端,则直接使用。 if (!hostinarray) { // 为输入数组在 Host 端申请内存。 inarrayHost = new int[memsize]; // 将输入数组拷贝到主机端内存。 cuerrcode = cudaMemcpy(inarrayHost, inarray, memsize, cudaMemcpyDeviceToHost); if (cuerrcode != cudaSuccess) return cuerrcode; } else { // 如果在主机端,则将指针传给主机端指针。 inarrayHost = inarray; } // 判断当前 outarray 数组是否存储在 Host 端。若不是,则需要在 Host 端 // 为数组申请一段空间;若该数组是在 Host 端,则直接使用。 if (!hostoutarray) { // 为输出数组在 Host 端申请内存。 outarrayHost = new int[memsize]; // 将输出数组拷贝到主机端内存。 cuerrcode = cudaMemcpy(outarrayHost, outarray, memsize, cudaMemcpyDeviceToHost); if (cuerrcode != cudaSuccess) return cuerrcode; } else { // 如果在主机端,则将指针传给主机端指针。 outarrayHost = outarray; } // 调用 inclusive 版的 scan 函数 errcode = scanComputeGold<int>(inarrayHost, outarrayHost, numelements, op, backward); // 出错则返回错误码。 if (errcode != NO_ERROR) { // 释放内存 SCANFREE; return errcode; } // 执行结束 return NO_ERROR; } // 判断当前 inarray 数组是否存储在 Host 端。若是,则需要在 Device 端为数组 // 申请一段空间;若该数组是在 Device端,则直接使用。 if (hostinarray) { // 为输入数组在设备端申请内存。 cuerrcode = cudaMalloc((void **)&inarrayDev, memsize); if (cuerrcode != cudaSuccess) return cuerrcode; // 将输入数组拷贝到设备端内存。 cuerrcode = cudaMemcpy(inarrayDev, inarray, memsize, cudaMemcpyHostToDevice); if (cuerrcode != cudaSuccess) return cuerrcode; } else { // 如果在设备端,则将指针传给对应的设备端统一指针。 inarrayDev = inarray; } // 判断当前 outarray 数组是否存储在 Host 端。若是,则需要在 Device 端为数组 // 申请一段空间;若该数组是在 Device端,则直接使用。 if (hostoutarray) { // 为输出数组在设备端申请内存。 cuerrcode = cudaMalloc((void **)&outarrayDev, memsize); if (cuerrcode != cudaSuccess) return cuerrcode; } else { // 如果在设备端,则将指针传给对应的设备端统一指针。 outarrayDev = outarray; } // 针对不同的实现类型,选择不同的路径进行处理。 switch(scanType) { // 使用简单版本的 scan 实现。 case NAIVE_SCAN: // 计算调用 Kernel 函数的线程块的尺寸和线程块的数量。 // 简单版本每个线程处理一个元素。 blocksize = BLOCK_SIZE; packnum = 1; // 计算线程块大小和共享内存长度。 gridsize = max(1, (numelements + blocksize * packnum - 1) / blocksize); sharedmemsize = sizeof (int) * blocksize * packnum; // 如果扫描所需要的线程的 grid 尺寸大于 1,就需要进行加回操作,就需要申 // 请存放中间结果的数组。 if (gridsize > 1) { // 需要将每段处理的最后一个元素取出,最后一个线程块不进行处理。 blocksumsize = gridsize - 1; // 为存放中间结果的数组在设备端申请内存。 cuerrcode = cudaMalloc((void **)&blocksumDev, blocksumsize * sizeof(int)); if (cuerrcode != cudaSuccess) { cudaFree(blocksumDev); return cuerrcode; } } // 调用 Kernel 函数,完成实际的数组扫描。 // 这里需要判断输入输出指针是否在设备端。 _scanNaiveKer<int><<<gridsize, blocksize, 2 * sharedmemsize>>>( outarrayDev, inarrayDev, blocksumDev, numelements, op, backward); // 判断核函数是否出错。 if (cudaGetLastError() != cudaSuccess) { // 释放之前申请的内存。 SCANFREE; return CUDA_ERROR; } break; // 使用效率版本的 scan 实现。 case EFFICIENT_SCAN: // 计算调用 Kernel 函数的线程块的尺寸和线程块的数量。 // 效率版本每个线程处理两个元素。 blocksize = BLOCK_SIZE; packnum = 2; // 计算线程块大小和共享内存长度。 sharedmemsize = sizeof (int) * (blocksize * packnum); gridsize = max(1, (numelements + packnum * blocksize - 1) / (packnum * blocksize)); // 如果扫描所需要的线程的 grid 尺寸大于 1,就需要进行加回操作,就需要申 // 请存放中间结果的数组。 if (gridsize > 1) { // 需要将每段处理的最后一个元素取出,最后一个线程块不进行处理。 blocksumsize = gridsize - 1; // 为存放中间结果的数组在设备端申请内存。 cuerrcode = cudaMalloc((void **)&blocksumDev, blocksumsize * sizeof(int)); if (cuerrcode != cudaSuccess) { cudaFree(blocksumDev); return cuerrcode; } } // 调用 Kernel 函数,完成实际的数组扫描。 // 这里需要判断输入输出指针是否在设备端。 _scanWorkEfficientKer<int><<<gridsize, blocksize, sharedmemsize>>>( outarrayDev, inarrayDev, blocksumDev, numelements, op, backward); // 判断是否出错。 if (cudaGetLastError() != cudaSuccess) { // 释放之前申请的内存。 SCANFREE; return CUDA_ERROR; } break; // 使用优化版本的 scan 实现。 case OPTIMIZE_SCAN: // 计算调用 Kernel 函数的线程块的尺寸和线程块的数量。 // 优化版本每个线程处理两个元素。 blocksize = BLOCK_SIZE; packnum = 2; // 计算线程块大小和共享内存长度。 gridsize = max(1, (numelements + packnum * blocksize - 1) / (packnum * blocksize)); sharedmemsize = sizeof (int) * (blocksize * packnum); // 如果扫描所需要的线程的 grid 尺寸大于 1,就需要进行加回操作,就需要申 // 请存放中间结果的数组。 if (gridsize > 1) { // 需要将每段处理的最后一个元素取出,最后一个线程块不进行处理。 blocksumsize = gridsize - 1; // 为存放中间结果的数组在设备端申请内存。 cuerrcode = cudaMalloc((void **)&blocksumDev, blocksumsize * sizeof(int)); if (cuerrcode != cudaSuccess) { cudaFree(blocksumDev); return cuerrcode; } } // 调用 Kernel 函数,完成实际的数组扫描。 // 这里需要判断输入输出指针是否在设备端。 _scanOptKer<int><<<gridsize, blocksize, sharedmemsize>>>( outarrayDev, inarrayDev, blocksumDev, numelements, op, backward); // 判断是否出错。 if (cudaGetLastError() != cudaSuccess) { // 释放之前申请的内存。 SCANFREE; return CUDA_ERROR; } break; // 使用优化版本的 scan 实现。 case BETTER_SCAN: // 计算调用 Kernel 函数的线程块的尺寸和线程块的数量。 // 优化版本每个线程处理两个元素。 blocksize = BLOCK_SIZE; packnum = 2; // 计算线程块大小和共享内存长度。 gridsize = max(1, (numelements + packnum * blocksize - 1) / (packnum * blocksize)); extraspace = blocksize * packnum / NUM_BANKS;; sharedmemsize = sizeof (int) * (blocksize * packnum + extraspace); // 如果扫描所需要的线程的 grid 尺寸大于 1,就需要进行加回操作,就需要申 // 请存放中间结果的数组。 if (gridsize > 1) { // 需要将每段处理的最后一个元素取出,最后一个线程块不进行处理。 blocksumsize = gridsize - 1; // 为存放中间结果的数组在设备端申请内存。 cuerrcode = cudaMalloc((void **)&blocksumDev, blocksumsize * sizeof(int)); if (cuerrcode != cudaSuccess) { cudaFree(blocksumDev); return cuerrcode; } } // 调用 Kernel 函数,完成实际的数组扫描。 // 这里需要判断输入输出指针是否在设备端。 _scanBetterKer<int><<<gridsize, blocksize, sharedmemsize>>>( outarrayDev, inarrayDev, blocksumDev, numelements, op, backward); // 判断是否出错。 if (cudaGetLastError() != cudaSuccess) { // 释放之前申请的内存。 SCANFREE; return CUDA_ERROR; } break; // 其他方式情况下,直接返回非法数据错误。 default: if (hostinarray) cudaFree(inarrayDev); if (hostoutarray) cudaFree(outarrayDev); return INVALID_DATA; } // 如果处理的 gird 尺寸大于 1,那么对于扫描中间结果数组进行一次 scan // 操作和加回操作。 if (gridsize > 1) { // 递归调用扫描函数。此时输入输出数组皆为中间结果数组。 // 这里的递归调用不会调用多次,数组的规模是指数倍减小的。 errcode = scanArray(blocksumDev, blocksumDev, blocksumsize, op, backward, false, false); if (errcode != NO_ERROR) { // 释放之前申请的内存。 SCANFREE; return errcode; } // 调用加回函数,将各块的扫描中间结果加回到输出数组。 errcode = addBack(outarrayDev, blocksumDev, numelements, blocksize, packnum, op, backward); if (errcode != NO_ERROR) { // 释放之前申请的内存。 SCANFREE; return errcode; } // 释放中间结果数组的设备端内存。 cudaFree(blocksumDev); } // 如果 outarray 在 Host 端,将结果拷贝到输出。 if (hostoutarray) { // 将结果从设备端内存拷贝到输出数组。 cuerrcode = cudaMemcpy(outarray, outarrayDev, memsize, cudaMemcpyDeviceToHost); if (cuerrcode != cudaSuccess) { if (hostinarray) cudaFree(inarrayDev); cudaFree(outarrayDev); return cuerrcode; } } // 释放 Device 内存。需要判断输入输出参数是否在 host 端。 if (hostinarray) cudaFree(inarrayDev); if (hostoutarray) cudaFree(outarrayDev); // 处理完毕退出。 return NO_ERROR; } // 函数:为了使模板运算能够连接通过,通过此函数预处理,将用到模板的函数实例化。 void example() { // 定义 ScanArray 对象 ScanArray s; // 数组长度 unsigned int num_elements = 1024; // 开辟空间的大小 const unsigned int mem_size = sizeof(float) * num_elements; const unsigned int mem_size1 = sizeof(int) * num_elements; // 为 float 型输入输出指针开辟空间 float *inarray = new float[mem_size]; float *outarray = new float[mem_size]; // 为 int 型输入输出指针开辟空间 int *inarray1 = new int[mem_size1]; int *outarray1 = new int[mem_size1]; // 设置扫描类型为 NAIVE_SCAN s.setScanType(NAIVE_SCAN); // 默认输入输出数组均在 host 端 bool inhost, outhost; inhost = true; outhost = true; // 新建加法和乘法运算对象 add_class<float> a; multi_class<float> m; max_class<float> max; min_class<float> min; add_class<int> a1; multi_class<int> m1; max_class<int> max1; min_class<int> min1; // 用 float 型和 int 型分别调用加法和乘法的仿函数。 s.scanArray(inarray, outarray, num_elements, a, false, inhost, outhost); s.scanArray(inarray1, outarray1, num_elements, a1, false, inhost, outhost); s.scanArray(inarray, outarray, num_elements, m, false, inhost, outhost); s.scanArray(inarray1, outarray1, num_elements, m1, false, inhost, outhost); s.scanArray(inarray, outarray, num_elements, max, false, inhost, outhost); s.scanArray(inarray1, outarray1, num_elements, max1, false, inhost, outhost); s.scanArray(inarray, outarray, num_elements, min, false, inhost, outhost); s.scanArray(inarray1, outarray1, num_elements, min1, false, inhost, outhost); } // 取消前面的宏定义。 #undef SCANFREE
26c5520c434d530dd542dafb4f7f25a205766475.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ //////////////////////////////////////////////////////////////////////////////// // // NVIDIA CUDA implementation of Viola-Jones Object Detection Framework // // The algorithm and code are explained in the upcoming GPU Computing Gems // chapter in detail: // // Anton Obukhov, "Haar Classifiers for Object Detection with CUDA" // PDF URL placeholder // email: [email protected], [email protected] // // Credits for help with the code to: // Alexey Mendelenko, Cyril Crassin, and Mikhail Smirnov. // //////////////////////////////////////////////////////////////////////////////// #include <algorithm> #include <cstdio> #include "opencv2/core/cuda/warp.hpp" #include "opencv2/core/cuda/warp_shuffle.hpp" #include "opencv2/opencv_modules.hpp" #ifdef HAVE_OPENCV_OBJDETECT # include "opencv2/objdetect.hpp" # include "opencv2/objdetect/objdetect_c.h" #endif #include "opencv2/cudalegacy/NCV.hpp" #include "opencv2/cudalegacy/NPP_staging.hpp" #include "opencv2/cudalegacy/NCVHaarObjectDetection.hpp" #include "NCVRuntimeTemplates.hpp" #include "NCVAlg.hpp" //============================================================================== // // BlockScan file // //============================================================================== NCV_CT_ASSERT(K_WARP_SIZE == 32); //this is required for the manual unroll of the loop in warpScanInclusive //Almost the same as naive scan1Inclusive, but doesn't need __syncthreads() //assuming size <= WARP_SIZE and size is power of 2 __device__ Ncv32u warpScanInclusive(Ncv32u idata, volatile Ncv32u *s_Data) { #if __CUDA_ARCH__ >= 300 const unsigned int laneId = cv::cuda::device::Warp::laneId(); // scan on shuffl functions #pragma unroll for (int i = 1; i <= (K_WARP_SIZE / 2); i *= 2) { const Ncv32u n = cv::cuda::device::shfl_up(idata, i); if (laneId >= i) idata += n; } return idata; #else Ncv32u pos = 2 * threadIdx.x - (threadIdx.x & (K_WARP_SIZE - 1)); s_Data[pos] = 0; pos += K_WARP_SIZE; s_Data[pos] = idata; s_Data[pos] += s_Data[pos - 1]; s_Data[pos] += s_Data[pos - 2]; s_Data[pos] += s_Data[pos - 4]; s_Data[pos] += s_Data[pos - 8]; s_Data[pos] += s_Data[pos - 16]; return s_Data[pos]; #endif } __device__ __forceinline__ Ncv32u warpScanExclusive(Ncv32u idata, volatile Ncv32u *s_Data) { return warpScanInclusive(idata, s_Data) - idata; } template <Ncv32u tiNumScanThreads> __device__ Ncv32u scan1Inclusive(Ncv32u idata, volatile Ncv32u *s_Data) { if (tiNumScanThreads > K_WARP_SIZE) { //Bottom-level inclusive warp scan Ncv32u warpResult = warpScanInclusive(idata, s_Data); //Save top elements of each warp for exclusive warp scan //sync to wait for warp scans to complete (because s_Data is being overwritten) __syncthreads(); if( (threadIdx.x & (K_WARP_SIZE - 1)) == (K_WARP_SIZE - 1) ) { s_Data[threadIdx.x >> K_LOG2_WARP_SIZE] = warpResult; } //wait for warp scans to complete __syncthreads(); if( threadIdx.x < (tiNumScanThreads / K_WARP_SIZE) ) { //grab top warp elements Ncv32u val = s_Data[threadIdx.x]; //calculate exclusive scan and write back to shared memory s_Data[threadIdx.x] = warpScanExclusive(val, s_Data); } //return updated warp scans with exclusive scan results __syncthreads(); return warpResult + s_Data[threadIdx.x >> K_LOG2_WARP_SIZE]; } else { return warpScanInclusive(idata, s_Data); } } //============================================================================== // // HaarClassifierCascade file // //============================================================================== const Ncv32u MAX_GRID_DIM = 65535; const Ncv32u NUM_THREADS_ANCHORSPARALLEL = 64; #define NUM_THREADS_CLASSIFIERPARALLEL_LOG2 6 #define NUM_THREADS_CLASSIFIERPARALLEL (1 << NUM_THREADS_CLASSIFIERPARALLEL_LOG2) /** \internal * Haar features solid array. */ texture<uint2, 1, hipReadModeElementType> texHaarFeatures; /** \internal * Haar classifiers flattened trees container. * Two parts: first contains root nodes, second - nodes that are referred by root nodes. * Drawback: breaks tree locality (might cause more cache misses * Advantage: No need to introduce additional 32-bit field to index root nodes offsets */ texture<uint4, 1, hipReadModeElementType> texHaarClassifierNodes; texture<Ncv32u, 1, hipReadModeElementType> texIImage; __device__ HaarStage64 getStage(Ncv32u iStage, HaarStage64 *d_Stages) { return d_Stages[iStage]; } template <NcvBool tbCacheTextureCascade> __device__ HaarClassifierNode128 getClassifierNode(Ncv32u iNode, HaarClassifierNode128 *d_ClassifierNodes) { HaarClassifierNode128 tmpNode; if (tbCacheTextureCascade) { tmpNode._ui4 = tex1Dfetch(texHaarClassifierNodes, iNode); } else { tmpNode = d_ClassifierNodes[iNode]; } return tmpNode; } template <NcvBool tbCacheTextureCascade> __device__ void getFeature(Ncv32u iFeature, HaarFeature64 *d_Features, Ncv32f *weight, Ncv32u *rectX, Ncv32u *rectY, Ncv32u *rectWidth, Ncv32u *rectHeight) { HaarFeature64 feature; if (tbCacheTextureCascade) { feature._ui2 = tex1Dfetch(texHaarFeatures, iFeature); } else { feature = d_Features[iFeature]; } feature.getRect(rectX, rectY, rectWidth, rectHeight); *weight = feature.getWeight(); } template <NcvBool tbCacheTextureIImg> __device__ Ncv32u getElemIImg(Ncv32u x, Ncv32u *d_IImg) { if (tbCacheTextureIImg) { return tex1Dfetch(texIImage, x); } else { return d_IImg[x]; } } __device__ Ncv32u d_outMaskPosition; __device__ void compactBlockWriteOutAnchorParallel(Ncv32u threadPassFlag, Ncv32u threadElem, Ncv32u *vectorOut) { #if __CUDA_ARCH__ && __CUDA_ARCH__ >= 110 __shared__ Ncv32u shmem[NUM_THREADS_ANCHORSPARALLEL * 2]; __shared__ Ncv32u numPassed; __shared__ Ncv32u outMaskOffset; Ncv32u incScan = scan1Inclusive<NUM_THREADS_ANCHORSPARALLEL>(threadPassFlag, shmem); __syncthreads(); if (threadIdx.x == NUM_THREADS_ANCHORSPARALLEL-1) { numPassed = incScan; outMaskOffset = atomicAdd(&d_outMaskPosition, incScan); } if (threadPassFlag) { Ncv32u excScan = incScan - threadPassFlag; shmem[excScan] = threadElem; } __syncthreads(); if (threadIdx.x < numPassed) { vectorOut[outMaskOffset + threadIdx.x] = shmem[threadIdx.x]; } #endif } template <NcvBool tbInitMaskPositively, NcvBool tbCacheTextureIImg, NcvBool tbCacheTextureCascade, NcvBool tbReadPixelIndexFromVector, NcvBool tbDoAtomicCompaction> __global__ void applyHaarClassifierAnchorParallel(Ncv32u *d_IImg, Ncv32u IImgStride, Ncv32f *d_weights, Ncv32u weightsStride, HaarFeature64 *d_Features, HaarClassifierNode128 *d_ClassifierNodes, HaarStage64 *d_Stages, Ncv32u *d_inMask, Ncv32u *d_outMask, Ncv32u mask1Dlen, Ncv32u mask2Dstride, NcvSize32u anchorsRoi, Ncv32u startStageInc, Ncv32u endStageExc, Ncv32f scaleArea) { Ncv32u y_offs; Ncv32u x_offs; Ncv32u maskOffset; Ncv32u outMaskVal; NcvBool bInactiveThread = false; if (tbReadPixelIndexFromVector) { maskOffset = (MAX_GRID_DIM * blockIdx.y + blockIdx.x) * NUM_THREADS_ANCHORSPARALLEL + threadIdx.x; if (maskOffset >= mask1Dlen) { if (tbDoAtomicCompaction) bInactiveThread = true; else return; } if (!tbDoAtomicCompaction || tbDoAtomicCompaction && !bInactiveThread) { outMaskVal = d_inMask[maskOffset]; y_offs = outMaskVal >> 16; x_offs = outMaskVal & 0xFFFF; } } else { y_offs = blockIdx.y; x_offs = blockIdx.x * NUM_THREADS_ANCHORSPARALLEL + threadIdx.x; if (x_offs >= mask2Dstride) { if (tbDoAtomicCompaction) bInactiveThread = true; else return; } if (!tbDoAtomicCompaction || tbDoAtomicCompaction && !bInactiveThread) { maskOffset = y_offs * mask2Dstride + x_offs; if ((x_offs >= anchorsRoi.width) || (!tbInitMaskPositively && d_inMask != d_outMask && d_inMask[maskOffset] == OBJDET_MASK_ELEMENT_INVALID_32U)) { if (tbDoAtomicCompaction) { bInactiveThread = true; } else { d_outMask[maskOffset] = OBJDET_MASK_ELEMENT_INVALID_32U; return; } } outMaskVal = (y_offs << 16) | x_offs; } } NcvBool bPass = true; if (!tbDoAtomicCompaction || tbDoAtomicCompaction) { Ncv32f pixelStdDev = 0.0f; if (!bInactiveThread) pixelStdDev = d_weights[y_offs * weightsStride + x_offs]; for (Ncv32u iStage = startStageInc; iStage < endStageExc; iStage++) { Ncv32f curStageSum = 0.0f; HaarStage64 curStage = getStage(iStage, d_Stages); Ncv32u numRootNodesInStage = curStage.getNumClassifierRootNodes(); Ncv32u curRootNodeOffset = curStage.getStartClassifierRootNodeOffset(); Ncv32f stageThreshold = curStage.getStageThreshold(); while (numRootNodesInStage--) { NcvBool bMoreNodesToTraverse = true; Ncv32u iNode = curRootNodeOffset; if (bPass && !bInactiveThread) { while (bMoreNodesToTraverse) { HaarClassifierNode128 curNode = getClassifierNode<tbCacheTextureCascade>(iNode, d_ClassifierNodes); HaarFeatureDescriptor32 featuresDesc = curNode.getFeatureDesc(); Ncv32u curNodeFeaturesNum = featuresDesc.getNumFeatures(); Ncv32u iFeature = featuresDesc.getFeaturesOffset(); Ncv32f curNodeVal = 0.0f; for (Ncv32u iRect=0; iRect<curNodeFeaturesNum; iRect++) { Ncv32f rectWeight; Ncv32u rectX, rectY, rectWidth, rectHeight; getFeature<tbCacheTextureCascade> (iFeature + iRect, d_Features, &rectWeight, &rectX, &rectY, &rectWidth, &rectHeight); Ncv32u iioffsTL = (y_offs + rectY) * IImgStride + (x_offs + rectX); Ncv32u iioffsTR = iioffsTL + rectWidth; Ncv32u iioffsBL = iioffsTL + rectHeight * IImgStride; Ncv32u iioffsBR = iioffsBL + rectWidth; Ncv32u rectSum = getElemIImg<tbCacheTextureIImg>(iioffsBR, d_IImg) - getElemIImg<tbCacheTextureIImg>(iioffsBL, d_IImg) + getElemIImg<tbCacheTextureIImg>(iioffsTL, d_IImg) - getElemIImg<tbCacheTextureIImg>(iioffsTR, d_IImg); #if defined CPU_FP_COMPLIANCE || defined DISABLE_MAD_SELECTIVELY curNodeVal += __fmul_rn((Ncv32f)rectSum, rectWeight); #else curNodeVal += (Ncv32f)rectSum * rectWeight; #endif } HaarClassifierNodeDescriptor32 nodeLeft = curNode.getLeftNodeDesc(); HaarClassifierNodeDescriptor32 nodeRight = curNode.getRightNodeDesc(); Ncv32f nodeThreshold = curNode.getThreshold(); HaarClassifierNodeDescriptor32 nextNodeDescriptor; NcvBool nextNodeIsLeaf; if (curNodeVal < scaleArea * pixelStdDev * nodeThreshold) { nextNodeDescriptor = nodeLeft; nextNodeIsLeaf = featuresDesc.isLeftNodeLeaf(); } else { nextNodeDescriptor = nodeRight; nextNodeIsLeaf = featuresDesc.isRightNodeLeaf(); } if (nextNodeIsLeaf) { Ncv32f tmpLeafValue = nextNodeDescriptor.getLeafValue(); curStageSum += tmpLeafValue; bMoreNodesToTraverse = false; } else { iNode = nextNodeDescriptor.getNextNodeOffset(); } } } __syncthreads(); curRootNodeOffset++; } if (curStageSum < stageThreshold) { bPass = false; outMaskVal = OBJDET_MASK_ELEMENT_INVALID_32U; } } } __syncthreads(); if (!tbDoAtomicCompaction) { if (!tbReadPixelIndexFromVector || (tbReadPixelIndexFromVector && (!bPass || d_inMask != d_outMask))) { d_outMask[maskOffset] = outMaskVal; } } else { compactBlockWriteOutAnchorParallel(bPass && !bInactiveThread, outMaskVal, d_outMask); } } template <NcvBool tbCacheTextureIImg, NcvBool tbCacheTextureCascade, NcvBool tbDoAtomicCompaction> __global__ void applyHaarClassifierClassifierParallel(Ncv32u *d_IImg, Ncv32u IImgStride, Ncv32f *d_weights, Ncv32u weightsStride, HaarFeature64 *d_Features, HaarClassifierNode128 *d_ClassifierNodes, HaarStage64 *d_Stages, Ncv32u *d_inMask, Ncv32u *d_outMask, Ncv32u mask1Dlen, Ncv32u mask2Dstride, NcvSize32u anchorsRoi, Ncv32u startStageInc, Ncv32u endStageExc, Ncv32f scaleArea) { Ncv32u maskOffset = MAX_GRID_DIM * blockIdx.y + blockIdx.x; if (maskOffset >= mask1Dlen) { return; } Ncv32u outMaskVal = d_inMask[maskOffset]; Ncv32u y_offs = outMaskVal >> 16; Ncv32u x_offs = outMaskVal & 0xFFFF; Ncv32f pixelStdDev = d_weights[y_offs * weightsStride + x_offs]; NcvBool bPass = true; for (Ncv32u iStage = startStageInc; iStage<endStageExc; iStage++) { //this variable is subject to reduction Ncv32f curStageSum = 0.0f; HaarStage64 curStage = getStage(iStage, d_Stages); Ncv32s numRootNodesInStage = curStage.getNumClassifierRootNodes(); Ncv32u curRootNodeOffset = curStage.getStartClassifierRootNodeOffset() + threadIdx.x; Ncv32f stageThreshold = curStage.getStageThreshold(); Ncv32u numRootChunks = (numRootNodesInStage + NUM_THREADS_CLASSIFIERPARALLEL - 1) >> NUM_THREADS_CLASSIFIERPARALLEL_LOG2; for (Ncv32u chunkId=0; chunkId<numRootChunks; chunkId++) { NcvBool bMoreNodesToTraverse = true; if (chunkId * NUM_THREADS_CLASSIFIERPARALLEL + threadIdx.x < numRootNodesInStage) { Ncv32u iNode = curRootNodeOffset; while (bMoreNodesToTraverse) { HaarClassifierNode128 curNode = getClassifierNode<tbCacheTextureCascade>(iNode, d_ClassifierNodes); HaarFeatureDescriptor32 featuresDesc = curNode.getFeatureDesc(); Ncv32u curNodeFeaturesNum = featuresDesc.getNumFeatures(); Ncv32u iFeature = featuresDesc.getFeaturesOffset(); Ncv32f curNodeVal = 0.0f; //TODO: fetch into shmem if size suffices. Shmem can be shared with reduce for (Ncv32u iRect=0; iRect<curNodeFeaturesNum; iRect++) { Ncv32f rectWeight; Ncv32u rectX, rectY, rectWidth, rectHeight; getFeature<tbCacheTextureCascade> (iFeature + iRect, d_Features, &rectWeight, &rectX, &rectY, &rectWidth, &rectHeight); Ncv32u iioffsTL = (y_offs + rectY) * IImgStride + (x_offs + rectX); Ncv32u iioffsTR = iioffsTL + rectWidth; Ncv32u iioffsBL = iioffsTL + rectHeight * IImgStride; Ncv32u iioffsBR = iioffsBL + rectWidth; Ncv32u rectSum = getElemIImg<tbCacheTextureIImg>(iioffsBR, d_IImg) - getElemIImg<tbCacheTextureIImg>(iioffsBL, d_IImg) + getElemIImg<tbCacheTextureIImg>(iioffsTL, d_IImg) - getElemIImg<tbCacheTextureIImg>(iioffsTR, d_IImg); #if defined CPU_FP_COMPLIANCE || defined DISABLE_MAD_SELECTIVELY curNodeVal += __fmul_rn((Ncv32f)rectSum, rectWeight); #else curNodeVal += (Ncv32f)rectSum * rectWeight; #endif } HaarClassifierNodeDescriptor32 nodeLeft = curNode.getLeftNodeDesc(); HaarClassifierNodeDescriptor32 nodeRight = curNode.getRightNodeDesc(); Ncv32f nodeThreshold = curNode.getThreshold(); HaarClassifierNodeDescriptor32 nextNodeDescriptor; NcvBool nextNodeIsLeaf; if (curNodeVal < scaleArea * pixelStdDev * nodeThreshold) { nextNodeDescriptor = nodeLeft; nextNodeIsLeaf = featuresDesc.isLeftNodeLeaf(); } else { nextNodeDescriptor = nodeRight; nextNodeIsLeaf = featuresDesc.isRightNodeLeaf(); } if (nextNodeIsLeaf) { Ncv32f tmpLeafValue = nextNodeDescriptor.getLeafValue(); curStageSum += tmpLeafValue; bMoreNodesToTraverse = false; } else { iNode = nextNodeDescriptor.getNextNodeOffset(); } } } __syncthreads(); curRootNodeOffset += NUM_THREADS_CLASSIFIERPARALLEL; } Ncv32f finalStageSum = subReduce<Ncv32f, functorAddValues<Ncv32f>, NUM_THREADS_CLASSIFIERPARALLEL>(curStageSum); if (finalStageSum < stageThreshold) { bPass = false; outMaskVal = OBJDET_MASK_ELEMENT_INVALID_32U; break; } } if (!tbDoAtomicCompaction) { if (!bPass || d_inMask != d_outMask) { if (!threadIdx.x) { d_outMask[maskOffset] = outMaskVal; } } } else { #if __CUDA_ARCH__ && __CUDA_ARCH__ >= 110 if (bPass && !threadIdx.x) { Ncv32u outMaskOffset = atomicAdd(&d_outMaskPosition, 1); d_outMask[outMaskOffset] = outMaskVal; } #endif } } template <NcvBool tbMaskByInmask, NcvBool tbDoAtomicCompaction> __global__ void initializeMaskVector(Ncv32u *d_inMask, Ncv32u *d_outMask, Ncv32u mask1Dlen, Ncv32u mask2Dstride, NcvSize32u anchorsRoi, Ncv32u step) { Ncv32u y_offs = blockIdx.y; Ncv32u x_offs = blockIdx.x * NUM_THREADS_ANCHORSPARALLEL + threadIdx.x; Ncv32u outMaskOffset = y_offs * gridDim.x * blockDim.x + x_offs; Ncv32u y_offs_upsc = step * y_offs; Ncv32u x_offs_upsc = step * x_offs; Ncv32u inMaskOffset = y_offs_upsc * mask2Dstride + x_offs_upsc; Ncv32u outElem = OBJDET_MASK_ELEMENT_INVALID_32U; if (x_offs_upsc < anchorsRoi.width && (!tbMaskByInmask || d_inMask[inMaskOffset] != OBJDET_MASK_ELEMENT_INVALID_32U)) { outElem = (y_offs_upsc << 16) | x_offs_upsc; } if (!tbDoAtomicCompaction) { d_outMask[outMaskOffset] = outElem; } else { compactBlockWriteOutAnchorParallel(outElem != OBJDET_MASK_ELEMENT_INVALID_32U, outElem, d_outMask); } } struct applyHaarClassifierAnchorParallelFunctor { dim3 gridConf, blockConf; hipStream_t cuStream; //Kernel arguments are stored as members; Ncv32u *d_IImg; Ncv32u IImgStride; Ncv32f *d_weights; Ncv32u weightsStride; HaarFeature64 *d_Features; HaarClassifierNode128 *d_ClassifierNodes; HaarStage64 *d_Stages; Ncv32u *d_inMask; Ncv32u *d_outMask; Ncv32u mask1Dlen; Ncv32u mask2Dstride; NcvSize32u anchorsRoi; Ncv32u startStageInc; Ncv32u endStageExc; Ncv32f scaleArea; //Arguments are passed through the constructor applyHaarClassifierAnchorParallelFunctor(dim3 _gridConf, dim3 _blockConf, hipStream_t _cuStream, Ncv32u *_d_IImg, Ncv32u _IImgStride, Ncv32f *_d_weights, Ncv32u _weightsStride, HaarFeature64 *_d_Features, HaarClassifierNode128 *_d_ClassifierNodes, HaarStage64 *_d_Stages, Ncv32u *_d_inMask, Ncv32u *_d_outMask, Ncv32u _mask1Dlen, Ncv32u _mask2Dstride, NcvSize32u _anchorsRoi, Ncv32u _startStageInc, Ncv32u _endStageExc, Ncv32f _scaleArea) : gridConf(_gridConf), blockConf(_blockConf), cuStream(_cuStream), d_IImg(_d_IImg), IImgStride(_IImgStride), d_weights(_d_weights), weightsStride(_weightsStride), d_Features(_d_Features), d_ClassifierNodes(_d_ClassifierNodes), d_Stages(_d_Stages), d_inMask(_d_inMask), d_outMask(_d_outMask), mask1Dlen(_mask1Dlen), mask2Dstride(_mask2Dstride), anchorsRoi(_anchorsRoi), startStageInc(_startStageInc), endStageExc(_endStageExc), scaleArea(_scaleArea) {} template<class TList> void call(TList tl) { (void)tl; hipLaunchKernelGGL(( applyHaarClassifierAnchorParallel < Loki::TL::TypeAt<TList, 0>::Result::value, Loki::TL::TypeAt<TList, 1>::Result::value, Loki::TL::TypeAt<TList, 2>::Result::value, Loki::TL::TypeAt<TList, 3>::Result::value, Loki::TL::TypeAt<TList, 4>::Result::value >) , dim3(gridConf), dim3(blockConf), 0, cuStream, d_IImg, IImgStride, d_weights, weightsStride, d_Features, d_ClassifierNodes, d_Stages, d_inMask, d_outMask, mask1Dlen, mask2Dstride, anchorsRoi, startStageInc, endStageExc, scaleArea); } }; void applyHaarClassifierAnchorParallelDynTemplate(NcvBool tbInitMaskPositively, NcvBool tbCacheTextureIImg, NcvBool tbCacheTextureCascade, NcvBool tbReadPixelIndexFromVector, NcvBool tbDoAtomicCompaction, dim3 gridConf, dim3 blockConf, hipStream_t cuStream, Ncv32u *d_IImg, Ncv32u IImgStride, Ncv32f *d_weights, Ncv32u weightsStride, HaarFeature64 *d_Features, HaarClassifierNode128 *d_ClassifierNodes, HaarStage64 *d_Stages, Ncv32u *d_inMask, Ncv32u *d_outMask, Ncv32u mask1Dlen, Ncv32u mask2Dstride, NcvSize32u anchorsRoi, Ncv32u startStageInc, Ncv32u endStageExc, Ncv32f scaleArea) { applyHaarClassifierAnchorParallelFunctor functor(gridConf, blockConf, cuStream, d_IImg, IImgStride, d_weights, weightsStride, d_Features, d_ClassifierNodes, d_Stages, d_inMask, d_outMask, mask1Dlen, mask2Dstride, anchorsRoi, startStageInc, endStageExc, scaleArea); //Second parameter is the number of "dynamic" template parameters NCVRuntimeTemplateBool::KernelCaller<Loki::NullType, 5, applyHaarClassifierAnchorParallelFunctor> ::call( &functor, tbInitMaskPositively, tbCacheTextureIImg, tbCacheTextureCascade, tbReadPixelIndexFromVector, tbDoAtomicCompaction); } struct applyHaarClassifierClassifierParallelFunctor { dim3 gridConf, blockConf; hipStream_t cuStream; //Kernel arguments are stored as members; Ncv32u *d_IImg; Ncv32u IImgStride; Ncv32f *d_weights; Ncv32u weightsStride; HaarFeature64 *d_Features; HaarClassifierNode128 *d_ClassifierNodes; HaarStage64 *d_Stages; Ncv32u *d_inMask; Ncv32u *d_outMask; Ncv32u mask1Dlen; Ncv32u mask2Dstride; NcvSize32u anchorsRoi; Ncv32u startStageInc; Ncv32u endStageExc; Ncv32f scaleArea; //Arguments are passed through the constructor applyHaarClassifierClassifierParallelFunctor(dim3 _gridConf, dim3 _blockConf, hipStream_t _cuStream, Ncv32u *_d_IImg, Ncv32u _IImgStride, Ncv32f *_d_weights, Ncv32u _weightsStride, HaarFeature64 *_d_Features, HaarClassifierNode128 *_d_ClassifierNodes, HaarStage64 *_d_Stages, Ncv32u *_d_inMask, Ncv32u *_d_outMask, Ncv32u _mask1Dlen, Ncv32u _mask2Dstride, NcvSize32u _anchorsRoi, Ncv32u _startStageInc, Ncv32u _endStageExc, Ncv32f _scaleArea) : gridConf(_gridConf), blockConf(_blockConf), cuStream(_cuStream), d_IImg(_d_IImg), IImgStride(_IImgStride), d_weights(_d_weights), weightsStride(_weightsStride), d_Features(_d_Features), d_ClassifierNodes(_d_ClassifierNodes), d_Stages(_d_Stages), d_inMask(_d_inMask), d_outMask(_d_outMask), mask1Dlen(_mask1Dlen), mask2Dstride(_mask2Dstride), anchorsRoi(_anchorsRoi), startStageInc(_startStageInc), endStageExc(_endStageExc), scaleArea(_scaleArea) {} template<class TList> void call(TList tl) { (void)tl; hipLaunchKernelGGL(( applyHaarClassifierClassifierParallel < Loki::TL::TypeAt<TList, 0>::Result::value, Loki::TL::TypeAt<TList, 1>::Result::value, Loki::TL::TypeAt<TList, 2>::Result::value >) , dim3(gridConf), dim3(blockConf), 0, cuStream, d_IImg, IImgStride, d_weights, weightsStride, d_Features, d_ClassifierNodes, d_Stages, d_inMask, d_outMask, mask1Dlen, mask2Dstride, anchorsRoi, startStageInc, endStageExc, scaleArea); } }; void applyHaarClassifierClassifierParallelDynTemplate(NcvBool tbCacheTextureIImg, NcvBool tbCacheTextureCascade, NcvBool tbDoAtomicCompaction, dim3 gridConf, dim3 blockConf, hipStream_t cuStream, Ncv32u *d_IImg, Ncv32u IImgStride, Ncv32f *d_weights, Ncv32u weightsStride, HaarFeature64 *d_Features, HaarClassifierNode128 *d_ClassifierNodes, HaarStage64 *d_Stages, Ncv32u *d_inMask, Ncv32u *d_outMask, Ncv32u mask1Dlen, Ncv32u mask2Dstride, NcvSize32u anchorsRoi, Ncv32u startStageInc, Ncv32u endStageExc, Ncv32f scaleArea) { applyHaarClassifierClassifierParallelFunctor functor(gridConf, blockConf, cuStream, d_IImg, IImgStride, d_weights, weightsStride, d_Features, d_ClassifierNodes, d_Stages, d_inMask, d_outMask, mask1Dlen, mask2Dstride, anchorsRoi, startStageInc, endStageExc, scaleArea); //Second parameter is the number of "dynamic" template parameters NCVRuntimeTemplateBool::KernelCaller<Loki::NullType, 3, applyHaarClassifierClassifierParallelFunctor> ::call( &functor, tbCacheTextureIImg, tbCacheTextureCascade, tbDoAtomicCompaction); } struct initializeMaskVectorFunctor { dim3 gridConf, blockConf; hipStream_t cuStream; //Kernel arguments are stored as members; Ncv32u *d_inMask; Ncv32u *d_outMask; Ncv32u mask1Dlen; Ncv32u mask2Dstride; NcvSize32u anchorsRoi; Ncv32u step; //Arguments are passed through the constructor initializeMaskVectorFunctor(dim3 _gridConf, dim3 _blockConf, hipStream_t _cuStream, Ncv32u *_d_inMask, Ncv32u *_d_outMask, Ncv32u _mask1Dlen, Ncv32u _mask2Dstride, NcvSize32u _anchorsRoi, Ncv32u _step) : gridConf(_gridConf), blockConf(_blockConf), cuStream(_cuStream), d_inMask(_d_inMask), d_outMask(_d_outMask), mask1Dlen(_mask1Dlen), mask2Dstride(_mask2Dstride), anchorsRoi(_anchorsRoi), step(_step) {} template<class TList> void call(TList tl) { (void)tl; hipLaunchKernelGGL(( initializeMaskVector < Loki::TL::TypeAt<TList, 0>::Result::value, Loki::TL::TypeAt<TList, 1>::Result::value >) , dim3(gridConf), dim3(blockConf), 0, cuStream, d_inMask, d_outMask, mask1Dlen, mask2Dstride, anchorsRoi, step); } }; void initializeMaskVectorDynTemplate(NcvBool tbMaskByInmask, NcvBool tbDoAtomicCompaction, dim3 gridConf, dim3 blockConf, hipStream_t cuStream, Ncv32u *d_inMask, Ncv32u *d_outMask, Ncv32u mask1Dlen, Ncv32u mask2Dstride, NcvSize32u anchorsRoi, Ncv32u step) { initializeMaskVectorFunctor functor(gridConf, blockConf, cuStream, d_inMask, d_outMask, mask1Dlen, mask2Dstride, anchorsRoi, step); //Second parameter is the number of "dynamic" template parameters NCVRuntimeTemplateBool::KernelCaller<Loki::NullType, 2, initializeMaskVectorFunctor> ::call( &functor, tbMaskByInmask, tbDoAtomicCompaction); } Ncv32u getStageNumWithNotLessThanNclassifiers(Ncv32u N, HaarClassifierCascadeDescriptor &haar, NCVVector<HaarStage64> &h_HaarStages) { Ncv32u i = 0; for (; i<haar.NumStages; i++) { if (h_HaarStages.ptr()[i].getNumClassifierRootNodes() >= N) { break; } } return i; } NCVStatus ncvApplyHaarClassifierCascade_device(NCVMatrix<Ncv32u> &integral, NCVMatrix<Ncv32f> &d_weights, NCVMatrixAlloc<Ncv32u> &d_pixelMask, Ncv32u &numDetections, HaarClassifierCascadeDescriptor &haar, NCVVector<HaarStage64> &h_HaarStages, NCVVector<HaarStage64> &d_HaarStages, NCVVector<HaarClassifierNode128> &d_HaarNodes, NCVVector<HaarFeature64> &d_HaarFeatures, NcvBool bMaskElements, NcvSize32u anchorsRoi, Ncv32u pixelStep, Ncv32f scaleArea, INCVMemAllocator &gpuAllocator, INCVMemAllocator &cpuAllocator, hipDeviceProp_t &devProp, hipStream_t cuStream) { ncvAssertReturn(integral.memType() == d_weights.memType()&& integral.memType() == d_pixelMask.memType() && integral.memType() == gpuAllocator.memType() && (integral.memType() == NCVMemoryTypeDevice || integral.memType() == NCVMemoryTypeNone), NCV_MEM_RESIDENCE_ERROR); ncvAssertReturn(d_HaarStages.memType() == d_HaarNodes.memType() && d_HaarStages.memType() == d_HaarFeatures.memType() && (d_HaarStages.memType() == NCVMemoryTypeDevice || d_HaarStages.memType() == NCVMemoryTypeNone), NCV_MEM_RESIDENCE_ERROR); ncvAssertReturn(h_HaarStages.memType() != NCVMemoryTypeDevice, NCV_MEM_RESIDENCE_ERROR); ncvAssertReturn(gpuAllocator.isInitialized() && cpuAllocator.isInitialized(), NCV_ALLOCATOR_NOT_INITIALIZED); ncvAssertReturn((integral.ptr() != NULL && d_weights.ptr() != NULL && d_pixelMask.ptr() != NULL && h_HaarStages.ptr() != NULL && d_HaarStages.ptr() != NULL && d_HaarNodes.ptr() != NULL && d_HaarFeatures.ptr() != NULL) || gpuAllocator.isCounting(), NCV_NULL_PTR); ncvAssertReturn(anchorsRoi.width > 0 && anchorsRoi.height > 0 && d_pixelMask.width() >= anchorsRoi.width && d_pixelMask.height() >= anchorsRoi.height && d_weights.width() >= anchorsRoi.width && d_weights.height() >= anchorsRoi.height && integral.width() >= anchorsRoi.width + haar.ClassifierSize.width && integral.height() >= anchorsRoi.height + haar.ClassifierSize.height, NCV_DIMENSIONS_INVALID); ncvAssertReturn(scaleArea > 0, NCV_INVALID_SCALE); ncvAssertReturn(d_HaarStages.length() >= haar.NumStages && d_HaarNodes.length() >= haar.NumClassifierTotalNodes && d_HaarFeatures.length() >= haar.NumFeatures && d_HaarStages.length() == h_HaarStages.length() && haar.NumClassifierRootNodes <= haar.NumClassifierTotalNodes, NCV_DIMENSIONS_INVALID); ncvAssertReturn(haar.bNeedsTiltedII == false || gpuAllocator.isCounting(), NCV_NOIMPL_HAAR_TILTED_FEATURES); ncvAssertReturn(pixelStep == 1 || pixelStep == 2, NCV_HAAR_INVALID_PIXEL_STEP); NCV_SET_SKIP_COND(gpuAllocator.isCounting()); #if defined _SELF_TEST_ NCVStatus ncvStat; NCVMatrixAlloc<Ncv32u> h_integralImage(cpuAllocator, integral.width, integral.height, integral.pitch); ncvAssertReturn(h_integralImage.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVMatrixAlloc<Ncv32f> h_weights(cpuAllocator, d_weights.width, d_weights.height, d_weights.pitch); ncvAssertReturn(h_weights.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVMatrixAlloc<Ncv32u> h_pixelMask(cpuAllocator, d_pixelMask.width, d_pixelMask.height, d_pixelMask.pitch); ncvAssertReturn(h_pixelMask.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVVectorAlloc<HaarClassifierNode128> h_HaarNodes(cpuAllocator, d_HaarNodes.length); ncvAssertReturn(h_HaarNodes.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVVectorAlloc<HaarFeature64> h_HaarFeatures(cpuAllocator, d_HaarFeatures.length); ncvAssertReturn(h_HaarFeatures.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVMatrixAlloc<Ncv32u> h_pixelMask_d(cpuAllocator, d_pixelMask.width, d_pixelMask.height, d_pixelMask.pitch); ncvAssertReturn(h_pixelMask_d.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCV_SKIP_COND_BEGIN ncvStat = d_pixelMask.copySolid(h_pixelMask, 0); ncvAssertReturnNcvStat(ncvStat); ncvStat = integral.copySolid(h_integralImage, 0); ncvAssertReturnNcvStat(ncvStat); ncvStat = d_weights.copySolid(h_weights, 0); ncvAssertReturnNcvStat(ncvStat); ncvStat = d_HaarNodes.copySolid(h_HaarNodes, 0); ncvAssertReturnNcvStat(ncvStat); ncvStat = d_HaarFeatures.copySolid(h_HaarFeatures, 0); ncvAssertReturnNcvStat(ncvStat); ncvAssertCUDAReturn(hipStreamSynchronize(0), NCV_CUDA_ERROR); for (Ncv32u i=0; i<(Ncv32u)anchorsRoi.height; i++) { for (Ncv32u j=0; j<d_pixelMask.stride(); j++) { if ((i%pixelStep==0) && (j%pixelStep==0) && (j<(Ncv32u)anchorsRoi.width)) { if (!bMaskElements || h_pixelMask.ptr[i*d_pixelMask.stride()+j] != OBJDET_MASK_ELEMENT_INVALID_32U) { h_pixelMask.ptr[i*d_pixelMask.stride()+j] = (i << 16) | j; } } else { h_pixelMask.ptr[i*d_pixelMask.stride()+j] = OBJDET_MASK_ELEMENT_INVALID_32U; } } } NCV_SKIP_COND_END #endif NCVVectorReuse<Ncv32u> d_vecPixelMask(d_pixelMask.getSegment(), anchorsRoi.height * d_pixelMask.stride()); ncvAssertReturn(d_vecPixelMask.isMemReused(), NCV_ALLOCATOR_BAD_REUSE); NCVVectorAlloc<Ncv32u> d_vecPixelMaskTmp(gpuAllocator, static_cast<Ncv32u>(d_vecPixelMask.length())); ncvAssertReturn(d_vecPixelMaskTmp.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVVectorAlloc<Ncv32u> hp_pool32u(cpuAllocator, 2); ncvAssertReturn(hp_pool32u.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); Ncv32u *hp_zero = &hp_pool32u.ptr()[0]; Ncv32u *hp_numDet = &hp_pool32u.ptr()[1]; NCV_SKIP_COND_BEGIN *hp_zero = 0; *hp_numDet = 0; NCV_SKIP_COND_END Ncv32f scaleAreaPixels = scaleArea * ((haar.ClassifierSize.width - 2*HAAR_STDDEV_BORDER) * (haar.ClassifierSize.height - 2*HAAR_STDDEV_BORDER)); NcvBool bTexCacheCascade = devProp.major < 2; NcvBool bTexCacheIImg = true; //this works better even on Fermi so far NcvBool bDoAtomicCompaction = devProp.major >= 2 || (devProp.major == 1 && devProp.minor >= 3); NCVVector<Ncv32u> *d_ptrNowData = &d_vecPixelMask; NCVVector<Ncv32u> *d_ptrNowTmp = &d_vecPixelMaskTmp; Ncv32u szNppCompactTmpBuf; nppsStCompactGetSize_32u(static_cast<Ncv32u>(d_vecPixelMask.length()), &szNppCompactTmpBuf, devProp); if (bDoAtomicCompaction) { szNppCompactTmpBuf = 0; } NCVVectorAlloc<Ncv8u> d_tmpBufCompact(gpuAllocator, szNppCompactTmpBuf); NCV_SKIP_COND_BEGIN if (bTexCacheIImg) { hipChannelFormatDesc cfdTexIImage; cfdTexIImage = hipCreateChannelDesc<Ncv32u>(); size_t alignmentOffset; ncvAssertCUDAReturn(hipBindTexture(&alignmentOffset, texIImage, integral.ptr(), cfdTexIImage, (anchorsRoi.height + haar.ClassifierSize.height) * integral.pitch()), NCV_CUDA_ERROR); ncvAssertReturn(alignmentOffset==0, NCV_TEXTURE_BIND_ERROR); } if (bTexCacheCascade) { hipChannelFormatDesc cfdTexHaarFeatures; hipChannelFormatDesc cfdTexHaarClassifierNodes; cfdTexHaarFeatures = hipCreateChannelDesc<uint2>(); cfdTexHaarClassifierNodes = hipCreateChannelDesc<uint4>(); size_t alignmentOffset; ncvAssertCUDAReturn(hipBindTexture(&alignmentOffset, texHaarFeatures, d_HaarFeatures.ptr(), cfdTexHaarFeatures,sizeof(HaarFeature64) * haar.NumFeatures), NCV_CUDA_ERROR); ncvAssertReturn(alignmentOffset==0, NCV_TEXTURE_BIND_ERROR); ncvAssertCUDAReturn(hipBindTexture(&alignmentOffset, texHaarClassifierNodes, d_HaarNodes.ptr(), cfdTexHaarClassifierNodes, sizeof(HaarClassifierNode128) * haar.NumClassifierTotalNodes), NCV_CUDA_ERROR); ncvAssertReturn(alignmentOffset==0, NCV_TEXTURE_BIND_ERROR); } Ncv32u stageStartAnchorParallel = 0; Ncv32u stageMiddleSwitch = getStageNumWithNotLessThanNclassifiers(NUM_THREADS_CLASSIFIERPARALLEL, haar, h_HaarStages); Ncv32u stageEndClassifierParallel = haar.NumStages; if (stageMiddleSwitch == 0) { stageMiddleSwitch = 1; } //create stages subdivision for pixel-parallel processing const Ncv32u compactEveryNstage = bDoAtomicCompaction ? 7 : 1; Ncv32u curStop = stageStartAnchorParallel; std::vector<Ncv32u> pixParallelStageStops; while (curStop < stageMiddleSwitch) { pixParallelStageStops.push_back(curStop); curStop += compactEveryNstage; } if (curStop > compactEveryNstage && curStop - stageMiddleSwitch > compactEveryNstage / 2) { pixParallelStageStops[pixParallelStageStops.size()-1] = (stageMiddleSwitch - (curStop - 2 * compactEveryNstage)) / 2; } pixParallelStageStops.push_back(stageMiddleSwitch); Ncv32u pixParallelStageStopsIndex = 0; if (pixelStep != 1 || bMaskElements) { if (bDoAtomicCompaction) { ncvAssertCUDAReturn(hipMemcpyToSymbolAsync(d_outMaskPosition, hp_zero, sizeof(Ncv32u), 0, hipMemcpyHostToDevice, cuStream), NCV_CUDA_ERROR); ncvAssertCUDAReturn(hipStreamSynchronize(cuStream), NCV_CUDA_ERROR); } dim3 gridInit((((anchorsRoi.width + pixelStep - 1) / pixelStep + NUM_THREADS_ANCHORSPARALLEL - 1) / NUM_THREADS_ANCHORSPARALLEL), (anchorsRoi.height + pixelStep - 1) / pixelStep); dim3 blockInit(NUM_THREADS_ANCHORSPARALLEL); if (gridInit.x == 0 || gridInit.y == 0) { numDetections = 0; return NCV_SUCCESS; } initializeMaskVectorDynTemplate(bMaskElements, bDoAtomicCompaction, gridInit, blockInit, cuStream, d_ptrNowData->ptr(), d_ptrNowTmp->ptr(), static_cast<Ncv32u>(d_vecPixelMask.length()), d_pixelMask.stride(), anchorsRoi, pixelStep); ncvAssertCUDAReturn(hipGetLastError(), NCV_CUDA_ERROR); if (bDoAtomicCompaction) { ncvAssertCUDAReturn(hipStreamSynchronize(cuStream), NCV_CUDA_ERROR); ncvAssertCUDAReturn(hipMemcpyFromSymbolAsync(hp_numDet, d_outMaskPosition, sizeof(Ncv32u), 0, hipMemcpyDeviceToHost, cuStream), NCV_CUDA_ERROR); ncvAssertCUDAReturn(hipStreamSynchronize(cuStream), NCV_CUDA_ERROR); swap(d_ptrNowData, d_ptrNowTmp); } else { NCVStatus nppSt; nppSt = nppsStCompact_32u(d_ptrNowTmp->ptr(), static_cast<Ncv32u>(d_vecPixelMask.length()), d_ptrNowData->ptr(), hp_numDet, OBJDET_MASK_ELEMENT_INVALID_32U, d_tmpBufCompact.ptr(), szNppCompactTmpBuf, devProp); ncvAssertReturn(nppSt == NPPST_SUCCESS, NCV_NPP_ERROR); } numDetections = *hp_numDet; } else { // // 1. Run the first pixel-input pixel-parallel classifier for few stages // if (bDoAtomicCompaction) { ncvAssertCUDAReturn(hipMemcpyToSymbolAsync(d_outMaskPosition, hp_zero, sizeof(Ncv32u), 0, hipMemcpyHostToDevice, cuStream), NCV_CUDA_ERROR); ncvAssertCUDAReturn(hipStreamSynchronize(cuStream), NCV_CUDA_ERROR); } dim3 grid1(((d_pixelMask.stride() + NUM_THREADS_ANCHORSPARALLEL - 1) / NUM_THREADS_ANCHORSPARALLEL), anchorsRoi.height); dim3 block1(NUM_THREADS_ANCHORSPARALLEL); applyHaarClassifierAnchorParallelDynTemplate( true, //tbInitMaskPositively bTexCacheIImg, //tbCacheTextureIImg bTexCacheCascade, //tbCacheTextureCascade pixParallelStageStops[pixParallelStageStopsIndex] != 0,//tbReadPixelIndexFromVector bDoAtomicCompaction, //tbDoAtomicCompaction grid1, block1, cuStream, integral.ptr(), integral.stride(), d_weights.ptr(), d_weights.stride(), d_HaarFeatures.ptr(), d_HaarNodes.ptr(), d_HaarStages.ptr(), d_ptrNowData->ptr(), bDoAtomicCompaction ? d_ptrNowTmp->ptr() : d_ptrNowData->ptr(), 0, d_pixelMask.stride(), anchorsRoi, pixParallelStageStops[pixParallelStageStopsIndex], pixParallelStageStops[pixParallelStageStopsIndex+1], scaleAreaPixels); ncvAssertCUDAReturn(hipGetLastError(), NCV_CUDA_ERROR); if (bDoAtomicCompaction) { ncvAssertCUDAReturn(hipStreamSynchronize(cuStream), NCV_CUDA_ERROR); ncvAssertCUDAReturn(hipMemcpyFromSymbolAsync(hp_numDet, d_outMaskPosition, sizeof(Ncv32u), 0, hipMemcpyDeviceToHost, cuStream), NCV_CUDA_ERROR); ncvAssertCUDAReturn(hipStreamSynchronize(cuStream), NCV_CUDA_ERROR); } else { NCVStatus nppSt; nppSt = nppsStCompact_32u(d_ptrNowData->ptr(), static_cast<Ncv32u>(d_vecPixelMask.length()), d_ptrNowTmp->ptr(), hp_numDet, OBJDET_MASK_ELEMENT_INVALID_32U, d_tmpBufCompact.ptr(), szNppCompactTmpBuf, devProp); ncvAssertReturnNcvStat(nppSt); } swap(d_ptrNowData, d_ptrNowTmp); numDetections = *hp_numDet; pixParallelStageStopsIndex++; } // // 2. Run pixel-parallel stages // for (; pixParallelStageStopsIndex < pixParallelStageStops.size()-1; pixParallelStageStopsIndex++) { if (numDetections == 0) { break; } if (bDoAtomicCompaction) { ncvAssertCUDAReturn(hipMemcpyToSymbolAsync(d_outMaskPosition, hp_zero, sizeof(Ncv32u), 0, hipMemcpyHostToDevice, cuStream), NCV_CUDA_ERROR); ncvAssertCUDAReturn(hipStreamSynchronize(cuStream), NCV_CUDA_ERROR); } dim3 grid2((numDetections + NUM_THREADS_ANCHORSPARALLEL - 1) / NUM_THREADS_ANCHORSPARALLEL); if (numDetections > MAX_GRID_DIM) { grid2.x = MAX_GRID_DIM; grid2.y = (numDetections + MAX_GRID_DIM - 1) / MAX_GRID_DIM; } dim3 block2(NUM_THREADS_ANCHORSPARALLEL); applyHaarClassifierAnchorParallelDynTemplate( false, //tbInitMaskPositively bTexCacheIImg, //tbCacheTextureIImg bTexCacheCascade, //tbCacheTextureCascade pixParallelStageStops[pixParallelStageStopsIndex] != 0 || pixelStep != 1 || bMaskElements,//tbReadPixelIndexFromVector bDoAtomicCompaction, //tbDoAtomicCompaction grid2, block2, cuStream, integral.ptr(), integral.stride(), d_weights.ptr(), d_weights.stride(), d_HaarFeatures.ptr(), d_HaarNodes.ptr(), d_HaarStages.ptr(), d_ptrNowData->ptr(), bDoAtomicCompaction ? d_ptrNowTmp->ptr() : d_ptrNowData->ptr(), numDetections, d_pixelMask.stride(), anchorsRoi, pixParallelStageStops[pixParallelStageStopsIndex], pixParallelStageStops[pixParallelStageStopsIndex+1], scaleAreaPixels); ncvAssertCUDAReturn(hipGetLastError(), NCV_CUDA_ERROR); if (bDoAtomicCompaction) { ncvAssertCUDAReturn(hipStreamSynchronize(cuStream), NCV_CUDA_ERROR); ncvAssertCUDAReturn(hipMemcpyFromSymbolAsync(hp_numDet, d_outMaskPosition, sizeof(Ncv32u), 0, hipMemcpyDeviceToHost, cuStream), NCV_CUDA_ERROR); ncvAssertCUDAReturn(hipStreamSynchronize(cuStream), NCV_CUDA_ERROR); } else { NCVStatus nppSt; nppSt = nppsStCompact_32u(d_ptrNowData->ptr(), numDetections, d_ptrNowTmp->ptr(), hp_numDet, OBJDET_MASK_ELEMENT_INVALID_32U, d_tmpBufCompact.ptr(), szNppCompactTmpBuf, devProp); ncvAssertReturnNcvStat(nppSt); } swap(d_ptrNowData, d_ptrNowTmp); numDetections = *hp_numDet; } // // 3. Run all left stages in one stage-parallel kernel // if (numDetections > 0 && stageMiddleSwitch < stageEndClassifierParallel) { if (bDoAtomicCompaction) { ncvAssertCUDAReturn(hipMemcpyToSymbolAsync(d_outMaskPosition, hp_zero, sizeof(Ncv32u), 0, hipMemcpyHostToDevice, cuStream), NCV_CUDA_ERROR); ncvAssertCUDAReturn(hipStreamSynchronize(cuStream), NCV_CUDA_ERROR); } dim3 grid3(numDetections); if (numDetections > MAX_GRID_DIM) { grid3.x = MAX_GRID_DIM; grid3.y = (numDetections + MAX_GRID_DIM - 1) / MAX_GRID_DIM; } dim3 block3(NUM_THREADS_CLASSIFIERPARALLEL); applyHaarClassifierClassifierParallelDynTemplate( bTexCacheIImg, //tbCacheTextureIImg bTexCacheCascade, //tbCacheTextureCascade bDoAtomicCompaction, //tbDoAtomicCompaction grid3, block3, cuStream, integral.ptr(), integral.stride(), d_weights.ptr(), d_weights.stride(), d_HaarFeatures.ptr(), d_HaarNodes.ptr(), d_HaarStages.ptr(), d_ptrNowData->ptr(), bDoAtomicCompaction ? d_ptrNowTmp->ptr() : d_ptrNowData->ptr(), numDetections, d_pixelMask.stride(), anchorsRoi, stageMiddleSwitch, stageEndClassifierParallel, scaleAreaPixels); ncvAssertCUDAReturn(hipGetLastError(), NCV_CUDA_ERROR); if (bDoAtomicCompaction) { ncvAssertCUDAReturn(hipStreamSynchronize(cuStream), NCV_CUDA_ERROR); ncvAssertCUDAReturn(hipMemcpyFromSymbolAsync(hp_numDet, d_outMaskPosition, sizeof(Ncv32u), 0, hipMemcpyDeviceToHost, cuStream), NCV_CUDA_ERROR); ncvAssertCUDAReturn(hipStreamSynchronize(cuStream), NCV_CUDA_ERROR); } else { NCVStatus nppSt; nppSt = nppsStCompact_32u(d_ptrNowData->ptr(), numDetections, d_ptrNowTmp->ptr(), hp_numDet, OBJDET_MASK_ELEMENT_INVALID_32U, d_tmpBufCompact.ptr(), szNppCompactTmpBuf, devProp); ncvAssertReturnNcvStat(nppSt); } swap(d_ptrNowData, d_ptrNowTmp); numDetections = *hp_numDet; } if (d_ptrNowData != &d_vecPixelMask) { d_vecPixelMaskTmp.copySolid(d_vecPixelMask, cuStream); ncvAssertCUDAReturn(hipStreamSynchronize(cuStream), NCV_CUDA_ERROR); } #if defined _SELF_TEST_ ncvStat = d_pixelMask.copySolid(h_pixelMask_d, 0); ncvAssertReturnNcvStat(ncvStat); ncvAssertCUDAReturn(hipStreamSynchronize(cuStream), NCV_CUDA_ERROR); if (bDoAtomicCompaction) { std::sort(h_pixelMask_d.ptr, h_pixelMask_d.ptr + numDetections); } Ncv32u fpu_oldcw, fpu_cw; _controlfp_s(&fpu_cw, 0, 0); fpu_oldcw = fpu_cw; _controlfp_s(&fpu_cw, _PC_24, _MCW_PC); Ncv32u numDetGold; ncvStat = ncvApplyHaarClassifierCascade_host(h_integralImage, h_weights, h_pixelMask, numDetGold, haar, h_HaarStages, h_HaarNodes, h_HaarFeatures, bMaskElements, anchorsRoi, pixelStep, scaleArea); ncvAssertReturnNcvStat(ncvStat); _controlfp_s(&fpu_cw, fpu_oldcw, _MCW_PC); bool bPass = true; if (numDetGold != numDetections) { printf("NCVHaarClassifierCascade::applyHaarClassifierCascade numdetections don't match: cpu=%d, gpu=%d\n", numDetGold, numDetections); bPass = false; } else { for (Ncv32u i=0; i<::max(numDetGold, numDetections) && bPass; i++) { if (h_pixelMask.ptr[i] != h_pixelMask_d.ptr[i]) { printf("NCVHaarClassifierCascade::applyHaarClassifierCascade self test failed: i=%d, cpu=%d, gpu=%d\n", i, h_pixelMask.ptr[i], h_pixelMask_d.ptr[i]); bPass = false; } } } printf("NCVHaarClassifierCascade::applyHaarClassifierCascade %s\n", bPass?"PASSED":"FAILED"); #endif NCV_SKIP_COND_END return NCV_SUCCESS; } //============================================================================== // // HypothesesOperations file // //============================================================================== const Ncv32u NUM_GROW_THREADS = 128; __device__ __host__ NcvRect32u pixelToRect(Ncv32u pixel, Ncv32u width, Ncv32u height, Ncv32f scale) { NcvRect32u res; res.x = (Ncv32u)(scale * (pixel & 0xFFFF)); res.y = (Ncv32u)(scale * (pixel >> 16)); res.width = (Ncv32u)(scale * width); res.height = (Ncv32u)(scale * height); return res; } __global__ void growDetectionsKernel(Ncv32u *pixelMask, Ncv32u numElements, NcvRect32u *hypotheses, Ncv32u rectWidth, Ncv32u rectHeight, Ncv32f curScale) { Ncv32u blockId = blockIdx.y * 65535 + blockIdx.x; Ncv32u elemAddr = blockId * NUM_GROW_THREADS + threadIdx.x; if (elemAddr >= numElements) { return; } hypotheses[elemAddr] = pixelToRect(pixelMask[elemAddr], rectWidth, rectHeight, curScale); } NCVStatus ncvGrowDetectionsVector_device(NCVVector<Ncv32u> &pixelMask, Ncv32u numPixelMaskDetections, NCVVector<NcvRect32u> &hypotheses, Ncv32u &totalDetections, Ncv32u totalMaxDetections, Ncv32u rectWidth, Ncv32u rectHeight, Ncv32f curScale, hipStream_t cuStream) { ncvAssertReturn(pixelMask.ptr() != NULL && hypotheses.ptr() != NULL, NCV_NULL_PTR); ncvAssertReturn(pixelMask.memType() == hypotheses.memType() && pixelMask.memType() == NCVMemoryTypeDevice, NCV_MEM_RESIDENCE_ERROR); ncvAssertReturn(rectWidth > 0 && rectHeight > 0 && curScale > 0, NCV_INVALID_ROI); ncvAssertReturn(curScale > 0, NCV_INVALID_SCALE); ncvAssertReturn(totalMaxDetections <= hypotheses.length() && numPixelMaskDetections <= pixelMask.length() && totalMaxDetections <= totalMaxDetections, NCV_INCONSISTENT_INPUT); NCVStatus ncvStat = NCV_SUCCESS; Ncv32u numDetsToCopy = numPixelMaskDetections; if (numDetsToCopy == 0) { return ncvStat; } if (totalDetections + numPixelMaskDetections > totalMaxDetections) { ncvStat = NCV_WARNING_HAAR_DETECTIONS_VECTOR_OVERFLOW; numDetsToCopy = totalMaxDetections - totalDetections; } dim3 block(NUM_GROW_THREADS); dim3 grid((numDetsToCopy + NUM_GROW_THREADS - 1) / NUM_GROW_THREADS); if (grid.x > 65535) { grid.y = (grid.x + 65534) / 65535; grid.x = 65535; } hipLaunchKernelGGL(( growDetectionsKernel), dim3(grid), dim3(block), 0, cuStream, pixelMask.ptr(), numDetsToCopy, hypotheses.ptr() + totalDetections, rectWidth, rectHeight, curScale); ncvAssertCUDAReturn(hipGetLastError(), NCV_CUDA_ERROR); totalDetections += numDetsToCopy; return ncvStat; } //============================================================================== // // Pipeline file // //============================================================================== NCVStatus ncvDetectObjectsMultiScale_device(NCVMatrix<Ncv8u> &d_srcImg, NcvSize32u srcRoi, NCVVector<NcvRect32u> &d_dstRects, Ncv32u &dstNumRects, HaarClassifierCascadeDescriptor &haar, NCVVector<HaarStage64> &h_HaarStages, NCVVector<HaarStage64> &d_HaarStages, NCVVector<HaarClassifierNode128> &d_HaarNodes, NCVVector<HaarFeature64> &d_HaarFeatures, NcvSize32u minObjSize, Ncv32u minNeighbors, //default 4 Ncv32f scaleStep, //default 1.2f Ncv32u pixelStep, //default 1 Ncv32u flags, //default NCVPipeObjDet_Default INCVMemAllocator &gpuAllocator, INCVMemAllocator &cpuAllocator, hipDeviceProp_t &devProp, hipStream_t cuStream) { ncvAssertReturn(d_srcImg.memType() == d_dstRects.memType() && d_srcImg.memType() == gpuAllocator.memType() && (d_srcImg.memType() == NCVMemoryTypeDevice || d_srcImg.memType() == NCVMemoryTypeNone), NCV_MEM_RESIDENCE_ERROR); ncvAssertReturn(d_HaarStages.memType() == d_HaarNodes.memType() && d_HaarStages.memType() == d_HaarFeatures.memType() && (d_HaarStages.memType() == NCVMemoryTypeDevice || d_HaarStages.memType() == NCVMemoryTypeNone), NCV_MEM_RESIDENCE_ERROR); ncvAssertReturn(h_HaarStages.memType() != NCVMemoryTypeDevice, NCV_MEM_RESIDENCE_ERROR); ncvAssertReturn(gpuAllocator.isInitialized() && cpuAllocator.isInitialized(), NCV_ALLOCATOR_NOT_INITIALIZED); ncvAssertReturn((d_srcImg.ptr() != NULL && d_dstRects.ptr() != NULL && h_HaarStages.ptr() != NULL && d_HaarStages.ptr() != NULL && d_HaarNodes.ptr() != NULL && d_HaarFeatures.ptr() != NULL) || gpuAllocator.isCounting(), NCV_NULL_PTR); ncvAssertReturn(srcRoi.width > 0 && srcRoi.height > 0 && d_srcImg.width() >= srcRoi.width && d_srcImg.height() >= srcRoi.height && srcRoi.width >= minObjSize.width && srcRoi.height >= minObjSize.height && d_dstRects.length() >= 1, NCV_DIMENSIONS_INVALID); ncvAssertReturn(scaleStep > 1.0f, NCV_INVALID_SCALE); ncvAssertReturn(d_HaarStages.length() >= haar.NumStages && d_HaarNodes.length() >= haar.NumClassifierTotalNodes && d_HaarFeatures.length() >= haar.NumFeatures && d_HaarStages.length() == h_HaarStages.length() && haar.NumClassifierRootNodes <= haar.NumClassifierTotalNodes, NCV_DIMENSIONS_INVALID); ncvAssertReturn(haar.bNeedsTiltedII == false, NCV_NOIMPL_HAAR_TILTED_FEATURES); ncvAssertReturn(pixelStep == 1 || pixelStep == 2, NCV_HAAR_INVALID_PIXEL_STEP); //TODO: set NPP active stream to cuStream NCVStatus ncvStat; NCV_SET_SKIP_COND(gpuAllocator.isCounting()); Ncv32u integralWidth = d_srcImg.width() + 1; Ncv32u integralHeight = d_srcImg.height() + 1; NCVMatrixAlloc<Ncv32u> integral(gpuAllocator, integralWidth, integralHeight); ncvAssertReturn(integral.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVMatrixAlloc<Ncv64u> d_sqIntegralImage(gpuAllocator, integralWidth, integralHeight); ncvAssertReturn(d_sqIntegralImage.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVMatrixAlloc<Ncv32f> d_rectStdDev(gpuAllocator, d_srcImg.width(), d_srcImg.height()); ncvAssertReturn(d_rectStdDev.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVMatrixAlloc<Ncv32u> d_pixelMask(gpuAllocator, d_srcImg.width(), d_srcImg.height()); ncvAssertReturn(d_pixelMask.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVMatrixAlloc<Ncv32u> d_scaledIntegralImage(gpuAllocator, integralWidth, integralHeight); ncvAssertReturn(d_scaledIntegralImage.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVMatrixAlloc<Ncv64u> d_scaledSqIntegralImage(gpuAllocator, integralWidth, integralHeight); ncvAssertReturn(d_scaledSqIntegralImage.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVVectorAlloc<NcvRect32u> d_hypothesesIntermediate(gpuAllocator, d_srcImg.width() * d_srcImg.height()); ncvAssertReturn(d_hypothesesIntermediate.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVVectorAlloc<NcvRect32u> h_hypothesesIntermediate(cpuAllocator, d_srcImg.width() * d_srcImg.height()); ncvAssertReturn(h_hypothesesIntermediate.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVStatus nppStat; Ncv32u szTmpBufIntegral, szTmpBufSqIntegral; nppStat = nppiStIntegralGetSize_8u32u(NcvSize32u(d_srcImg.width(), d_srcImg.height()), &szTmpBufIntegral, devProp); ncvAssertReturnNcvStat(nppStat); nppStat = nppiStSqrIntegralGetSize_8u64u(NcvSize32u(d_srcImg.width(), d_srcImg.height()), &szTmpBufSqIntegral, devProp); ncvAssertReturnNcvStat(nppStat); NCVVectorAlloc<Ncv8u> d_tmpIIbuf(gpuAllocator, ::max(szTmpBufIntegral, szTmpBufSqIntegral)); ncvAssertReturn(d_tmpIIbuf.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCV_SKIP_COND_BEGIN nppStat = nppiStIntegral_8u32u_C1R(d_srcImg.ptr(), d_srcImg.pitch(), integral.ptr(), integral.pitch(), NcvSize32u(d_srcImg.width(), d_srcImg.height()), d_tmpIIbuf.ptr(), szTmpBufIntegral, devProp); ncvAssertReturnNcvStat(nppStat); nppStat = nppiStSqrIntegral_8u64u_C1R(d_srcImg.ptr(), d_srcImg.pitch(), d_sqIntegralImage.ptr(), d_sqIntegralImage.pitch(), NcvSize32u(d_srcImg.width(), d_srcImg.height()), d_tmpIIbuf.ptr(), szTmpBufSqIntegral, devProp); ncvAssertReturnNcvStat(nppStat); NCV_SKIP_COND_END dstNumRects = 0; Ncv32u lastCheckedScale = 0; NcvBool bReverseTraverseScale = ((flags & NCVPipeObjDet_FindLargestObject) != 0); std::vector<Ncv32u> scalesVector; NcvBool bFoundLargestFace = false; for (Ncv32f scaleIter = 1.0f; ; scaleIter *= scaleStep) { Ncv32u scale = (Ncv32u)scaleIter; if (lastCheckedScale == scale) { continue; } lastCheckedScale = scale; if (haar.ClassifierSize.width * (Ncv32s)scale < minObjSize.width || haar.ClassifierSize.height * (Ncv32s)scale < minObjSize.height) { continue; } NcvSize32s srcRoi_, srcIIRo_i, scaledIIRoi, searchRoi; srcRoi_.width = d_srcImg.width(); srcRoi_.height = d_srcImg.height(); srcIIRo_i.width = srcRoi_.width + 1; srcIIRo_i.height = srcRoi_.height + 1; scaledIIRoi.width = srcIIRo_i.width / scale; scaledIIRoi.height = srcIIRo_i.height / scale; searchRoi.width = scaledIIRoi.width - haar.ClassifierSize.width; searchRoi.height = scaledIIRoi.height - haar.ClassifierSize.height; if (searchRoi.width <= 0 || searchRoi.height <= 0) { break; } scalesVector.push_back(scale); if (gpuAllocator.isCounting()) { break; } } if (bReverseTraverseScale) { std::reverse(scalesVector.begin(), scalesVector.end()); } //TODO: handle _fair_scale_ flag for (Ncv32u i=0; i<scalesVector.size(); i++) { Ncv32u scale = scalesVector[i]; NcvSize32u srcRoi_, scaledIIRoi, searchRoi; NcvSize32u srcIIRoi; srcRoi_.width = d_srcImg.width(); srcRoi_.height = d_srcImg.height(); srcIIRoi.width = srcRoi_.width + 1; srcIIRoi.height = srcRoi_.height + 1; scaledIIRoi.width = srcIIRoi.width / scale; scaledIIRoi.height = srcIIRoi.height / scale; searchRoi.width = scaledIIRoi.width - haar.ClassifierSize.width; searchRoi.height = scaledIIRoi.height - haar.ClassifierSize.height; NCV_SKIP_COND_BEGIN nppStat = nppiStDecimate_32u_C1R( integral.ptr(), integral.pitch(), d_scaledIntegralImage.ptr(), d_scaledIntegralImage.pitch(), srcIIRoi, scale, true); ncvAssertReturnNcvStat(nppStat); nppStat = nppiStDecimate_64u_C1R( d_sqIntegralImage.ptr(), d_sqIntegralImage.pitch(), d_scaledSqIntegralImage.ptr(), d_scaledSqIntegralImage.pitch(), srcIIRoi, scale, true); ncvAssertReturnNcvStat(nppStat); const NcvRect32u rect( HAAR_STDDEV_BORDER, HAAR_STDDEV_BORDER, haar.ClassifierSize.width - 2*HAAR_STDDEV_BORDER, haar.ClassifierSize.height - 2*HAAR_STDDEV_BORDER); nppStat = nppiStRectStdDev_32f_C1R( d_scaledIntegralImage.ptr(), d_scaledIntegralImage.pitch(), d_scaledSqIntegralImage.ptr(), d_scaledSqIntegralImage.pitch(), d_rectStdDev.ptr(), d_rectStdDev.pitch(), NcvSize32u(searchRoi.width, searchRoi.height), rect, (Ncv32f)scale*scale, true); ncvAssertReturnNcvStat(nppStat); NCV_SKIP_COND_END Ncv32u detectionsOnThisScale; ncvStat = ncvApplyHaarClassifierCascade_device( d_scaledIntegralImage, d_rectStdDev, d_pixelMask, detectionsOnThisScale, haar, h_HaarStages, d_HaarStages, d_HaarNodes, d_HaarFeatures, false, searchRoi, pixelStep, (Ncv32f)scale*scale, gpuAllocator, cpuAllocator, devProp, cuStream); ncvAssertReturnNcvStat(nppStat); NCV_SKIP_COND_BEGIN NCVVectorReuse<Ncv32u> d_vecPixelMask(d_pixelMask.getSegment()); ncvStat = ncvGrowDetectionsVector_device( d_vecPixelMask, detectionsOnThisScale, d_hypothesesIntermediate, dstNumRects, static_cast<Ncv32u>(d_hypothesesIntermediate.length()), haar.ClassifierSize.width, haar.ClassifierSize.height, (Ncv32f)scale, cuStream); ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat); if (flags & NCVPipeObjDet_FindLargestObject) { if (dstNumRects == 0) { continue; } if (dstNumRects != 0) { ncvAssertCUDAReturn(hipStreamSynchronize(cuStream), NCV_CUDA_ERROR); ncvStat = d_hypothesesIntermediate.copySolid(h_hypothesesIntermediate, cuStream, dstNumRects * sizeof(NcvRect32u)); ncvAssertReturnNcvStat(ncvStat); ncvAssertCUDAReturn(hipStreamSynchronize(cuStream), NCV_CUDA_ERROR); } Ncv32u numStrongHypothesesNow = dstNumRects; ncvStat = ncvGroupRectangles_host( h_hypothesesIntermediate, numStrongHypothesesNow, minNeighbors, RECT_SIMILARITY_PROPORTION, NULL); ncvAssertReturnNcvStat(ncvStat); if (numStrongHypothesesNow > 0) { NcvRect32u maxRect = h_hypothesesIntermediate.ptr()[0]; for (Ncv32u j=1; j<numStrongHypothesesNow; j++) { if (maxRect.width < h_hypothesesIntermediate.ptr()[j].width) { maxRect = h_hypothesesIntermediate.ptr()[j]; } } h_hypothesesIntermediate.ptr()[0] = maxRect; dstNumRects = 1; ncvStat = h_hypothesesIntermediate.copySolid(d_dstRects, cuStream, sizeof(NcvRect32u)); ncvAssertReturnNcvStat(ncvStat); bFoundLargestFace = true; break; } } NCV_SKIP_COND_END if (gpuAllocator.isCounting()) { break; } } NCVStatus ncvRetCode = NCV_SUCCESS; NCV_SKIP_COND_BEGIN if (flags & NCVPipeObjDet_FindLargestObject) { if (!bFoundLargestFace) { dstNumRects = 0; } } else { //TODO: move hypotheses filtration to GPU pipeline (the only CPU-resident element of the pipeline left) if (dstNumRects != 0) { ncvAssertCUDAReturn(hipStreamSynchronize(cuStream), NCV_CUDA_ERROR); ncvStat = d_hypothesesIntermediate.copySolid(h_hypothesesIntermediate, cuStream, dstNumRects * sizeof(NcvRect32u)); ncvAssertReturnNcvStat(ncvStat); ncvAssertCUDAReturn(hipStreamSynchronize(cuStream), NCV_CUDA_ERROR); } ncvStat = ncvGroupRectangles_host( h_hypothesesIntermediate, dstNumRects, minNeighbors, RECT_SIMILARITY_PROPORTION, NULL); ncvAssertReturnNcvStat(ncvStat); if (dstNumRects > d_dstRects.length()) { ncvRetCode = NCV_WARNING_HAAR_DETECTIONS_VECTOR_OVERFLOW; dstNumRects = static_cast<Ncv32u>(d_dstRects.length()); } if (dstNumRects != 0) { ncvStat = h_hypothesesIntermediate.copySolid(d_dstRects, cuStream, dstNumRects * sizeof(NcvRect32u)); ncvAssertReturnNcvStat(ncvStat); } } if (flags & NCVPipeObjDet_VisualizeInPlace) { ncvAssertCUDAReturn(hipStreamSynchronize(cuStream), NCV_CUDA_ERROR); ncvDrawRects_8u_device(d_srcImg.ptr(), d_srcImg.stride(), d_srcImg.width(), d_srcImg.height(), d_dstRects.ptr(), dstNumRects, 255, cuStream); } NCV_SKIP_COND_END return ncvRetCode; } //============================================================================== // // Purely Host code: classifier IO, mock-ups // //============================================================================== #ifdef _SELF_TEST_ #include <float.h> #endif NCVStatus ncvApplyHaarClassifierCascade_host(NCVMatrix<Ncv32u> &h_integralImage, NCVMatrix<Ncv32f> &h_weights, NCVMatrixAlloc<Ncv32u> &h_pixelMask, Ncv32u &numDetections, HaarClassifierCascadeDescriptor &haar, NCVVector<HaarStage64> &h_HaarStages, NCVVector<HaarClassifierNode128> &h_HaarNodes, NCVVector<HaarFeature64> &h_HaarFeatures, NcvBool bMaskElements, NcvSize32u anchorsRoi, Ncv32u pixelStep, Ncv32f scaleArea) { ncvAssertReturn(h_integralImage.memType() == h_weights.memType() && h_integralImage.memType() == h_pixelMask.memType() && (h_integralImage.memType() == NCVMemoryTypeHostPageable || h_integralImage.memType() == NCVMemoryTypeHostPinned), NCV_MEM_RESIDENCE_ERROR); ncvAssertReturn(h_HaarStages.memType() == h_HaarNodes.memType() && h_HaarStages.memType() == h_HaarFeatures.memType() && (h_HaarStages.memType() == NCVMemoryTypeHostPageable || h_HaarStages.memType() == NCVMemoryTypeHostPinned), NCV_MEM_RESIDENCE_ERROR); ncvAssertReturn(h_integralImage.ptr() != NULL && h_weights.ptr() != NULL && h_pixelMask.ptr() != NULL && h_HaarStages.ptr() != NULL && h_HaarNodes.ptr() != NULL && h_HaarFeatures.ptr() != NULL, NCV_NULL_PTR); ncvAssertReturn(anchorsRoi.width > 0 && anchorsRoi.height > 0 && h_pixelMask.width() >= anchorsRoi.width && h_pixelMask.height() >= anchorsRoi.height && h_weights.width() >= anchorsRoi.width && h_weights.height() >= anchorsRoi.height && h_integralImage.width() >= anchorsRoi.width + haar.ClassifierSize.width && h_integralImage.height() >= anchorsRoi.height + haar.ClassifierSize.height, NCV_DIMENSIONS_INVALID); ncvAssertReturn(scaleArea > 0, NCV_INVALID_SCALE); ncvAssertReturn(h_HaarStages.length() >= haar.NumStages && h_HaarNodes.length() >= haar.NumClassifierTotalNodes && h_HaarFeatures.length() >= haar.NumFeatures && h_HaarStages.length() == h_HaarStages.length() && haar.NumClassifierRootNodes <= haar.NumClassifierTotalNodes, NCV_DIMENSIONS_INVALID); ncvAssertReturn(haar.bNeedsTiltedII == false, NCV_NOIMPL_HAAR_TILTED_FEATURES); ncvAssertReturn(pixelStep == 1 || pixelStep == 2, NCV_HAAR_INVALID_PIXEL_STEP); Ncv32f scaleAreaPixels = scaleArea * ((haar.ClassifierSize.width - 2*HAAR_STDDEV_BORDER) * (haar.ClassifierSize.height - 2*HAAR_STDDEV_BORDER)); for (Ncv32u i=0; i<anchorsRoi.height; i++) { for (Ncv32u j=0; j<h_pixelMask.stride(); j++) { if (i % pixelStep != 0 || j % pixelStep != 0 || j >= anchorsRoi.width) { h_pixelMask.ptr()[i * h_pixelMask.stride() + j] = OBJDET_MASK_ELEMENT_INVALID_32U; } else { for (Ncv32u iStage = 0; iStage < haar.NumStages; iStage++) { Ncv32f curStageSum = 0.0f; Ncv32u numRootNodesInStage = h_HaarStages.ptr()[iStage].getNumClassifierRootNodes(); Ncv32u curRootNodeOffset = h_HaarStages.ptr()[iStage].getStartClassifierRootNodeOffset(); if (iStage == 0) { if (bMaskElements && h_pixelMask.ptr()[i * h_pixelMask.stride() + j] == OBJDET_MASK_ELEMENT_INVALID_32U) { break; } else { h_pixelMask.ptr()[i * h_pixelMask.stride() + j] = ((i << 16) | j); } } else if (h_pixelMask.ptr()[i * h_pixelMask.stride() + j] == OBJDET_MASK_ELEMENT_INVALID_32U) { break; } while (numRootNodesInStage--) { NcvBool bMoreNodesToTraverse = true; Ncv32u curNodeOffset = curRootNodeOffset; while (bMoreNodesToTraverse) { HaarClassifierNode128 curNode = h_HaarNodes.ptr()[curNodeOffset]; HaarFeatureDescriptor32 curFeatDesc = curNode.getFeatureDesc(); Ncv32u curNodeFeaturesNum = curFeatDesc.getNumFeatures(); Ncv32u curNodeFeaturesOffs = curFeatDesc.getFeaturesOffset(); Ncv32f curNodeVal = 0.f; for (Ncv32u iRect=0; iRect<curNodeFeaturesNum; iRect++) { HaarFeature64 feature = h_HaarFeatures.ptr()[curNodeFeaturesOffs + iRect]; Ncv32u rectX, rectY, rectWidth, rectHeight; feature.getRect(&rectX, &rectY, &rectWidth, &rectHeight); Ncv32f rectWeight = feature.getWeight(); Ncv32u iioffsTL = (i + rectY) * h_integralImage.stride() + (j + rectX); Ncv32u iioffsTR = iioffsTL + rectWidth; Ncv32u iioffsBL = iioffsTL + rectHeight * h_integralImage.stride(); Ncv32u iioffsBR = iioffsBL + rectWidth; Ncv32u iivalTL = h_integralImage.ptr()[iioffsTL]; Ncv32u iivalTR = h_integralImage.ptr()[iioffsTR]; Ncv32u iivalBL = h_integralImage.ptr()[iioffsBL]; Ncv32u iivalBR = h_integralImage.ptr()[iioffsBR]; Ncv32u rectSum = iivalBR - iivalBL + iivalTL - iivalTR; curNodeVal += (Ncv32f)rectSum * rectWeight; } HaarClassifierNodeDescriptor32 nodeLeft = curNode.getLeftNodeDesc(); HaarClassifierNodeDescriptor32 nodeRight = curNode.getRightNodeDesc(); Ncv32f nodeThreshold = curNode.getThreshold(); HaarClassifierNodeDescriptor32 nextNodeDescriptor; NcvBool nextNodeIsLeaf; if (curNodeVal < scaleAreaPixels * h_weights.ptr()[i * h_weights.stride() + j] * nodeThreshold) { nextNodeDescriptor = nodeLeft; nextNodeIsLeaf = curFeatDesc.isLeftNodeLeaf(); } else { nextNodeDescriptor = nodeRight; nextNodeIsLeaf = curFeatDesc.isRightNodeLeaf(); } if (nextNodeIsLeaf) { Ncv32f tmpLeafValue = nextNodeDescriptor.getLeafValueHost(); curStageSum += tmpLeafValue; bMoreNodesToTraverse = false; } else { curNodeOffset = nextNodeDescriptor.getNextNodeOffset(); } } curRootNodeOffset++; } Ncv32f tmpStageThreshold = h_HaarStages.ptr()[iStage].getStageThreshold(); if (curStageSum < tmpStageThreshold) { //drop h_pixelMask.ptr()[i * h_pixelMask.stride() + j] = OBJDET_MASK_ELEMENT_INVALID_32U; break; } } } } } std::sort(h_pixelMask.ptr(), h_pixelMask.ptr() + anchorsRoi.height * h_pixelMask.stride()); Ncv32u i = 0; for (; i<anchorsRoi.height * h_pixelMask.stride(); i++) { if (h_pixelMask.ptr()[i] == OBJDET_MASK_ELEMENT_INVALID_32U) { break; } } numDetections = i; return NCV_SUCCESS; } NCVStatus ncvGrowDetectionsVector_host(NCVVector<Ncv32u> &pixelMask, Ncv32u numPixelMaskDetections, NCVVector<NcvRect32u> &hypotheses, Ncv32u &totalDetections, Ncv32u totalMaxDetections, Ncv32u rectWidth, Ncv32u rectHeight, Ncv32f curScale) { ncvAssertReturn(pixelMask.ptr() != NULL && hypotheses.ptr() != NULL, NCV_NULL_PTR); ncvAssertReturn(pixelMask.memType() == hypotheses.memType() && pixelMask.memType() != NCVMemoryTypeDevice, NCV_MEM_RESIDENCE_ERROR); ncvAssertReturn(rectWidth > 0 && rectHeight > 0 && curScale > 0, NCV_INVALID_ROI); ncvAssertReturn(curScale > 0, NCV_INVALID_SCALE); ncvAssertReturn(totalMaxDetections <= hypotheses.length() && numPixelMaskDetections <= pixelMask.length() && totalMaxDetections <= totalMaxDetections, NCV_INCONSISTENT_INPUT); NCVStatus ncvStat = NCV_SUCCESS; Ncv32u numDetsToCopy = numPixelMaskDetections; if (numDetsToCopy == 0) { return ncvStat; } if (totalDetections + numPixelMaskDetections > totalMaxDetections) { ncvStat = NCV_WARNING_HAAR_DETECTIONS_VECTOR_OVERFLOW; numDetsToCopy = totalMaxDetections - totalDetections; } for (Ncv32u i=0; i<numDetsToCopy; i++) { hypotheses.ptr()[totalDetections + i] = pixelToRect(pixelMask.ptr()[i], rectWidth, rectHeight, curScale); } totalDetections += numDetsToCopy; return ncvStat; } static NCVStatus loadFromXML(const cv::String &filename, HaarClassifierCascadeDescriptor &haar, std::vector<HaarStage64> &haarStages, std::vector<HaarClassifierNode128> &haarClassifierNodes, std::vector<HaarFeature64> &haarFeatures) { #ifndef HAVE_OPENCV_OBJDETECT (void) filename; (void) haar; (void) haarStages; (void) haarClassifierNodes; (void) haarFeatures; CV_Error(cv::Error::StsNotImplemented, "This functionality requires objdetect module"); return NCV_HAAR_XML_LOADING_EXCEPTION; #else NCVStatus ncvStat; haar.NumStages = 0; haar.NumClassifierRootNodes = 0; haar.NumClassifierTotalNodes = 0; haar.NumFeatures = 0; haar.ClassifierSize.width = 0; haar.ClassifierSize.height = 0; haar.bHasStumpsOnly = true; haar.bNeedsTiltedII = false; Ncv32u curMaxTreeDepth = 0; std::vector<HaarClassifierNode128> h_TmpClassifierNotRootNodes; haarStages.resize(0); haarClassifierNodes.resize(0); haarFeatures.resize(0); cv::Ptr<CvHaarClassifierCascade> oldCascade((CvHaarClassifierCascade*)cvLoad(filename.c_str(), 0, 0, 0)); if (!oldCascade) { return NCV_HAAR_XML_LOADING_EXCEPTION; } haar.ClassifierSize.width = oldCascade->orig_window_size.width; haar.ClassifierSize.height = oldCascade->orig_window_size.height; int stagesCound = oldCascade->count; for(int s = 0; s < stagesCound; ++s) // by stages { HaarStage64 curStage; curStage.setStartClassifierRootNodeOffset(static_cast<Ncv32u>(haarClassifierNodes.size())); curStage.setStageThreshold(oldCascade->stage_classifier[s].threshold); int treesCount = oldCascade->stage_classifier[s].count; for(int t = 0; t < treesCount; ++t) // by trees { Ncv32u nodeId = 0; CvHaarClassifier* tree = &oldCascade->stage_classifier[s].classifier[t]; int nodesCount = tree->count; for(int n = 0; n < nodesCount; ++n) //by features { CvHaarFeature* feature = &tree->haar_feature[n]; HaarClassifierNode128 curNode; curNode.setThreshold(tree->threshold[n]); NcvBool bIsLeftNodeLeaf = false; NcvBool bIsRightNodeLeaf = false; HaarClassifierNodeDescriptor32 nodeLeft; if ( tree->left[n] <= 0 ) { Ncv32f leftVal = tree->alpha[-tree->left[n]]; ncvStat = nodeLeft.create(leftVal); ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat); bIsLeftNodeLeaf = true; } else { Ncv32u leftNodeOffset = tree->left[n]; nodeLeft.create((Ncv32u)(h_TmpClassifierNotRootNodes.size() + leftNodeOffset - 1)); haar.bHasStumpsOnly = false; } curNode.setLeftNodeDesc(nodeLeft); HaarClassifierNodeDescriptor32 nodeRight; if ( tree->right[n] <= 0 ) { Ncv32f rightVal = tree->alpha[-tree->right[n]]; ncvStat = nodeRight.create(rightVal); ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat); bIsRightNodeLeaf = true; } else { Ncv32u rightNodeOffset = tree->right[n]; nodeRight.create((Ncv32u)(h_TmpClassifierNotRootNodes.size() + rightNodeOffset - 1)); haar.bHasStumpsOnly = false; } curNode.setRightNodeDesc(nodeRight); Ncv32u tiltedVal = feature->tilted; haar.bNeedsTiltedII = (tiltedVal != 0); Ncv32u featureId = 0; for(int l = 0; l < CV_HAAR_FEATURE_MAX; ++l) //by rects { Ncv32u rectX = feature->rect[l].r.x; Ncv32u rectY = feature->rect[l].r.y; Ncv32u rectWidth = feature->rect[l].r.width; Ncv32u rectHeight = feature->rect[l].r.height; Ncv32f rectWeight = feature->rect[l].weight; if (rectWeight == 0/* && rectX == 0 &&rectY == 0 && rectWidth == 0 && rectHeight == 0*/) break; HaarFeature64 curFeature; ncvStat = curFeature.setRect(rectX, rectY, rectWidth, rectHeight, haar.ClassifierSize.width, haar.ClassifierSize.height); curFeature.setWeight(rectWeight); ncvAssertReturn(NCV_SUCCESS == ncvStat, ncvStat); haarFeatures.push_back(curFeature); featureId++; } HaarFeatureDescriptor32 tmpFeatureDesc; ncvStat = tmpFeatureDesc.create(haar.bNeedsTiltedII, bIsLeftNodeLeaf, bIsRightNodeLeaf, featureId, static_cast<Ncv32u>(haarFeatures.size()) - featureId); ncvAssertReturn(NCV_SUCCESS == ncvStat, ncvStat); curNode.setFeatureDesc(tmpFeatureDesc); if (!nodeId) { //root node haarClassifierNodes.push_back(curNode); curMaxTreeDepth = 1; } else { //other node h_TmpClassifierNotRootNodes.push_back(curNode); curMaxTreeDepth++; } nodeId++; } } curStage.setNumClassifierRootNodes(treesCount); haarStages.push_back(curStage); } //fill in cascade stats haar.NumStages = static_cast<Ncv32u>(haarStages.size()); haar.NumClassifierRootNodes = static_cast<Ncv32u>(haarClassifierNodes.size()); haar.NumClassifierTotalNodes = static_cast<Ncv32u>(haar.NumClassifierRootNodes + h_TmpClassifierNotRootNodes.size()); haar.NumFeatures = static_cast<Ncv32u>(haarFeatures.size()); //merge root and leaf nodes in one classifiers array Ncv32u offsetRoot = static_cast<Ncv32u>(haarClassifierNodes.size()); for (Ncv32u i=0; i<haarClassifierNodes.size(); i++) { HaarFeatureDescriptor32 featureDesc = haarClassifierNodes[i].getFeatureDesc(); HaarClassifierNodeDescriptor32 nodeLeft = haarClassifierNodes[i].getLeftNodeDesc(); if (!featureDesc.isLeftNodeLeaf()) { Ncv32u newOffset = nodeLeft.getNextNodeOffset() + offsetRoot; nodeLeft.create(newOffset); } haarClassifierNodes[i].setLeftNodeDesc(nodeLeft); HaarClassifierNodeDescriptor32 nodeRight = haarClassifierNodes[i].getRightNodeDesc(); if (!featureDesc.isRightNodeLeaf()) { Ncv32u newOffset = nodeRight.getNextNodeOffset() + offsetRoot; nodeRight.create(newOffset); } haarClassifierNodes[i].setRightNodeDesc(nodeRight); } for (Ncv32u i=0; i<h_TmpClassifierNotRootNodes.size(); i++) { HaarFeatureDescriptor32 featureDesc = h_TmpClassifierNotRootNodes[i].getFeatureDesc(); HaarClassifierNodeDescriptor32 nodeLeft = h_TmpClassifierNotRootNodes[i].getLeftNodeDesc(); if (!featureDesc.isLeftNodeLeaf()) { Ncv32u newOffset = nodeLeft.getNextNodeOffset() + offsetRoot; nodeLeft.create(newOffset); } h_TmpClassifierNotRootNodes[i].setLeftNodeDesc(nodeLeft); HaarClassifierNodeDescriptor32 nodeRight = h_TmpClassifierNotRootNodes[i].getRightNodeDesc(); if (!featureDesc.isRightNodeLeaf()) { Ncv32u newOffset = nodeRight.getNextNodeOffset() + offsetRoot; nodeRight.create(newOffset); } h_TmpClassifierNotRootNodes[i].setRightNodeDesc(nodeRight); haarClassifierNodes.push_back(h_TmpClassifierNotRootNodes[i]); } return NCV_SUCCESS; #endif } #define NVBIN_HAAR_SIZERESERVED 16 #define NVBIN_HAAR_VERSION 0x1 static NCVStatus loadFromNVBIN(const cv::String &filename, HaarClassifierCascadeDescriptor &haar, std::vector<HaarStage64> &haarStages, std::vector<HaarClassifierNode128> &haarClassifierNodes, std::vector<HaarFeature64> &haarFeatures) { size_t readCount; FILE *fp = fopen(filename.c_str(), "rb"); ncvAssertReturn(fp != NULL, NCV_FILE_ERROR); Ncv32u fileVersion; readCount = fread(&fileVersion, sizeof(Ncv32u), 1, fp); ncvAssertReturn(1 == readCount, NCV_FILE_ERROR); ncvAssertReturn(fileVersion == NVBIN_HAAR_VERSION, NCV_FILE_ERROR); Ncv32u fsize; readCount = fread(&fsize, sizeof(Ncv32u), 1, fp); ncvAssertReturn(1 == readCount, NCV_FILE_ERROR); fseek(fp, 0, SEEK_END); Ncv32u fsizeActual = ftell(fp); ncvAssertReturn(fsize == fsizeActual, NCV_FILE_ERROR); std::vector<unsigned char> fdata; fdata.resize(fsize); Ncv32u dataOffset = 0; fseek(fp, 0, SEEK_SET); readCount = fread(&fdata[0], fsize, 1, fp); ncvAssertReturn(1 == readCount, NCV_FILE_ERROR); fclose(fp); //data dataOffset = NVBIN_HAAR_SIZERESERVED; haar.NumStages = *(Ncv32u *)(&fdata[0]+dataOffset); dataOffset += sizeof(Ncv32u); haar.NumClassifierRootNodes = *(Ncv32u *)(&fdata[0]+dataOffset); dataOffset += sizeof(Ncv32u); haar.NumClassifierTotalNodes = *(Ncv32u *)(&fdata[0]+dataOffset); dataOffset += sizeof(Ncv32u); haar.NumFeatures = *(Ncv32u *)(&fdata[0]+dataOffset); dataOffset += sizeof(Ncv32u); haar.ClassifierSize = *(NcvSize32u *)(&fdata[0]+dataOffset); dataOffset += sizeof(NcvSize32u); haar.bNeedsTiltedII = *(NcvBool *)(&fdata[0]+dataOffset); dataOffset += sizeof(NcvBool); haar.bHasStumpsOnly = *(NcvBool *)(&fdata[0]+dataOffset); dataOffset += sizeof(NcvBool); haarStages.resize(haar.NumStages); haarClassifierNodes.resize(haar.NumClassifierTotalNodes); haarFeatures.resize(haar.NumFeatures); Ncv32u szStages = haar.NumStages * sizeof(HaarStage64); Ncv32u szClassifiers = haar.NumClassifierTotalNodes * sizeof(HaarClassifierNode128); Ncv32u szFeatures = haar.NumFeatures * sizeof(HaarFeature64); memcpy(&haarStages[0], &fdata[0]+dataOffset, szStages); dataOffset += szStages; memcpy(&haarClassifierNodes[0], &fdata[0]+dataOffset, szClassifiers); dataOffset += szClassifiers; memcpy(&haarFeatures[0], &fdata[0]+dataOffset, szFeatures); dataOffset += szFeatures; return NCV_SUCCESS; } NCVStatus ncvHaarGetClassifierSize(const cv::String &filename, Ncv32u &numStages, Ncv32u &numNodes, Ncv32u &numFeatures) { size_t readCount; NCVStatus ncvStat; cv::String fext = filename.substr(filename.find_last_of(".") + 1); fext = fext.toLowerCase(); if (fext == "nvbin") { FILE *fp = fopen(filename.c_str(), "rb"); ncvAssertReturn(fp != NULL, NCV_FILE_ERROR); Ncv32u fileVersion; readCount = fread(&fileVersion, sizeof(Ncv32u), 1, fp); ncvAssertReturn(1 == readCount, NCV_FILE_ERROR); ncvAssertReturn(fileVersion == NVBIN_HAAR_VERSION, NCV_FILE_ERROR); fseek(fp, NVBIN_HAAR_SIZERESERVED, SEEK_SET); Ncv32u tmp; readCount = fread(&numStages, sizeof(Ncv32u), 1, fp); ncvAssertReturn(1 == readCount, NCV_FILE_ERROR); readCount = fread(&tmp, sizeof(Ncv32u), 1, fp); ncvAssertReturn(1 == readCount, NCV_FILE_ERROR); readCount = fread(&numNodes, sizeof(Ncv32u), 1, fp); ncvAssertReturn(1 == readCount, NCV_FILE_ERROR); readCount = fread(&numFeatures, sizeof(Ncv32u), 1, fp); ncvAssertReturn(1 == readCount, NCV_FILE_ERROR); fclose(fp); } else if (fext == "xml") { HaarClassifierCascadeDescriptor haar; std::vector<HaarStage64> haarStages; std::vector<HaarClassifierNode128> haarNodes; std::vector<HaarFeature64> haarFeatures; ncvStat = loadFromXML(filename, haar, haarStages, haarNodes, haarFeatures); ncvAssertReturnNcvStat(ncvStat); numStages = haar.NumStages; numNodes = haar.NumClassifierTotalNodes; numFeatures = haar.NumFeatures; } else { return NCV_HAAR_XML_LOADING_EXCEPTION; } return NCV_SUCCESS; } NCVStatus ncvHaarLoadFromFile_host(const cv::String &filename, HaarClassifierCascadeDescriptor &haar, NCVVector<HaarStage64> &h_HaarStages, NCVVector<HaarClassifierNode128> &h_HaarNodes, NCVVector<HaarFeature64> &h_HaarFeatures) { ncvAssertReturn(h_HaarStages.memType() == NCVMemoryTypeHostPinned && h_HaarNodes.memType() == NCVMemoryTypeHostPinned && h_HaarFeatures.memType() == NCVMemoryTypeHostPinned, NCV_MEM_RESIDENCE_ERROR); NCVStatus ncvStat; cv::String fext = filename.substr(filename.find_last_of(".") + 1); fext = fext.toLowerCase(); std::vector<HaarStage64> haarStages; std::vector<HaarClassifierNode128> haarNodes; std::vector<HaarFeature64> haarFeatures; if (fext == "nvbin") { ncvStat = loadFromNVBIN(filename, haar, haarStages, haarNodes, haarFeatures); ncvAssertReturnNcvStat(ncvStat); } else if (fext == "xml") { ncvStat = loadFromXML(filename, haar, haarStages, haarNodes, haarFeatures); ncvAssertReturnNcvStat(ncvStat); } else { return NCV_HAAR_XML_LOADING_EXCEPTION; } ncvAssertReturn(h_HaarStages.length() >= haarStages.size(), NCV_MEM_INSUFFICIENT_CAPACITY); ncvAssertReturn(h_HaarNodes.length() >= haarNodes.size(), NCV_MEM_INSUFFICIENT_CAPACITY); ncvAssertReturn(h_HaarFeatures.length() >= haarFeatures.size(), NCV_MEM_INSUFFICIENT_CAPACITY); memcpy(h_HaarStages.ptr(), &haarStages[0], haarStages.size()*sizeof(HaarStage64)); memcpy(h_HaarNodes.ptr(), &haarNodes[0], haarNodes.size()*sizeof(HaarClassifierNode128)); memcpy(h_HaarFeatures.ptr(), &haarFeatures[0], haarFeatures.size()*sizeof(HaarFeature64)); return NCV_SUCCESS; } NCVStatus ncvHaarStoreNVBIN_host(const cv::String &filename, HaarClassifierCascadeDescriptor haar, NCVVector<HaarStage64> &h_HaarStages, NCVVector<HaarClassifierNode128> &h_HaarNodes, NCVVector<HaarFeature64> &h_HaarFeatures) { ncvAssertReturn(h_HaarStages.length() >= haar.NumStages, NCV_INCONSISTENT_INPUT); ncvAssertReturn(h_HaarNodes.length() >= haar.NumClassifierTotalNodes, NCV_INCONSISTENT_INPUT); ncvAssertReturn(h_HaarFeatures.length() >= haar.NumFeatures, NCV_INCONSISTENT_INPUT); ncvAssertReturn(h_HaarStages.memType() == NCVMemoryTypeHostPinned && h_HaarNodes.memType() == NCVMemoryTypeHostPinned && h_HaarFeatures.memType() == NCVMemoryTypeHostPinned, NCV_MEM_RESIDENCE_ERROR); Ncv32u szStages = haar.NumStages * sizeof(HaarStage64); Ncv32u szClassifiers = haar.NumClassifierTotalNodes * sizeof(HaarClassifierNode128); Ncv32u szFeatures = haar.NumFeatures * sizeof(HaarFeature64); Ncv32u dataOffset = 0; std::vector<unsigned char> fdata; fdata.resize(szStages+szClassifiers+szFeatures+1024, 0); //header *(Ncv32u *)(&fdata[0]+dataOffset) = NVBIN_HAAR_VERSION; //data dataOffset = NVBIN_HAAR_SIZERESERVED; *(Ncv32u *)(&fdata[0]+dataOffset) = haar.NumStages; dataOffset += sizeof(Ncv32u); *(Ncv32u *)(&fdata[0]+dataOffset) = haar.NumClassifierRootNodes; dataOffset += sizeof(Ncv32u); *(Ncv32u *)(&fdata[0]+dataOffset) = haar.NumClassifierTotalNodes; dataOffset += sizeof(Ncv32u); *(Ncv32u *)(&fdata[0]+dataOffset) = haar.NumFeatures; dataOffset += sizeof(Ncv32u); *(NcvSize32u *)(&fdata[0]+dataOffset) = haar.ClassifierSize; dataOffset += sizeof(NcvSize32u); *(NcvBool *)(&fdata[0]+dataOffset) = haar.bNeedsTiltedII; dataOffset += sizeof(NcvBool); *(NcvBool *)(&fdata[0]+dataOffset) = haar.bHasStumpsOnly; dataOffset += sizeof(NcvBool); memcpy(&fdata[0]+dataOffset, h_HaarStages.ptr(), szStages); dataOffset += szStages; memcpy(&fdata[0]+dataOffset, h_HaarNodes.ptr(), szClassifiers); dataOffset += szClassifiers; memcpy(&fdata[0]+dataOffset, h_HaarFeatures.ptr(), szFeatures); dataOffset += szFeatures; Ncv32u fsize = dataOffset; //TODO: CRC32 here //update header dataOffset = sizeof(Ncv32u); *(Ncv32u *)(&fdata[0]+dataOffset) = fsize; FILE *fp = fopen(filename.c_str(), "wb"); ncvAssertReturn(fp != NULL, NCV_FILE_ERROR); fwrite(&fdata[0], fsize, 1, fp); fclose(fp); return NCV_SUCCESS; }
26c5520c434d530dd542dafb4f7f25a205766475.cu
/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ //////////////////////////////////////////////////////////////////////////////// // // NVIDIA CUDA implementation of Viola-Jones Object Detection Framework // // The algorithm and code are explained in the upcoming GPU Computing Gems // chapter in detail: // // Anton Obukhov, "Haar Classifiers for Object Detection with CUDA" // PDF URL placeholder // email: [email protected], [email protected] // // Credits for help with the code to: // Alexey Mendelenko, Cyril Crassin, and Mikhail Smirnov. // //////////////////////////////////////////////////////////////////////////////// #include <algorithm> #include <cstdio> #include "opencv2/core/cuda/warp.hpp" #include "opencv2/core/cuda/warp_shuffle.hpp" #include "opencv2/opencv_modules.hpp" #ifdef HAVE_OPENCV_OBJDETECT # include "opencv2/objdetect.hpp" # include "opencv2/objdetect/objdetect_c.h" #endif #include "opencv2/cudalegacy/NCV.hpp" #include "opencv2/cudalegacy/NPP_staging.hpp" #include "opencv2/cudalegacy/NCVHaarObjectDetection.hpp" #include "NCVRuntimeTemplates.hpp" #include "NCVAlg.hpp" //============================================================================== // // BlockScan file // //============================================================================== NCV_CT_ASSERT(K_WARP_SIZE == 32); //this is required for the manual unroll of the loop in warpScanInclusive //Almost the same as naive scan1Inclusive, but doesn't need __syncthreads() //assuming size <= WARP_SIZE and size is power of 2 __device__ Ncv32u warpScanInclusive(Ncv32u idata, volatile Ncv32u *s_Data) { #if __CUDA_ARCH__ >= 300 const unsigned int laneId = cv::cuda::device::Warp::laneId(); // scan on shuffl functions #pragma unroll for (int i = 1; i <= (K_WARP_SIZE / 2); i *= 2) { const Ncv32u n = cv::cuda::device::shfl_up(idata, i); if (laneId >= i) idata += n; } return idata; #else Ncv32u pos = 2 * threadIdx.x - (threadIdx.x & (K_WARP_SIZE - 1)); s_Data[pos] = 0; pos += K_WARP_SIZE; s_Data[pos] = idata; s_Data[pos] += s_Data[pos - 1]; s_Data[pos] += s_Data[pos - 2]; s_Data[pos] += s_Data[pos - 4]; s_Data[pos] += s_Data[pos - 8]; s_Data[pos] += s_Data[pos - 16]; return s_Data[pos]; #endif } __device__ __forceinline__ Ncv32u warpScanExclusive(Ncv32u idata, volatile Ncv32u *s_Data) { return warpScanInclusive(idata, s_Data) - idata; } template <Ncv32u tiNumScanThreads> __device__ Ncv32u scan1Inclusive(Ncv32u idata, volatile Ncv32u *s_Data) { if (tiNumScanThreads > K_WARP_SIZE) { //Bottom-level inclusive warp scan Ncv32u warpResult = warpScanInclusive(idata, s_Data); //Save top elements of each warp for exclusive warp scan //sync to wait for warp scans to complete (because s_Data is being overwritten) __syncthreads(); if( (threadIdx.x & (K_WARP_SIZE - 1)) == (K_WARP_SIZE - 1) ) { s_Data[threadIdx.x >> K_LOG2_WARP_SIZE] = warpResult; } //wait for warp scans to complete __syncthreads(); if( threadIdx.x < (tiNumScanThreads / K_WARP_SIZE) ) { //grab top warp elements Ncv32u val = s_Data[threadIdx.x]; //calculate exclusive scan and write back to shared memory s_Data[threadIdx.x] = warpScanExclusive(val, s_Data); } //return updated warp scans with exclusive scan results __syncthreads(); return warpResult + s_Data[threadIdx.x >> K_LOG2_WARP_SIZE]; } else { return warpScanInclusive(idata, s_Data); } } //============================================================================== // // HaarClassifierCascade file // //============================================================================== const Ncv32u MAX_GRID_DIM = 65535; const Ncv32u NUM_THREADS_ANCHORSPARALLEL = 64; #define NUM_THREADS_CLASSIFIERPARALLEL_LOG2 6 #define NUM_THREADS_CLASSIFIERPARALLEL (1 << NUM_THREADS_CLASSIFIERPARALLEL_LOG2) /** \internal * Haar features solid array. */ texture<uint2, 1, cudaReadModeElementType> texHaarFeatures; /** \internal * Haar classifiers flattened trees container. * Two parts: first contains root nodes, second - nodes that are referred by root nodes. * Drawback: breaks tree locality (might cause more cache misses * Advantage: No need to introduce additional 32-bit field to index root nodes offsets */ texture<uint4, 1, cudaReadModeElementType> texHaarClassifierNodes; texture<Ncv32u, 1, cudaReadModeElementType> texIImage; __device__ HaarStage64 getStage(Ncv32u iStage, HaarStage64 *d_Stages) { return d_Stages[iStage]; } template <NcvBool tbCacheTextureCascade> __device__ HaarClassifierNode128 getClassifierNode(Ncv32u iNode, HaarClassifierNode128 *d_ClassifierNodes) { HaarClassifierNode128 tmpNode; if (tbCacheTextureCascade) { tmpNode._ui4 = tex1Dfetch(texHaarClassifierNodes, iNode); } else { tmpNode = d_ClassifierNodes[iNode]; } return tmpNode; } template <NcvBool tbCacheTextureCascade> __device__ void getFeature(Ncv32u iFeature, HaarFeature64 *d_Features, Ncv32f *weight, Ncv32u *rectX, Ncv32u *rectY, Ncv32u *rectWidth, Ncv32u *rectHeight) { HaarFeature64 feature; if (tbCacheTextureCascade) { feature._ui2 = tex1Dfetch(texHaarFeatures, iFeature); } else { feature = d_Features[iFeature]; } feature.getRect(rectX, rectY, rectWidth, rectHeight); *weight = feature.getWeight(); } template <NcvBool tbCacheTextureIImg> __device__ Ncv32u getElemIImg(Ncv32u x, Ncv32u *d_IImg) { if (tbCacheTextureIImg) { return tex1Dfetch(texIImage, x); } else { return d_IImg[x]; } } __device__ Ncv32u d_outMaskPosition; __device__ void compactBlockWriteOutAnchorParallel(Ncv32u threadPassFlag, Ncv32u threadElem, Ncv32u *vectorOut) { #if __CUDA_ARCH__ && __CUDA_ARCH__ >= 110 __shared__ Ncv32u shmem[NUM_THREADS_ANCHORSPARALLEL * 2]; __shared__ Ncv32u numPassed; __shared__ Ncv32u outMaskOffset; Ncv32u incScan = scan1Inclusive<NUM_THREADS_ANCHORSPARALLEL>(threadPassFlag, shmem); __syncthreads(); if (threadIdx.x == NUM_THREADS_ANCHORSPARALLEL-1) { numPassed = incScan; outMaskOffset = atomicAdd(&d_outMaskPosition, incScan); } if (threadPassFlag) { Ncv32u excScan = incScan - threadPassFlag; shmem[excScan] = threadElem; } __syncthreads(); if (threadIdx.x < numPassed) { vectorOut[outMaskOffset + threadIdx.x] = shmem[threadIdx.x]; } #endif } template <NcvBool tbInitMaskPositively, NcvBool tbCacheTextureIImg, NcvBool tbCacheTextureCascade, NcvBool tbReadPixelIndexFromVector, NcvBool tbDoAtomicCompaction> __global__ void applyHaarClassifierAnchorParallel(Ncv32u *d_IImg, Ncv32u IImgStride, Ncv32f *d_weights, Ncv32u weightsStride, HaarFeature64 *d_Features, HaarClassifierNode128 *d_ClassifierNodes, HaarStage64 *d_Stages, Ncv32u *d_inMask, Ncv32u *d_outMask, Ncv32u mask1Dlen, Ncv32u mask2Dstride, NcvSize32u anchorsRoi, Ncv32u startStageInc, Ncv32u endStageExc, Ncv32f scaleArea) { Ncv32u y_offs; Ncv32u x_offs; Ncv32u maskOffset; Ncv32u outMaskVal; NcvBool bInactiveThread = false; if (tbReadPixelIndexFromVector) { maskOffset = (MAX_GRID_DIM * blockIdx.y + blockIdx.x) * NUM_THREADS_ANCHORSPARALLEL + threadIdx.x; if (maskOffset >= mask1Dlen) { if (tbDoAtomicCompaction) bInactiveThread = true; else return; } if (!tbDoAtomicCompaction || tbDoAtomicCompaction && !bInactiveThread) { outMaskVal = d_inMask[maskOffset]; y_offs = outMaskVal >> 16; x_offs = outMaskVal & 0xFFFF; } } else { y_offs = blockIdx.y; x_offs = blockIdx.x * NUM_THREADS_ANCHORSPARALLEL + threadIdx.x; if (x_offs >= mask2Dstride) { if (tbDoAtomicCompaction) bInactiveThread = true; else return; } if (!tbDoAtomicCompaction || tbDoAtomicCompaction && !bInactiveThread) { maskOffset = y_offs * mask2Dstride + x_offs; if ((x_offs >= anchorsRoi.width) || (!tbInitMaskPositively && d_inMask != d_outMask && d_inMask[maskOffset] == OBJDET_MASK_ELEMENT_INVALID_32U)) { if (tbDoAtomicCompaction) { bInactiveThread = true; } else { d_outMask[maskOffset] = OBJDET_MASK_ELEMENT_INVALID_32U; return; } } outMaskVal = (y_offs << 16) | x_offs; } } NcvBool bPass = true; if (!tbDoAtomicCompaction || tbDoAtomicCompaction) { Ncv32f pixelStdDev = 0.0f; if (!bInactiveThread) pixelStdDev = d_weights[y_offs * weightsStride + x_offs]; for (Ncv32u iStage = startStageInc; iStage < endStageExc; iStage++) { Ncv32f curStageSum = 0.0f; HaarStage64 curStage = getStage(iStage, d_Stages); Ncv32u numRootNodesInStage = curStage.getNumClassifierRootNodes(); Ncv32u curRootNodeOffset = curStage.getStartClassifierRootNodeOffset(); Ncv32f stageThreshold = curStage.getStageThreshold(); while (numRootNodesInStage--) { NcvBool bMoreNodesToTraverse = true; Ncv32u iNode = curRootNodeOffset; if (bPass && !bInactiveThread) { while (bMoreNodesToTraverse) { HaarClassifierNode128 curNode = getClassifierNode<tbCacheTextureCascade>(iNode, d_ClassifierNodes); HaarFeatureDescriptor32 featuresDesc = curNode.getFeatureDesc(); Ncv32u curNodeFeaturesNum = featuresDesc.getNumFeatures(); Ncv32u iFeature = featuresDesc.getFeaturesOffset(); Ncv32f curNodeVal = 0.0f; for (Ncv32u iRect=0; iRect<curNodeFeaturesNum; iRect++) { Ncv32f rectWeight; Ncv32u rectX, rectY, rectWidth, rectHeight; getFeature<tbCacheTextureCascade> (iFeature + iRect, d_Features, &rectWeight, &rectX, &rectY, &rectWidth, &rectHeight); Ncv32u iioffsTL = (y_offs + rectY) * IImgStride + (x_offs + rectX); Ncv32u iioffsTR = iioffsTL + rectWidth; Ncv32u iioffsBL = iioffsTL + rectHeight * IImgStride; Ncv32u iioffsBR = iioffsBL + rectWidth; Ncv32u rectSum = getElemIImg<tbCacheTextureIImg>(iioffsBR, d_IImg) - getElemIImg<tbCacheTextureIImg>(iioffsBL, d_IImg) + getElemIImg<tbCacheTextureIImg>(iioffsTL, d_IImg) - getElemIImg<tbCacheTextureIImg>(iioffsTR, d_IImg); #if defined CPU_FP_COMPLIANCE || defined DISABLE_MAD_SELECTIVELY curNodeVal += __fmul_rn((Ncv32f)rectSum, rectWeight); #else curNodeVal += (Ncv32f)rectSum * rectWeight; #endif } HaarClassifierNodeDescriptor32 nodeLeft = curNode.getLeftNodeDesc(); HaarClassifierNodeDescriptor32 nodeRight = curNode.getRightNodeDesc(); Ncv32f nodeThreshold = curNode.getThreshold(); HaarClassifierNodeDescriptor32 nextNodeDescriptor; NcvBool nextNodeIsLeaf; if (curNodeVal < scaleArea * pixelStdDev * nodeThreshold) { nextNodeDescriptor = nodeLeft; nextNodeIsLeaf = featuresDesc.isLeftNodeLeaf(); } else { nextNodeDescriptor = nodeRight; nextNodeIsLeaf = featuresDesc.isRightNodeLeaf(); } if (nextNodeIsLeaf) { Ncv32f tmpLeafValue = nextNodeDescriptor.getLeafValue(); curStageSum += tmpLeafValue; bMoreNodesToTraverse = false; } else { iNode = nextNodeDescriptor.getNextNodeOffset(); } } } __syncthreads(); curRootNodeOffset++; } if (curStageSum < stageThreshold) { bPass = false; outMaskVal = OBJDET_MASK_ELEMENT_INVALID_32U; } } } __syncthreads(); if (!tbDoAtomicCompaction) { if (!tbReadPixelIndexFromVector || (tbReadPixelIndexFromVector && (!bPass || d_inMask != d_outMask))) { d_outMask[maskOffset] = outMaskVal; } } else { compactBlockWriteOutAnchorParallel(bPass && !bInactiveThread, outMaskVal, d_outMask); } } template <NcvBool tbCacheTextureIImg, NcvBool tbCacheTextureCascade, NcvBool tbDoAtomicCompaction> __global__ void applyHaarClassifierClassifierParallel(Ncv32u *d_IImg, Ncv32u IImgStride, Ncv32f *d_weights, Ncv32u weightsStride, HaarFeature64 *d_Features, HaarClassifierNode128 *d_ClassifierNodes, HaarStage64 *d_Stages, Ncv32u *d_inMask, Ncv32u *d_outMask, Ncv32u mask1Dlen, Ncv32u mask2Dstride, NcvSize32u anchorsRoi, Ncv32u startStageInc, Ncv32u endStageExc, Ncv32f scaleArea) { Ncv32u maskOffset = MAX_GRID_DIM * blockIdx.y + blockIdx.x; if (maskOffset >= mask1Dlen) { return; } Ncv32u outMaskVal = d_inMask[maskOffset]; Ncv32u y_offs = outMaskVal >> 16; Ncv32u x_offs = outMaskVal & 0xFFFF; Ncv32f pixelStdDev = d_weights[y_offs * weightsStride + x_offs]; NcvBool bPass = true; for (Ncv32u iStage = startStageInc; iStage<endStageExc; iStage++) { //this variable is subject to reduction Ncv32f curStageSum = 0.0f; HaarStage64 curStage = getStage(iStage, d_Stages); Ncv32s numRootNodesInStage = curStage.getNumClassifierRootNodes(); Ncv32u curRootNodeOffset = curStage.getStartClassifierRootNodeOffset() + threadIdx.x; Ncv32f stageThreshold = curStage.getStageThreshold(); Ncv32u numRootChunks = (numRootNodesInStage + NUM_THREADS_CLASSIFIERPARALLEL - 1) >> NUM_THREADS_CLASSIFIERPARALLEL_LOG2; for (Ncv32u chunkId=0; chunkId<numRootChunks; chunkId++) { NcvBool bMoreNodesToTraverse = true; if (chunkId * NUM_THREADS_CLASSIFIERPARALLEL + threadIdx.x < numRootNodesInStage) { Ncv32u iNode = curRootNodeOffset; while (bMoreNodesToTraverse) { HaarClassifierNode128 curNode = getClassifierNode<tbCacheTextureCascade>(iNode, d_ClassifierNodes); HaarFeatureDescriptor32 featuresDesc = curNode.getFeatureDesc(); Ncv32u curNodeFeaturesNum = featuresDesc.getNumFeatures(); Ncv32u iFeature = featuresDesc.getFeaturesOffset(); Ncv32f curNodeVal = 0.0f; //TODO: fetch into shmem if size suffices. Shmem can be shared with reduce for (Ncv32u iRect=0; iRect<curNodeFeaturesNum; iRect++) { Ncv32f rectWeight; Ncv32u rectX, rectY, rectWidth, rectHeight; getFeature<tbCacheTextureCascade> (iFeature + iRect, d_Features, &rectWeight, &rectX, &rectY, &rectWidth, &rectHeight); Ncv32u iioffsTL = (y_offs + rectY) * IImgStride + (x_offs + rectX); Ncv32u iioffsTR = iioffsTL + rectWidth; Ncv32u iioffsBL = iioffsTL + rectHeight * IImgStride; Ncv32u iioffsBR = iioffsBL + rectWidth; Ncv32u rectSum = getElemIImg<tbCacheTextureIImg>(iioffsBR, d_IImg) - getElemIImg<tbCacheTextureIImg>(iioffsBL, d_IImg) + getElemIImg<tbCacheTextureIImg>(iioffsTL, d_IImg) - getElemIImg<tbCacheTextureIImg>(iioffsTR, d_IImg); #if defined CPU_FP_COMPLIANCE || defined DISABLE_MAD_SELECTIVELY curNodeVal += __fmul_rn((Ncv32f)rectSum, rectWeight); #else curNodeVal += (Ncv32f)rectSum * rectWeight; #endif } HaarClassifierNodeDescriptor32 nodeLeft = curNode.getLeftNodeDesc(); HaarClassifierNodeDescriptor32 nodeRight = curNode.getRightNodeDesc(); Ncv32f nodeThreshold = curNode.getThreshold(); HaarClassifierNodeDescriptor32 nextNodeDescriptor; NcvBool nextNodeIsLeaf; if (curNodeVal < scaleArea * pixelStdDev * nodeThreshold) { nextNodeDescriptor = nodeLeft; nextNodeIsLeaf = featuresDesc.isLeftNodeLeaf(); } else { nextNodeDescriptor = nodeRight; nextNodeIsLeaf = featuresDesc.isRightNodeLeaf(); } if (nextNodeIsLeaf) { Ncv32f tmpLeafValue = nextNodeDescriptor.getLeafValue(); curStageSum += tmpLeafValue; bMoreNodesToTraverse = false; } else { iNode = nextNodeDescriptor.getNextNodeOffset(); } } } __syncthreads(); curRootNodeOffset += NUM_THREADS_CLASSIFIERPARALLEL; } Ncv32f finalStageSum = subReduce<Ncv32f, functorAddValues<Ncv32f>, NUM_THREADS_CLASSIFIERPARALLEL>(curStageSum); if (finalStageSum < stageThreshold) { bPass = false; outMaskVal = OBJDET_MASK_ELEMENT_INVALID_32U; break; } } if (!tbDoAtomicCompaction) { if (!bPass || d_inMask != d_outMask) { if (!threadIdx.x) { d_outMask[maskOffset] = outMaskVal; } } } else { #if __CUDA_ARCH__ && __CUDA_ARCH__ >= 110 if (bPass && !threadIdx.x) { Ncv32u outMaskOffset = atomicAdd(&d_outMaskPosition, 1); d_outMask[outMaskOffset] = outMaskVal; } #endif } } template <NcvBool tbMaskByInmask, NcvBool tbDoAtomicCompaction> __global__ void initializeMaskVector(Ncv32u *d_inMask, Ncv32u *d_outMask, Ncv32u mask1Dlen, Ncv32u mask2Dstride, NcvSize32u anchorsRoi, Ncv32u step) { Ncv32u y_offs = blockIdx.y; Ncv32u x_offs = blockIdx.x * NUM_THREADS_ANCHORSPARALLEL + threadIdx.x; Ncv32u outMaskOffset = y_offs * gridDim.x * blockDim.x + x_offs; Ncv32u y_offs_upsc = step * y_offs; Ncv32u x_offs_upsc = step * x_offs; Ncv32u inMaskOffset = y_offs_upsc * mask2Dstride + x_offs_upsc; Ncv32u outElem = OBJDET_MASK_ELEMENT_INVALID_32U; if (x_offs_upsc < anchorsRoi.width && (!tbMaskByInmask || d_inMask[inMaskOffset] != OBJDET_MASK_ELEMENT_INVALID_32U)) { outElem = (y_offs_upsc << 16) | x_offs_upsc; } if (!tbDoAtomicCompaction) { d_outMask[outMaskOffset] = outElem; } else { compactBlockWriteOutAnchorParallel(outElem != OBJDET_MASK_ELEMENT_INVALID_32U, outElem, d_outMask); } } struct applyHaarClassifierAnchorParallelFunctor { dim3 gridConf, blockConf; cudaStream_t cuStream; //Kernel arguments are stored as members; Ncv32u *d_IImg; Ncv32u IImgStride; Ncv32f *d_weights; Ncv32u weightsStride; HaarFeature64 *d_Features; HaarClassifierNode128 *d_ClassifierNodes; HaarStage64 *d_Stages; Ncv32u *d_inMask; Ncv32u *d_outMask; Ncv32u mask1Dlen; Ncv32u mask2Dstride; NcvSize32u anchorsRoi; Ncv32u startStageInc; Ncv32u endStageExc; Ncv32f scaleArea; //Arguments are passed through the constructor applyHaarClassifierAnchorParallelFunctor(dim3 _gridConf, dim3 _blockConf, cudaStream_t _cuStream, Ncv32u *_d_IImg, Ncv32u _IImgStride, Ncv32f *_d_weights, Ncv32u _weightsStride, HaarFeature64 *_d_Features, HaarClassifierNode128 *_d_ClassifierNodes, HaarStage64 *_d_Stages, Ncv32u *_d_inMask, Ncv32u *_d_outMask, Ncv32u _mask1Dlen, Ncv32u _mask2Dstride, NcvSize32u _anchorsRoi, Ncv32u _startStageInc, Ncv32u _endStageExc, Ncv32f _scaleArea) : gridConf(_gridConf), blockConf(_blockConf), cuStream(_cuStream), d_IImg(_d_IImg), IImgStride(_IImgStride), d_weights(_d_weights), weightsStride(_weightsStride), d_Features(_d_Features), d_ClassifierNodes(_d_ClassifierNodes), d_Stages(_d_Stages), d_inMask(_d_inMask), d_outMask(_d_outMask), mask1Dlen(_mask1Dlen), mask2Dstride(_mask2Dstride), anchorsRoi(_anchorsRoi), startStageInc(_startStageInc), endStageExc(_endStageExc), scaleArea(_scaleArea) {} template<class TList> void call(TList tl) { (void)tl; applyHaarClassifierAnchorParallel < Loki::TL::TypeAt<TList, 0>::Result::value, Loki::TL::TypeAt<TList, 1>::Result::value, Loki::TL::TypeAt<TList, 2>::Result::value, Loki::TL::TypeAt<TList, 3>::Result::value, Loki::TL::TypeAt<TList, 4>::Result::value > <<<gridConf, blockConf, 0, cuStream>>> (d_IImg, IImgStride, d_weights, weightsStride, d_Features, d_ClassifierNodes, d_Stages, d_inMask, d_outMask, mask1Dlen, mask2Dstride, anchorsRoi, startStageInc, endStageExc, scaleArea); } }; void applyHaarClassifierAnchorParallelDynTemplate(NcvBool tbInitMaskPositively, NcvBool tbCacheTextureIImg, NcvBool tbCacheTextureCascade, NcvBool tbReadPixelIndexFromVector, NcvBool tbDoAtomicCompaction, dim3 gridConf, dim3 blockConf, cudaStream_t cuStream, Ncv32u *d_IImg, Ncv32u IImgStride, Ncv32f *d_weights, Ncv32u weightsStride, HaarFeature64 *d_Features, HaarClassifierNode128 *d_ClassifierNodes, HaarStage64 *d_Stages, Ncv32u *d_inMask, Ncv32u *d_outMask, Ncv32u mask1Dlen, Ncv32u mask2Dstride, NcvSize32u anchorsRoi, Ncv32u startStageInc, Ncv32u endStageExc, Ncv32f scaleArea) { applyHaarClassifierAnchorParallelFunctor functor(gridConf, blockConf, cuStream, d_IImg, IImgStride, d_weights, weightsStride, d_Features, d_ClassifierNodes, d_Stages, d_inMask, d_outMask, mask1Dlen, mask2Dstride, anchorsRoi, startStageInc, endStageExc, scaleArea); //Second parameter is the number of "dynamic" template parameters NCVRuntimeTemplateBool::KernelCaller<Loki::NullType, 5, applyHaarClassifierAnchorParallelFunctor> ::call( &functor, tbInitMaskPositively, tbCacheTextureIImg, tbCacheTextureCascade, tbReadPixelIndexFromVector, tbDoAtomicCompaction); } struct applyHaarClassifierClassifierParallelFunctor { dim3 gridConf, blockConf; cudaStream_t cuStream; //Kernel arguments are stored as members; Ncv32u *d_IImg; Ncv32u IImgStride; Ncv32f *d_weights; Ncv32u weightsStride; HaarFeature64 *d_Features; HaarClassifierNode128 *d_ClassifierNodes; HaarStage64 *d_Stages; Ncv32u *d_inMask; Ncv32u *d_outMask; Ncv32u mask1Dlen; Ncv32u mask2Dstride; NcvSize32u anchorsRoi; Ncv32u startStageInc; Ncv32u endStageExc; Ncv32f scaleArea; //Arguments are passed through the constructor applyHaarClassifierClassifierParallelFunctor(dim3 _gridConf, dim3 _blockConf, cudaStream_t _cuStream, Ncv32u *_d_IImg, Ncv32u _IImgStride, Ncv32f *_d_weights, Ncv32u _weightsStride, HaarFeature64 *_d_Features, HaarClassifierNode128 *_d_ClassifierNodes, HaarStage64 *_d_Stages, Ncv32u *_d_inMask, Ncv32u *_d_outMask, Ncv32u _mask1Dlen, Ncv32u _mask2Dstride, NcvSize32u _anchorsRoi, Ncv32u _startStageInc, Ncv32u _endStageExc, Ncv32f _scaleArea) : gridConf(_gridConf), blockConf(_blockConf), cuStream(_cuStream), d_IImg(_d_IImg), IImgStride(_IImgStride), d_weights(_d_weights), weightsStride(_weightsStride), d_Features(_d_Features), d_ClassifierNodes(_d_ClassifierNodes), d_Stages(_d_Stages), d_inMask(_d_inMask), d_outMask(_d_outMask), mask1Dlen(_mask1Dlen), mask2Dstride(_mask2Dstride), anchorsRoi(_anchorsRoi), startStageInc(_startStageInc), endStageExc(_endStageExc), scaleArea(_scaleArea) {} template<class TList> void call(TList tl) { (void)tl; applyHaarClassifierClassifierParallel < Loki::TL::TypeAt<TList, 0>::Result::value, Loki::TL::TypeAt<TList, 1>::Result::value, Loki::TL::TypeAt<TList, 2>::Result::value > <<<gridConf, blockConf, 0, cuStream>>> (d_IImg, IImgStride, d_weights, weightsStride, d_Features, d_ClassifierNodes, d_Stages, d_inMask, d_outMask, mask1Dlen, mask2Dstride, anchorsRoi, startStageInc, endStageExc, scaleArea); } }; void applyHaarClassifierClassifierParallelDynTemplate(NcvBool tbCacheTextureIImg, NcvBool tbCacheTextureCascade, NcvBool tbDoAtomicCompaction, dim3 gridConf, dim3 blockConf, cudaStream_t cuStream, Ncv32u *d_IImg, Ncv32u IImgStride, Ncv32f *d_weights, Ncv32u weightsStride, HaarFeature64 *d_Features, HaarClassifierNode128 *d_ClassifierNodes, HaarStage64 *d_Stages, Ncv32u *d_inMask, Ncv32u *d_outMask, Ncv32u mask1Dlen, Ncv32u mask2Dstride, NcvSize32u anchorsRoi, Ncv32u startStageInc, Ncv32u endStageExc, Ncv32f scaleArea) { applyHaarClassifierClassifierParallelFunctor functor(gridConf, blockConf, cuStream, d_IImg, IImgStride, d_weights, weightsStride, d_Features, d_ClassifierNodes, d_Stages, d_inMask, d_outMask, mask1Dlen, mask2Dstride, anchorsRoi, startStageInc, endStageExc, scaleArea); //Second parameter is the number of "dynamic" template parameters NCVRuntimeTemplateBool::KernelCaller<Loki::NullType, 3, applyHaarClassifierClassifierParallelFunctor> ::call( &functor, tbCacheTextureIImg, tbCacheTextureCascade, tbDoAtomicCompaction); } struct initializeMaskVectorFunctor { dim3 gridConf, blockConf; cudaStream_t cuStream; //Kernel arguments are stored as members; Ncv32u *d_inMask; Ncv32u *d_outMask; Ncv32u mask1Dlen; Ncv32u mask2Dstride; NcvSize32u anchorsRoi; Ncv32u step; //Arguments are passed through the constructor initializeMaskVectorFunctor(dim3 _gridConf, dim3 _blockConf, cudaStream_t _cuStream, Ncv32u *_d_inMask, Ncv32u *_d_outMask, Ncv32u _mask1Dlen, Ncv32u _mask2Dstride, NcvSize32u _anchorsRoi, Ncv32u _step) : gridConf(_gridConf), blockConf(_blockConf), cuStream(_cuStream), d_inMask(_d_inMask), d_outMask(_d_outMask), mask1Dlen(_mask1Dlen), mask2Dstride(_mask2Dstride), anchorsRoi(_anchorsRoi), step(_step) {} template<class TList> void call(TList tl) { (void)tl; initializeMaskVector < Loki::TL::TypeAt<TList, 0>::Result::value, Loki::TL::TypeAt<TList, 1>::Result::value > <<<gridConf, blockConf, 0, cuStream>>> (d_inMask, d_outMask, mask1Dlen, mask2Dstride, anchorsRoi, step); } }; void initializeMaskVectorDynTemplate(NcvBool tbMaskByInmask, NcvBool tbDoAtomicCompaction, dim3 gridConf, dim3 blockConf, cudaStream_t cuStream, Ncv32u *d_inMask, Ncv32u *d_outMask, Ncv32u mask1Dlen, Ncv32u mask2Dstride, NcvSize32u anchorsRoi, Ncv32u step) { initializeMaskVectorFunctor functor(gridConf, blockConf, cuStream, d_inMask, d_outMask, mask1Dlen, mask2Dstride, anchorsRoi, step); //Second parameter is the number of "dynamic" template parameters NCVRuntimeTemplateBool::KernelCaller<Loki::NullType, 2, initializeMaskVectorFunctor> ::call( &functor, tbMaskByInmask, tbDoAtomicCompaction); } Ncv32u getStageNumWithNotLessThanNclassifiers(Ncv32u N, HaarClassifierCascadeDescriptor &haar, NCVVector<HaarStage64> &h_HaarStages) { Ncv32u i = 0; for (; i<haar.NumStages; i++) { if (h_HaarStages.ptr()[i].getNumClassifierRootNodes() >= N) { break; } } return i; } NCVStatus ncvApplyHaarClassifierCascade_device(NCVMatrix<Ncv32u> &integral, NCVMatrix<Ncv32f> &d_weights, NCVMatrixAlloc<Ncv32u> &d_pixelMask, Ncv32u &numDetections, HaarClassifierCascadeDescriptor &haar, NCVVector<HaarStage64> &h_HaarStages, NCVVector<HaarStage64> &d_HaarStages, NCVVector<HaarClassifierNode128> &d_HaarNodes, NCVVector<HaarFeature64> &d_HaarFeatures, NcvBool bMaskElements, NcvSize32u anchorsRoi, Ncv32u pixelStep, Ncv32f scaleArea, INCVMemAllocator &gpuAllocator, INCVMemAllocator &cpuAllocator, cudaDeviceProp &devProp, cudaStream_t cuStream) { ncvAssertReturn(integral.memType() == d_weights.memType()&& integral.memType() == d_pixelMask.memType() && integral.memType() == gpuAllocator.memType() && (integral.memType() == NCVMemoryTypeDevice || integral.memType() == NCVMemoryTypeNone), NCV_MEM_RESIDENCE_ERROR); ncvAssertReturn(d_HaarStages.memType() == d_HaarNodes.memType() && d_HaarStages.memType() == d_HaarFeatures.memType() && (d_HaarStages.memType() == NCVMemoryTypeDevice || d_HaarStages.memType() == NCVMemoryTypeNone), NCV_MEM_RESIDENCE_ERROR); ncvAssertReturn(h_HaarStages.memType() != NCVMemoryTypeDevice, NCV_MEM_RESIDENCE_ERROR); ncvAssertReturn(gpuAllocator.isInitialized() && cpuAllocator.isInitialized(), NCV_ALLOCATOR_NOT_INITIALIZED); ncvAssertReturn((integral.ptr() != NULL && d_weights.ptr() != NULL && d_pixelMask.ptr() != NULL && h_HaarStages.ptr() != NULL && d_HaarStages.ptr() != NULL && d_HaarNodes.ptr() != NULL && d_HaarFeatures.ptr() != NULL) || gpuAllocator.isCounting(), NCV_NULL_PTR); ncvAssertReturn(anchorsRoi.width > 0 && anchorsRoi.height > 0 && d_pixelMask.width() >= anchorsRoi.width && d_pixelMask.height() >= anchorsRoi.height && d_weights.width() >= anchorsRoi.width && d_weights.height() >= anchorsRoi.height && integral.width() >= anchorsRoi.width + haar.ClassifierSize.width && integral.height() >= anchorsRoi.height + haar.ClassifierSize.height, NCV_DIMENSIONS_INVALID); ncvAssertReturn(scaleArea > 0, NCV_INVALID_SCALE); ncvAssertReturn(d_HaarStages.length() >= haar.NumStages && d_HaarNodes.length() >= haar.NumClassifierTotalNodes && d_HaarFeatures.length() >= haar.NumFeatures && d_HaarStages.length() == h_HaarStages.length() && haar.NumClassifierRootNodes <= haar.NumClassifierTotalNodes, NCV_DIMENSIONS_INVALID); ncvAssertReturn(haar.bNeedsTiltedII == false || gpuAllocator.isCounting(), NCV_NOIMPL_HAAR_TILTED_FEATURES); ncvAssertReturn(pixelStep == 1 || pixelStep == 2, NCV_HAAR_INVALID_PIXEL_STEP); NCV_SET_SKIP_COND(gpuAllocator.isCounting()); #if defined _SELF_TEST_ NCVStatus ncvStat; NCVMatrixAlloc<Ncv32u> h_integralImage(cpuAllocator, integral.width, integral.height, integral.pitch); ncvAssertReturn(h_integralImage.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVMatrixAlloc<Ncv32f> h_weights(cpuAllocator, d_weights.width, d_weights.height, d_weights.pitch); ncvAssertReturn(h_weights.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVMatrixAlloc<Ncv32u> h_pixelMask(cpuAllocator, d_pixelMask.width, d_pixelMask.height, d_pixelMask.pitch); ncvAssertReturn(h_pixelMask.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVVectorAlloc<HaarClassifierNode128> h_HaarNodes(cpuAllocator, d_HaarNodes.length); ncvAssertReturn(h_HaarNodes.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVVectorAlloc<HaarFeature64> h_HaarFeatures(cpuAllocator, d_HaarFeatures.length); ncvAssertReturn(h_HaarFeatures.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVMatrixAlloc<Ncv32u> h_pixelMask_d(cpuAllocator, d_pixelMask.width, d_pixelMask.height, d_pixelMask.pitch); ncvAssertReturn(h_pixelMask_d.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCV_SKIP_COND_BEGIN ncvStat = d_pixelMask.copySolid(h_pixelMask, 0); ncvAssertReturnNcvStat(ncvStat); ncvStat = integral.copySolid(h_integralImage, 0); ncvAssertReturnNcvStat(ncvStat); ncvStat = d_weights.copySolid(h_weights, 0); ncvAssertReturnNcvStat(ncvStat); ncvStat = d_HaarNodes.copySolid(h_HaarNodes, 0); ncvAssertReturnNcvStat(ncvStat); ncvStat = d_HaarFeatures.copySolid(h_HaarFeatures, 0); ncvAssertReturnNcvStat(ncvStat); ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR); for (Ncv32u i=0; i<(Ncv32u)anchorsRoi.height; i++) { for (Ncv32u j=0; j<d_pixelMask.stride(); j++) { if ((i%pixelStep==0) && (j%pixelStep==0) && (j<(Ncv32u)anchorsRoi.width)) { if (!bMaskElements || h_pixelMask.ptr[i*d_pixelMask.stride()+j] != OBJDET_MASK_ELEMENT_INVALID_32U) { h_pixelMask.ptr[i*d_pixelMask.stride()+j] = (i << 16) | j; } } else { h_pixelMask.ptr[i*d_pixelMask.stride()+j] = OBJDET_MASK_ELEMENT_INVALID_32U; } } } NCV_SKIP_COND_END #endif NCVVectorReuse<Ncv32u> d_vecPixelMask(d_pixelMask.getSegment(), anchorsRoi.height * d_pixelMask.stride()); ncvAssertReturn(d_vecPixelMask.isMemReused(), NCV_ALLOCATOR_BAD_REUSE); NCVVectorAlloc<Ncv32u> d_vecPixelMaskTmp(gpuAllocator, static_cast<Ncv32u>(d_vecPixelMask.length())); ncvAssertReturn(d_vecPixelMaskTmp.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVVectorAlloc<Ncv32u> hp_pool32u(cpuAllocator, 2); ncvAssertReturn(hp_pool32u.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); Ncv32u *hp_zero = &hp_pool32u.ptr()[0]; Ncv32u *hp_numDet = &hp_pool32u.ptr()[1]; NCV_SKIP_COND_BEGIN *hp_zero = 0; *hp_numDet = 0; NCV_SKIP_COND_END Ncv32f scaleAreaPixels = scaleArea * ((haar.ClassifierSize.width - 2*HAAR_STDDEV_BORDER) * (haar.ClassifierSize.height - 2*HAAR_STDDEV_BORDER)); NcvBool bTexCacheCascade = devProp.major < 2; NcvBool bTexCacheIImg = true; //this works better even on Fermi so far NcvBool bDoAtomicCompaction = devProp.major >= 2 || (devProp.major == 1 && devProp.minor >= 3); NCVVector<Ncv32u> *d_ptrNowData = &d_vecPixelMask; NCVVector<Ncv32u> *d_ptrNowTmp = &d_vecPixelMaskTmp; Ncv32u szNppCompactTmpBuf; nppsStCompactGetSize_32u(static_cast<Ncv32u>(d_vecPixelMask.length()), &szNppCompactTmpBuf, devProp); if (bDoAtomicCompaction) { szNppCompactTmpBuf = 0; } NCVVectorAlloc<Ncv8u> d_tmpBufCompact(gpuAllocator, szNppCompactTmpBuf); NCV_SKIP_COND_BEGIN if (bTexCacheIImg) { cudaChannelFormatDesc cfdTexIImage; cfdTexIImage = cudaCreateChannelDesc<Ncv32u>(); size_t alignmentOffset; ncvAssertCUDAReturn(cudaBindTexture(&alignmentOffset, texIImage, integral.ptr(), cfdTexIImage, (anchorsRoi.height + haar.ClassifierSize.height) * integral.pitch()), NCV_CUDA_ERROR); ncvAssertReturn(alignmentOffset==0, NCV_TEXTURE_BIND_ERROR); } if (bTexCacheCascade) { cudaChannelFormatDesc cfdTexHaarFeatures; cudaChannelFormatDesc cfdTexHaarClassifierNodes; cfdTexHaarFeatures = cudaCreateChannelDesc<uint2>(); cfdTexHaarClassifierNodes = cudaCreateChannelDesc<uint4>(); size_t alignmentOffset; ncvAssertCUDAReturn(cudaBindTexture(&alignmentOffset, texHaarFeatures, d_HaarFeatures.ptr(), cfdTexHaarFeatures,sizeof(HaarFeature64) * haar.NumFeatures), NCV_CUDA_ERROR); ncvAssertReturn(alignmentOffset==0, NCV_TEXTURE_BIND_ERROR); ncvAssertCUDAReturn(cudaBindTexture(&alignmentOffset, texHaarClassifierNodes, d_HaarNodes.ptr(), cfdTexHaarClassifierNodes, sizeof(HaarClassifierNode128) * haar.NumClassifierTotalNodes), NCV_CUDA_ERROR); ncvAssertReturn(alignmentOffset==0, NCV_TEXTURE_BIND_ERROR); } Ncv32u stageStartAnchorParallel = 0; Ncv32u stageMiddleSwitch = getStageNumWithNotLessThanNclassifiers(NUM_THREADS_CLASSIFIERPARALLEL, haar, h_HaarStages); Ncv32u stageEndClassifierParallel = haar.NumStages; if (stageMiddleSwitch == 0) { stageMiddleSwitch = 1; } //create stages subdivision for pixel-parallel processing const Ncv32u compactEveryNstage = bDoAtomicCompaction ? 7 : 1; Ncv32u curStop = stageStartAnchorParallel; std::vector<Ncv32u> pixParallelStageStops; while (curStop < stageMiddleSwitch) { pixParallelStageStops.push_back(curStop); curStop += compactEveryNstage; } if (curStop > compactEveryNstage && curStop - stageMiddleSwitch > compactEveryNstage / 2) { pixParallelStageStops[pixParallelStageStops.size()-1] = (stageMiddleSwitch - (curStop - 2 * compactEveryNstage)) / 2; } pixParallelStageStops.push_back(stageMiddleSwitch); Ncv32u pixParallelStageStopsIndex = 0; if (pixelStep != 1 || bMaskElements) { if (bDoAtomicCompaction) { ncvAssertCUDAReturn(cudaMemcpyToSymbolAsync(d_outMaskPosition, hp_zero, sizeof(Ncv32u), 0, cudaMemcpyHostToDevice, cuStream), NCV_CUDA_ERROR); ncvAssertCUDAReturn(cudaStreamSynchronize(cuStream), NCV_CUDA_ERROR); } dim3 gridInit((((anchorsRoi.width + pixelStep - 1) / pixelStep + NUM_THREADS_ANCHORSPARALLEL - 1) / NUM_THREADS_ANCHORSPARALLEL), (anchorsRoi.height + pixelStep - 1) / pixelStep); dim3 blockInit(NUM_THREADS_ANCHORSPARALLEL); if (gridInit.x == 0 || gridInit.y == 0) { numDetections = 0; return NCV_SUCCESS; } initializeMaskVectorDynTemplate(bMaskElements, bDoAtomicCompaction, gridInit, blockInit, cuStream, d_ptrNowData->ptr(), d_ptrNowTmp->ptr(), static_cast<Ncv32u>(d_vecPixelMask.length()), d_pixelMask.stride(), anchorsRoi, pixelStep); ncvAssertCUDAReturn(cudaGetLastError(), NCV_CUDA_ERROR); if (bDoAtomicCompaction) { ncvAssertCUDAReturn(cudaStreamSynchronize(cuStream), NCV_CUDA_ERROR); ncvAssertCUDAReturn(cudaMemcpyFromSymbolAsync(hp_numDet, d_outMaskPosition, sizeof(Ncv32u), 0, cudaMemcpyDeviceToHost, cuStream), NCV_CUDA_ERROR); ncvAssertCUDAReturn(cudaStreamSynchronize(cuStream), NCV_CUDA_ERROR); swap(d_ptrNowData, d_ptrNowTmp); } else { NCVStatus nppSt; nppSt = nppsStCompact_32u(d_ptrNowTmp->ptr(), static_cast<Ncv32u>(d_vecPixelMask.length()), d_ptrNowData->ptr(), hp_numDet, OBJDET_MASK_ELEMENT_INVALID_32U, d_tmpBufCompact.ptr(), szNppCompactTmpBuf, devProp); ncvAssertReturn(nppSt == NPPST_SUCCESS, NCV_NPP_ERROR); } numDetections = *hp_numDet; } else { // // 1. Run the first pixel-input pixel-parallel classifier for few stages // if (bDoAtomicCompaction) { ncvAssertCUDAReturn(cudaMemcpyToSymbolAsync(d_outMaskPosition, hp_zero, sizeof(Ncv32u), 0, cudaMemcpyHostToDevice, cuStream), NCV_CUDA_ERROR); ncvAssertCUDAReturn(cudaStreamSynchronize(cuStream), NCV_CUDA_ERROR); } dim3 grid1(((d_pixelMask.stride() + NUM_THREADS_ANCHORSPARALLEL - 1) / NUM_THREADS_ANCHORSPARALLEL), anchorsRoi.height); dim3 block1(NUM_THREADS_ANCHORSPARALLEL); applyHaarClassifierAnchorParallelDynTemplate( true, //tbInitMaskPositively bTexCacheIImg, //tbCacheTextureIImg bTexCacheCascade, //tbCacheTextureCascade pixParallelStageStops[pixParallelStageStopsIndex] != 0,//tbReadPixelIndexFromVector bDoAtomicCompaction, //tbDoAtomicCompaction grid1, block1, cuStream, integral.ptr(), integral.stride(), d_weights.ptr(), d_weights.stride(), d_HaarFeatures.ptr(), d_HaarNodes.ptr(), d_HaarStages.ptr(), d_ptrNowData->ptr(), bDoAtomicCompaction ? d_ptrNowTmp->ptr() : d_ptrNowData->ptr(), 0, d_pixelMask.stride(), anchorsRoi, pixParallelStageStops[pixParallelStageStopsIndex], pixParallelStageStops[pixParallelStageStopsIndex+1], scaleAreaPixels); ncvAssertCUDAReturn(cudaGetLastError(), NCV_CUDA_ERROR); if (bDoAtomicCompaction) { ncvAssertCUDAReturn(cudaStreamSynchronize(cuStream), NCV_CUDA_ERROR); ncvAssertCUDAReturn(cudaMemcpyFromSymbolAsync(hp_numDet, d_outMaskPosition, sizeof(Ncv32u), 0, cudaMemcpyDeviceToHost, cuStream), NCV_CUDA_ERROR); ncvAssertCUDAReturn(cudaStreamSynchronize(cuStream), NCV_CUDA_ERROR); } else { NCVStatus nppSt; nppSt = nppsStCompact_32u(d_ptrNowData->ptr(), static_cast<Ncv32u>(d_vecPixelMask.length()), d_ptrNowTmp->ptr(), hp_numDet, OBJDET_MASK_ELEMENT_INVALID_32U, d_tmpBufCompact.ptr(), szNppCompactTmpBuf, devProp); ncvAssertReturnNcvStat(nppSt); } swap(d_ptrNowData, d_ptrNowTmp); numDetections = *hp_numDet; pixParallelStageStopsIndex++; } // // 2. Run pixel-parallel stages // for (; pixParallelStageStopsIndex < pixParallelStageStops.size()-1; pixParallelStageStopsIndex++) { if (numDetections == 0) { break; } if (bDoAtomicCompaction) { ncvAssertCUDAReturn(cudaMemcpyToSymbolAsync(d_outMaskPosition, hp_zero, sizeof(Ncv32u), 0, cudaMemcpyHostToDevice, cuStream), NCV_CUDA_ERROR); ncvAssertCUDAReturn(cudaStreamSynchronize(cuStream), NCV_CUDA_ERROR); } dim3 grid2((numDetections + NUM_THREADS_ANCHORSPARALLEL - 1) / NUM_THREADS_ANCHORSPARALLEL); if (numDetections > MAX_GRID_DIM) { grid2.x = MAX_GRID_DIM; grid2.y = (numDetections + MAX_GRID_DIM - 1) / MAX_GRID_DIM; } dim3 block2(NUM_THREADS_ANCHORSPARALLEL); applyHaarClassifierAnchorParallelDynTemplate( false, //tbInitMaskPositively bTexCacheIImg, //tbCacheTextureIImg bTexCacheCascade, //tbCacheTextureCascade pixParallelStageStops[pixParallelStageStopsIndex] != 0 || pixelStep != 1 || bMaskElements,//tbReadPixelIndexFromVector bDoAtomicCompaction, //tbDoAtomicCompaction grid2, block2, cuStream, integral.ptr(), integral.stride(), d_weights.ptr(), d_weights.stride(), d_HaarFeatures.ptr(), d_HaarNodes.ptr(), d_HaarStages.ptr(), d_ptrNowData->ptr(), bDoAtomicCompaction ? d_ptrNowTmp->ptr() : d_ptrNowData->ptr(), numDetections, d_pixelMask.stride(), anchorsRoi, pixParallelStageStops[pixParallelStageStopsIndex], pixParallelStageStops[pixParallelStageStopsIndex+1], scaleAreaPixels); ncvAssertCUDAReturn(cudaGetLastError(), NCV_CUDA_ERROR); if (bDoAtomicCompaction) { ncvAssertCUDAReturn(cudaStreamSynchronize(cuStream), NCV_CUDA_ERROR); ncvAssertCUDAReturn(cudaMemcpyFromSymbolAsync(hp_numDet, d_outMaskPosition, sizeof(Ncv32u), 0, cudaMemcpyDeviceToHost, cuStream), NCV_CUDA_ERROR); ncvAssertCUDAReturn(cudaStreamSynchronize(cuStream), NCV_CUDA_ERROR); } else { NCVStatus nppSt; nppSt = nppsStCompact_32u(d_ptrNowData->ptr(), numDetections, d_ptrNowTmp->ptr(), hp_numDet, OBJDET_MASK_ELEMENT_INVALID_32U, d_tmpBufCompact.ptr(), szNppCompactTmpBuf, devProp); ncvAssertReturnNcvStat(nppSt); } swap(d_ptrNowData, d_ptrNowTmp); numDetections = *hp_numDet; } // // 3. Run all left stages in one stage-parallel kernel // if (numDetections > 0 && stageMiddleSwitch < stageEndClassifierParallel) { if (bDoAtomicCompaction) { ncvAssertCUDAReturn(cudaMemcpyToSymbolAsync(d_outMaskPosition, hp_zero, sizeof(Ncv32u), 0, cudaMemcpyHostToDevice, cuStream), NCV_CUDA_ERROR); ncvAssertCUDAReturn(cudaStreamSynchronize(cuStream), NCV_CUDA_ERROR); } dim3 grid3(numDetections); if (numDetections > MAX_GRID_DIM) { grid3.x = MAX_GRID_DIM; grid3.y = (numDetections + MAX_GRID_DIM - 1) / MAX_GRID_DIM; } dim3 block3(NUM_THREADS_CLASSIFIERPARALLEL); applyHaarClassifierClassifierParallelDynTemplate( bTexCacheIImg, //tbCacheTextureIImg bTexCacheCascade, //tbCacheTextureCascade bDoAtomicCompaction, //tbDoAtomicCompaction grid3, block3, cuStream, integral.ptr(), integral.stride(), d_weights.ptr(), d_weights.stride(), d_HaarFeatures.ptr(), d_HaarNodes.ptr(), d_HaarStages.ptr(), d_ptrNowData->ptr(), bDoAtomicCompaction ? d_ptrNowTmp->ptr() : d_ptrNowData->ptr(), numDetections, d_pixelMask.stride(), anchorsRoi, stageMiddleSwitch, stageEndClassifierParallel, scaleAreaPixels); ncvAssertCUDAReturn(cudaGetLastError(), NCV_CUDA_ERROR); if (bDoAtomicCompaction) { ncvAssertCUDAReturn(cudaStreamSynchronize(cuStream), NCV_CUDA_ERROR); ncvAssertCUDAReturn(cudaMemcpyFromSymbolAsync(hp_numDet, d_outMaskPosition, sizeof(Ncv32u), 0, cudaMemcpyDeviceToHost, cuStream), NCV_CUDA_ERROR); ncvAssertCUDAReturn(cudaStreamSynchronize(cuStream), NCV_CUDA_ERROR); } else { NCVStatus nppSt; nppSt = nppsStCompact_32u(d_ptrNowData->ptr(), numDetections, d_ptrNowTmp->ptr(), hp_numDet, OBJDET_MASK_ELEMENT_INVALID_32U, d_tmpBufCompact.ptr(), szNppCompactTmpBuf, devProp); ncvAssertReturnNcvStat(nppSt); } swap(d_ptrNowData, d_ptrNowTmp); numDetections = *hp_numDet; } if (d_ptrNowData != &d_vecPixelMask) { d_vecPixelMaskTmp.copySolid(d_vecPixelMask, cuStream); ncvAssertCUDAReturn(cudaStreamSynchronize(cuStream), NCV_CUDA_ERROR); } #if defined _SELF_TEST_ ncvStat = d_pixelMask.copySolid(h_pixelMask_d, 0); ncvAssertReturnNcvStat(ncvStat); ncvAssertCUDAReturn(cudaStreamSynchronize(cuStream), NCV_CUDA_ERROR); if (bDoAtomicCompaction) { std::sort(h_pixelMask_d.ptr, h_pixelMask_d.ptr + numDetections); } Ncv32u fpu_oldcw, fpu_cw; _controlfp_s(&fpu_cw, 0, 0); fpu_oldcw = fpu_cw; _controlfp_s(&fpu_cw, _PC_24, _MCW_PC); Ncv32u numDetGold; ncvStat = ncvApplyHaarClassifierCascade_host(h_integralImage, h_weights, h_pixelMask, numDetGold, haar, h_HaarStages, h_HaarNodes, h_HaarFeatures, bMaskElements, anchorsRoi, pixelStep, scaleArea); ncvAssertReturnNcvStat(ncvStat); _controlfp_s(&fpu_cw, fpu_oldcw, _MCW_PC); bool bPass = true; if (numDetGold != numDetections) { printf("NCVHaarClassifierCascade::applyHaarClassifierCascade numdetections don't match: cpu=%d, gpu=%d\n", numDetGold, numDetections); bPass = false; } else { for (Ncv32u i=0; i<std::max(numDetGold, numDetections) && bPass; i++) { if (h_pixelMask.ptr[i] != h_pixelMask_d.ptr[i]) { printf("NCVHaarClassifierCascade::applyHaarClassifierCascade self test failed: i=%d, cpu=%d, gpu=%d\n", i, h_pixelMask.ptr[i], h_pixelMask_d.ptr[i]); bPass = false; } } } printf("NCVHaarClassifierCascade::applyHaarClassifierCascade %s\n", bPass?"PASSED":"FAILED"); #endif NCV_SKIP_COND_END return NCV_SUCCESS; } //============================================================================== // // HypothesesOperations file // //============================================================================== const Ncv32u NUM_GROW_THREADS = 128; __device__ __host__ NcvRect32u pixelToRect(Ncv32u pixel, Ncv32u width, Ncv32u height, Ncv32f scale) { NcvRect32u res; res.x = (Ncv32u)(scale * (pixel & 0xFFFF)); res.y = (Ncv32u)(scale * (pixel >> 16)); res.width = (Ncv32u)(scale * width); res.height = (Ncv32u)(scale * height); return res; } __global__ void growDetectionsKernel(Ncv32u *pixelMask, Ncv32u numElements, NcvRect32u *hypotheses, Ncv32u rectWidth, Ncv32u rectHeight, Ncv32f curScale) { Ncv32u blockId = blockIdx.y * 65535 + blockIdx.x; Ncv32u elemAddr = blockId * NUM_GROW_THREADS + threadIdx.x; if (elemAddr >= numElements) { return; } hypotheses[elemAddr] = pixelToRect(pixelMask[elemAddr], rectWidth, rectHeight, curScale); } NCVStatus ncvGrowDetectionsVector_device(NCVVector<Ncv32u> &pixelMask, Ncv32u numPixelMaskDetections, NCVVector<NcvRect32u> &hypotheses, Ncv32u &totalDetections, Ncv32u totalMaxDetections, Ncv32u rectWidth, Ncv32u rectHeight, Ncv32f curScale, cudaStream_t cuStream) { ncvAssertReturn(pixelMask.ptr() != NULL && hypotheses.ptr() != NULL, NCV_NULL_PTR); ncvAssertReturn(pixelMask.memType() == hypotheses.memType() && pixelMask.memType() == NCVMemoryTypeDevice, NCV_MEM_RESIDENCE_ERROR); ncvAssertReturn(rectWidth > 0 && rectHeight > 0 && curScale > 0, NCV_INVALID_ROI); ncvAssertReturn(curScale > 0, NCV_INVALID_SCALE); ncvAssertReturn(totalMaxDetections <= hypotheses.length() && numPixelMaskDetections <= pixelMask.length() && totalMaxDetections <= totalMaxDetections, NCV_INCONSISTENT_INPUT); NCVStatus ncvStat = NCV_SUCCESS; Ncv32u numDetsToCopy = numPixelMaskDetections; if (numDetsToCopy == 0) { return ncvStat; } if (totalDetections + numPixelMaskDetections > totalMaxDetections) { ncvStat = NCV_WARNING_HAAR_DETECTIONS_VECTOR_OVERFLOW; numDetsToCopy = totalMaxDetections - totalDetections; } dim3 block(NUM_GROW_THREADS); dim3 grid((numDetsToCopy + NUM_GROW_THREADS - 1) / NUM_GROW_THREADS); if (grid.x > 65535) { grid.y = (grid.x + 65534) / 65535; grid.x = 65535; } growDetectionsKernel<<<grid, block, 0, cuStream>>>(pixelMask.ptr(), numDetsToCopy, hypotheses.ptr() + totalDetections, rectWidth, rectHeight, curScale); ncvAssertCUDAReturn(cudaGetLastError(), NCV_CUDA_ERROR); totalDetections += numDetsToCopy; return ncvStat; } //============================================================================== // // Pipeline file // //============================================================================== NCVStatus ncvDetectObjectsMultiScale_device(NCVMatrix<Ncv8u> &d_srcImg, NcvSize32u srcRoi, NCVVector<NcvRect32u> &d_dstRects, Ncv32u &dstNumRects, HaarClassifierCascadeDescriptor &haar, NCVVector<HaarStage64> &h_HaarStages, NCVVector<HaarStage64> &d_HaarStages, NCVVector<HaarClassifierNode128> &d_HaarNodes, NCVVector<HaarFeature64> &d_HaarFeatures, NcvSize32u minObjSize, Ncv32u minNeighbors, //default 4 Ncv32f scaleStep, //default 1.2f Ncv32u pixelStep, //default 1 Ncv32u flags, //default NCVPipeObjDet_Default INCVMemAllocator &gpuAllocator, INCVMemAllocator &cpuAllocator, cudaDeviceProp &devProp, cudaStream_t cuStream) { ncvAssertReturn(d_srcImg.memType() == d_dstRects.memType() && d_srcImg.memType() == gpuAllocator.memType() && (d_srcImg.memType() == NCVMemoryTypeDevice || d_srcImg.memType() == NCVMemoryTypeNone), NCV_MEM_RESIDENCE_ERROR); ncvAssertReturn(d_HaarStages.memType() == d_HaarNodes.memType() && d_HaarStages.memType() == d_HaarFeatures.memType() && (d_HaarStages.memType() == NCVMemoryTypeDevice || d_HaarStages.memType() == NCVMemoryTypeNone), NCV_MEM_RESIDENCE_ERROR); ncvAssertReturn(h_HaarStages.memType() != NCVMemoryTypeDevice, NCV_MEM_RESIDENCE_ERROR); ncvAssertReturn(gpuAllocator.isInitialized() && cpuAllocator.isInitialized(), NCV_ALLOCATOR_NOT_INITIALIZED); ncvAssertReturn((d_srcImg.ptr() != NULL && d_dstRects.ptr() != NULL && h_HaarStages.ptr() != NULL && d_HaarStages.ptr() != NULL && d_HaarNodes.ptr() != NULL && d_HaarFeatures.ptr() != NULL) || gpuAllocator.isCounting(), NCV_NULL_PTR); ncvAssertReturn(srcRoi.width > 0 && srcRoi.height > 0 && d_srcImg.width() >= srcRoi.width && d_srcImg.height() >= srcRoi.height && srcRoi.width >= minObjSize.width && srcRoi.height >= minObjSize.height && d_dstRects.length() >= 1, NCV_DIMENSIONS_INVALID); ncvAssertReturn(scaleStep > 1.0f, NCV_INVALID_SCALE); ncvAssertReturn(d_HaarStages.length() >= haar.NumStages && d_HaarNodes.length() >= haar.NumClassifierTotalNodes && d_HaarFeatures.length() >= haar.NumFeatures && d_HaarStages.length() == h_HaarStages.length() && haar.NumClassifierRootNodes <= haar.NumClassifierTotalNodes, NCV_DIMENSIONS_INVALID); ncvAssertReturn(haar.bNeedsTiltedII == false, NCV_NOIMPL_HAAR_TILTED_FEATURES); ncvAssertReturn(pixelStep == 1 || pixelStep == 2, NCV_HAAR_INVALID_PIXEL_STEP); //TODO: set NPP active stream to cuStream NCVStatus ncvStat; NCV_SET_SKIP_COND(gpuAllocator.isCounting()); Ncv32u integralWidth = d_srcImg.width() + 1; Ncv32u integralHeight = d_srcImg.height() + 1; NCVMatrixAlloc<Ncv32u> integral(gpuAllocator, integralWidth, integralHeight); ncvAssertReturn(integral.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVMatrixAlloc<Ncv64u> d_sqIntegralImage(gpuAllocator, integralWidth, integralHeight); ncvAssertReturn(d_sqIntegralImage.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVMatrixAlloc<Ncv32f> d_rectStdDev(gpuAllocator, d_srcImg.width(), d_srcImg.height()); ncvAssertReturn(d_rectStdDev.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVMatrixAlloc<Ncv32u> d_pixelMask(gpuAllocator, d_srcImg.width(), d_srcImg.height()); ncvAssertReturn(d_pixelMask.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVMatrixAlloc<Ncv32u> d_scaledIntegralImage(gpuAllocator, integralWidth, integralHeight); ncvAssertReturn(d_scaledIntegralImage.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVMatrixAlloc<Ncv64u> d_scaledSqIntegralImage(gpuAllocator, integralWidth, integralHeight); ncvAssertReturn(d_scaledSqIntegralImage.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVVectorAlloc<NcvRect32u> d_hypothesesIntermediate(gpuAllocator, d_srcImg.width() * d_srcImg.height()); ncvAssertReturn(d_hypothesesIntermediate.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVVectorAlloc<NcvRect32u> h_hypothesesIntermediate(cpuAllocator, d_srcImg.width() * d_srcImg.height()); ncvAssertReturn(h_hypothesesIntermediate.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVStatus nppStat; Ncv32u szTmpBufIntegral, szTmpBufSqIntegral; nppStat = nppiStIntegralGetSize_8u32u(NcvSize32u(d_srcImg.width(), d_srcImg.height()), &szTmpBufIntegral, devProp); ncvAssertReturnNcvStat(nppStat); nppStat = nppiStSqrIntegralGetSize_8u64u(NcvSize32u(d_srcImg.width(), d_srcImg.height()), &szTmpBufSqIntegral, devProp); ncvAssertReturnNcvStat(nppStat); NCVVectorAlloc<Ncv8u> d_tmpIIbuf(gpuAllocator, std::max(szTmpBufIntegral, szTmpBufSqIntegral)); ncvAssertReturn(d_tmpIIbuf.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCV_SKIP_COND_BEGIN nppStat = nppiStIntegral_8u32u_C1R(d_srcImg.ptr(), d_srcImg.pitch(), integral.ptr(), integral.pitch(), NcvSize32u(d_srcImg.width(), d_srcImg.height()), d_tmpIIbuf.ptr(), szTmpBufIntegral, devProp); ncvAssertReturnNcvStat(nppStat); nppStat = nppiStSqrIntegral_8u64u_C1R(d_srcImg.ptr(), d_srcImg.pitch(), d_sqIntegralImage.ptr(), d_sqIntegralImage.pitch(), NcvSize32u(d_srcImg.width(), d_srcImg.height()), d_tmpIIbuf.ptr(), szTmpBufSqIntegral, devProp); ncvAssertReturnNcvStat(nppStat); NCV_SKIP_COND_END dstNumRects = 0; Ncv32u lastCheckedScale = 0; NcvBool bReverseTraverseScale = ((flags & NCVPipeObjDet_FindLargestObject) != 0); std::vector<Ncv32u> scalesVector; NcvBool bFoundLargestFace = false; for (Ncv32f scaleIter = 1.0f; ; scaleIter *= scaleStep) { Ncv32u scale = (Ncv32u)scaleIter; if (lastCheckedScale == scale) { continue; } lastCheckedScale = scale; if (haar.ClassifierSize.width * (Ncv32s)scale < minObjSize.width || haar.ClassifierSize.height * (Ncv32s)scale < minObjSize.height) { continue; } NcvSize32s srcRoi_, srcIIRo_i, scaledIIRoi, searchRoi; srcRoi_.width = d_srcImg.width(); srcRoi_.height = d_srcImg.height(); srcIIRo_i.width = srcRoi_.width + 1; srcIIRo_i.height = srcRoi_.height + 1; scaledIIRoi.width = srcIIRo_i.width / scale; scaledIIRoi.height = srcIIRo_i.height / scale; searchRoi.width = scaledIIRoi.width - haar.ClassifierSize.width; searchRoi.height = scaledIIRoi.height - haar.ClassifierSize.height; if (searchRoi.width <= 0 || searchRoi.height <= 0) { break; } scalesVector.push_back(scale); if (gpuAllocator.isCounting()) { break; } } if (bReverseTraverseScale) { std::reverse(scalesVector.begin(), scalesVector.end()); } //TODO: handle _fair_scale_ flag for (Ncv32u i=0; i<scalesVector.size(); i++) { Ncv32u scale = scalesVector[i]; NcvSize32u srcRoi_, scaledIIRoi, searchRoi; NcvSize32u srcIIRoi; srcRoi_.width = d_srcImg.width(); srcRoi_.height = d_srcImg.height(); srcIIRoi.width = srcRoi_.width + 1; srcIIRoi.height = srcRoi_.height + 1; scaledIIRoi.width = srcIIRoi.width / scale; scaledIIRoi.height = srcIIRoi.height / scale; searchRoi.width = scaledIIRoi.width - haar.ClassifierSize.width; searchRoi.height = scaledIIRoi.height - haar.ClassifierSize.height; NCV_SKIP_COND_BEGIN nppStat = nppiStDecimate_32u_C1R( integral.ptr(), integral.pitch(), d_scaledIntegralImage.ptr(), d_scaledIntegralImage.pitch(), srcIIRoi, scale, true); ncvAssertReturnNcvStat(nppStat); nppStat = nppiStDecimate_64u_C1R( d_sqIntegralImage.ptr(), d_sqIntegralImage.pitch(), d_scaledSqIntegralImage.ptr(), d_scaledSqIntegralImage.pitch(), srcIIRoi, scale, true); ncvAssertReturnNcvStat(nppStat); const NcvRect32u rect( HAAR_STDDEV_BORDER, HAAR_STDDEV_BORDER, haar.ClassifierSize.width - 2*HAAR_STDDEV_BORDER, haar.ClassifierSize.height - 2*HAAR_STDDEV_BORDER); nppStat = nppiStRectStdDev_32f_C1R( d_scaledIntegralImage.ptr(), d_scaledIntegralImage.pitch(), d_scaledSqIntegralImage.ptr(), d_scaledSqIntegralImage.pitch(), d_rectStdDev.ptr(), d_rectStdDev.pitch(), NcvSize32u(searchRoi.width, searchRoi.height), rect, (Ncv32f)scale*scale, true); ncvAssertReturnNcvStat(nppStat); NCV_SKIP_COND_END Ncv32u detectionsOnThisScale; ncvStat = ncvApplyHaarClassifierCascade_device( d_scaledIntegralImage, d_rectStdDev, d_pixelMask, detectionsOnThisScale, haar, h_HaarStages, d_HaarStages, d_HaarNodes, d_HaarFeatures, false, searchRoi, pixelStep, (Ncv32f)scale*scale, gpuAllocator, cpuAllocator, devProp, cuStream); ncvAssertReturnNcvStat(nppStat); NCV_SKIP_COND_BEGIN NCVVectorReuse<Ncv32u> d_vecPixelMask(d_pixelMask.getSegment()); ncvStat = ncvGrowDetectionsVector_device( d_vecPixelMask, detectionsOnThisScale, d_hypothesesIntermediate, dstNumRects, static_cast<Ncv32u>(d_hypothesesIntermediate.length()), haar.ClassifierSize.width, haar.ClassifierSize.height, (Ncv32f)scale, cuStream); ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat); if (flags & NCVPipeObjDet_FindLargestObject) { if (dstNumRects == 0) { continue; } if (dstNumRects != 0) { ncvAssertCUDAReturn(cudaStreamSynchronize(cuStream), NCV_CUDA_ERROR); ncvStat = d_hypothesesIntermediate.copySolid(h_hypothesesIntermediate, cuStream, dstNumRects * sizeof(NcvRect32u)); ncvAssertReturnNcvStat(ncvStat); ncvAssertCUDAReturn(cudaStreamSynchronize(cuStream), NCV_CUDA_ERROR); } Ncv32u numStrongHypothesesNow = dstNumRects; ncvStat = ncvGroupRectangles_host( h_hypothesesIntermediate, numStrongHypothesesNow, minNeighbors, RECT_SIMILARITY_PROPORTION, NULL); ncvAssertReturnNcvStat(ncvStat); if (numStrongHypothesesNow > 0) { NcvRect32u maxRect = h_hypothesesIntermediate.ptr()[0]; for (Ncv32u j=1; j<numStrongHypothesesNow; j++) { if (maxRect.width < h_hypothesesIntermediate.ptr()[j].width) { maxRect = h_hypothesesIntermediate.ptr()[j]; } } h_hypothesesIntermediate.ptr()[0] = maxRect; dstNumRects = 1; ncvStat = h_hypothesesIntermediate.copySolid(d_dstRects, cuStream, sizeof(NcvRect32u)); ncvAssertReturnNcvStat(ncvStat); bFoundLargestFace = true; break; } } NCV_SKIP_COND_END if (gpuAllocator.isCounting()) { break; } } NCVStatus ncvRetCode = NCV_SUCCESS; NCV_SKIP_COND_BEGIN if (flags & NCVPipeObjDet_FindLargestObject) { if (!bFoundLargestFace) { dstNumRects = 0; } } else { //TODO: move hypotheses filtration to GPU pipeline (the only CPU-resident element of the pipeline left) if (dstNumRects != 0) { ncvAssertCUDAReturn(cudaStreamSynchronize(cuStream), NCV_CUDA_ERROR); ncvStat = d_hypothesesIntermediate.copySolid(h_hypothesesIntermediate, cuStream, dstNumRects * sizeof(NcvRect32u)); ncvAssertReturnNcvStat(ncvStat); ncvAssertCUDAReturn(cudaStreamSynchronize(cuStream), NCV_CUDA_ERROR); } ncvStat = ncvGroupRectangles_host( h_hypothesesIntermediate, dstNumRects, minNeighbors, RECT_SIMILARITY_PROPORTION, NULL); ncvAssertReturnNcvStat(ncvStat); if (dstNumRects > d_dstRects.length()) { ncvRetCode = NCV_WARNING_HAAR_DETECTIONS_VECTOR_OVERFLOW; dstNumRects = static_cast<Ncv32u>(d_dstRects.length()); } if (dstNumRects != 0) { ncvStat = h_hypothesesIntermediate.copySolid(d_dstRects, cuStream, dstNumRects * sizeof(NcvRect32u)); ncvAssertReturnNcvStat(ncvStat); } } if (flags & NCVPipeObjDet_VisualizeInPlace) { ncvAssertCUDAReturn(cudaStreamSynchronize(cuStream), NCV_CUDA_ERROR); ncvDrawRects_8u_device(d_srcImg.ptr(), d_srcImg.stride(), d_srcImg.width(), d_srcImg.height(), d_dstRects.ptr(), dstNumRects, 255, cuStream); } NCV_SKIP_COND_END return ncvRetCode; } //============================================================================== // // Purely Host code: classifier IO, mock-ups // //============================================================================== #ifdef _SELF_TEST_ #include <float.h> #endif NCVStatus ncvApplyHaarClassifierCascade_host(NCVMatrix<Ncv32u> &h_integralImage, NCVMatrix<Ncv32f> &h_weights, NCVMatrixAlloc<Ncv32u> &h_pixelMask, Ncv32u &numDetections, HaarClassifierCascadeDescriptor &haar, NCVVector<HaarStage64> &h_HaarStages, NCVVector<HaarClassifierNode128> &h_HaarNodes, NCVVector<HaarFeature64> &h_HaarFeatures, NcvBool bMaskElements, NcvSize32u anchorsRoi, Ncv32u pixelStep, Ncv32f scaleArea) { ncvAssertReturn(h_integralImage.memType() == h_weights.memType() && h_integralImage.memType() == h_pixelMask.memType() && (h_integralImage.memType() == NCVMemoryTypeHostPageable || h_integralImage.memType() == NCVMemoryTypeHostPinned), NCV_MEM_RESIDENCE_ERROR); ncvAssertReturn(h_HaarStages.memType() == h_HaarNodes.memType() && h_HaarStages.memType() == h_HaarFeatures.memType() && (h_HaarStages.memType() == NCVMemoryTypeHostPageable || h_HaarStages.memType() == NCVMemoryTypeHostPinned), NCV_MEM_RESIDENCE_ERROR); ncvAssertReturn(h_integralImage.ptr() != NULL && h_weights.ptr() != NULL && h_pixelMask.ptr() != NULL && h_HaarStages.ptr() != NULL && h_HaarNodes.ptr() != NULL && h_HaarFeatures.ptr() != NULL, NCV_NULL_PTR); ncvAssertReturn(anchorsRoi.width > 0 && anchorsRoi.height > 0 && h_pixelMask.width() >= anchorsRoi.width && h_pixelMask.height() >= anchorsRoi.height && h_weights.width() >= anchorsRoi.width && h_weights.height() >= anchorsRoi.height && h_integralImage.width() >= anchorsRoi.width + haar.ClassifierSize.width && h_integralImage.height() >= anchorsRoi.height + haar.ClassifierSize.height, NCV_DIMENSIONS_INVALID); ncvAssertReturn(scaleArea > 0, NCV_INVALID_SCALE); ncvAssertReturn(h_HaarStages.length() >= haar.NumStages && h_HaarNodes.length() >= haar.NumClassifierTotalNodes && h_HaarFeatures.length() >= haar.NumFeatures && h_HaarStages.length() == h_HaarStages.length() && haar.NumClassifierRootNodes <= haar.NumClassifierTotalNodes, NCV_DIMENSIONS_INVALID); ncvAssertReturn(haar.bNeedsTiltedII == false, NCV_NOIMPL_HAAR_TILTED_FEATURES); ncvAssertReturn(pixelStep == 1 || pixelStep == 2, NCV_HAAR_INVALID_PIXEL_STEP); Ncv32f scaleAreaPixels = scaleArea * ((haar.ClassifierSize.width - 2*HAAR_STDDEV_BORDER) * (haar.ClassifierSize.height - 2*HAAR_STDDEV_BORDER)); for (Ncv32u i=0; i<anchorsRoi.height; i++) { for (Ncv32u j=0; j<h_pixelMask.stride(); j++) { if (i % pixelStep != 0 || j % pixelStep != 0 || j >= anchorsRoi.width) { h_pixelMask.ptr()[i * h_pixelMask.stride() + j] = OBJDET_MASK_ELEMENT_INVALID_32U; } else { for (Ncv32u iStage = 0; iStage < haar.NumStages; iStage++) { Ncv32f curStageSum = 0.0f; Ncv32u numRootNodesInStage = h_HaarStages.ptr()[iStage].getNumClassifierRootNodes(); Ncv32u curRootNodeOffset = h_HaarStages.ptr()[iStage].getStartClassifierRootNodeOffset(); if (iStage == 0) { if (bMaskElements && h_pixelMask.ptr()[i * h_pixelMask.stride() + j] == OBJDET_MASK_ELEMENT_INVALID_32U) { break; } else { h_pixelMask.ptr()[i * h_pixelMask.stride() + j] = ((i << 16) | j); } } else if (h_pixelMask.ptr()[i * h_pixelMask.stride() + j] == OBJDET_MASK_ELEMENT_INVALID_32U) { break; } while (numRootNodesInStage--) { NcvBool bMoreNodesToTraverse = true; Ncv32u curNodeOffset = curRootNodeOffset; while (bMoreNodesToTraverse) { HaarClassifierNode128 curNode = h_HaarNodes.ptr()[curNodeOffset]; HaarFeatureDescriptor32 curFeatDesc = curNode.getFeatureDesc(); Ncv32u curNodeFeaturesNum = curFeatDesc.getNumFeatures(); Ncv32u curNodeFeaturesOffs = curFeatDesc.getFeaturesOffset(); Ncv32f curNodeVal = 0.f; for (Ncv32u iRect=0; iRect<curNodeFeaturesNum; iRect++) { HaarFeature64 feature = h_HaarFeatures.ptr()[curNodeFeaturesOffs + iRect]; Ncv32u rectX, rectY, rectWidth, rectHeight; feature.getRect(&rectX, &rectY, &rectWidth, &rectHeight); Ncv32f rectWeight = feature.getWeight(); Ncv32u iioffsTL = (i + rectY) * h_integralImage.stride() + (j + rectX); Ncv32u iioffsTR = iioffsTL + rectWidth; Ncv32u iioffsBL = iioffsTL + rectHeight * h_integralImage.stride(); Ncv32u iioffsBR = iioffsBL + rectWidth; Ncv32u iivalTL = h_integralImage.ptr()[iioffsTL]; Ncv32u iivalTR = h_integralImage.ptr()[iioffsTR]; Ncv32u iivalBL = h_integralImage.ptr()[iioffsBL]; Ncv32u iivalBR = h_integralImage.ptr()[iioffsBR]; Ncv32u rectSum = iivalBR - iivalBL + iivalTL - iivalTR; curNodeVal += (Ncv32f)rectSum * rectWeight; } HaarClassifierNodeDescriptor32 nodeLeft = curNode.getLeftNodeDesc(); HaarClassifierNodeDescriptor32 nodeRight = curNode.getRightNodeDesc(); Ncv32f nodeThreshold = curNode.getThreshold(); HaarClassifierNodeDescriptor32 nextNodeDescriptor; NcvBool nextNodeIsLeaf; if (curNodeVal < scaleAreaPixels * h_weights.ptr()[i * h_weights.stride() + j] * nodeThreshold) { nextNodeDescriptor = nodeLeft; nextNodeIsLeaf = curFeatDesc.isLeftNodeLeaf(); } else { nextNodeDescriptor = nodeRight; nextNodeIsLeaf = curFeatDesc.isRightNodeLeaf(); } if (nextNodeIsLeaf) { Ncv32f tmpLeafValue = nextNodeDescriptor.getLeafValueHost(); curStageSum += tmpLeafValue; bMoreNodesToTraverse = false; } else { curNodeOffset = nextNodeDescriptor.getNextNodeOffset(); } } curRootNodeOffset++; } Ncv32f tmpStageThreshold = h_HaarStages.ptr()[iStage].getStageThreshold(); if (curStageSum < tmpStageThreshold) { //drop h_pixelMask.ptr()[i * h_pixelMask.stride() + j] = OBJDET_MASK_ELEMENT_INVALID_32U; break; } } } } } std::sort(h_pixelMask.ptr(), h_pixelMask.ptr() + anchorsRoi.height * h_pixelMask.stride()); Ncv32u i = 0; for (; i<anchorsRoi.height * h_pixelMask.stride(); i++) { if (h_pixelMask.ptr()[i] == OBJDET_MASK_ELEMENT_INVALID_32U) { break; } } numDetections = i; return NCV_SUCCESS; } NCVStatus ncvGrowDetectionsVector_host(NCVVector<Ncv32u> &pixelMask, Ncv32u numPixelMaskDetections, NCVVector<NcvRect32u> &hypotheses, Ncv32u &totalDetections, Ncv32u totalMaxDetections, Ncv32u rectWidth, Ncv32u rectHeight, Ncv32f curScale) { ncvAssertReturn(pixelMask.ptr() != NULL && hypotheses.ptr() != NULL, NCV_NULL_PTR); ncvAssertReturn(pixelMask.memType() == hypotheses.memType() && pixelMask.memType() != NCVMemoryTypeDevice, NCV_MEM_RESIDENCE_ERROR); ncvAssertReturn(rectWidth > 0 && rectHeight > 0 && curScale > 0, NCV_INVALID_ROI); ncvAssertReturn(curScale > 0, NCV_INVALID_SCALE); ncvAssertReturn(totalMaxDetections <= hypotheses.length() && numPixelMaskDetections <= pixelMask.length() && totalMaxDetections <= totalMaxDetections, NCV_INCONSISTENT_INPUT); NCVStatus ncvStat = NCV_SUCCESS; Ncv32u numDetsToCopy = numPixelMaskDetections; if (numDetsToCopy == 0) { return ncvStat; } if (totalDetections + numPixelMaskDetections > totalMaxDetections) { ncvStat = NCV_WARNING_HAAR_DETECTIONS_VECTOR_OVERFLOW; numDetsToCopy = totalMaxDetections - totalDetections; } for (Ncv32u i=0; i<numDetsToCopy; i++) { hypotheses.ptr()[totalDetections + i] = pixelToRect(pixelMask.ptr()[i], rectWidth, rectHeight, curScale); } totalDetections += numDetsToCopy; return ncvStat; } static NCVStatus loadFromXML(const cv::String &filename, HaarClassifierCascadeDescriptor &haar, std::vector<HaarStage64> &haarStages, std::vector<HaarClassifierNode128> &haarClassifierNodes, std::vector<HaarFeature64> &haarFeatures) { #ifndef HAVE_OPENCV_OBJDETECT (void) filename; (void) haar; (void) haarStages; (void) haarClassifierNodes; (void) haarFeatures; CV_Error(cv::Error::StsNotImplemented, "This functionality requires objdetect module"); return NCV_HAAR_XML_LOADING_EXCEPTION; #else NCVStatus ncvStat; haar.NumStages = 0; haar.NumClassifierRootNodes = 0; haar.NumClassifierTotalNodes = 0; haar.NumFeatures = 0; haar.ClassifierSize.width = 0; haar.ClassifierSize.height = 0; haar.bHasStumpsOnly = true; haar.bNeedsTiltedII = false; Ncv32u curMaxTreeDepth = 0; std::vector<HaarClassifierNode128> h_TmpClassifierNotRootNodes; haarStages.resize(0); haarClassifierNodes.resize(0); haarFeatures.resize(0); cv::Ptr<CvHaarClassifierCascade> oldCascade((CvHaarClassifierCascade*)cvLoad(filename.c_str(), 0, 0, 0)); if (!oldCascade) { return NCV_HAAR_XML_LOADING_EXCEPTION; } haar.ClassifierSize.width = oldCascade->orig_window_size.width; haar.ClassifierSize.height = oldCascade->orig_window_size.height; int stagesCound = oldCascade->count; for(int s = 0; s < stagesCound; ++s) // by stages { HaarStage64 curStage; curStage.setStartClassifierRootNodeOffset(static_cast<Ncv32u>(haarClassifierNodes.size())); curStage.setStageThreshold(oldCascade->stage_classifier[s].threshold); int treesCount = oldCascade->stage_classifier[s].count; for(int t = 0; t < treesCount; ++t) // by trees { Ncv32u nodeId = 0; CvHaarClassifier* tree = &oldCascade->stage_classifier[s].classifier[t]; int nodesCount = tree->count; for(int n = 0; n < nodesCount; ++n) //by features { CvHaarFeature* feature = &tree->haar_feature[n]; HaarClassifierNode128 curNode; curNode.setThreshold(tree->threshold[n]); NcvBool bIsLeftNodeLeaf = false; NcvBool bIsRightNodeLeaf = false; HaarClassifierNodeDescriptor32 nodeLeft; if ( tree->left[n] <= 0 ) { Ncv32f leftVal = tree->alpha[-tree->left[n]]; ncvStat = nodeLeft.create(leftVal); ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat); bIsLeftNodeLeaf = true; } else { Ncv32u leftNodeOffset = tree->left[n]; nodeLeft.create((Ncv32u)(h_TmpClassifierNotRootNodes.size() + leftNodeOffset - 1)); haar.bHasStumpsOnly = false; } curNode.setLeftNodeDesc(nodeLeft); HaarClassifierNodeDescriptor32 nodeRight; if ( tree->right[n] <= 0 ) { Ncv32f rightVal = tree->alpha[-tree->right[n]]; ncvStat = nodeRight.create(rightVal); ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat); bIsRightNodeLeaf = true; } else { Ncv32u rightNodeOffset = tree->right[n]; nodeRight.create((Ncv32u)(h_TmpClassifierNotRootNodes.size() + rightNodeOffset - 1)); haar.bHasStumpsOnly = false; } curNode.setRightNodeDesc(nodeRight); Ncv32u tiltedVal = feature->tilted; haar.bNeedsTiltedII = (tiltedVal != 0); Ncv32u featureId = 0; for(int l = 0; l < CV_HAAR_FEATURE_MAX; ++l) //by rects { Ncv32u rectX = feature->rect[l].r.x; Ncv32u rectY = feature->rect[l].r.y; Ncv32u rectWidth = feature->rect[l].r.width; Ncv32u rectHeight = feature->rect[l].r.height; Ncv32f rectWeight = feature->rect[l].weight; if (rectWeight == 0/* && rectX == 0 &&rectY == 0 && rectWidth == 0 && rectHeight == 0*/) break; HaarFeature64 curFeature; ncvStat = curFeature.setRect(rectX, rectY, rectWidth, rectHeight, haar.ClassifierSize.width, haar.ClassifierSize.height); curFeature.setWeight(rectWeight); ncvAssertReturn(NCV_SUCCESS == ncvStat, ncvStat); haarFeatures.push_back(curFeature); featureId++; } HaarFeatureDescriptor32 tmpFeatureDesc; ncvStat = tmpFeatureDesc.create(haar.bNeedsTiltedII, bIsLeftNodeLeaf, bIsRightNodeLeaf, featureId, static_cast<Ncv32u>(haarFeatures.size()) - featureId); ncvAssertReturn(NCV_SUCCESS == ncvStat, ncvStat); curNode.setFeatureDesc(tmpFeatureDesc); if (!nodeId) { //root node haarClassifierNodes.push_back(curNode); curMaxTreeDepth = 1; } else { //other node h_TmpClassifierNotRootNodes.push_back(curNode); curMaxTreeDepth++; } nodeId++; } } curStage.setNumClassifierRootNodes(treesCount); haarStages.push_back(curStage); } //fill in cascade stats haar.NumStages = static_cast<Ncv32u>(haarStages.size()); haar.NumClassifierRootNodes = static_cast<Ncv32u>(haarClassifierNodes.size()); haar.NumClassifierTotalNodes = static_cast<Ncv32u>(haar.NumClassifierRootNodes + h_TmpClassifierNotRootNodes.size()); haar.NumFeatures = static_cast<Ncv32u>(haarFeatures.size()); //merge root and leaf nodes in one classifiers array Ncv32u offsetRoot = static_cast<Ncv32u>(haarClassifierNodes.size()); for (Ncv32u i=0; i<haarClassifierNodes.size(); i++) { HaarFeatureDescriptor32 featureDesc = haarClassifierNodes[i].getFeatureDesc(); HaarClassifierNodeDescriptor32 nodeLeft = haarClassifierNodes[i].getLeftNodeDesc(); if (!featureDesc.isLeftNodeLeaf()) { Ncv32u newOffset = nodeLeft.getNextNodeOffset() + offsetRoot; nodeLeft.create(newOffset); } haarClassifierNodes[i].setLeftNodeDesc(nodeLeft); HaarClassifierNodeDescriptor32 nodeRight = haarClassifierNodes[i].getRightNodeDesc(); if (!featureDesc.isRightNodeLeaf()) { Ncv32u newOffset = nodeRight.getNextNodeOffset() + offsetRoot; nodeRight.create(newOffset); } haarClassifierNodes[i].setRightNodeDesc(nodeRight); } for (Ncv32u i=0; i<h_TmpClassifierNotRootNodes.size(); i++) { HaarFeatureDescriptor32 featureDesc = h_TmpClassifierNotRootNodes[i].getFeatureDesc(); HaarClassifierNodeDescriptor32 nodeLeft = h_TmpClassifierNotRootNodes[i].getLeftNodeDesc(); if (!featureDesc.isLeftNodeLeaf()) { Ncv32u newOffset = nodeLeft.getNextNodeOffset() + offsetRoot; nodeLeft.create(newOffset); } h_TmpClassifierNotRootNodes[i].setLeftNodeDesc(nodeLeft); HaarClassifierNodeDescriptor32 nodeRight = h_TmpClassifierNotRootNodes[i].getRightNodeDesc(); if (!featureDesc.isRightNodeLeaf()) { Ncv32u newOffset = nodeRight.getNextNodeOffset() + offsetRoot; nodeRight.create(newOffset); } h_TmpClassifierNotRootNodes[i].setRightNodeDesc(nodeRight); haarClassifierNodes.push_back(h_TmpClassifierNotRootNodes[i]); } return NCV_SUCCESS; #endif } #define NVBIN_HAAR_SIZERESERVED 16 #define NVBIN_HAAR_VERSION 0x1 static NCVStatus loadFromNVBIN(const cv::String &filename, HaarClassifierCascadeDescriptor &haar, std::vector<HaarStage64> &haarStages, std::vector<HaarClassifierNode128> &haarClassifierNodes, std::vector<HaarFeature64> &haarFeatures) { size_t readCount; FILE *fp = fopen(filename.c_str(), "rb"); ncvAssertReturn(fp != NULL, NCV_FILE_ERROR); Ncv32u fileVersion; readCount = fread(&fileVersion, sizeof(Ncv32u), 1, fp); ncvAssertReturn(1 == readCount, NCV_FILE_ERROR); ncvAssertReturn(fileVersion == NVBIN_HAAR_VERSION, NCV_FILE_ERROR); Ncv32u fsize; readCount = fread(&fsize, sizeof(Ncv32u), 1, fp); ncvAssertReturn(1 == readCount, NCV_FILE_ERROR); fseek(fp, 0, SEEK_END); Ncv32u fsizeActual = ftell(fp); ncvAssertReturn(fsize == fsizeActual, NCV_FILE_ERROR); std::vector<unsigned char> fdata; fdata.resize(fsize); Ncv32u dataOffset = 0; fseek(fp, 0, SEEK_SET); readCount = fread(&fdata[0], fsize, 1, fp); ncvAssertReturn(1 == readCount, NCV_FILE_ERROR); fclose(fp); //data dataOffset = NVBIN_HAAR_SIZERESERVED; haar.NumStages = *(Ncv32u *)(&fdata[0]+dataOffset); dataOffset += sizeof(Ncv32u); haar.NumClassifierRootNodes = *(Ncv32u *)(&fdata[0]+dataOffset); dataOffset += sizeof(Ncv32u); haar.NumClassifierTotalNodes = *(Ncv32u *)(&fdata[0]+dataOffset); dataOffset += sizeof(Ncv32u); haar.NumFeatures = *(Ncv32u *)(&fdata[0]+dataOffset); dataOffset += sizeof(Ncv32u); haar.ClassifierSize = *(NcvSize32u *)(&fdata[0]+dataOffset); dataOffset += sizeof(NcvSize32u); haar.bNeedsTiltedII = *(NcvBool *)(&fdata[0]+dataOffset); dataOffset += sizeof(NcvBool); haar.bHasStumpsOnly = *(NcvBool *)(&fdata[0]+dataOffset); dataOffset += sizeof(NcvBool); haarStages.resize(haar.NumStages); haarClassifierNodes.resize(haar.NumClassifierTotalNodes); haarFeatures.resize(haar.NumFeatures); Ncv32u szStages = haar.NumStages * sizeof(HaarStage64); Ncv32u szClassifiers = haar.NumClassifierTotalNodes * sizeof(HaarClassifierNode128); Ncv32u szFeatures = haar.NumFeatures * sizeof(HaarFeature64); memcpy(&haarStages[0], &fdata[0]+dataOffset, szStages); dataOffset += szStages; memcpy(&haarClassifierNodes[0], &fdata[0]+dataOffset, szClassifiers); dataOffset += szClassifiers; memcpy(&haarFeatures[0], &fdata[0]+dataOffset, szFeatures); dataOffset += szFeatures; return NCV_SUCCESS; } NCVStatus ncvHaarGetClassifierSize(const cv::String &filename, Ncv32u &numStages, Ncv32u &numNodes, Ncv32u &numFeatures) { size_t readCount; NCVStatus ncvStat; cv::String fext = filename.substr(filename.find_last_of(".") + 1); fext = fext.toLowerCase(); if (fext == "nvbin") { FILE *fp = fopen(filename.c_str(), "rb"); ncvAssertReturn(fp != NULL, NCV_FILE_ERROR); Ncv32u fileVersion; readCount = fread(&fileVersion, sizeof(Ncv32u), 1, fp); ncvAssertReturn(1 == readCount, NCV_FILE_ERROR); ncvAssertReturn(fileVersion == NVBIN_HAAR_VERSION, NCV_FILE_ERROR); fseek(fp, NVBIN_HAAR_SIZERESERVED, SEEK_SET); Ncv32u tmp; readCount = fread(&numStages, sizeof(Ncv32u), 1, fp); ncvAssertReturn(1 == readCount, NCV_FILE_ERROR); readCount = fread(&tmp, sizeof(Ncv32u), 1, fp); ncvAssertReturn(1 == readCount, NCV_FILE_ERROR); readCount = fread(&numNodes, sizeof(Ncv32u), 1, fp); ncvAssertReturn(1 == readCount, NCV_FILE_ERROR); readCount = fread(&numFeatures, sizeof(Ncv32u), 1, fp); ncvAssertReturn(1 == readCount, NCV_FILE_ERROR); fclose(fp); } else if (fext == "xml") { HaarClassifierCascadeDescriptor haar; std::vector<HaarStage64> haarStages; std::vector<HaarClassifierNode128> haarNodes; std::vector<HaarFeature64> haarFeatures; ncvStat = loadFromXML(filename, haar, haarStages, haarNodes, haarFeatures); ncvAssertReturnNcvStat(ncvStat); numStages = haar.NumStages; numNodes = haar.NumClassifierTotalNodes; numFeatures = haar.NumFeatures; } else { return NCV_HAAR_XML_LOADING_EXCEPTION; } return NCV_SUCCESS; } NCVStatus ncvHaarLoadFromFile_host(const cv::String &filename, HaarClassifierCascadeDescriptor &haar, NCVVector<HaarStage64> &h_HaarStages, NCVVector<HaarClassifierNode128> &h_HaarNodes, NCVVector<HaarFeature64> &h_HaarFeatures) { ncvAssertReturn(h_HaarStages.memType() == NCVMemoryTypeHostPinned && h_HaarNodes.memType() == NCVMemoryTypeHostPinned && h_HaarFeatures.memType() == NCVMemoryTypeHostPinned, NCV_MEM_RESIDENCE_ERROR); NCVStatus ncvStat; cv::String fext = filename.substr(filename.find_last_of(".") + 1); fext = fext.toLowerCase(); std::vector<HaarStage64> haarStages; std::vector<HaarClassifierNode128> haarNodes; std::vector<HaarFeature64> haarFeatures; if (fext == "nvbin") { ncvStat = loadFromNVBIN(filename, haar, haarStages, haarNodes, haarFeatures); ncvAssertReturnNcvStat(ncvStat); } else if (fext == "xml") { ncvStat = loadFromXML(filename, haar, haarStages, haarNodes, haarFeatures); ncvAssertReturnNcvStat(ncvStat); } else { return NCV_HAAR_XML_LOADING_EXCEPTION; } ncvAssertReturn(h_HaarStages.length() >= haarStages.size(), NCV_MEM_INSUFFICIENT_CAPACITY); ncvAssertReturn(h_HaarNodes.length() >= haarNodes.size(), NCV_MEM_INSUFFICIENT_CAPACITY); ncvAssertReturn(h_HaarFeatures.length() >= haarFeatures.size(), NCV_MEM_INSUFFICIENT_CAPACITY); memcpy(h_HaarStages.ptr(), &haarStages[0], haarStages.size()*sizeof(HaarStage64)); memcpy(h_HaarNodes.ptr(), &haarNodes[0], haarNodes.size()*sizeof(HaarClassifierNode128)); memcpy(h_HaarFeatures.ptr(), &haarFeatures[0], haarFeatures.size()*sizeof(HaarFeature64)); return NCV_SUCCESS; } NCVStatus ncvHaarStoreNVBIN_host(const cv::String &filename, HaarClassifierCascadeDescriptor haar, NCVVector<HaarStage64> &h_HaarStages, NCVVector<HaarClassifierNode128> &h_HaarNodes, NCVVector<HaarFeature64> &h_HaarFeatures) { ncvAssertReturn(h_HaarStages.length() >= haar.NumStages, NCV_INCONSISTENT_INPUT); ncvAssertReturn(h_HaarNodes.length() >= haar.NumClassifierTotalNodes, NCV_INCONSISTENT_INPUT); ncvAssertReturn(h_HaarFeatures.length() >= haar.NumFeatures, NCV_INCONSISTENT_INPUT); ncvAssertReturn(h_HaarStages.memType() == NCVMemoryTypeHostPinned && h_HaarNodes.memType() == NCVMemoryTypeHostPinned && h_HaarFeatures.memType() == NCVMemoryTypeHostPinned, NCV_MEM_RESIDENCE_ERROR); Ncv32u szStages = haar.NumStages * sizeof(HaarStage64); Ncv32u szClassifiers = haar.NumClassifierTotalNodes * sizeof(HaarClassifierNode128); Ncv32u szFeatures = haar.NumFeatures * sizeof(HaarFeature64); Ncv32u dataOffset = 0; std::vector<unsigned char> fdata; fdata.resize(szStages+szClassifiers+szFeatures+1024, 0); //header *(Ncv32u *)(&fdata[0]+dataOffset) = NVBIN_HAAR_VERSION; //data dataOffset = NVBIN_HAAR_SIZERESERVED; *(Ncv32u *)(&fdata[0]+dataOffset) = haar.NumStages; dataOffset += sizeof(Ncv32u); *(Ncv32u *)(&fdata[0]+dataOffset) = haar.NumClassifierRootNodes; dataOffset += sizeof(Ncv32u); *(Ncv32u *)(&fdata[0]+dataOffset) = haar.NumClassifierTotalNodes; dataOffset += sizeof(Ncv32u); *(Ncv32u *)(&fdata[0]+dataOffset) = haar.NumFeatures; dataOffset += sizeof(Ncv32u); *(NcvSize32u *)(&fdata[0]+dataOffset) = haar.ClassifierSize; dataOffset += sizeof(NcvSize32u); *(NcvBool *)(&fdata[0]+dataOffset) = haar.bNeedsTiltedII; dataOffset += sizeof(NcvBool); *(NcvBool *)(&fdata[0]+dataOffset) = haar.bHasStumpsOnly; dataOffset += sizeof(NcvBool); memcpy(&fdata[0]+dataOffset, h_HaarStages.ptr(), szStages); dataOffset += szStages; memcpy(&fdata[0]+dataOffset, h_HaarNodes.ptr(), szClassifiers); dataOffset += szClassifiers; memcpy(&fdata[0]+dataOffset, h_HaarFeatures.ptr(), szFeatures); dataOffset += szFeatures; Ncv32u fsize = dataOffset; //TODO: CRC32 here //update header dataOffset = sizeof(Ncv32u); *(Ncv32u *)(&fdata[0]+dataOffset) = fsize; FILE *fp = fopen(filename.c_str(), "wb"); ncvAssertReturn(fp != NULL, NCV_FILE_ERROR); fwrite(&fdata[0], fsize, 1, fp); fclose(fp); return NCV_SUCCESS; }
73d99c0fecd67975a89cd55180edf5ca0e21c46c.hip
// !!! This is a file automatically generated by hipify!!! #include "SimplePursuitMultiplier.h" #include <hip/hip_runtime.h> #include "OpenSteer/VehicleData.h" #include "CUDAKernelOptions.cu" #include <iostream> using namespace OpenSteer; using namespace std; __global__ void simplePursuitMultiplierKernel(float3 position, float3 velocity, float3 *positions, float3 *velocities); OpenSteer::SimplePursuitMultiplier::SimplePursuitMultiplier() { d_pursuitVelocity = NULL; d_pursuitPosition = NULL; threadsPerBlock = 128; change = true; newPosition = make_float3(0, 0, 0); newVelocity = make_float3(0, 0, 0); } OpenSteer::SimplePursuitMultiplier::~SimplePursuitMultiplier() {} void OpenSteer::SimplePursuitMultiplier::init() { // device memory for position data mem_size_position = getNumberOfAgents()*sizeof(float3); hipError_t retval = hipMalloc((void **)&d_pursuitPosition, mem_size_position); if (retval != hipSuccess) cout << "Error while allocating d_pursuitPosition memory: " << hipGetErrorString(retval) << endl; // device memory for velocity data mem_size_velocity = getNumberOfAgents()*sizeof(float3); retval = hipMalloc((void **)&d_pursuitVelocity, mem_size_velocity); if (retval != hipSuccess) cout << "Error while allocating d_pursuitVelocity memory: " << hipGetErrorString(retval) << endl; } void OpenSteer::SimplePursuitMultiplier::run() { if (change) { hipLaunchKernelGGL(( simplePursuitMultiplierKernel), dim3(gridDim()), dim3(blockDim()), 0, 0, newPosition, newVelocity, d_pursuitPosition, d_pursuitVelocity); change = false; } } void OpenSteer::SimplePursuitMultiplier::close() { if (d_pursuitVelocity != NULL) { hipFree(d_pursuitVelocity); d_pursuitVelocity = NULL; } if (d_pursuitPosition != NULL) { hipFree(d_pursuitPosition); d_pursuitPosition = NULL; } } void OpenSteer::SimplePursuitMultiplier::setNewPosition(float3 newPosition) { this->newPosition = newPosition; change = true; } void OpenSteer::SimplePursuitMultiplier::setNewVelocity(float3 newVelocity) { this->newVelocity= newVelocity; change = true; }
73d99c0fecd67975a89cd55180edf5ca0e21c46c.cu
#include "SimplePursuitMultiplier.h" #include <cuda_runtime.h> #include "OpenSteer/VehicleData.h" #include "CUDAKernelOptions.cu" #include <iostream> using namespace OpenSteer; using namespace std; __global__ void simplePursuitMultiplierKernel(float3 position, float3 velocity, float3 *positions, float3 *velocities); OpenSteer::SimplePursuitMultiplier::SimplePursuitMultiplier() { d_pursuitVelocity = NULL; d_pursuitPosition = NULL; threadsPerBlock = 128; change = true; newPosition = make_float3(0, 0, 0); newVelocity = make_float3(0, 0, 0); } OpenSteer::SimplePursuitMultiplier::~SimplePursuitMultiplier() {} void OpenSteer::SimplePursuitMultiplier::init() { // device memory for position data mem_size_position = getNumberOfAgents()*sizeof(float3); cudaError_t retval = cudaMalloc((void **)&d_pursuitPosition, mem_size_position); if (retval != cudaSuccess) cout << "Error while allocating d_pursuitPosition memory: " << cudaGetErrorString(retval) << endl; // device memory for velocity data mem_size_velocity = getNumberOfAgents()*sizeof(float3); retval = cudaMalloc((void **)&d_pursuitVelocity, mem_size_velocity); if (retval != cudaSuccess) cout << "Error while allocating d_pursuitVelocity memory: " << cudaGetErrorString(retval) << endl; } void OpenSteer::SimplePursuitMultiplier::run() { if (change) { simplePursuitMultiplierKernel<<<gridDim(), blockDim()>>>(newPosition, newVelocity, d_pursuitPosition, d_pursuitVelocity); change = false; } } void OpenSteer::SimplePursuitMultiplier::close() { if (d_pursuitVelocity != NULL) { cudaFree(d_pursuitVelocity); d_pursuitVelocity = NULL; } if (d_pursuitPosition != NULL) { cudaFree(d_pursuitPosition); d_pursuitPosition = NULL; } } void OpenSteer::SimplePursuitMultiplier::setNewPosition(float3 newPosition) { this->newPosition = newPosition; change = true; } void OpenSteer::SimplePursuitMultiplier::setNewVelocity(float3 newVelocity) { this->newVelocity= newVelocity; change = true; }
1f1320d13dc9bc6e8e1c9a53a68f3682177a1be7.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <thrust/device_vector.h> #include <thrust/functional.h> // thrust::plus #include <thrust/reduce.h> #include <cmath> #include <cstdlib> #include <cstring> #include "GPU_Math_Func.h" void gpu_gemm(const CBLAS_TRANSPOSE TransA, const CBLAS_TRANSPOSE TransB, const int M, const int N, const int K, const double alpha, const double* A, const double* B, const double beta, double* C) { // Note that cublas follows fortran order. int lda = (TransA == CblasNoTrans) ? K : M; int ldb = (TransB == CblasNoTrans) ? N : K; hipblasOperation_t cuTransA = (TransA == CblasNoTrans) ? HIPBLAS_OP_N : HIPBLAS_OP_T; hipblasOperation_t cuTransB = (TransB == CblasNoTrans) ? HIPBLAS_OP_N : HIPBLAS_OP_T; CUBLAS_CHECK(hipblasDgemm(GPUEnv::cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, N)); } void gpu_gemv(const CBLAS_TRANSPOSE TransA, const int M, const int N, const double alpha, const double* A, const double* x, const double beta, double* y) { hipblasOperation_t cuTransA = (TransA == CblasNoTrans) ? HIPBLAS_OP_T : HIPBLAS_OP_N; CUBLAS_CHECK(hipblasDgemv(GPUEnv::cublas_handle(), cuTransA, N, M, &alpha, A, N, x, 1, &beta, y, 1)); } void gpu_axpy(const int N, const double alpha, const double* X, double* Y) { CUBLAS_CHECK(hipblasDaxpy(GPUEnv::cublas_handle(), N, &alpha, X, 1, Y, 1)); } void gpu_memcpy(const size_t N, const void* X, void* Y) { if (X != Y) { CUDA_CHECK(hipMemcpy(Y, X, N, hipMemcpyDefault)); // NOLINT(caffe/alt_fn) } } void gpu_scal(const int N, const double alpha, double *X) { CUBLAS_CHECK(hipblasDscal(GPUEnv::cublas_handle(), N, &alpha, X, 1)); } void gpu_dot(const int n, const double* x, const double* y, double * out) { CUBLAS_CHECK(hipblasDdot(GPUEnv::cublas_handle(), n, x, 1, y, 1, out)); } void gpu_scale(const int n, const double alpha, const double *x, double* y) { CUBLAS_CHECK(hipblasDcopy(GPUEnv::cublas_handle(), n, x, 1, y, 1)); CUBLAS_CHECK(hipblasDscal(GPUEnv::cublas_handle(), n, &alpha, y, 1)); } template <typename Dtype> __global__ void set_kernel(const int n, const Dtype alpha, Dtype* y) { CUDA_KERNEL_LOOP(index, n) { y[index] = alpha; } } void gpu_set(const int N, const double alpha, double* Y) { if (alpha == 0) { CUDA_CHECK(hipMemset(Y, 0, sizeof(double) * N)); // NOLINT(caffe/alt_fn) return; } // NOLINT_NEXT_LINE(whitespace/operators) hipLaunchKernelGGL(( set_kernel<double>), dim3(GET_BLOCKS(N)), dim3(CUDA_NUM_THREADS), 0, 0, N, alpha, Y); } template <typename Dtype> __global__ void add_scalar_kernel(const int n, const Dtype alpha, Dtype* y) { CUDA_KERNEL_LOOP(index, n) { y[index] += alpha; } } void gpu_add_scalar(const int N, const double alpha, double* Y) { // NOLINT_NEXT_LINE(whitespace/operators) hipLaunchKernelGGL(( add_scalar_kernel<double>), dim3(GET_BLOCKS(N)), dim3(CUDA_NUM_THREADS), 0, 0, N, alpha, Y); } template <typename Dtype> __global__ void add_kernel(const int n, const Dtype* a, const Dtype* b, Dtype* y) { CUDA_KERNEL_LOOP(index, n) { y[index] = a[index] + b[index]; } } template <typename Dtype> __global__ void selfAdd_kernel(const int n, const Dtype* a, Dtype* y) { CUDA_KERNEL_LOOP(index, n) { y[index] += a[index]; } } void gpu_add(const int N, const double* a, const double* b, double* y) { // NOLINT_NEXT_LINE(whitespace/operators) hipLaunchKernelGGL(( add_kernel<double>), dim3(GET_BLOCKS(N)), dim3(CUDA_NUM_THREADS), 0, 0, N, a, b, y); } void gpu_selfAdd(const int N, const double* a, const double* b, double* y){ hipLaunchKernelGGL(( selfAdd_kernel<double>), dim3(GET_BLOCKS(N)), dim3(CUDA_NUM_THREADS), 0, 0, N, a, y); } template <typename Dtype> __global__ void sub_kernel(const int n, const Dtype* a, const Dtype* b, Dtype* y) { CUDA_KERNEL_LOOP(index, n) { y[index] = a[index] - b[index]; } } void gpu_sub(const int N, const double* a, const double* b, double* y) { // NOLINT_NEXT_LINE(whitespace/operators) hipLaunchKernelGGL(( sub_kernel<double>), dim3(GET_BLOCKS(N)), dim3(CUDA_NUM_THREADS), 0, 0, N, a, b, y); } template <typename Dtype> __global__ void mul_kernel(const int n, const Dtype* a, const Dtype* b, Dtype* y) { CUDA_KERNEL_LOOP(index, n) { y[index] = a[index] * b[index]; } } void gpu_mul(const int N, const double* a, const double* b, double* y) { // NOLINT_NEXT_LINE(whitespace/operators) hipLaunchKernelGGL(( mul_kernel<double>), dim3(GET_BLOCKS(N)), dim3(CUDA_NUM_THREADS), 0, 0, N, a, b, y); } template <typename Dtype> __global__ void abs_kernel(const int n, const Dtype* a, Dtype* y) { CUDA_KERNEL_LOOP(index, n) { y[index] = abs(a[index]); } } void gpu_abs(const int N, const double* a, double* y) { // NOLINT_NEXT_LINE(whitespace/operators) hipLaunchKernelGGL(( abs_kernel<double>), dim3(GET_BLOCKS(N)), dim3(CUDA_NUM_THREADS), 0, 0, N, a, y); } #if 0 void gpu_rng_uniform(const int n, unsigned int* r) { CURAND_CHECK(hiprandGenerate(curand_generator(), r, n)); } void gpu_rng_uniform(const int n, const double a, const double b, double* r) { CURAND_CHECK(hiprandGenerateUniformDouble(curand_generator(), r, n)); const double range = b - a; if (range != static_cast<double>(1)) { gpu_scal(n, range, r); } if (a != static_cast<double>(0)) { gpu_add_scalar(n, a, r); } } void gpu_rng_gaussian(const int n, const double mu, const double sigma, double* r) { CURAND_CHECK( hiprandGenerateNormalDouble(GPUEnv::curand_generator(), r, n, mu, sigma)); } #endif
1f1320d13dc9bc6e8e1c9a53a68f3682177a1be7.cu
#include <thrust/device_vector.h> #include <thrust/functional.h> // thrust::plus #include <thrust/reduce.h> #include <cmath> #include <cstdlib> #include <cstring> #include "GPU_Math_Func.h" void gpu_gemm(const CBLAS_TRANSPOSE TransA, const CBLAS_TRANSPOSE TransB, const int M, const int N, const int K, const double alpha, const double* A, const double* B, const double beta, double* C) { // Note that cublas follows fortran order. int lda = (TransA == CblasNoTrans) ? K : M; int ldb = (TransB == CblasNoTrans) ? N : K; cublasOperation_t cuTransA = (TransA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; cublasOperation_t cuTransB = (TransB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; CUBLAS_CHECK(cublasDgemm(GPUEnv::cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, N)); } void gpu_gemv(const CBLAS_TRANSPOSE TransA, const int M, const int N, const double alpha, const double* A, const double* x, const double beta, double* y) { cublasOperation_t cuTransA = (TransA == CblasNoTrans) ? CUBLAS_OP_T : CUBLAS_OP_N; CUBLAS_CHECK(cublasDgemv(GPUEnv::cublas_handle(), cuTransA, N, M, &alpha, A, N, x, 1, &beta, y, 1)); } void gpu_axpy(const int N, const double alpha, const double* X, double* Y) { CUBLAS_CHECK(cublasDaxpy(GPUEnv::cublas_handle(), N, &alpha, X, 1, Y, 1)); } void gpu_memcpy(const size_t N, const void* X, void* Y) { if (X != Y) { CUDA_CHECK(cudaMemcpy(Y, X, N, cudaMemcpyDefault)); // NOLINT(caffe/alt_fn) } } void gpu_scal(const int N, const double alpha, double *X) { CUBLAS_CHECK(cublasDscal(GPUEnv::cublas_handle(), N, &alpha, X, 1)); } void gpu_dot(const int n, const double* x, const double* y, double * out) { CUBLAS_CHECK(cublasDdot(GPUEnv::cublas_handle(), n, x, 1, y, 1, out)); } void gpu_scale(const int n, const double alpha, const double *x, double* y) { CUBLAS_CHECK(cublasDcopy(GPUEnv::cublas_handle(), n, x, 1, y, 1)); CUBLAS_CHECK(cublasDscal(GPUEnv::cublas_handle(), n, &alpha, y, 1)); } template <typename Dtype> __global__ void set_kernel(const int n, const Dtype alpha, Dtype* y) { CUDA_KERNEL_LOOP(index, n) { y[index] = alpha; } } void gpu_set(const int N, const double alpha, double* Y) { if (alpha == 0) { CUDA_CHECK(cudaMemset(Y, 0, sizeof(double) * N)); // NOLINT(caffe/alt_fn) return; } // NOLINT_NEXT_LINE(whitespace/operators) set_kernel<double><<<GET_BLOCKS(N), CUDA_NUM_THREADS>>>( N, alpha, Y); } template <typename Dtype> __global__ void add_scalar_kernel(const int n, const Dtype alpha, Dtype* y) { CUDA_KERNEL_LOOP(index, n) { y[index] += alpha; } } void gpu_add_scalar(const int N, const double alpha, double* Y) { // NOLINT_NEXT_LINE(whitespace/operators) add_scalar_kernel<double><<<GET_BLOCKS(N), CUDA_NUM_THREADS>>>( N, alpha, Y); } template <typename Dtype> __global__ void add_kernel(const int n, const Dtype* a, const Dtype* b, Dtype* y) { CUDA_KERNEL_LOOP(index, n) { y[index] = a[index] + b[index]; } } template <typename Dtype> __global__ void selfAdd_kernel(const int n, const Dtype* a, Dtype* y) { CUDA_KERNEL_LOOP(index, n) { y[index] += a[index]; } } void gpu_add(const int N, const double* a, const double* b, double* y) { // NOLINT_NEXT_LINE(whitespace/operators) add_kernel<double><<<GET_BLOCKS(N), CUDA_NUM_THREADS>>>( N, a, b, y); } void gpu_selfAdd(const int N, const double* a, const double* b, double* y){ selfAdd_kernel<double><<<GET_BLOCKS(N), CUDA_NUM_THREADS>>>( N, a, y); } template <typename Dtype> __global__ void sub_kernel(const int n, const Dtype* a, const Dtype* b, Dtype* y) { CUDA_KERNEL_LOOP(index, n) { y[index] = a[index] - b[index]; } } void gpu_sub(const int N, const double* a, const double* b, double* y) { // NOLINT_NEXT_LINE(whitespace/operators) sub_kernel<double><<<GET_BLOCKS(N), CUDA_NUM_THREADS>>>( N, a, b, y); } template <typename Dtype> __global__ void mul_kernel(const int n, const Dtype* a, const Dtype* b, Dtype* y) { CUDA_KERNEL_LOOP(index, n) { y[index] = a[index] * b[index]; } } void gpu_mul(const int N, const double* a, const double* b, double* y) { // NOLINT_NEXT_LINE(whitespace/operators) mul_kernel<double><<<GET_BLOCKS(N), CUDA_NUM_THREADS>>>( N, a, b, y); } template <typename Dtype> __global__ void abs_kernel(const int n, const Dtype* a, Dtype* y) { CUDA_KERNEL_LOOP(index, n) { y[index] = abs(a[index]); } } void gpu_abs(const int N, const double* a, double* y) { // NOLINT_NEXT_LINE(whitespace/operators) abs_kernel<double><<<GET_BLOCKS(N), CUDA_NUM_THREADS>>>( N, a, y); } #if 0 void gpu_rng_uniform(const int n, unsigned int* r) { CURAND_CHECK(curandGenerate(curand_generator(), r, n)); } void gpu_rng_uniform(const int n, const double a, const double b, double* r) { CURAND_CHECK(curandGenerateUniformDouble(curand_generator(), r, n)); const double range = b - a; if (range != static_cast<double>(1)) { gpu_scal(n, range, r); } if (a != static_cast<double>(0)) { gpu_add_scalar(n, a, r); } } void gpu_rng_gaussian(const int n, const double mu, const double sigma, double* r) { CURAND_CHECK( curandGenerateNormalDouble(GPUEnv::curand_generator(), r, n, mu, sigma)); } #endif
dc9f95e886de3e361e53c5b66d8b96ff6618d88c.hip
// !!! This is a file automatically generated by hipify!!! // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include <hip/hip_runtime.h> #include "unary_elementwise_ops_impl.h" #include "core/providers/cuda/cu_inc/common.cuh" #include "core/providers/cuda/cu_inc/unary_elementwise_impl.cuh" namespace onnxruntime { namespace cuda { #define OP(name, expr) \ template <typename T> \ struct OP_##name { \ __device__ __inline__ T operator()(const T& a) const { \ return expr; \ } \ }; #define UNARY_ELEMENTWISE_IMPL(name) \ UNARY_ELEMENTWISE_IMPL_DECLARATION(name) { \ UnaryElementWiseImpl(input_data, \ output_data, \ OP_##name<T>(), \ count); \ } #define SPECIALIZED_UNARY_ELEMENTWISE_IMPL(name, T) \ template void Impl_##name<T>(const T* input_data, T* output_data, size_t count); #define UNARY_OP_NAME_EXPR(name, expr) \ OP(name, expr) \ UNARY_ELEMENTWISE_IMPL(name) UNARY_OPS() #undef UNARY_OP_NAME_EXPR // the postfix of means the types supported by the op: // B: uint8_t // W: uint16_t // U: uint32_t // Z: uint64_t // C: int8_t // S: int16_t // I: int32_t // L: int64_t // H: float16 // F: float // D: double // O: bool #define SPECIALIZED_UNARY_ELEMENTWISE_IMPL_HFD(name) \ SPECIALIZED_UNARY_ELEMENTWISE_IMPL(name, half) \ SPECIALIZED_UNARY_ELEMENTWISE_IMPL(name, float) \ SPECIALIZED_UNARY_ELEMENTWISE_IMPL(name, double) #define SPECIALIZED_UNARY_ELEMENTWISE_IMPL_CSILHFD(name) \ SPECIALIZED_UNARY_ELEMENTWISE_IMPL(name, int8_t) \ SPECIALIZED_UNARY_ELEMENTWISE_IMPL(name, int16_t) \ SPECIALIZED_UNARY_ELEMENTWISE_IMPL(name, int32_t) \ SPECIALIZED_UNARY_ELEMENTWISE_IMPL(name, int64_t) \ SPECIALIZED_UNARY_ELEMENTWISE_IMPL_HFD(name) #define SPECIALIZED_UNARY_ELEMENTWISE_IMPL_BWUZCSILHFD(name) \ SPECIALIZED_UNARY_ELEMENTWISE_IMPL(name, uint8_t) \ SPECIALIZED_UNARY_ELEMENTWISE_IMPL(name, uint16_t) \ SPECIALIZED_UNARY_ELEMENTWISE_IMPL(name, uint32_t) \ SPECIALIZED_UNARY_ELEMENTWISE_IMPL(name, uint64_t) \ SPECIALIZED_UNARY_ELEMENTWISE_IMPL_CSILHFD(name) SPECIALIZED_UNARY_ELEMENTWISE_IMPL_BWUZCSILHFD(Abs) SPECIALIZED_UNARY_ELEMENTWISE_IMPL_CSILHFD(Neg) SPECIALIZED_UNARY_ELEMENTWISE_IMPL_HFD(Floor) SPECIALIZED_UNARY_ELEMENTWISE_IMPL_HFD(Ceil) SPECIALIZED_UNARY_ELEMENTWISE_IMPL_HFD(Reciprocal) SPECIALIZED_UNARY_ELEMENTWISE_IMPL_HFD(Sqrt) SPECIALIZED_UNARY_ELEMENTWISE_IMPL_HFD(Log) SPECIALIZED_UNARY_ELEMENTWISE_IMPL_HFD(Exp) SPECIALIZED_UNARY_ELEMENTWISE_IMPL_HFD(Erf) SPECIALIZED_UNARY_ELEMENTWISE_IMPL(Not, bool) // When casting, half needs to be converted via float type from most other types template <typename T> struct ViaTypeMap { typedef T ViaT; }; template <> struct ViaTypeMap<half> { typedef float ViaT; }; template <typename InT, typename OutT> struct OP_Cast { __device__ __inline__ OutT operator()(const InT& a) const { const bool any_float16 = std::is_same<half, InT>::value || std::is_same<half, OutT>::value; typedef typename std::conditional<any_float16, half, OutT>::type T; typedef typename ViaTypeMap<T>::ViaT ViaT; return (OutT)((ViaT)a); } }; template <typename InT, typename OutT> void Impl_Cast( const InT* input_data, OutT* output_data, size_t count) { UnaryElementWiseImpl(input_data, output_data, OP_Cast<InT, OutT>(), count); } #define SPECIALIZED_CAST_IMPL2(InT, OutT) \ template void Impl_Cast<InT, OutT>(const InT* input_data, OutT* output_data, size_t count); #define SPECIALIZED_CAST_FROM(T) \ SPECIALIZED_CAST_IMPL2(T, half) \ SPECIALIZED_CAST_IMPL2(T, float) \ SPECIALIZED_CAST_IMPL2(T, double) \ SPECIALIZED_CAST_IMPL2(T, int8_t) \ SPECIALIZED_CAST_IMPL2(T, int16_t) \ SPECIALIZED_CAST_IMPL2(T, int32_t) \ SPECIALIZED_CAST_IMPL2(T, int64_t) \ SPECIALIZED_CAST_IMPL2(T, uint8_t) \ SPECIALIZED_CAST_IMPL2(T, uint16_t) \ SPECIALIZED_CAST_IMPL2(T, uint32_t) \ SPECIALIZED_CAST_IMPL2(T, uint64_t) \ SPECIALIZED_CAST_IMPL2(T, bool) SPECIALIZED_CAST_FROM(half) SPECIALIZED_CAST_FROM(float) SPECIALIZED_CAST_FROM(double) SPECIALIZED_CAST_FROM(int8_t) SPECIALIZED_CAST_FROM(int16_t) SPECIALIZED_CAST_FROM(int32_t) SPECIALIZED_CAST_FROM(int64_t) SPECIALIZED_CAST_FROM(uint8_t) SPECIALIZED_CAST_FROM(uint16_t) SPECIALIZED_CAST_FROM(uint32_t) SPECIALIZED_CAST_FROM(uint64_t) SPECIALIZED_CAST_FROM(bool) } // namespace cuda } // namespace onnxruntime
dc9f95e886de3e361e53c5b66d8b96ff6618d88c.cu
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include <cuda_runtime.h> #include "unary_elementwise_ops_impl.h" #include "core/providers/cuda/cu_inc/common.cuh" #include "core/providers/cuda/cu_inc/unary_elementwise_impl.cuh" namespace onnxruntime { namespace cuda { #define OP(name, expr) \ template <typename T> \ struct OP_##name { \ __device__ __inline__ T operator()(const T& a) const { \ return expr; \ } \ }; #define UNARY_ELEMENTWISE_IMPL(name) \ UNARY_ELEMENTWISE_IMPL_DECLARATION(name) { \ UnaryElementWiseImpl(input_data, \ output_data, \ OP_##name<T>(), \ count); \ } #define SPECIALIZED_UNARY_ELEMENTWISE_IMPL(name, T) \ template void Impl_##name<T>(const T* input_data, T* output_data, size_t count); #define UNARY_OP_NAME_EXPR(name, expr) \ OP(name, expr) \ UNARY_ELEMENTWISE_IMPL(name) UNARY_OPS() #undef UNARY_OP_NAME_EXPR // the postfix of means the types supported by the op: // B: uint8_t // W: uint16_t // U: uint32_t // Z: uint64_t // C: int8_t // S: int16_t // I: int32_t // L: int64_t // H: float16 // F: float // D: double // O: bool #define SPECIALIZED_UNARY_ELEMENTWISE_IMPL_HFD(name) \ SPECIALIZED_UNARY_ELEMENTWISE_IMPL(name, half) \ SPECIALIZED_UNARY_ELEMENTWISE_IMPL(name, float) \ SPECIALIZED_UNARY_ELEMENTWISE_IMPL(name, double) #define SPECIALIZED_UNARY_ELEMENTWISE_IMPL_CSILHFD(name) \ SPECIALIZED_UNARY_ELEMENTWISE_IMPL(name, int8_t) \ SPECIALIZED_UNARY_ELEMENTWISE_IMPL(name, int16_t) \ SPECIALIZED_UNARY_ELEMENTWISE_IMPL(name, int32_t) \ SPECIALIZED_UNARY_ELEMENTWISE_IMPL(name, int64_t) \ SPECIALIZED_UNARY_ELEMENTWISE_IMPL_HFD(name) #define SPECIALIZED_UNARY_ELEMENTWISE_IMPL_BWUZCSILHFD(name) \ SPECIALIZED_UNARY_ELEMENTWISE_IMPL(name, uint8_t) \ SPECIALIZED_UNARY_ELEMENTWISE_IMPL(name, uint16_t) \ SPECIALIZED_UNARY_ELEMENTWISE_IMPL(name, uint32_t) \ SPECIALIZED_UNARY_ELEMENTWISE_IMPL(name, uint64_t) \ SPECIALIZED_UNARY_ELEMENTWISE_IMPL_CSILHFD(name) SPECIALIZED_UNARY_ELEMENTWISE_IMPL_BWUZCSILHFD(Abs) SPECIALIZED_UNARY_ELEMENTWISE_IMPL_CSILHFD(Neg) SPECIALIZED_UNARY_ELEMENTWISE_IMPL_HFD(Floor) SPECIALIZED_UNARY_ELEMENTWISE_IMPL_HFD(Ceil) SPECIALIZED_UNARY_ELEMENTWISE_IMPL_HFD(Reciprocal) SPECIALIZED_UNARY_ELEMENTWISE_IMPL_HFD(Sqrt) SPECIALIZED_UNARY_ELEMENTWISE_IMPL_HFD(Log) SPECIALIZED_UNARY_ELEMENTWISE_IMPL_HFD(Exp) SPECIALIZED_UNARY_ELEMENTWISE_IMPL_HFD(Erf) SPECIALIZED_UNARY_ELEMENTWISE_IMPL(Not, bool) // When casting, half needs to be converted via float type from most other types template <typename T> struct ViaTypeMap { typedef T ViaT; }; template <> struct ViaTypeMap<half> { typedef float ViaT; }; template <typename InT, typename OutT> struct OP_Cast { __device__ __inline__ OutT operator()(const InT& a) const { const bool any_float16 = std::is_same<half, InT>::value || std::is_same<half, OutT>::value; typedef typename std::conditional<any_float16, half, OutT>::type T; typedef typename ViaTypeMap<T>::ViaT ViaT; return (OutT)((ViaT)a); } }; template <typename InT, typename OutT> void Impl_Cast( const InT* input_data, OutT* output_data, size_t count) { UnaryElementWiseImpl(input_data, output_data, OP_Cast<InT, OutT>(), count); } #define SPECIALIZED_CAST_IMPL2(InT, OutT) \ template void Impl_Cast<InT, OutT>(const InT* input_data, OutT* output_data, size_t count); #define SPECIALIZED_CAST_FROM(T) \ SPECIALIZED_CAST_IMPL2(T, half) \ SPECIALIZED_CAST_IMPL2(T, float) \ SPECIALIZED_CAST_IMPL2(T, double) \ SPECIALIZED_CAST_IMPL2(T, int8_t) \ SPECIALIZED_CAST_IMPL2(T, int16_t) \ SPECIALIZED_CAST_IMPL2(T, int32_t) \ SPECIALIZED_CAST_IMPL2(T, int64_t) \ SPECIALIZED_CAST_IMPL2(T, uint8_t) \ SPECIALIZED_CAST_IMPL2(T, uint16_t) \ SPECIALIZED_CAST_IMPL2(T, uint32_t) \ SPECIALIZED_CAST_IMPL2(T, uint64_t) \ SPECIALIZED_CAST_IMPL2(T, bool) SPECIALIZED_CAST_FROM(half) SPECIALIZED_CAST_FROM(float) SPECIALIZED_CAST_FROM(double) SPECIALIZED_CAST_FROM(int8_t) SPECIALIZED_CAST_FROM(int16_t) SPECIALIZED_CAST_FROM(int32_t) SPECIALIZED_CAST_FROM(int64_t) SPECIALIZED_CAST_FROM(uint8_t) SPECIALIZED_CAST_FROM(uint16_t) SPECIALIZED_CAST_FROM(uint32_t) SPECIALIZED_CAST_FROM(uint64_t) SPECIALIZED_CAST_FROM(bool) } // namespace cuda } // namespace onnxruntime
3147817946a6fec05536427adacf5cd9a915bb02.hip
// !!! This is a file automatically generated by hipify!!! #include <assert.h> #include <err.h> #include <errno.h> #include <fcntl.h> #include <functional> #include <math.h> #include <memory> #include <random> #include <stdint.h> #include <stdio.h> #include <sys/mman.h> #include <sys/stat.h> #include <sys/time.h> #include <time.h> #include <unistd.h> #include <cblas.h> #include <algorithm> #include <hip/hip_runtime.h> #include <hip/hip_runtime.h> #include <rocblas.h> #include <cudnn.h> using namespace std; #ifndef MAP_FILE #define MAP_FILE MAP_SHARED #endif int fsize(int fd) { struct stat stat; int res = fstat(fd, &stat); return stat.st_size; } int printll(char *s) { while (*s != '\n' && *s != ',' && *s != '\t') { putchar(*s++); } return 0; } long hash(char *str0, int len) { unsigned char *str = (unsigned char *)str0; unsigned long hash = 5381; int c; while ((c = *str++) && len--) hash = ((hash << 5) + hash) + c; /* hash * 33 + c */ return hash; } long HEAP_SIZE_CPU = 1073741826; // 1048576; // 536870912; // 268435456; // 2097152; 1610612739; // 4294967304; // void *mallocBase = calloc(HEAP_SIZE_CPU, 1); void *mallocAddr = mallocBase; void *waterMark = mallocBase; void *myMalloc(size_t bytes) { void *res = mallocAddr; mallocAddr = (void *)((char *)mallocAddr + bytes); if ((long)mallocAddr >= (long)mallocBase + HEAP_SIZE_CPU) fprintf(stderr, "CPU memory breached limit of HEAP_SIZE_CPU\n"); return res; } long HEAP_SIZE = 4294967304; // this is for GPU int timeval_subtract(struct timeval *result, struct timeval *t2, struct timeval *t1) { long int diff = (t2->tv_usec + 1000000 * t2->tv_sec) - (t1->tv_usec + 1000000 * t1->tv_sec); result->tv_sec = diff / 1000000; result->tv_usec = diff % 1000000; return (diff < 0); } #define CUDA_CALL(f) { \ hipError_t err = (f); \ if (err != hipSuccess) { \ fprintf(stderr, "CUDA error occurred: %s (%s:%d)\n", \ hipGetErrorString(err), __FILE__, __LINE__); \ exit(err); \ } \ } #define CUBLAS_CALL(f) { \ hipblasStatus_t stat = (f); \ if (stat != HIPBLAS_STATUS_SUCCESS) { \ fprintf(stderr, "cuBLAS error occurred: %d (%s:%d)\n", \ stat, __FILE__, __LINE__); \ exit(stat); \ } \ } void *gpuMallocBase; void *gpuMallocAddr; // Alignment boundary size, in bytes. constexpr int N = 4; // 16 void *myGpuMalloc(size_t bytes) { bytes = ((bytes + (1 << N) - 1) >> N) << N; void *res = gpuMallocAddr; gpuMallocAddr = (void *)((char *)gpuMallocAddr + bytes); if ((long)gpuMallocAddr >= (long)gpuMallocBase + HEAP_SIZE) fprintf(stderr, "GPU breached memory limit of HEAP_SIZE\n"); return res; } template <typename T> __global__ void arrayUpdate(T *data, int index, T value) { data[index] = value; } __global__ void arrayFill(float *data, float value) { int tid = threadIdx.x + blockIdx.x * blockDim.x; data[tid] = value; } __global__ void arrayFill_greg(float* data, float value, int size) { int stride = gridDim.x * blockDim.x; int tid = threadIdx.x + blockIdx.x * blockDim.x; for (int i = tid; i < size; i += stride) data[i] = value; } __global__ void hardTanh(float* in, float* out, float min_val, float max_val, int size) { int tid = threadIdx.x + blockIdx.x * blockDim.x; int stride = gridDim.x * blockDim.x; for (int i = tid; i < size; i += stride) { out[i] = in[i] < min_val ? min_val : (in[i] > max_val ? max_val : in[i]); } } __global__ void hardTanh_grad(float* in_x, float* in_d, float* out_d, float min_val, float max_val, int size, bool inplace) { int tid = threadIdx.x + blockIdx.x * blockDim.x; int stride = gridDim.x * blockDim.x; for (int i = tid; i < size; i += stride) { if (inplace) { if (in_x[i] < min_val || in_x[i] > max_val) in_d[i] = 0; } else { if (in_x[i] >= min_val && in_x[i] <= max_val) in_d[i] += out_d[i]; } } } __global__ void nllLoss(float *x, int x_stride, float *y, int* target) { int tid = threadIdx.x + blockIdx.x * blockDim.x; int offset = tid * x_stride + target[tid]; y[tid] = -1 * x[offset]; } __global__ void nllLoss_grad(int x_stride, float *yGrad, int* target, float* xGrad) { int tid = threadIdx.x + blockIdx.x * blockDim.x; int offset = tid * x_stride + target[tid]; xGrad[offset] += -1 * yGrad[tid]; } // only for 4D tensor in and 3D tensor out __global__ void sum_grad(float* in, int inSize0, int inSize1, int inSize2, int inSize3, int nElement, float* out, int outStride0, int outStride1, int outStride2, int dim) { int tid = blockIdx.x * blockDim.x + threadIdx.x; int stride = gridDim.x * blockDim.x; for (int i = tid; i < nElement; i += stride) { int inOff2 = i / inSize3; int inDim3 = i - inOff2 * inSize3; int inOff1 = inOff2 / inSize2; int inDim2 = inOff2 - inOff1 * inSize2; int inDim0 = inOff1 / inSize1; int inDim1 = inOff1 - inDim0 * inSize1; int outOff = 0; if (dim == 0) outOff = inDim1 * outStride0 + inDim2 * outStride1 + inDim3 * outStride2; if (dim == 1) outOff = inDim0 * outStride0 + inDim2 * outStride1 + inDim3 * outStride2; if (dim == 2) outOff = inDim0 * outStride0 + inDim1 * outStride1 + inDim3 * outStride2; if (dim == 3) outOff = inDim0 * outStride0 + inDim1 * outStride1 + inDim2 * outStride2; in[i] += out[outOff]; } } //following - https://github.com/torch/cutorch/blob/master/lib/THC/THCTensorMath.cuh#L49 static inline __device__ int compute(int outputSize0, int outputSize1, int outputSize2, int outputSize3, int outputStride0, int outputStride1, int outputStride2, int outputStride3, const int dimSize, const int concatDim, int linearIndex) { int offset = 0; int curDimSize = 3 == concatDim ? dimSize : outputSize3; int nextDimIndex = linearIndex / curDimSize; int curDimIndex = linearIndex - curDimSize * nextDimIndex; int curDimOffset = curDimIndex * outputStride3; offset += curDimOffset; linearIndex = nextDimIndex; curDimSize = 2 == concatDim ? dimSize : outputSize2; nextDimIndex = linearIndex / curDimSize; curDimIndex = linearIndex - curDimSize * nextDimIndex; curDimOffset = curDimIndex * outputStride2; offset += curDimOffset; linearIndex = nextDimIndex; curDimSize = 1 == concatDim ? dimSize : outputSize1; nextDimIndex = linearIndex / curDimSize; curDimIndex = linearIndex - curDimSize * nextDimIndex; curDimOffset = curDimIndex * outputStride1; offset += curDimOffset; linearIndex = nextDimIndex; return offset + linearIndex * outputStride0; // for (int i = 3; i >= 1; i--) { // int curDimSize = i == concatDim ? dimSize : outputSize[i]; // int nextDimIndex = linearIndex / curDimSize; // int curDimIndex = linearIndex - curDimSize * nextDimIndex; // int curDimOffset = curDimIndex * outputStride[i]; // offset += curDimOffset; // linearIndex = nextDimIndex; // } // return offset + linearIndex * outputStride[0]; } // TODO: Only for Dim of rank 4, and only for 2 inputs, and only for concat at dim = 1 __global__ void concat2D_1D_greg(float* in1, int dimSize1, int nElement1, float* in2, int dimSize2, int nElement2, float* out, int concatDim, int outSize0, int outSize1, int outSize2, int outSize3, int outStride0, int outStride1, int outStride2, int outStride3) { int tid = blockIdx.x * blockDim.x + threadIdx.x; int nElement = blockIdx.y == 0 ? nElement1 : nElement2; if (tid >= nElement) return; float* data = blockIdx.y == 0 ? in1 : in2; int offset = blockIdx.y == 0 ? 0 : dimSize1; int dimSize = blockIdx.y == 0 ? dimSize1 : dimSize2; int dataOffset = offset * outStride1; int stride = gridDim.x * blockDim.x; while (tid < nElement) { int elementOffset = compute(outSize0, outSize1, outSize2, outSize3, outStride0, outStride1, outStride2, outStride3, dimSize, concatDim, tid); out[dataOffset + elementOffset] = data[tid]; tid += stride; } } // TODO: Only for Dim of rank 4, and only for 2 inputs, and only for concat at dim = 1 __global__ void concat2D_1D_greg_grad(float* in1, int dimSize1, int nElement1, float* in2, int dimSize2, int nElement2, float* out, int concatDim, int outSize0, int outSize1, int outSize2, int outSize3, int outStride0, int outStride1, int outStride2, int outStride3) { int tid = blockIdx.x * blockDim.x + threadIdx.x; int nElement = blockIdx.y == 0 ? nElement1 : nElement2; if (tid >= nElement) return; float* data = blockIdx.y == 0 ? in1 : in2; int offset = blockIdx.y == 0 ? 0 : dimSize1; int dimSize = blockIdx.y == 0 ? dimSize1 : dimSize2; int dataOffset = offset * outStride1; int stride = gridDim.x * blockDim.x; while (tid < nElement) { int elementOffset = compute(outSize0, outSize1, outSize2, outSize3, outStride0, outStride1, outStride2, outStride3, dimSize, concatDim, tid); data[tid] += out[dataOffset + elementOffset]; tid += stride; } } __global__ void concat2D_1D_loop(float* in1, float* in2, float* out, int sizeLow, int sizeHigh, int sizeDim1, int sizeDim2) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid >= sizeLow) return; if (blockIdx.y < sizeHigh) { // the first input int index_out = tid + blockIdx.y * sizeLow * (sizeDim1 + sizeDim2); int index_in1 = tid + blockIdx.y * sizeLow * sizeDim1; for (int i = 0; i < sizeDim1; i++) { out[index_out] = in1[index_in1]; index_out += sizeLow; index_in1 += sizeLow; } } else { // the second input int index_out = tid + (blockIdx.y - sizeHigh) * sizeLow * (sizeDim1 + sizeDim2) + sizeLow * sizeDim1; int index_in2 = tid + (blockIdx.y - sizeHigh) * sizeLow * sizeDim2; for (int i = 0; i < sizeDim2; i++) { out[index_out] = in2[index_in2]; index_out += sizeLow; index_in2 += sizeLow; } } } __global__ void concat2D_1D_loop_grad(float* in1, float* in2, float* out, int sizeLow, int sizeHigh, int sizeDim1, int sizeDim2) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid >= sizeLow) return; if (blockIdx.y < sizeHigh) { // the first input int index_out = tid + blockIdx.y * sizeLow * (sizeDim1 + sizeDim2); int index_in1 = tid + blockIdx.y * sizeLow * sizeDim1; for (int i = 0; i < sizeDim1; i++) { in1[index_in1] += out[index_out]; index_out += sizeLow; index_in1 += sizeLow; } } else { // the second input int index_out = tid + (blockIdx.y - sizeHigh) * sizeLow * (sizeDim1 + sizeDim2) + sizeLow * sizeDim1; int index_in2 = tid + (blockIdx.y - sizeHigh) * sizeLow * sizeDim2; for (int i = 0; i < sizeDim2; i++) { in2[index_in2] += out[index_out]; index_out += sizeLow; index_in2 += sizeLow; } } } __global__ void concat2D_1D(float* in1, float* in2, float* out, int dim2, int bound) { int tid = blockIdx.y * gridDim.x * blockDim.x + blockIdx.x * blockDim.x + threadIdx.x; if (blockIdx.x < bound * dim2) { int subid = blockIdx.y * bound * dim2 * blockDim.x + blockIdx.x * blockDim.x + threadIdx.x; out[tid] = in1[subid]; } else { int subid = blockIdx.y * (gridDim.x - bound * dim2) * blockDim.x + (blockIdx.x - bound * dim2) * blockDim.x + threadIdx.x; out[tid] = in2[subid]; } } __global__ void concat2D_1D_grad(float* in1, float* in2, float* out, int dim2, int bound) { int tid = blockIdx.y * gridDim.x * blockDim.x + blockIdx.x * blockDim.x + threadIdx.x; if (blockIdx.x < bound * dim2) { int subid = blockIdx.y * bound * dim2 * blockDim.x + blockIdx.x * blockDim.x + threadIdx.x; in1[subid] += out[tid]; } else { int subid = blockIdx.y * (gridDim.x - bound * dim2) * blockDim.x + (blockIdx.x - bound * dim2) * blockDim.x + threadIdx.x; in2[subid] += out[tid]; } } __global__ void adagrad_update_1D_1D(float* x, float* d, float* m, float clip, float lr, int size) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < size) { if (d[tid] > clip) d[tid] = clip; if (d[tid] < -clip) d[tid] = -clip; m[tid] += d[tid] * d[tid]; x[tid] -= lr * d[tid] / sqrt(m[tid] + 0.00000001); d[tid] = 0; } } __global__ void elementwise_1D_1D_mul(float* in1, float* in2, float* out, int size) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < size) out[tid] = in1[tid] * in2[tid]; } __global__ void elementwise_1D_1D_mul_mutate(float* in1, float* in2, float* out, int size) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < size) out[tid] += in1[tid] * in2[tid]; } __global__ void elementwise_1D_1D_add(float* in1, float* in2, float* out, int size) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < size) out[tid] = in1[tid] + in2[tid]; } __global__ void elementwise_1D_1D_minus(float* in1, float* in2, float* out, int size) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < size) out[tid] = in1[tid] - in2[tid]; } __global__ void elementwise_1D_1D_div(float* in1, float* in2, float* out, int size) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < size) out[tid] = in1[tid] / in2[tid]; } __global__ void elementwise_1D_1D_exp(float* in, float* out, int size) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < size) out[tid] = exp(in[tid]); } __global__ void elementwise_1D_1D_log(float* in, float* out, int size) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < size) out[tid] = log(in[tid]); } __global__ void elementwise_1D_1D_sqrt(float* in, float* out, int size) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < size) out[tid] = sqrt(in[tid]); } __global__ void elementwise_1D_1D_square(float* in, float* out, int size) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < size) out[tid] = in[tid] * in[tid]; } __global__ void elementwise_1D_1D_exp_grad(float* in_x, float* in_d, float* out_x, float * out_d, int size) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < size) in_d[tid] += out_d[tid] * out_x[tid]; } __global__ void elementwise_1D_1D_log_grad(float* in_x, float* in_d, float* out_x, float * out_d, int size) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < size) in_d[tid] += out_d[tid] / in_x[tid]; } __global__ void elementwise_1D_1D_sqrt_grad(float* in_x, float* in_d, float* out_x, float * out_d, int size) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < size) in_d[tid] += out_d[tid] / out_x[tid] / 2; } __global__ void elementwise_1D_1D_square_grad(float* in_x, float* in_d, float* out_x, float * out_d, int size) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < size) in_d[tid] += out_d[tid] * 2 * in_x[tid]; } // From: https://github.com/pytorch/pytorch/blob/master/aten/src/THC/THCIntegerDivider.cuh // Result of div/mod operation stored together. template <typename Value> struct DivMod { Value div, mod; __host__ __device__ DivMod(Value div, Value mod) : div(div), mod(mod) { } }; // Base case: we only have an implementation for uint32_t for now. For // everything else, we use plain division. template <typename Value> struct IntDivider { IntDivider() { } // Dummy constructor for arrays. IntDivider(Value d) : divisor(d) { } __host__ __device__ inline Value div(Value n) const { return n / divisor; } __host__ __device__ inline Value mod(Value n) const { return n % divisor; } __host__ __device__ inline DivMod<Value> divmod(Value n) const { return DivMod<Value>(n / divisor, n % divisor); } Value divisor; }; // Implement fast integer division. template <> struct IntDivider<unsigned int> { static_assert(sizeof(unsigned int) == 4, "Assumes 32-bit unsigned int."); IntDivider() { } // Dummy constructor for arrays. IntDivider(unsigned int d) : divisor(d) { assert(divisor >= 1 && divisor <= INT32_MAX); // TODO: gcc/clang has __builtin_clz() but it's not portable. for (shift = 0; shift < 32; shift++) if ((1U << shift) >= divisor) break; uint64_t one = 1; uint64_t magic = ((one << 32) * ((one << shift) - divisor)) / divisor + 1; m1 = magic; assert(m1 > 0 && m1 == magic); // m1 must fit in 32 bits. } __host__ __device__ inline unsigned int div(unsigned int n) const { #ifdef __CUDA_ARCH__ // 't' is the higher 32-bits of unsigned 32-bit multiplication of 'n' and // 'm1'. unsigned int t = __umulhi(n, m1); return (t + n) >> shift; #else // Using uint64_t so that the addition does not overflow. uint64_t t = ((uint64_t) n * m1) >> 32; return (t + n) >> shift; #endif } __host__ __device__ inline unsigned int mod(unsigned int n) const { return n - div(n) * divisor; } __host__ __device__ inline DivMod<unsigned int> divmod(unsigned int n) const { unsigned int q = div(n); return DivMod<unsigned int>(q, n - q * divisor); } unsigned int divisor; // d above. unsigned int m1; // Magic number: m' above. unsigned int shift; // Shift amounts. }; // From: https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/cuda/detail/OffsetCalculator.cuh /// OffsetCalculator calculates the offset in bytes of a linear index for NARGS /// operands that share the same shape, but may have different strides. template <int NARGS> struct OffsetCalculator { static constexpr int MAX_DIMS = 25; // The offset for each argument (in bytes). Wrapper around fixed-size array. struct offsets_t { __host__ __device__ uint32_t& operator[](int idx) { return values[idx]; } uint32_t values[NARGS]; }; // OffsetCalculator(int dims, const int64_t* sizes, const int64_t* const* strides) : dims(dims) { OffsetCalculator(int dims, const int32_t* sizes, const int32_t* const* strides) : dims(dims) { for (int i = 0; i < MAX_DIMS; ++i) { if (i < dims) { sizes_[i] = IntDivider<uint32_t>(sizes[i]); } else { sizes_[i] = IntDivider<uint32_t>(1); } for (int arg = 0; arg < NARGS; arg++) { strides_[i][arg] = i < dims ? strides[arg][i] : 0; } } } __host__ __device__ offsets_t get(uint32_t linear_idx) const { offsets_t offsets; #pragma unroll for (int arg = 0; arg < NARGS; arg++) { offsets[arg] = 0; } #pragma unroll for (int dim = 0; dim < MAX_DIMS; ++dim) { if (dim == dims) { break; } auto divmod = sizes_[dim].divmod(linear_idx); linear_idx = divmod.div; #pragma unroll for (int arg = 0; arg < NARGS; arg++) { offsets[arg] += divmod.mod * strides_[dim][arg]; } } return offsets; } void print() { for (auto i = 1; i < 128; i++) { auto offsets = get(i); printf("offsets[%d]: ", i); for (auto arg = 0; arg < NARGS; arg++) { printf("%d ", offsets[arg]); } printf("\n"); } } int dims; IntDivider<uint32_t> sizes_[MAX_DIMS]; uint32_t strides_[MAX_DIMS][NARGS]; }; // From: https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/cuda/Loops.cuh template<int nt, int vt, typename func_t> __launch_bounds__(nt, 4) __global__ void elementwise_kernel(int N, func_t f) { int tid = threadIdx.x; int nv = nt * vt; int idx = nv * blockIdx.x + tid; #pragma unroll for (int i = 0; i < vt; i++) { if (idx < N) { f(idx); idx += nt; } } } template<int nt, int vt, typename func_t> static void launch_kernel(int64_t N, const func_t& f) { if (N == 0) { return; } dim3 block(nt); dim3 grid((N + block.x * vt - 1) / (block.x * vt)); hipLaunchKernelGGL(( elementwise_kernel<nt, vt, func_t>), dim3(grid), dim3(block), 0, 0, N, f); } template<typename func_t> void gpu_unary_kernel(float *res, float *x, int32_t resRank, const int32_t resScalarCount, const int32_t* resShape, const int32_t* const* strides, const func_t& f) { OffsetCalculator<2> calc(resRank, resShape, strides); launch_kernel<128, 4>(resScalarCount, [=]__device__(int idx) { auto offsets = calc.get(idx); float* out = &res[offsets[0]]; float* in = &x[offsets[1]]; *out = f(*in); }); } template<typename func_t> void gpu_binary_kernel(float *res, float *x, float *y, int32_t resRank, const int32_t resScalarCount, const int32_t* resShape, const int32_t* const* strides, const func_t& f) { OffsetCalculator<3> calc(resRank, resShape, strides); launch_kernel<128, 4>(resScalarCount, [=]__device__(int idx) { auto offsets = calc.get(idx); float* out = &res[offsets[0]]; float* in1 = &x[offsets[1]]; float* in2 = &y[offsets[2]]; *out = f(*in1, *in2); }); } #define CUDNN_CALL(f) { \ cudnnStatus_t stat = (f); \ if (stat != CUDNN_STATUS_SUCCESS) { \ fprintf(stderr, "cuDNN error occurred: %d (%s:%d)\n", \ stat, __FILE__, __LINE__); \ exit(stat); \ } \ } void Snippet(char *); std::random_device rd{}; std::mt19937 gen{rd()}; std::normal_distribution<> d{0, 0.01}; int main(int argc, char *argv[]) { if (argc != 2) { printf("usage: query <filename>\n"); return 0; } Snippet(argv[1]); return 0; } /***************************************** Emitting C Generated Code *******************************************/ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <stdbool.h> void Snippet(char* x0) { // Backend setup. hipblasHandle_t cublasHandle; CUBLAS_CALL(hipblasCreate(&cublasHandle)); CUDA_CALL(hipMalloc(&gpuMallocBase, HEAP_SIZE)); CUDA_CALL(hipMemset(gpuMallocBase, 0, HEAP_SIZE)); gpuMallocAddr = gpuMallocBase; cudnnHandle_t cudnnHandle; CUDNN_CALL(cudnnCreate(&cudnnHandle)); // Tensor 'toGPU' invocation. float* x275 = (float*)myGpuMalloc(262144 * sizeof(float)); int32_t x4 = open("/u/data/u99/wang603/TiarkMlEnv/Lantern/src/out/PLDI19evaluation/resnet50/resnet50.onnx.bin",0); int32_t x5 = fsize(x4); float* x6 = (float*)mmap(0, x5, PROT_READ | PROT_WRITE, MAP_FILE | MAP_PRIVATE, x4, 0); float* x7 = x6+5205440; CUDA_CALL(hipMemcpy(x275, x7, 262144 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x278 = (float*)myGpuMalloc(256 * sizeof(float)); float* x8 = x6+148672; CUDA_CALL(hipMemcpy(x278, x8, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x281 = (float*)myGpuMalloc(128 * sizeof(float)); float* x9 = x6+816064; CUDA_CALL(hipMemcpy(x281, x9, 128 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x284 = (float*)myGpuMalloc(128 * sizeof(float)); float* x10 = x6+950080; CUDA_CALL(hipMemcpy(x284, x10, 128 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x287 = (float*)myGpuMalloc(64 * sizeof(float)); float* x11 = x6+94784; CUDA_CALL(hipMemcpy(x287, x11, 64 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x290 = (float*)myGpuMalloc(32768 * sizeof(float)); float* x12 = x6+220608; CUDA_CALL(hipMemcpy(x290, x12, 32768 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x293 = (float*)myGpuMalloc(512 * sizeof(float)); float* x13 = x6+22495680; CUDA_CALL(hipMemcpy(x293, x13, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x296 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x14 = x6+2964928; CUDA_CALL(hipMemcpy(x296, x14, 262144 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x299 = (float*)myGpuMalloc(589824 * sizeof(float)); float* x15 = x6+4348352; CUDA_CALL(hipMemcpy(x299, x15, 589824 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x302 = (float*)myGpuMalloc(512 * sizeof(float)); float* x16 = x6+20133312; CUDA_CALL(hipMemcpy(x302, x16, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x305 = (float*)myGpuMalloc(256 * sizeof(float)); float* x17 = x6+2169536; CUDA_CALL(hipMemcpy(x305, x17, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x308 = (float*)myGpuMalloc(128 * sizeof(float)); float* x18 = x6+668224; CUDA_CALL(hipMemcpy(x308, x18, 128 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x311 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x19 = x6+2432448; CUDA_CALL(hipMemcpy(x311, x19, 1024 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x314 = (float*)myGpuMalloc(512 * sizeof(float)); float* x20 = x6+1446336; CUDA_CALL(hipMemcpy(x314, x20, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x317 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x21 = x6+4081088; CUDA_CALL(hipMemcpy(x317, x21, 1024 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x320 = (float*)myGpuMalloc(256 * sizeof(float)); float* x22 = x6+1578688; CUDA_CALL(hipMemcpy(x320, x22, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x323 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x23 = x6+6325696; CUDA_CALL(hipMemcpy(x323, x23, 262144 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x326 = (float*)myGpuMalloc(512 * sizeof(float)); float* x24 = x6+602048; CUDA_CALL(hipMemcpy(x326, x24, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x329 = (float*)myGpuMalloc(64 * sizeof(float)); float* x25 = x6+165888; CUDA_CALL(hipMemcpy(x329, x25, 64 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x332 = (float*)myGpuMalloc(512 * sizeof(float)); float* x26 = x6+1164736; CUDA_CALL(hipMemcpy(x332, x26, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x335 = (float*)myGpuMalloc(64 * sizeof(float)); float* x27 = x6+6080; CUDA_CALL(hipMemcpy(x335, x27, 64 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x338 = (float*)myGpuMalloc(147456 * sizeof(float)); float* x28 = x6+253888; CUDA_CALL(hipMemcpy(x338, x28, 147456 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x341 = (float*)myGpuMalloc(2359296 * sizeof(float)); float* x29 = x6+20135360; CUDA_CALL(hipMemcpy(x341, x29, 2359296 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x344 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x30 = x6+2960832; CUDA_CALL(hipMemcpy(x344, x30, 1024 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x347 = (float*)myGpuMalloc(256 * sizeof(float)); float* x31 = x6+3227072; CUDA_CALL(hipMemcpy(x347, x31, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x350 = (float*)myGpuMalloc(589824 * sizeof(float)); float* x32 = x6+3228096; CUDA_CALL(hipMemcpy(x350, x32, 589824 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x353 = (float*)myGpuMalloc(16384 * sizeof(float)); float* x33 = x6+43456; CUDA_CALL(hipMemcpy(x353, x33, 16384 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x356 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x34 = x6+22496704; CUDA_CALL(hipMemcpy(x356, x34, 1048576 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x359 = (float*)myGpuMalloc(2359296 * sizeof(float)); float* x35 = x6+9092544; CUDA_CALL(hipMemcpy(x359, x35, 2359296 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x362 = (float*)myGpuMalloc(128 * sizeof(float)); float* x36 = x6+816320; CUDA_CALL(hipMemcpy(x362, x36, 128 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x365 = (float*)myGpuMalloc(256 * sizeof(float)); float* x37 = x6+60608; CUDA_CALL(hipMemcpy(x365, x37, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x368 = (float*)myGpuMalloc(256 * sizeof(float)); float* x38 = x6+219584; CUDA_CALL(hipMemcpy(x368, x38, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x371 = (float*)myGpuMalloc(128 * sizeof(float)); float* x39 = x6+1379392; CUDA_CALL(hipMemcpy(x371, x39, 128 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x374 = (float*)myGpuMalloc(128 * sizeof(float)); float* x40 = x6+1231296; CUDA_CALL(hipMemcpy(x374, x40, 128 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x377 = (float*)myGpuMalloc(64 * sizeof(float)); float* x41 = x6+1856; CUDA_CALL(hipMemcpy(x377, x41, 64 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x380 = (float*)myGpuMalloc(65536 * sizeof(float)); float* x42 = x6+1098176; CUDA_CALL(hipMemcpy(x380, x42, 65536 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x383 = (float*)myGpuMalloc(512 * sizeof(float)); float* x43 = x6+601536; CUDA_CALL(hipMemcpy(x383, x43, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x386 = (float*)myGpuMalloc(128 * sizeof(float)); float* x44 = x6+401728; CUDA_CALL(hipMemcpy(x386, x44, 128 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x389 = (float*)myGpuMalloc(64 * sizeof(float)); float* x45 = x6+131904; CUDA_CALL(hipMemcpy(x389, x45, 64 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x392 = (float*)myGpuMalloc(128 * sizeof(float)); float* x46 = x6+949696; CUDA_CALL(hipMemcpy(x392, x46, 128 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x395 = (float*)myGpuMalloc(512 * sizeof(float)); float* x47 = x6+15664576; CUDA_CALL(hipMemcpy(x395, x47, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x398 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x48 = x6+18027968; CUDA_CALL(hipMemcpy(x398, x48, 1048576 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x401 = (float*)myGpuMalloc(10 * sizeof(float)); float* x49 = x6+23573952; CUDA_CALL(hipMemcpy(x401, x49, 10 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x404 = (float*)myGpuMalloc(64 * sizeof(float)); float* x50 = x6+43264; CUDA_CALL(hipMemcpy(x404, x50, 64 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x407 = (float*)myGpuMalloc(512 * sizeof(float)); float* x51 = x6+11453376; CUDA_CALL(hipMemcpy(x407, x51, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x410 = (float*)myGpuMalloc(64 * sizeof(float)); float* x52 = x6+6272; CUDA_CALL(hipMemcpy(x410, x52, 64 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x413 = (float*)myGpuMalloc(512 * sizeof(float)); float* x53 = x6+882112; CUDA_CALL(hipMemcpy(x413, x53, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x416 = (float*)myGpuMalloc(64 * sizeof(float)); float* x54 = x6+6144; CUDA_CALL(hipMemcpy(x416, x54, 64 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x419 = (float*)myGpuMalloc(512 * sizeof(float)); float* x55 = x6+1445824; CUDA_CALL(hipMemcpy(x419, x55, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x422 = (float*)myGpuMalloc(65536 * sizeof(float)); float* x56 = x6+1379776; CUDA_CALL(hipMemcpy(x422, x56, 65536 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x425 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x57 = x6+3818944; CUDA_CALL(hipMemcpy(x425, x57, 262144 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x428 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x58 = x6+5202368; CUDA_CALL(hipMemcpy(x428, x58, 1024 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x431 = (float*)myGpuMalloc(256 * sizeof(float)); float* x59 = x6+148416; CUDA_CALL(hipMemcpy(x431, x59, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x434 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x60 = x6+7441856; CUDA_CALL(hipMemcpy(x434, x60, 1024 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x437 = (float*)myGpuMalloc(64 * sizeof(float)); float* x61 = x6+94720; CUDA_CALL(hipMemcpy(x437, x61, 64 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x440 = (float*)myGpuMalloc(128 * sizeof(float)); float* x62 = x6+1097792; CUDA_CALL(hipMemcpy(x440, x62, 128 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x443 = (float*)myGpuMalloc(2048 * sizeof(float)); float* x63 = x6+12504512; CUDA_CALL(hipMemcpy(x443, x63, 2048 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x446 = (float*)myGpuMalloc(256 * sizeof(float)); float* x64 = x6+4938944; CUDA_CALL(hipMemcpy(x446, x64, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x449 = (float*)myGpuMalloc(2048 * sizeof(float)); float* x65 = x6+14611904; CUDA_CALL(hipMemcpy(x449, x65, 2048 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x452 = (float*)myGpuMalloc(512 * sizeof(float)); float* x66 = x6+15666112; CUDA_CALL(hipMemcpy(x452, x66, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x455 = (float*)myGpuMalloc(512 * sizeof(float)); float* x67 = x6+18026432; CUDA_CALL(hipMemcpy(x455, x67, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x458 = (float*)myGpuMalloc(512 * sizeof(float)); float* x68 = x6+9091520; CUDA_CALL(hipMemcpy(x458, x68, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x461 = (float*)myGpuMalloc(2048 * sizeof(float)); float* x69 = x6+19080640; CUDA_CALL(hipMemcpy(x461, x69, 2048 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x464 = (float*)myGpuMalloc(256 * sizeof(float)); float* x70 = x6+6588608; CUDA_CALL(hipMemcpy(x464, x70, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x467 = (float*)myGpuMalloc(256 * sizeof(float)); float* x71 = x6+8299456; CUDA_CALL(hipMemcpy(x467, x71, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x470 = (float*)myGpuMalloc(256 * sizeof(float)); float* x72 = x6+60352; CUDA_CALL(hipMemcpy(x470, x72, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x473 = (float*)myGpuMalloc(64 * sizeof(float)); float* x73 = x6+202944; CUDA_CALL(hipMemcpy(x473, x73, 64 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x476 = (float*)myGpuMalloc(36864 * sizeof(float)); float* x74 = x6+166080; CUDA_CALL(hipMemcpy(x476, x74, 36864 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x479 = (float*)myGpuMalloc(256 * sizeof(float)); float* x75 = x6+6058432; CUDA_CALL(hipMemcpy(x479, x75, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x482 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x76 = x6+2436544; CUDA_CALL(hipMemcpy(x482, x76, 524288 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x485 = (float*)myGpuMalloc(256 * sizeof(float)); float* x77 = x6+77248; CUDA_CALL(hipMemcpy(x485, x77, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x488 = (float*)myGpuMalloc(256 * sizeof(float)); float* x78 = x6+6587840; CUDA_CALL(hipMemcpy(x488, x78, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x491 = (float*)myGpuMalloc(512 * sizeof(float)); float* x79 = x6+20133824; CUDA_CALL(hipMemcpy(x491, x79, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x494 = (float*)myGpuMalloc(128 * sizeof(float)); float* x80 = x6+1379264; CUDA_CALL(hipMemcpy(x494, x80, 128 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x497 = (float*)myGpuMalloc(256 * sizeof(float)); float* x81 = x6+7708608; CUDA_CALL(hipMemcpy(x497, x81, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x500 = (float*)myGpuMalloc(64 * sizeof(float)); float* x82 = x6+165824; CUDA_CALL(hipMemcpy(x500, x82, 64 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x503 = (float*)myGpuMalloc(512 * sizeof(float)); float* x83 = x6+1164224; CUDA_CALL(hipMemcpy(x503, x83, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x506 = (float*)myGpuMalloc(36864 * sizeof(float)); float* x84 = x6+94912; CUDA_CALL(hipMemcpy(x506, x84, 36864 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x509 = (float*)myGpuMalloc(128 * sizeof(float)); float* x85 = x6+253376; CUDA_CALL(hipMemcpy(x509, x85, 128 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x512 = (float*)myGpuMalloc(256 * sizeof(float)); float* x86 = x6+7708096; CUDA_CALL(hipMemcpy(x512, x86, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x515 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x87 = x6+2962880; CUDA_CALL(hipMemcpy(x515, x87, 1024 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x518 = (float*)myGpuMalloc(16384 * sizeof(float)); float* x88 = x6+203200; CUDA_CALL(hipMemcpy(x518, x88, 16384 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x521 = (float*)myGpuMalloc(512 * sizeof(float)); float* x89 = x6+883648; CUDA_CALL(hipMemcpy(x521, x89, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x524 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x90 = x6+6059456; CUDA_CALL(hipMemcpy(x524, x90, 262144 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x527 = (float*)myGpuMalloc(36864 * sizeof(float)); float* x91 = x6+6336; CUDA_CALL(hipMemcpy(x527, x91, 36864 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x530 = (float*)myGpuMalloc(256 * sizeof(float)); float* x92 = x6+148928; CUDA_CALL(hipMemcpy(x530, x92, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x533 = (float*)myGpuMalloc(256 * sizeof(float)); float* x93 = x6+5467584; CUDA_CALL(hipMemcpy(x533, x93, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x536 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x94 = x6+8563136; CUDA_CALL(hipMemcpy(x536, x94, 1024 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x539 = (float*)myGpuMalloc(2048 * sizeof(float)); float* x95 = x6+19076544; CUDA_CALL(hipMemcpy(x539, x95, 2048 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x542 = (float*)myGpuMalloc(128 * sizeof(float)); float* x96 = x6+816192; CUDA_CALL(hipMemcpy(x542, x96, 128 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x545 = (float*)myGpuMalloc(256 * sizeof(float)); float* x97 = x6+3818176; CUDA_CALL(hipMemcpy(x545, x97, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x548 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x98 = x6+8299968; CUDA_CALL(hipMemcpy(x548, x98, 262144 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x551 = (float*)myGpuMalloc(256 * sizeof(float)); float* x99 = x6+5468352; CUDA_CALL(hipMemcpy(x551, x99, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x554 = (float*)myGpuMalloc(256 * sizeof(float)); float* x100 = x6+2170048; CUDA_CALL(hipMemcpy(x554, x100, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x557 = (float*)myGpuMalloc(128 * sizeof(float)); float* x101 = x6+668352; CUDA_CALL(hipMemcpy(x557, x101, 128 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x560 = (float*)myGpuMalloc(512 * sizeof(float)); float* x102 = x6+468928; CUDA_CALL(hipMemcpy(x560, x102, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x563 = (float*)myGpuMalloc(64 * sizeof(float)); float* x103 = x6+94848; CUDA_CALL(hipMemcpy(x563, x103, 64 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x566 = (float*)myGpuMalloc(2048 * sizeof(float)); float* x104 = x6+23545280; CUDA_CALL(hipMemcpy(x566, x104, 2048 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x569 = (float*)myGpuMalloc(256 * sizeof(float)); float* x105 = x6+7179456; CUDA_CALL(hipMemcpy(x569, x105, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x572 = (float*)myGpuMalloc(64 * sizeof(float)); float* x106 = x6+43328; CUDA_CALL(hipMemcpy(x572, x106, 64 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x575 = (float*)myGpuMalloc(65536 * sizeof(float)); float* x107 = x6+401856; CUDA_CALL(hipMemcpy(x575, x107, 65536 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x578 = (float*)myGpuMalloc(2048 * sizeof(float)); float* x108 = x6+14609856; CUDA_CALL(hipMemcpy(x578, x108, 2048 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x581 = (float*)myGpuMalloc(256 * sizeof(float)); float* x109 = x6+2169280; CUDA_CALL(hipMemcpy(x581, x109, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x584 = (float*)myGpuMalloc(256 * sizeof(float)); float* x110 = x6+7178944; CUDA_CALL(hipMemcpy(x584, x110, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x587 = (float*)myGpuMalloc(64 * sizeof(float)); float* x111 = x6+1920; CUDA_CALL(hipMemcpy(x587, x111, 64 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x590 = (float*)myGpuMalloc(65536 * sizeof(float)); float* x112 = x6+816576; CUDA_CALL(hipMemcpy(x590, x112, 65536 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x593 = (float*)myGpuMalloc(128 * sizeof(float)); float* x113 = x6+949952; CUDA_CALL(hipMemcpy(x593, x113, 128 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x596 = (float*)myGpuMalloc(512 * sizeof(float)); float* x114 = x6+11452864; CUDA_CALL(hipMemcpy(x596, x114, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x599 = (float*)myGpuMalloc(64 * sizeof(float)); float* x115 = x6+6208; CUDA_CALL(hipMemcpy(x599, x115, 64 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x602 = (float*)myGpuMalloc(2048 * sizeof(float)); float* x116 = x6+12506560; CUDA_CALL(hipMemcpy(x602, x116, 2048 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x605 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x117 = x6+4939200; CUDA_CALL(hipMemcpy(x605, x117, 262144 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x608 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x118 = x6+2433472; CUDA_CALL(hipMemcpy(x608, x118, 1024 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x611 = (float*)myGpuMalloc(64 * sizeof(float)); float* x119 = x6+203136; CUDA_CALL(hipMemcpy(x611, x119, 64 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x614 = (float*)myGpuMalloc(512 * sizeof(float)); float* x120 = x6+601024; CUDA_CALL(hipMemcpy(x614, x120, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x617 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x121 = x6+7442880; CUDA_CALL(hipMemcpy(x617, x121, 1024 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x620 = (float*)myGpuMalloc(512 * sizeof(float)); float* x122 = x6+9092032; CUDA_CALL(hipMemcpy(x620, x122, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x623 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x123 = x6+8564160; CUDA_CALL(hipMemcpy(x623, x123, 1024 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x626 = (float*)myGpuMalloc(2048 * sizeof(float)); float* x124 = x6+23551424; CUDA_CALL(hipMemcpy(x626, x124, 2048 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x629 = (float*)myGpuMalloc(256 * sizeof(float)); float* x125 = x6+4938688; CUDA_CALL(hipMemcpy(x629, x125, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x632 = (float*)myGpuMalloc(2048 * sizeof(float)); float* x126 = x6+14613952; CUDA_CALL(hipMemcpy(x632, x126, 2048 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x635 = (float*)myGpuMalloc(256 * sizeof(float)); float* x127 = x6+60096; CUDA_CALL(hipMemcpy(x635, x127, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x638 = (float*)myGpuMalloc(128 * sizeof(float)); float* x128 = x6+1097664; CUDA_CALL(hipMemcpy(x638, x128, 128 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x641 = (float*)myGpuMalloc(128 * sizeof(float)); float* x129 = x6+401600; CUDA_CALL(hipMemcpy(x641, x129, 128 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x644 = (float*)myGpuMalloc(256 * sizeof(float)); float* x130 = x6+4347328; CUDA_CALL(hipMemcpy(x644, x130, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x647 = (float*)myGpuMalloc(16384 * sizeof(float)); float* x131 = x6+132032; CUDA_CALL(hipMemcpy(x647, x131, 16384 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x650 = (float*)myGpuMalloc(256 * sizeof(float)); float* x132 = x6+1578944; CUDA_CALL(hipMemcpy(x650, x132, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x653 = (float*)myGpuMalloc(65536 * sizeof(float)); float* x133 = x6+1165760; CUDA_CALL(hipMemcpy(x653, x133, 65536 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x656 = (float*)myGpuMalloc(256 * sizeof(float)); float* x134 = x6+220352; CUDA_CALL(hipMemcpy(x656, x134, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x659 = (float*)myGpuMalloc(128 * sizeof(float)); float* x135 = x6+253760; CUDA_CALL(hipMemcpy(x659, x135, 128 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x662 = (float*)myGpuMalloc(64 * sizeof(float)); float* x136 = x6+203008; CUDA_CALL(hipMemcpy(x662, x136, 64 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x665 = (float*)myGpuMalloc(256 * sizeof(float)); float* x137 = x6+6058688; CUDA_CALL(hipMemcpy(x665, x137, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x668 = (float*)myGpuMalloc(512 * sizeof(float)); float* x138 = x6+15665088; CUDA_CALL(hipMemcpy(x668, x138, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x671 = (float*)myGpuMalloc(512 * sizeof(float)); float* x139 = x6+18026944; CUDA_CALL(hipMemcpy(x671, x139, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x674 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x140 = x6+8566208; CUDA_CALL(hipMemcpy(x674, x140, 524288 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x677 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x141 = x6+5203392; CUDA_CALL(hipMemcpy(x677, x141, 1024 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x680 = (float*)myGpuMalloc(256 * sizeof(float)); float* x142 = x6+8298944; CUDA_CALL(hipMemcpy(x680, x142, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x683 = (float*)myGpuMalloc(64 * sizeof(float)); float* x143 = x6+94656; CUDA_CALL(hipMemcpy(x683, x143, 64 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x686 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x144 = x6+4084160; CUDA_CALL(hipMemcpy(x686, x144, 1024 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x689 = (float*)myGpuMalloc(2048 * sizeof(float)); float* x145 = x6+19078592; CUDA_CALL(hipMemcpy(x689, x145, 2048 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x692 = (float*)myGpuMalloc(512 * sizeof(float)); float* x146 = x6+467392; CUDA_CALL(hipMemcpy(x692, x146, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x695 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x147 = x6+6322624; CUDA_CALL(hipMemcpy(x695, x147, 1024 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x698 = (float*)myGpuMalloc(512 * sizeof(float)); float* x148 = x6+883136; CUDA_CALL(hipMemcpy(x698, x148, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x701 = (float*)myGpuMalloc(128 * sizeof(float)); float* x149 = x6+1379648; CUDA_CALL(hipMemcpy(x701, x149, 128 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x704 = (float*)myGpuMalloc(512 * sizeof(float)); float* x150 = x6+468416; CUDA_CALL(hipMemcpy(x704, x150, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x707 = (float*)myGpuMalloc(16384 * sizeof(float)); float* x151 = x6+149440; CUDA_CALL(hipMemcpy(x707, x151, 16384 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x710 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x152 = x6+7445952; CUDA_CALL(hipMemcpy(x710, x152, 262144 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x713 = (float*)myGpuMalloc(1728 * sizeof(float)); float* x153 = x6+0; CUDA_CALL(hipMemcpy(x713, x153, 1728 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x716 = (float*)myGpuMalloc(64 * sizeof(float)); float* x154 = x6+131840; CUDA_CALL(hipMemcpy(x716, x154, 64 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x719 = (float*)myGpuMalloc(512 * sizeof(float)); float* x155 = x6+15665600; CUDA_CALL(hipMemcpy(x719, x155, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x722 = (float*)myGpuMalloc(2359296 * sizeof(float)); float* x156 = x6+15666624; CUDA_CALL(hipMemcpy(x722, x156, 2359296 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x725 = (float*)myGpuMalloc(512 * sizeof(float)); float* x157 = x6+1445312; CUDA_CALL(hipMemcpy(x725, x157, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x728 = (float*)myGpuMalloc(256 * sizeof(float)); float* x158 = x6+3227840; CUDA_CALL(hipMemcpy(x728, x158, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x731 = (float*)myGpuMalloc(64 * sizeof(float)); float* x159 = x6+43392; CUDA_CALL(hipMemcpy(x731, x159, 64 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x734 = (float*)myGpuMalloc(512 * sizeof(float)); float* x160 = x6+11452352; CUDA_CALL(hipMemcpy(x734, x160, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x737 = (float*)myGpuMalloc(512 * sizeof(float)); float* x161 = x6+18025920; CUDA_CALL(hipMemcpy(x737, x161, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x740 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x162 = x6+6324672; CUDA_CALL(hipMemcpy(x740, x162, 1024 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x743 = (float*)myGpuMalloc(16384 * sizeof(float)); float* x163 = x6+60864; CUDA_CALL(hipMemcpy(x743, x163, 16384 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x746 = (float*)myGpuMalloc(256 * sizeof(float)); float* x164 = x6+5468096; CUDA_CALL(hipMemcpy(x746, x164, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x749 = (float*)myGpuMalloc(64 * sizeof(float)); float* x165 = x6+43200; CUDA_CALL(hipMemcpy(x749, x165, 64 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x752 = (float*)myGpuMalloc(147456 * sizeof(float)); float* x166 = x6+1231808; CUDA_CALL(hipMemcpy(x752, x166, 147456 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x755 = (float*)myGpuMalloc(256 * sizeof(float)); float* x167 = x6+149184; CUDA_CALL(hipMemcpy(x755, x167, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x758 = (float*)myGpuMalloc(512 * sizeof(float)); float* x168 = x6+1163712; CUDA_CALL(hipMemcpy(x758, x168, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x761 = (float*)myGpuMalloc(256 * sizeof(float)); float* x169 = x6+7178688; CUDA_CALL(hipMemcpy(x761, x169, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x764 = (float*)myGpuMalloc(512 * sizeof(float)); float* x170 = x6+22495168; CUDA_CALL(hipMemcpy(x764, x170, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x767 = (float*)myGpuMalloc(128 * sizeof(float)); float* x171 = x6+949824; CUDA_CALL(hipMemcpy(x767, x171, 128 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x770 = (float*)myGpuMalloc(16384 * sizeof(float)); float* x172 = x6+78272; CUDA_CALL(hipMemcpy(x770, x172, 16384 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x773 = (float*)myGpuMalloc(128 * sizeof(float)); float* x173 = x6+253504; CUDA_CALL(hipMemcpy(x773, x173, 128 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x776 = (float*)myGpuMalloc(2048 * sizeof(float)); float* x174 = x6+14607808; CUDA_CALL(hipMemcpy(x776, x174, 2048 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x779 = (float*)myGpuMalloc(256 * sizeof(float)); float* x175 = x6+4348096; CUDA_CALL(hipMemcpy(x779, x175, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x782 = (float*)myGpuMalloc(589824 * sizeof(float)); float* x176 = x6+1579456; CUDA_CALL(hipMemcpy(x782, x176, 589824 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x785 = (float*)myGpuMalloc(256 * sizeof(float)); float* x177 = x6+7708864; CUDA_CALL(hipMemcpy(x785, x177, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x788 = (float*)myGpuMalloc(128 * sizeof(float)); float* x178 = x6+668480; CUDA_CALL(hipMemcpy(x788, x178, 128 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x791 = (float*)myGpuMalloc(256 * sizeof(float)); float* x179 = x6+4347840; CUDA_CALL(hipMemcpy(x791, x179, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x794 = (float*)myGpuMalloc(64 * sizeof(float)); float* x180 = x6+203072; CUDA_CALL(hipMemcpy(x794, x180, 64 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x797 = (float*)myGpuMalloc(131072 * sizeof(float)); float* x181 = x6+1447360; CUDA_CALL(hipMemcpy(x797, x181, 131072 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x800 = (float*)myGpuMalloc(2048 * sizeof(float)); float* x182 = x6+23547328; CUDA_CALL(hipMemcpy(x800, x182, 2048 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x803 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x183 = x6+4083136; CUDA_CALL(hipMemcpy(x803, x183, 1024 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x806 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x184 = x6+8565184; CUDA_CALL(hipMemcpy(x806, x184, 1024 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x809 = (float*)myGpuMalloc(256 * sizeof(float)); float* x185 = x6+220096; CUDA_CALL(hipMemcpy(x809, x185, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x812 = (float*)myGpuMalloc(256 * sizeof(float)); float* x186 = x6+6588096; CUDA_CALL(hipMemcpy(x812, x186, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x815 = (float*)myGpuMalloc(256 * sizeof(float)); float* x187 = x6+6058944; CUDA_CALL(hipMemcpy(x815, x187, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x818 = (float*)myGpuMalloc(64 * sizeof(float)); float* x188 = x6+166016; CUDA_CALL(hipMemcpy(x818, x188, 64 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x821 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x189 = x6+5204416; CUDA_CALL(hipMemcpy(x821, x189, 1024 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x824 = (float*)myGpuMalloc(256 * sizeof(float)); float* x190 = x6+8299200; CUDA_CALL(hipMemcpy(x824, x190, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x827 = (float*)myGpuMalloc(128 * sizeof(float)); float* x191 = x6+401472; CUDA_CALL(hipMemcpy(x827, x191, 128 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x830 = (float*)myGpuMalloc(147456 * sizeof(float)); float* x192 = x6+950208; CUDA_CALL(hipMemcpy(x830, x192, 147456 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x833 = (float*)myGpuMalloc(256 * sizeof(float)); float* x193 = x6+4938432; CUDA_CALL(hipMemcpy(x833, x193, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x836 = (float*)myGpuMalloc(2048 * sizeof(float)); float* x194 = x6+12508608; CUDA_CALL(hipMemcpy(x836, x194, 2048 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x839 = (float*)myGpuMalloc(512 * sizeof(float)); float* x195 = x6+22494656; CUDA_CALL(hipMemcpy(x839, x195, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x842 = (float*)myGpuMalloc(512 * sizeof(float)); float* x196 = x6+18027456; CUDA_CALL(hipMemcpy(x842, x196, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x845 = (float*)myGpuMalloc(65536 * sizeof(float)); float* x197 = x6+884160; CUDA_CALL(hipMemcpy(x845, x197, 65536 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x848 = (float*)myGpuMalloc(256 * sizeof(float)); float* x198 = x6+4347584; CUDA_CALL(hipMemcpy(x848, x198, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x851 = (float*)myGpuMalloc(256 * sizeof(float)); float* x199 = x6+1579200; CUDA_CALL(hipMemcpy(x851, x199, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x854 = (float*)myGpuMalloc(256 * sizeof(float)); float* x200 = x6+59840; CUDA_CALL(hipMemcpy(x854, x200, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x857 = (float*)myGpuMalloc(256 * sizeof(float)); float* x201 = x6+3818432; CUDA_CALL(hipMemcpy(x857, x201, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x860 = (float*)myGpuMalloc(512 * sizeof(float)); float* x202 = x6+9090496; CUDA_CALL(hipMemcpy(x860, x202, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x863 = (float*)myGpuMalloc(512 * sizeof(float)); float* x203 = x6+22496192; CUDA_CALL(hipMemcpy(x863, x203, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x866 = (float*)myGpuMalloc(256 * sizeof(float)); float* x204 = x6+77504; CUDA_CALL(hipMemcpy(x866, x204, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x869 = (float*)myGpuMalloc(128 * sizeof(float)); float* x205 = x6+253632; CUDA_CALL(hipMemcpy(x869, x205, 128 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x872 = (float*)myGpuMalloc(512 * sizeof(float)); float* x206 = x6+11451840; CUDA_CALL(hipMemcpy(x872, x206, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x875 = (float*)myGpuMalloc(64 * sizeof(float)); float* x207 = x6+1728; CUDA_CALL(hipMemcpy(x875, x207, 64 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x878 = (float*)myGpuMalloc(512 * sizeof(float)); float* x208 = x6+600512; CUDA_CALL(hipMemcpy(x878, x208, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x881 = (float*)myGpuMalloc(64 * sizeof(float)); float* x209 = x6+131776; CUDA_CALL(hipMemcpy(x881, x209, 64 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x884 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x210 = x6+7443904; CUDA_CALL(hipMemcpy(x884, x210, 1024 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x887 = (float*)myGpuMalloc(512 * sizeof(float)); float* x211 = x6+467904; CUDA_CALL(hipMemcpy(x887, x211, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x890 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x212 = x6+2963904; CUDA_CALL(hipMemcpy(x890, x212, 1024 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x893 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x213 = x6+11453888; CUDA_CALL(hipMemcpy(x893, x213, 1048576 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x896 = (float*)myGpuMalloc(512 * sizeof(float)); float* x214 = x6+20134336; CUDA_CALL(hipMemcpy(x896, x214, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x899 = (float*)myGpuMalloc(2097152 * sizeof(float)); float* x215 = x6+12510656; CUDA_CALL(hipMemcpy(x899, x215, 2097152 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x902 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x216 = x6+14616000; CUDA_CALL(hipMemcpy(x902, x216, 1048576 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x905 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x217 = x6+2434496; CUDA_CALL(hipMemcpy(x905, x217, 1024 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x908 = (float*)myGpuMalloc(128 * sizeof(float)); float* x218 = x6+1097920; CUDA_CALL(hipMemcpy(x908, x218, 128 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x911 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x219 = x6+4085184; CUDA_CALL(hipMemcpy(x911, x219, 262144 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x914 = (float*)myGpuMalloc(256 * sizeof(float)); float* x220 = x6+3227328; CUDA_CALL(hipMemcpy(x914, x220, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x917 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x221 = x6+2961856; CUDA_CALL(hipMemcpy(x917, x221, 1024 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x920 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x222 = x6+7179712; CUDA_CALL(hipMemcpy(x920, x222, 262144 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x923 = (float*)myGpuMalloc(128 * sizeof(float)); float* x223 = x6+668096; CUDA_CALL(hipMemcpy(x923, x223, 128 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x926 = (float*)myGpuMalloc(512 * sizeof(float)); float* x224 = x6+1165248; CUDA_CALL(hipMemcpy(x926, x224, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x929 = (float*)myGpuMalloc(512 * sizeof(float)); float* x225 = x6+9091008; CUDA_CALL(hipMemcpy(x929, x225, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x932 = (float*)myGpuMalloc(128 * sizeof(float)); float* x226 = x6+816448; CUDA_CALL(hipMemcpy(x932, x226, 128 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x935 = (float*)myGpuMalloc(589824 * sizeof(float)); float* x227 = x6+7709120; CUDA_CALL(hipMemcpy(x935, x227, 589824 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x938 = (float*)myGpuMalloc(20480 * sizeof(float)); float* x228 = x6+23553472; CUDA_CALL(hipMemcpy(x938, x228, 20480 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x941 = (float*)myGpuMalloc(256 * sizeof(float)); float* x229 = x6+4938176; CUDA_CALL(hipMemcpy(x941, x229, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x944 = (float*)myGpuMalloc(256 * sizeof(float)); float* x230 = x6+2169792; CUDA_CALL(hipMemcpy(x944, x230, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x947 = (float*)myGpuMalloc(256 * sizeof(float)); float* x231 = x6+6059200; CUDA_CALL(hipMemcpy(x947, x231, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x950 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x232 = x6+6323648; CUDA_CALL(hipMemcpy(x950, x232, 1024 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x953 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x233 = x6+4082112; CUDA_CALL(hipMemcpy(x953, x233, 1024 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x956 = (float*)myGpuMalloc(4096 * sizeof(float)); float* x234 = x6+1984; CUDA_CALL(hipMemcpy(x956, x234, 4096 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x959 = (float*)myGpuMalloc(512 * sizeof(float)); float* x235 = x6+1446848; CUDA_CALL(hipMemcpy(x959, x235, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x962 = (float*)myGpuMalloc(147456 * sizeof(float)); float* x236 = x6+668608; CUDA_CALL(hipMemcpy(x962, x236, 147456 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x965 = (float*)myGpuMalloc(128 * sizeof(float)); float* x237 = x6+1231552; CUDA_CALL(hipMemcpy(x965, x237, 128 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x968 = (float*)myGpuMalloc(256 * sizeof(float)); float* x238 = x6+3818688; CUDA_CALL(hipMemcpy(x968, x238, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x971 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x239 = x6+6321600; CUDA_CALL(hipMemcpy(x971, x239, 1024 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x974 = (float*)myGpuMalloc(2048 * sizeof(float)); float* x240 = x6+12502464; CUDA_CALL(hipMemcpy(x974, x240, 2048 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x977 = (float*)myGpuMalloc(256 * sizeof(float)); float* x241 = x6+8299712; CUDA_CALL(hipMemcpy(x977, x241, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x980 = (float*)myGpuMalloc(256 * sizeof(float)); float* x242 = x6+5467840; CUDA_CALL(hipMemcpy(x980, x242, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x983 = (float*)myGpuMalloc(128 * sizeof(float)); float* x243 = x6+1231424; CUDA_CALL(hipMemcpy(x983, x243, 128 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x986 = (float*)myGpuMalloc(256 * sizeof(float)); float* x244 = x6+78016; CUDA_CALL(hipMemcpy(x986, x244, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x989 = (float*)myGpuMalloc(64 * sizeof(float)); float* x245 = x6+131968; CUDA_CALL(hipMemcpy(x989, x245, 64 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x992 = (float*)myGpuMalloc(2048 * sizeof(float)); float* x246 = x6+19082688; CUDA_CALL(hipMemcpy(x992, x246, 2048 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x995 = (float*)myGpuMalloc(512 * sizeof(float)); float* x247 = x6+882624; CUDA_CALL(hipMemcpy(x995, x247, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x998 = (float*)myGpuMalloc(256 * sizeof(float)); float* x248 = x6+219840; CUDA_CALL(hipMemcpy(x998, x248, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1001 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x249 = x6+8562112; CUDA_CALL(hipMemcpy(x1001, x249, 1024 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1004 = (float*)myGpuMalloc(589824 * sizeof(float)); float* x250 = x6+5468608; CUDA_CALL(hipMemcpy(x1004, x250, 589824 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1007 = (float*)myGpuMalloc(256 * sizeof(float)); float* x251 = x6+7179200; CUDA_CALL(hipMemcpy(x1007, x251, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1010 = (float*)myGpuMalloc(64 * sizeof(float)); float* x252 = x6+1792; CUDA_CALL(hipMemcpy(x1010, x252, 64 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1013 = (float*)myGpuMalloc(128 * sizeof(float)); float* x253 = x6+401344; CUDA_CALL(hipMemcpy(x1013, x253, 128 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1016 = (float*)myGpuMalloc(256 * sizeof(float)); float* x254 = x6+7708352; CUDA_CALL(hipMemcpy(x1016, x254, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1019 = (float*)myGpuMalloc(256 * sizeof(float)); float* x255 = x6+6588352; CUDA_CALL(hipMemcpy(x1019, x255, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1022 = (float*)myGpuMalloc(512 * sizeof(float)); float* x256 = x6+20134848; CUDA_CALL(hipMemcpy(x1022, x256, 512 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1025 = (float*)myGpuMalloc(65536 * sizeof(float)); float* x257 = x6+602560; CUDA_CALL(hipMemcpy(x1025, x257, 65536 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1028 = (float*)myGpuMalloc(64 * sizeof(float)); float* x258 = x6+165952; CUDA_CALL(hipMemcpy(x1028, x258, 64 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1031 = (float*)myGpuMalloc(131072 * sizeof(float)); float* x259 = x6+469440; CUDA_CALL(hipMemcpy(x1031, x259, 131072 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1034 = (float*)myGpuMalloc(256 * sizeof(float)); float* x260 = x6+3227584; CUDA_CALL(hipMemcpy(x1034, x260, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1037 = (float*)myGpuMalloc(2048 * sizeof(float)); float* x261 = x6+23549376; CUDA_CALL(hipMemcpy(x1037, x261, 2048 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1040 = (float*)myGpuMalloc(128 * sizeof(float)); float* x262 = x6+1231680; CUDA_CALL(hipMemcpy(x1040, x262, 128 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1043 = (float*)myGpuMalloc(589824 * sizeof(float)); float* x263 = x6+6588864; CUDA_CALL(hipMemcpy(x1043, x263, 589824 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1046 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x264 = x6+5201344; CUDA_CALL(hipMemcpy(x1046, x264, 1024 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1049 = (float*)myGpuMalloc(256 * sizeof(float)); float* x265 = x6+77760; CUDA_CALL(hipMemcpy(x1049, x265, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1052 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x266 = x6+19084736; CUDA_CALL(hipMemcpy(x1052, x266, 1048576 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1055 = (float*)myGpuMalloc(128 * sizeof(float)); float* x267 = x6+1098048; CUDA_CALL(hipMemcpy(x1055, x267, 128 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1058 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x268 = x6+2435520; CUDA_CALL(hipMemcpy(x1058, x268, 1024 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1061 = (float*)myGpuMalloc(128 * sizeof(float)); float* x269 = x6+1379520; CUDA_CALL(hipMemcpy(x1061, x269, 128 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1064 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x270 = x6+2170304; CUDA_CALL(hipMemcpy(x1064, x270, 262144 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1067 = (float*)myGpuMalloc(256 * sizeof(float)); float* x271 = x6+1578432; CUDA_CALL(hipMemcpy(x1067, x271, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1070 = (float*)myGpuMalloc(256 * sizeof(float)); float* x272 = x6+3817920; CUDA_CALL(hipMemcpy(x1070, x272, 256 * sizeof(float), hipMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1073 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x273 = x6+7444928; CUDA_CALL(hipMemcpy(x1073, x273, 1024 * sizeof(float), hipMemcpyHostToDevice)); int32_t x1075 = open("../../cifar10_data/cifar-10-batches-bin/data_batch_1.bin",0); int32_t x1076 = fsize(x1075); int64_t x1078 = (int64_t)x1076; int64_t x1079 = x1078 / 3073LL; int32_t x1080 = (int32_t)x1079; int32_t x1081 = x1080 * 3072; float* x1082 = (float*)myMalloc(x1081 * sizeof(float));; int* x1083 = (int32_t*)myMalloc(x1080 * sizeof(int32_t));; char* x1077 = (char*)mmap(0, x1076, PROT_READ | PROT_WRITE, MAP_FILE | MAP_PRIVATE, x1075, 0); for(int x1085=0; x1085 < x1080; x1085++) { int32_t x1086 = x1085 * 3073; char x1087 = x1077[x1086]; int32_t x1088 = (int32_t)(unsigned char)x1087; x1083[x1085] = x1088; int32_t x1094 = x1086 + 1; int32_t x1092 = x1085 * 3072; for(int x1091=0; x1091 < 3072; x1091++) { int32_t x1095 = x1094 + x1091; char x1096 = x1077[x1095]; int32_t x1093 = x1092 + x1091; float x1097 = (float)(unsigned char)x1096; float x1098 = x1097 / 255.0f; x1082[x1093] = x1098; } } int32_t x1104 = x1080 / 64; for(int x1106=0; x1106 < x1104; x1106++) { int32_t x1107 = x1106 * 64; int32_t x1108 = x1107 * 3072; float* x1109 = x1082+x1108; int* x1110 = x1083+x1107; printf("input (size 64 x 3 x 32 x 32)\n"); float x1112 = 0.0f; for(int x1114=0; x1114 < 196608; x1114++) { float x1115 = x1112; float x1116 = x1109[x1114]; float x1117 = fabs(x1116); float x1118 = fabs(x1115); bool x1119 = x1117 > x1118; float x1120; if (x1119) { x1120 = x1116; } else { x1120 = x1115; } x1112 = x1120; } float x1124 = x1112; printf("Max Abs: %.5f || ",x1124); for(int x1127=0; x1127 < 10; x1127++) { float x1128 = x1109[x1127]; printf("%.5f ",x1128); } printf("\n"); // Tensor 'toGPU' invocation. float* x1134 = (float*)myGpuMalloc(196608 * sizeof(float)); CUDA_CALL(hipMemcpy(x1134, x1109, 196608 * sizeof(float), hipMemcpyHostToDevice)); float* x1136 = (float*)myGpuMalloc(4194304 * sizeof(float)); float* x1137 = (float*)myMalloc(1 * sizeof(float));; x1137[0] = 0.0f; float* x1139 = (float*)myMalloc(1 * sizeof(float));; x1139[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 3, 32, 32)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 64, 3, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 32, 32)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1139, in_desc, x1134, filt_desc, x713, conv_desc, algo, ws_data, ws_size, x1137, out_desc, x1136)); }; float* x1142 = (float*)myGpuMalloc(4194304 * sizeof(float)); float* x1143 = (float*)myMalloc(1 * sizeof(float));; x1143[0] = 0.0f; float* x1145 = (float*)myMalloc(1 * sizeof(float));; x1145[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 32, 32)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 32, 32)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 64, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1145, x1145, in_desc, x1136, out_desc, x1142, sbmv_desc, x875, x1010, x377, x587, 1.0E-5)); }; float* x1148 = (float*)myMalloc(1 * sizeof(float));; x1148[0] = 0.0f; float* x1150 = (float*)myMalloc(1 * sizeof(float));; x1150[0] = 1.0f; float* x1152 = (float*)myGpuMalloc(4194304 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 32, 32)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1150, x_desc, x1142, x1148, x_desc, x1152)); }; float* x1154 = (float*)myMalloc(1 * sizeof(float));; x1154[0] = 0.0f; float* x1156 = (float*)myMalloc(1 * sizeof(float));; x1156[0] = 1.0f; float* x1158 = (float*)myGpuMalloc(1048576 * sizeof(float)); { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 32, 32)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnPoolingDescriptor_t poolingDesc; CUDNN_CALL(cudnnCreatePoolingDescriptor(&poolingDesc)); CUDNN_CALL(cudnnSetPooling2dDescriptor( poolingDesc, CUDNN_POOLING_MAX, CUDNN_NOT_PROPAGATE_NAN, 2, 2, 0, 0, 2, 2 )); CUDNN_CALL(cudnnPoolingForward( cudnnHandle, poolingDesc, x1156, in_desc, x1152, x1154, out_desc, x1158)); }; float* x1160 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1161 = (float*)myMalloc(1 * sizeof(float));; x1161[0] = 0.0f; float* x1163 = (float*)myMalloc(1 * sizeof(float));; x1163[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 64, 64, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1163, in_desc, x1158, filt_desc, x956, conv_desc, algo, ws_data, ws_size, x1161, out_desc, x1160)); }; float* x1166 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1167 = (float*)myMalloc(1 * sizeof(float));; x1167[0] = 0.0f; float* x1169 = (float*)myMalloc(1 * sizeof(float));; x1169[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 64, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1169, x1169, in_desc, x1160, out_desc, x1166, sbmv_desc, x335, x416, x599, x410, 1.0E-5)); }; float* x1172 = (float*)myMalloc(1 * sizeof(float));; x1172[0] = 0.0f; float* x1174 = (float*)myMalloc(1 * sizeof(float));; x1174[0] = 1.0f; float* x1176 = (float*)myGpuMalloc(1048576 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1174, x_desc, x1166, x1172, x_desc, x1176)); }; float* x1178 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1179 = (float*)myMalloc(1 * sizeof(float));; x1179[0] = 0.0f; float* x1181 = (float*)myMalloc(1 * sizeof(float));; x1181[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 64, 64, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1181, in_desc, x1176, filt_desc, x527, conv_desc, algo, ws_data, ws_size, x1179, out_desc, x1178)); }; float* x1184 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1185 = (float*)myMalloc(1 * sizeof(float));; x1185[0] = 0.0f; float* x1187 = (float*)myMalloc(1 * sizeof(float));; x1187[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 64, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1187, x1187, in_desc, x1178, out_desc, x1184, sbmv_desc, x749, x404, x572, x731, 1.0E-5)); }; float* x1190 = (float*)myMalloc(1 * sizeof(float));; x1190[0] = 0.0f; float* x1192 = (float*)myMalloc(1 * sizeof(float));; x1192[0] = 1.0f; float* x1194 = (float*)myGpuMalloc(1048576 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1192, x_desc, x1184, x1190, x_desc, x1194)); }; float* x1196 = (float*)myGpuMalloc(4194304 * sizeof(float)); float* x1197 = (float*)myMalloc(1 * sizeof(float));; x1197[0] = 0.0f; float* x1199 = (float*)myMalloc(1 * sizeof(float));; x1199[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 256, 64, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1199, in_desc, x1194, filt_desc, x353, conv_desc, algo, ws_data, ws_size, x1197, out_desc, x1196)); }; float* x1202 = (float*)myGpuMalloc(4194304 * sizeof(float)); float* x1203 = (float*)myMalloc(1 * sizeof(float));; x1203[0] = 0.0f; float* x1205 = (float*)myMalloc(1 * sizeof(float));; x1205[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 256, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1205, x1205, in_desc, x1196, out_desc, x1202, sbmv_desc, x854, x635, x470, x365, 1.0E-5)); }; float* x1208 = (float*)myGpuMalloc(4194304 * sizeof(float)); float* x1209 = (float*)myMalloc(1 * sizeof(float));; x1209[0] = 0.0f; float* x1211 = (float*)myMalloc(1 * sizeof(float));; x1211[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 256, 64, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1211, in_desc, x1158, filt_desc, x743, conv_desc, algo, ws_data, ws_size, x1209, out_desc, x1208)); }; float* x1214 = (float*)myGpuMalloc(4194304 * sizeof(float)); float* x1215 = (float*)myMalloc(1 * sizeof(float));; x1215[0] = 0.0f; float* x1217 = (float*)myMalloc(1 * sizeof(float));; x1217[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 256, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1217, x1217, in_desc, x1208, out_desc, x1214, sbmv_desc, x485, x866, x1049, x986, 1.0E-5)); }; float* x1220 = (float*)myMalloc(1 * sizeof(float));; x1220[0] = 1.0f; float* x1222 = (float*)myMalloc(1 * sizeof(float));; x1222[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x1220, bias_desc, x1214, x1222, out_desc, x1202)); }; float* x1225 = (float*)myMalloc(1 * sizeof(float));; x1225[0] = 0.0f; float* x1227 = (float*)myMalloc(1 * sizeof(float));; x1227[0] = 1.0f; float* x1229 = (float*)myGpuMalloc(4194304 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1227, x_desc, x1202, x1225, x_desc, x1229)); }; float* x1231 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1232 = (float*)myMalloc(1 * sizeof(float));; x1232[0] = 0.0f; float* x1234 = (float*)myMalloc(1 * sizeof(float));; x1234[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 64, 256, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1234, in_desc, x1229, filt_desc, x770, conv_desc, algo, ws_data, ws_size, x1232, out_desc, x1231)); }; float* x1237 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1238 = (float*)myMalloc(1 * sizeof(float));; x1238[0] = 0.0f; float* x1240 = (float*)myMalloc(1 * sizeof(float));; x1240[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 64, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1240, x1240, in_desc, x1231, out_desc, x1237, sbmv_desc, x683, x437, x287, x563, 1.0E-5)); }; float* x1243 = (float*)myMalloc(1 * sizeof(float));; x1243[0] = 0.0f; float* x1245 = (float*)myMalloc(1 * sizeof(float));; x1245[0] = 1.0f; float* x1247 = (float*)myGpuMalloc(1048576 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1245, x_desc, x1237, x1243, x_desc, x1247)); }; float* x1249 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1250 = (float*)myMalloc(1 * sizeof(float));; x1250[0] = 0.0f; float* x1252 = (float*)myMalloc(1 * sizeof(float));; x1252[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 64, 64, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1252, in_desc, x1247, filt_desc, x506, conv_desc, algo, ws_data, ws_size, x1250, out_desc, x1249)); }; float* x1255 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1256 = (float*)myMalloc(1 * sizeof(float));; x1256[0] = 0.0f; float* x1258 = (float*)myMalloc(1 * sizeof(float));; x1258[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 64, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1258, x1258, in_desc, x1249, out_desc, x1255, sbmv_desc, x881, x716, x389, x989, 1.0E-5)); }; float* x1261 = (float*)myMalloc(1 * sizeof(float));; x1261[0] = 0.0f; float* x1263 = (float*)myMalloc(1 * sizeof(float));; x1263[0] = 1.0f; float* x1265 = (float*)myGpuMalloc(1048576 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1263, x_desc, x1255, x1261, x_desc, x1265)); }; float* x1267 = (float*)myGpuMalloc(4194304 * sizeof(float)); float* x1268 = (float*)myMalloc(1 * sizeof(float));; x1268[0] = 0.0f; float* x1270 = (float*)myMalloc(1 * sizeof(float));; x1270[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 256, 64, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1270, in_desc, x1265, filt_desc, x647, conv_desc, algo, ws_data, ws_size, x1268, out_desc, x1267)); }; float* x1273 = (float*)myGpuMalloc(4194304 * sizeof(float)); float* x1274 = (float*)myMalloc(1 * sizeof(float));; x1274[0] = 0.0f; float* x1276 = (float*)myMalloc(1 * sizeof(float));; x1276[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 256, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1276, x1276, in_desc, x1267, out_desc, x1273, sbmv_desc, x431, x278, x530, x755, 1.0E-5)); }; float* x1279 = (float*)myMalloc(1 * sizeof(float));; x1279[0] = 1.0f; float* x1281 = (float*)myMalloc(1 * sizeof(float));; x1281[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x1279, bias_desc, x1229, x1281, out_desc, x1273)); }; float* x1284 = (float*)myMalloc(1 * sizeof(float));; x1284[0] = 0.0f; float* x1286 = (float*)myMalloc(1 * sizeof(float));; x1286[0] = 1.0f; float* x1288 = (float*)myGpuMalloc(4194304 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1286, x_desc, x1273, x1284, x_desc, x1288)); }; float* x1290 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1291 = (float*)myMalloc(1 * sizeof(float));; x1291[0] = 0.0f; float* x1293 = (float*)myMalloc(1 * sizeof(float));; x1293[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 64, 256, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1293, in_desc, x1288, filt_desc, x707, conv_desc, algo, ws_data, ws_size, x1291, out_desc, x1290)); }; float* x1296 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1297 = (float*)myMalloc(1 * sizeof(float));; x1297[0] = 0.0f; float* x1299 = (float*)myMalloc(1 * sizeof(float));; x1299[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 64, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1299, x1299, in_desc, x1290, out_desc, x1296, sbmv_desc, x500, x329, x1028, x818, 1.0E-5)); }; float* x1302 = (float*)myMalloc(1 * sizeof(float));; x1302[0] = 0.0f; float* x1304 = (float*)myMalloc(1 * sizeof(float));; x1304[0] = 1.0f; float* x1306 = (float*)myGpuMalloc(1048576 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1304, x_desc, x1296, x1302, x_desc, x1306)); }; float* x1308 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1309 = (float*)myMalloc(1 * sizeof(float));; x1309[0] = 0.0f; float* x1311 = (float*)myMalloc(1 * sizeof(float));; x1311[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 64, 64, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1311, in_desc, x1306, filt_desc, x476, conv_desc, algo, ws_data, ws_size, x1309, out_desc, x1308)); }; float* x1314 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1315 = (float*)myMalloc(1 * sizeof(float));; x1315[0] = 0.0f; float* x1317 = (float*)myMalloc(1 * sizeof(float));; x1317[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 64, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1317, x1317, in_desc, x1308, out_desc, x1314, sbmv_desc, x473, x662, x794, x611, 1.0E-5)); }; float* x1320 = (float*)myMalloc(1 * sizeof(float));; x1320[0] = 0.0f; float* x1322 = (float*)myMalloc(1 * sizeof(float));; x1322[0] = 1.0f; float* x1324 = (float*)myGpuMalloc(1048576 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1322, x_desc, x1314, x1320, x_desc, x1324)); }; float* x1326 = (float*)myGpuMalloc(4194304 * sizeof(float)); float* x1327 = (float*)myMalloc(1 * sizeof(float));; x1327[0] = 0.0f; float* x1329 = (float*)myMalloc(1 * sizeof(float));; x1329[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 256, 64, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1329, in_desc, x1324, filt_desc, x518, conv_desc, algo, ws_data, ws_size, x1327, out_desc, x1326)); }; float* x1332 = (float*)myGpuMalloc(4194304 * sizeof(float)); float* x1333 = (float*)myMalloc(1 * sizeof(float));; x1333[0] = 0.0f; float* x1335 = (float*)myMalloc(1 * sizeof(float));; x1335[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 256, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1335, x1335, in_desc, x1326, out_desc, x1332, sbmv_desc, x368, x998, x809, x656, 1.0E-5)); }; float* x1338 = (float*)myMalloc(1 * sizeof(float));; x1338[0] = 1.0f; float* x1340 = (float*)myMalloc(1 * sizeof(float));; x1340[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x1338, bias_desc, x1288, x1340, out_desc, x1332)); }; float* x1343 = (float*)myMalloc(1 * sizeof(float));; x1343[0] = 0.0f; float* x1345 = (float*)myMalloc(1 * sizeof(float));; x1345[0] = 1.0f; float* x1347 = (float*)myGpuMalloc(4194304 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1345, x_desc, x1332, x1343, x_desc, x1347)); }; float* x1349 = (float*)myGpuMalloc(2097152 * sizeof(float)); float* x1350 = (float*)myMalloc(1 * sizeof(float));; x1350[0] = 0.0f; float* x1352 = (float*)myMalloc(1 * sizeof(float));; x1352[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 128, 256, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 16, 16)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1352, in_desc, x1347, filt_desc, x290, conv_desc, algo, ws_data, ws_size, x1350, out_desc, x1349)); }; float* x1355 = (float*)myGpuMalloc(2097152 * sizeof(float)); float* x1356 = (float*)myMalloc(1 * sizeof(float));; x1356[0] = 0.0f; float* x1358 = (float*)myMalloc(1 * sizeof(float));; x1358[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 16, 16)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 16, 16)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 128, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1358, x1358, in_desc, x1349, out_desc, x1355, sbmv_desc, x509, x773, x869, x659, 1.0E-5)); }; float* x1361 = (float*)myMalloc(1 * sizeof(float));; x1361[0] = 0.0f; float* x1363 = (float*)myMalloc(1 * sizeof(float));; x1363[0] = 1.0f; float* x1365 = (float*)myGpuMalloc(2097152 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 16, 16)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1363, x_desc, x1355, x1361, x_desc, x1365)); }; float* x1367 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x1368 = (float*)myMalloc(1 * sizeof(float));; x1368[0] = 0.0f; float* x1370 = (float*)myMalloc(1 * sizeof(float));; x1370[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 16, 16)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 128, 128, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 2, 2, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1370, in_desc, x1365, filt_desc, x338, conv_desc, algo, ws_data, ws_size, x1368, out_desc, x1367)); }; float* x1373 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x1374 = (float*)myMalloc(1 * sizeof(float));; x1374[0] = 0.0f; float* x1376 = (float*)myMalloc(1 * sizeof(float));; x1376[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 128, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1376, x1376, in_desc, x1367, out_desc, x1373, sbmv_desc, x1013, x827, x641, x386, 1.0E-5)); }; float* x1379 = (float*)myMalloc(1 * sizeof(float));; x1379[0] = 0.0f; float* x1381 = (float*)myMalloc(1 * sizeof(float));; x1381[0] = 1.0f; float* x1383 = (float*)myGpuMalloc(524288 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1381, x_desc, x1373, x1379, x_desc, x1383)); }; float* x1385 = (float*)myGpuMalloc(2097152 * sizeof(float)); float* x1386 = (float*)myMalloc(1 * sizeof(float));; x1386[0] = 0.0f; float* x1388 = (float*)myMalloc(1 * sizeof(float));; x1388[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 512, 128, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1388, in_desc, x1383, filt_desc, x575, conv_desc, algo, ws_data, ws_size, x1386, out_desc, x1385)); }; float* x1391 = (float*)myGpuMalloc(2097152 * sizeof(float)); float* x1392 = (float*)myMalloc(1 * sizeof(float));; x1392[0] = 0.0f; float* x1394 = (float*)myMalloc(1 * sizeof(float));; x1394[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 512, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1394, x1394, in_desc, x1385, out_desc, x1391, sbmv_desc, x692, x887, x704, x560, 1.0E-5)); }; float* x1397 = (float*)myGpuMalloc(2097152 * sizeof(float)); float* x1398 = (float*)myMalloc(1 * sizeof(float));; x1398[0] = 0.0f; float* x1400 = (float*)myMalloc(1 * sizeof(float));; x1400[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 512, 256, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 2, 2, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1400, in_desc, x1347, filt_desc, x1031, conv_desc, algo, ws_data, ws_size, x1398, out_desc, x1397)); }; float* x1403 = (float*)myGpuMalloc(2097152 * sizeof(float)); float* x1404 = (float*)myMalloc(1 * sizeof(float));; x1404[0] = 0.0f; float* x1406 = (float*)myMalloc(1 * sizeof(float));; x1406[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 512, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1406, x1406, in_desc, x1397, out_desc, x1403, sbmv_desc, x878, x614, x383, x326, 1.0E-5)); }; float* x1409 = (float*)myMalloc(1 * sizeof(float));; x1409[0] = 1.0f; float* x1411 = (float*)myMalloc(1 * sizeof(float));; x1411[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x1409, bias_desc, x1403, x1411, out_desc, x1391)); }; float* x1414 = (float*)myMalloc(1 * sizeof(float));; x1414[0] = 0.0f; float* x1416 = (float*)myMalloc(1 * sizeof(float));; x1416[0] = 1.0f; float* x1418 = (float*)myGpuMalloc(2097152 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1416, x_desc, x1391, x1414, x_desc, x1418)); }; float* x1420 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x1421 = (float*)myMalloc(1 * sizeof(float));; x1421[0] = 0.0f; float* x1423 = (float*)myMalloc(1 * sizeof(float));; x1423[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 128, 512, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1423, in_desc, x1418, filt_desc, x1025, conv_desc, algo, ws_data, ws_size, x1421, out_desc, x1420)); }; float* x1426 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x1427 = (float*)myMalloc(1 * sizeof(float));; x1427[0] = 0.0f; float* x1429 = (float*)myMalloc(1 * sizeof(float));; x1429[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 128, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1429, x1429, in_desc, x1420, out_desc, x1426, sbmv_desc, x923, x308, x557, x788, 1.0E-5)); }; float* x1432 = (float*)myMalloc(1 * sizeof(float));; x1432[0] = 0.0f; float* x1434 = (float*)myMalloc(1 * sizeof(float));; x1434[0] = 1.0f; float* x1436 = (float*)myGpuMalloc(524288 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1434, x_desc, x1426, x1432, x_desc, x1436)); }; float* x1438 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x1439 = (float*)myMalloc(1 * sizeof(float));; x1439[0] = 0.0f; float* x1441 = (float*)myMalloc(1 * sizeof(float));; x1441[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 128, 128, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1441, in_desc, x1436, filt_desc, x962, conv_desc, algo, ws_data, ws_size, x1439, out_desc, x1438)); }; float* x1444 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x1445 = (float*)myMalloc(1 * sizeof(float));; x1445[0] = 0.0f; float* x1447 = (float*)myMalloc(1 * sizeof(float));; x1447[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 128, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1447, x1447, in_desc, x1438, out_desc, x1444, sbmv_desc, x281, x542, x362, x932, 1.0E-5)); }; float* x1450 = (float*)myMalloc(1 * sizeof(float));; x1450[0] = 0.0f; float* x1452 = (float*)myMalloc(1 * sizeof(float));; x1452[0] = 1.0f; float* x1454 = (float*)myGpuMalloc(524288 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1452, x_desc, x1444, x1450, x_desc, x1454)); }; float* x1456 = (float*)myGpuMalloc(2097152 * sizeof(float)); float* x1457 = (float*)myMalloc(1 * sizeof(float));; x1457[0] = 0.0f; float* x1459 = (float*)myMalloc(1 * sizeof(float));; x1459[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 512, 128, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1459, in_desc, x1454, filt_desc, x590, conv_desc, algo, ws_data, ws_size, x1457, out_desc, x1456)); }; float* x1462 = (float*)myGpuMalloc(2097152 * sizeof(float)); float* x1463 = (float*)myMalloc(1 * sizeof(float));; x1463[0] = 0.0f; float* x1465 = (float*)myMalloc(1 * sizeof(float));; x1465[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 512, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1465, x1465, in_desc, x1456, out_desc, x1462, sbmv_desc, x413, x995, x698, x521, 1.0E-5)); }; float* x1468 = (float*)myMalloc(1 * sizeof(float));; x1468[0] = 1.0f; float* x1470 = (float*)myMalloc(1 * sizeof(float));; x1470[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x1468, bias_desc, x1418, x1470, out_desc, x1462)); }; float* x1473 = (float*)myMalloc(1 * sizeof(float));; x1473[0] = 0.0f; float* x1475 = (float*)myMalloc(1 * sizeof(float));; x1475[0] = 1.0f; float* x1477 = (float*)myGpuMalloc(2097152 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1475, x_desc, x1462, x1473, x_desc, x1477)); }; float* x1479 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x1480 = (float*)myMalloc(1 * sizeof(float));; x1480[0] = 0.0f; float* x1482 = (float*)myMalloc(1 * sizeof(float));; x1482[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 128, 512, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1482, in_desc, x1477, filt_desc, x845, conv_desc, algo, ws_data, ws_size, x1480, out_desc, x1479)); }; float* x1485 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x1486 = (float*)myMalloc(1 * sizeof(float));; x1486[0] = 0.0f; float* x1488 = (float*)myMalloc(1 * sizeof(float));; x1488[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 128, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1488, x1488, in_desc, x1479, out_desc, x1485, sbmv_desc, x392, x767, x593, x284, 1.0E-5)); }; float* x1491 = (float*)myMalloc(1 * sizeof(float));; x1491[0] = 0.0f; float* x1493 = (float*)myMalloc(1 * sizeof(float));; x1493[0] = 1.0f; float* x1495 = (float*)myGpuMalloc(524288 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1493, x_desc, x1485, x1491, x_desc, x1495)); }; float* x1497 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x1498 = (float*)myMalloc(1 * sizeof(float));; x1498[0] = 0.0f; float* x1500 = (float*)myMalloc(1 * sizeof(float));; x1500[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 128, 128, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1500, in_desc, x1495, filt_desc, x830, conv_desc, algo, ws_data, ws_size, x1498, out_desc, x1497)); }; float* x1503 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x1504 = (float*)myMalloc(1 * sizeof(float));; x1504[0] = 0.0f; float* x1506 = (float*)myMalloc(1 * sizeof(float));; x1506[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 128, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1506, x1506, in_desc, x1497, out_desc, x1503, sbmv_desc, x638, x440, x908, x1055, 1.0E-5)); }; float* x1509 = (float*)myMalloc(1 * sizeof(float));; x1509[0] = 0.0f; float* x1511 = (float*)myMalloc(1 * sizeof(float));; x1511[0] = 1.0f; float* x1513 = (float*)myGpuMalloc(524288 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1511, x_desc, x1503, x1509, x_desc, x1513)); }; float* x1515 = (float*)myGpuMalloc(2097152 * sizeof(float)); float* x1516 = (float*)myMalloc(1 * sizeof(float));; x1516[0] = 0.0f; float* x1518 = (float*)myMalloc(1 * sizeof(float));; x1518[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 512, 128, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1518, in_desc, x1513, filt_desc, x380, conv_desc, algo, ws_data, ws_size, x1516, out_desc, x1515)); }; float* x1521 = (float*)myGpuMalloc(2097152 * sizeof(float)); float* x1522 = (float*)myMalloc(1 * sizeof(float));; x1522[0] = 0.0f; float* x1524 = (float*)myMalloc(1 * sizeof(float));; x1524[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 512, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1524, x1524, in_desc, x1515, out_desc, x1521, sbmv_desc, x758, x503, x332, x926, 1.0E-5)); }; float* x1527 = (float*)myMalloc(1 * sizeof(float));; x1527[0] = 1.0f; float* x1529 = (float*)myMalloc(1 * sizeof(float));; x1529[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x1527, bias_desc, x1477, x1529, out_desc, x1521)); }; float* x1532 = (float*)myMalloc(1 * sizeof(float));; x1532[0] = 0.0f; float* x1534 = (float*)myMalloc(1 * sizeof(float));; x1534[0] = 1.0f; float* x1536 = (float*)myGpuMalloc(2097152 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1534, x_desc, x1521, x1532, x_desc, x1536)); }; float* x1538 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x1539 = (float*)myMalloc(1 * sizeof(float));; x1539[0] = 0.0f; float* x1541 = (float*)myMalloc(1 * sizeof(float));; x1541[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 128, 512, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1541, in_desc, x1536, filt_desc, x653, conv_desc, algo, ws_data, ws_size, x1539, out_desc, x1538)); }; float* x1544 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x1545 = (float*)myMalloc(1 * sizeof(float));; x1545[0] = 0.0f; float* x1547 = (float*)myMalloc(1 * sizeof(float));; x1547[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 128, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1547, x1547, in_desc, x1538, out_desc, x1544, sbmv_desc, x374, x983, x965, x1040, 1.0E-5)); }; float* x1550 = (float*)myMalloc(1 * sizeof(float));; x1550[0] = 0.0f; float* x1552 = (float*)myMalloc(1 * sizeof(float));; x1552[0] = 1.0f; float* x1554 = (float*)myGpuMalloc(524288 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1552, x_desc, x1544, x1550, x_desc, x1554)); }; float* x1556 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x1557 = (float*)myMalloc(1 * sizeof(float));; x1557[0] = 0.0f; float* x1559 = (float*)myMalloc(1 * sizeof(float));; x1559[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 128, 128, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1559, in_desc, x1554, filt_desc, x752, conv_desc, algo, ws_data, ws_size, x1557, out_desc, x1556)); }; float* x1562 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x1563 = (float*)myMalloc(1 * sizeof(float));; x1563[0] = 0.0f; float* x1565 = (float*)myMalloc(1 * sizeof(float));; x1565[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 128, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1565, x1565, in_desc, x1556, out_desc, x1562, sbmv_desc, x494, x371, x1061, x701, 1.0E-5)); }; float* x1568 = (float*)myMalloc(1 * sizeof(float));; x1568[0] = 0.0f; float* x1570 = (float*)myMalloc(1 * sizeof(float));; x1570[0] = 1.0f; float* x1572 = (float*)myGpuMalloc(524288 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1570, x_desc, x1562, x1568, x_desc, x1572)); }; float* x1574 = (float*)myGpuMalloc(2097152 * sizeof(float)); float* x1575 = (float*)myMalloc(1 * sizeof(float));; x1575[0] = 0.0f; float* x1577 = (float*)myMalloc(1 * sizeof(float));; x1577[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 512, 128, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1577, in_desc, x1572, filt_desc, x422, conv_desc, algo, ws_data, ws_size, x1575, out_desc, x1574)); }; float* x1580 = (float*)myGpuMalloc(2097152 * sizeof(float)); float* x1581 = (float*)myMalloc(1 * sizeof(float));; x1581[0] = 0.0f; float* x1583 = (float*)myMalloc(1 * sizeof(float));; x1583[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 512, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1583, x1583, in_desc, x1574, out_desc, x1580, sbmv_desc, x725, x419, x314, x959, 1.0E-5)); }; float* x1586 = (float*)myMalloc(1 * sizeof(float));; x1586[0] = 1.0f; float* x1588 = (float*)myMalloc(1 * sizeof(float));; x1588[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x1586, bias_desc, x1536, x1588, out_desc, x1580)); }; float* x1591 = (float*)myMalloc(1 * sizeof(float));; x1591[0] = 0.0f; float* x1593 = (float*)myMalloc(1 * sizeof(float));; x1593[0] = 1.0f; float* x1595 = (float*)myGpuMalloc(2097152 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1593, x_desc, x1580, x1591, x_desc, x1595)); }; float* x1597 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1598 = (float*)myMalloc(1 * sizeof(float));; x1598[0] = 0.0f; float* x1600 = (float*)myMalloc(1 * sizeof(float));; x1600[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 256, 512, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 8, 8)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1600, in_desc, x1595, filt_desc, x797, conv_desc, algo, ws_data, ws_size, x1598, out_desc, x1597)); }; float* x1603 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1604 = (float*)myMalloc(1 * sizeof(float));; x1604[0] = 0.0f; float* x1606 = (float*)myMalloc(1 * sizeof(float));; x1606[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 8, 8)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 256, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1606, x1606, in_desc, x1597, out_desc, x1603, sbmv_desc, x1067, x320, x650, x851, 1.0E-5)); }; float* x1609 = (float*)myMalloc(1 * sizeof(float));; x1609[0] = 0.0f; float* x1611 = (float*)myMalloc(1 * sizeof(float));; x1611[0] = 1.0f; float* x1613 = (float*)myGpuMalloc(1048576 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 8, 8)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1611, x_desc, x1603, x1609, x_desc, x1613)); }; float* x1615 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1616 = (float*)myMalloc(1 * sizeof(float));; x1616[0] = 0.0f; float* x1618 = (float*)myMalloc(1 * sizeof(float));; x1618[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 8, 8)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 256, 256, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 2, 2, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1618, in_desc, x1613, filt_desc, x782, conv_desc, algo, ws_data, ws_size, x1616, out_desc, x1615)); }; float* x1621 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1622 = (float*)myMalloc(1 * sizeof(float));; x1622[0] = 0.0f; float* x1624 = (float*)myMalloc(1 * sizeof(float));; x1624[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 256, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1624, x1624, in_desc, x1615, out_desc, x1621, sbmv_desc, x581, x305, x944, x554, 1.0E-5)); }; float* x1627 = (float*)myMalloc(1 * sizeof(float));; x1627[0] = 0.0f; float* x1629 = (float*)myMalloc(1 * sizeof(float));; x1629[0] = 1.0f; float* x1631 = (float*)myGpuMalloc(262144 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1629, x_desc, x1621, x1627, x_desc, x1631)); }; float* x1633 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1634 = (float*)myMalloc(1 * sizeof(float));; x1634[0] = 0.0f; float* x1636 = (float*)myMalloc(1 * sizeof(float));; x1636[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 1024, 256, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1636, in_desc, x1631, filt_desc, x1064, conv_desc, algo, ws_data, ws_size, x1634, out_desc, x1633)); }; float* x1639 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1640 = (float*)myMalloc(1 * sizeof(float));; x1640[0] = 0.0f; float* x1642 = (float*)myMalloc(1 * sizeof(float));; x1642[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 1024, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1642, x1642, in_desc, x1633, out_desc, x1639, sbmv_desc, x311, x608, x905, x1058, 1.0E-5)); }; float* x1645 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1646 = (float*)myMalloc(1 * sizeof(float));; x1646[0] = 0.0f; float* x1648 = (float*)myMalloc(1 * sizeof(float));; x1648[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 1024, 512, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 2, 2, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1648, in_desc, x1595, filt_desc, x482, conv_desc, algo, ws_data, ws_size, x1646, out_desc, x1645)); }; float* x1651 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1652 = (float*)myMalloc(1 * sizeof(float));; x1652[0] = 0.0f; float* x1654 = (float*)myMalloc(1 * sizeof(float));; x1654[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 1024, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1654, x1654, in_desc, x1645, out_desc, x1651, sbmv_desc, x344, x917, x515, x890, 1.0E-5)); }; float* x1657 = (float*)myMalloc(1 * sizeof(float));; x1657[0] = 1.0f; float* x1659 = (float*)myMalloc(1 * sizeof(float));; x1659[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x1657, bias_desc, x1651, x1659, out_desc, x1639)); }; float* x1662 = (float*)myMalloc(1 * sizeof(float));; x1662[0] = 0.0f; float* x1664 = (float*)myMalloc(1 * sizeof(float));; x1664[0] = 1.0f; float* x1666 = (float*)myGpuMalloc(1048576 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1664, x_desc, x1639, x1662, x_desc, x1666)); }; float* x1668 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1669 = (float*)myMalloc(1 * sizeof(float));; x1669[0] = 0.0f; float* x1671 = (float*)myMalloc(1 * sizeof(float));; x1671[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 256, 1024, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1671, in_desc, x1666, filt_desc, x296, conv_desc, algo, ws_data, ws_size, x1669, out_desc, x1668)); }; float* x1674 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1675 = (float*)myMalloc(1 * sizeof(float));; x1675[0] = 0.0f; float* x1677 = (float*)myMalloc(1 * sizeof(float));; x1677[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 256, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1677, x1677, in_desc, x1668, out_desc, x1674, sbmv_desc, x347, x914, x1034, x728, 1.0E-5)); }; float* x1680 = (float*)myMalloc(1 * sizeof(float));; x1680[0] = 0.0f; float* x1682 = (float*)myMalloc(1 * sizeof(float));; x1682[0] = 1.0f; float* x1684 = (float*)myGpuMalloc(262144 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1682, x_desc, x1674, x1680, x_desc, x1684)); }; float* x1686 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1687 = (float*)myMalloc(1 * sizeof(float));; x1687[0] = 0.0f; float* x1689 = (float*)myMalloc(1 * sizeof(float));; x1689[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 256, 256, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1689, in_desc, x1684, filt_desc, x350, conv_desc, algo, ws_data, ws_size, x1687, out_desc, x1686)); }; float* x1692 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1693 = (float*)myMalloc(1 * sizeof(float));; x1693[0] = 0.0f; float* x1695 = (float*)myMalloc(1 * sizeof(float));; x1695[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 256, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1695, x1695, in_desc, x1686, out_desc, x1692, sbmv_desc, x1070, x545, x857, x968, 1.0E-5)); }; float* x1698 = (float*)myMalloc(1 * sizeof(float));; x1698[0] = 0.0f; float* x1700 = (float*)myMalloc(1 * sizeof(float));; x1700[0] = 1.0f; float* x1702 = (float*)myGpuMalloc(262144 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1700, x_desc, x1692, x1698, x_desc, x1702)); }; float* x1704 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1705 = (float*)myMalloc(1 * sizeof(float));; x1705[0] = 0.0f; float* x1707 = (float*)myMalloc(1 * sizeof(float));; x1707[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 1024, 256, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1707, in_desc, x1702, filt_desc, x425, conv_desc, algo, ws_data, ws_size, x1705, out_desc, x1704)); }; float* x1710 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1711 = (float*)myMalloc(1 * sizeof(float));; x1711[0] = 0.0f; float* x1713 = (float*)myMalloc(1 * sizeof(float));; x1713[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 1024, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1713, x1713, in_desc, x1704, out_desc, x1710, sbmv_desc, x317, x953, x803, x686, 1.0E-5)); }; float* x1716 = (float*)myMalloc(1 * sizeof(float));; x1716[0] = 1.0f; float* x1718 = (float*)myMalloc(1 * sizeof(float));; x1718[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x1716, bias_desc, x1666, x1718, out_desc, x1710)); }; float* x1721 = (float*)myMalloc(1 * sizeof(float));; x1721[0] = 0.0f; float* x1723 = (float*)myMalloc(1 * sizeof(float));; x1723[0] = 1.0f; float* x1725 = (float*)myGpuMalloc(1048576 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1723, x_desc, x1710, x1721, x_desc, x1725)); }; float* x1727 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1728 = (float*)myMalloc(1 * sizeof(float));; x1728[0] = 0.0f; float* x1730 = (float*)myMalloc(1 * sizeof(float));; x1730[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 256, 1024, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1730, in_desc, x1725, filt_desc, x911, conv_desc, algo, ws_data, ws_size, x1728, out_desc, x1727)); }; float* x1733 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1734 = (float*)myMalloc(1 * sizeof(float));; x1734[0] = 0.0f; float* x1736 = (float*)myMalloc(1 * sizeof(float));; x1736[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 256, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1736, x1736, in_desc, x1727, out_desc, x1733, sbmv_desc, x644, x848, x791, x779, 1.0E-5)); }; float* x1739 = (float*)myMalloc(1 * sizeof(float));; x1739[0] = 0.0f; float* x1741 = (float*)myMalloc(1 * sizeof(float));; x1741[0] = 1.0f; float* x1743 = (float*)myGpuMalloc(262144 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1741, x_desc, x1733, x1739, x_desc, x1743)); }; float* x1745 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1746 = (float*)myMalloc(1 * sizeof(float));; x1746[0] = 0.0f; float* x1748 = (float*)myMalloc(1 * sizeof(float));; x1748[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 256, 256, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1748, in_desc, x1743, filt_desc, x299, conv_desc, algo, ws_data, ws_size, x1746, out_desc, x1745)); }; float* x1751 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1752 = (float*)myMalloc(1 * sizeof(float));; x1752[0] = 0.0f; float* x1754 = (float*)myMalloc(1 * sizeof(float));; x1754[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 256, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1754, x1754, in_desc, x1745, out_desc, x1751, sbmv_desc, x941, x833, x629, x446, 1.0E-5)); }; float* x1757 = (float*)myMalloc(1 * sizeof(float));; x1757[0] = 0.0f; float* x1759 = (float*)myMalloc(1 * sizeof(float));; x1759[0] = 1.0f; float* x1761 = (float*)myGpuMalloc(262144 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1759, x_desc, x1751, x1757, x_desc, x1761)); }; float* x1763 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1764 = (float*)myMalloc(1 * sizeof(float));; x1764[0] = 0.0f; float* x1766 = (float*)myMalloc(1 * sizeof(float));; x1766[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 1024, 256, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1766, in_desc, x1761, filt_desc, x605, conv_desc, algo, ws_data, ws_size, x1764, out_desc, x1763)); }; float* x1769 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1770 = (float*)myMalloc(1 * sizeof(float));; x1770[0] = 0.0f; float* x1772 = (float*)myMalloc(1 * sizeof(float));; x1772[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 1024, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1772, x1772, in_desc, x1763, out_desc, x1769, sbmv_desc, x1046, x428, x677, x821, 1.0E-5)); }; float* x1775 = (float*)myMalloc(1 * sizeof(float));; x1775[0] = 1.0f; float* x1777 = (float*)myMalloc(1 * sizeof(float));; x1777[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x1775, bias_desc, x1725, x1777, out_desc, x1769)); }; float* x1780 = (float*)myMalloc(1 * sizeof(float));; x1780[0] = 0.0f; float* x1782 = (float*)myMalloc(1 * sizeof(float));; x1782[0] = 1.0f; float* x1784 = (float*)myGpuMalloc(1048576 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1782, x_desc, x1769, x1780, x_desc, x1784)); }; float* x1786 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1787 = (float*)myMalloc(1 * sizeof(float));; x1787[0] = 0.0f; float* x1789 = (float*)myMalloc(1 * sizeof(float));; x1789[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 256, 1024, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1789, in_desc, x1784, filt_desc, x275, conv_desc, algo, ws_data, ws_size, x1787, out_desc, x1786)); }; float* x1792 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1793 = (float*)myMalloc(1 * sizeof(float));; x1793[0] = 0.0f; float* x1795 = (float*)myMalloc(1 * sizeof(float));; x1795[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 256, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1795, x1795, in_desc, x1786, out_desc, x1792, sbmv_desc, x533, x980, x746, x551, 1.0E-5)); }; float* x1798 = (float*)myMalloc(1 * sizeof(float));; x1798[0] = 0.0f; float* x1800 = (float*)myMalloc(1 * sizeof(float));; x1800[0] = 1.0f; float* x1802 = (float*)myGpuMalloc(262144 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1800, x_desc, x1792, x1798, x_desc, x1802)); }; float* x1804 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1805 = (float*)myMalloc(1 * sizeof(float));; x1805[0] = 0.0f; float* x1807 = (float*)myMalloc(1 * sizeof(float));; x1807[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 256, 256, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1807, in_desc, x1802, filt_desc, x1004, conv_desc, algo, ws_data, ws_size, x1805, out_desc, x1804)); }; float* x1810 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1811 = (float*)myMalloc(1 * sizeof(float));; x1811[0] = 0.0f; float* x1813 = (float*)myMalloc(1 * sizeof(float));; x1813[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 256, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1813, x1813, in_desc, x1804, out_desc, x1810, sbmv_desc, x479, x665, x815, x947, 1.0E-5)); }; float* x1816 = (float*)myMalloc(1 * sizeof(float));; x1816[0] = 0.0f; float* x1818 = (float*)myMalloc(1 * sizeof(float));; x1818[0] = 1.0f; float* x1820 = (float*)myGpuMalloc(262144 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1818, x_desc, x1810, x1816, x_desc, x1820)); }; float* x1822 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1823 = (float*)myMalloc(1 * sizeof(float));; x1823[0] = 0.0f; float* x1825 = (float*)myMalloc(1 * sizeof(float));; x1825[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 1024, 256, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1825, in_desc, x1820, filt_desc, x524, conv_desc, algo, ws_data, ws_size, x1823, out_desc, x1822)); }; float* x1828 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1829 = (float*)myMalloc(1 * sizeof(float));; x1829[0] = 0.0f; float* x1831 = (float*)myMalloc(1 * sizeof(float));; x1831[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 1024, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1831, x1831, in_desc, x1822, out_desc, x1828, sbmv_desc, x971, x695, x950, x740, 1.0E-5)); }; float* x1834 = (float*)myMalloc(1 * sizeof(float));; x1834[0] = 1.0f; float* x1836 = (float*)myMalloc(1 * sizeof(float));; x1836[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x1834, bias_desc, x1784, x1836, out_desc, x1828)); }; float* x1839 = (float*)myMalloc(1 * sizeof(float));; x1839[0] = 0.0f; float* x1841 = (float*)myMalloc(1 * sizeof(float));; x1841[0] = 1.0f; float* x1843 = (float*)myGpuMalloc(1048576 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1841, x_desc, x1828, x1839, x_desc, x1843)); }; float* x1845 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1846 = (float*)myMalloc(1 * sizeof(float));; x1846[0] = 0.0f; float* x1848 = (float*)myMalloc(1 * sizeof(float));; x1848[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 256, 1024, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1848, in_desc, x1843, filt_desc, x323, conv_desc, algo, ws_data, ws_size, x1846, out_desc, x1845)); }; float* x1851 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1852 = (float*)myMalloc(1 * sizeof(float));; x1852[0] = 0.0f; float* x1854 = (float*)myMalloc(1 * sizeof(float));; x1854[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 256, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1854, x1854, in_desc, x1845, out_desc, x1851, sbmv_desc, x488, x812, x1019, x464, 1.0E-5)); }; float* x1857 = (float*)myMalloc(1 * sizeof(float));; x1857[0] = 0.0f; float* x1859 = (float*)myMalloc(1 * sizeof(float));; x1859[0] = 1.0f; float* x1861 = (float*)myGpuMalloc(262144 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1859, x_desc, x1851, x1857, x_desc, x1861)); }; float* x1863 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1864 = (float*)myMalloc(1 * sizeof(float));; x1864[0] = 0.0f; float* x1866 = (float*)myMalloc(1 * sizeof(float));; x1866[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 256, 256, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1866, in_desc, x1861, filt_desc, x1043, conv_desc, algo, ws_data, ws_size, x1864, out_desc, x1863)); }; float* x1869 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1870 = (float*)myMalloc(1 * sizeof(float));; x1870[0] = 0.0f; float* x1872 = (float*)myMalloc(1 * sizeof(float));; x1872[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 256, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1872, x1872, in_desc, x1863, out_desc, x1869, sbmv_desc, x761, x584, x1007, x569, 1.0E-5)); }; float* x1875 = (float*)myMalloc(1 * sizeof(float));; x1875[0] = 0.0f; float* x1877 = (float*)myMalloc(1 * sizeof(float));; x1877[0] = 1.0f; float* x1879 = (float*)myGpuMalloc(262144 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1877, x_desc, x1869, x1875, x_desc, x1879)); }; float* x1881 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1882 = (float*)myMalloc(1 * sizeof(float));; x1882[0] = 0.0f; float* x1884 = (float*)myMalloc(1 * sizeof(float));; x1884[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 1024, 256, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1884, in_desc, x1879, filt_desc, x920, conv_desc, algo, ws_data, ws_size, x1882, out_desc, x1881)); }; float* x1887 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1888 = (float*)myMalloc(1 * sizeof(float));; x1888[0] = 0.0f; float* x1890 = (float*)myMalloc(1 * sizeof(float));; x1890[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 1024, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1890, x1890, in_desc, x1881, out_desc, x1887, sbmv_desc, x434, x617, x884, x1073, 1.0E-5)); }; float* x1893 = (float*)myMalloc(1 * sizeof(float));; x1893[0] = 1.0f; float* x1895 = (float*)myMalloc(1 * sizeof(float));; x1895[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x1893, bias_desc, x1843, x1895, out_desc, x1887)); }; float* x1898 = (float*)myMalloc(1 * sizeof(float));; x1898[0] = 0.0f; float* x1900 = (float*)myMalloc(1 * sizeof(float));; x1900[0] = 1.0f; float* x1902 = (float*)myGpuMalloc(1048576 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1900, x_desc, x1887, x1898, x_desc, x1902)); }; float* x1904 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1905 = (float*)myMalloc(1 * sizeof(float));; x1905[0] = 0.0f; float* x1907 = (float*)myMalloc(1 * sizeof(float));; x1907[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 256, 1024, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1907, in_desc, x1902, filt_desc, x710, conv_desc, algo, ws_data, ws_size, x1905, out_desc, x1904)); }; float* x1910 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1911 = (float*)myMalloc(1 * sizeof(float));; x1911[0] = 0.0f; float* x1913 = (float*)myMalloc(1 * sizeof(float));; x1913[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 256, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1913, x1913, in_desc, x1904, out_desc, x1910, sbmv_desc, x512, x1016, x497, x785, 1.0E-5)); }; float* x1916 = (float*)myMalloc(1 * sizeof(float));; x1916[0] = 0.0f; float* x1918 = (float*)myMalloc(1 * sizeof(float));; x1918[0] = 1.0f; float* x1920 = (float*)myGpuMalloc(262144 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1918, x_desc, x1910, x1916, x_desc, x1920)); }; float* x1922 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1923 = (float*)myMalloc(1 * sizeof(float));; x1923[0] = 0.0f; float* x1925 = (float*)myMalloc(1 * sizeof(float));; x1925[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 256, 256, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1925, in_desc, x1920, filt_desc, x935, conv_desc, algo, ws_data, ws_size, x1923, out_desc, x1922)); }; float* x1928 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1929 = (float*)myMalloc(1 * sizeof(float));; x1929[0] = 0.0f; float* x1931 = (float*)myMalloc(1 * sizeof(float));; x1931[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 256, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1931, x1931, in_desc, x1922, out_desc, x1928, sbmv_desc, x680, x824, x467, x977, 1.0E-5)); }; float* x1934 = (float*)myMalloc(1 * sizeof(float));; x1934[0] = 0.0f; float* x1936 = (float*)myMalloc(1 * sizeof(float));; x1936[0] = 1.0f; float* x1938 = (float*)myGpuMalloc(262144 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1936, x_desc, x1928, x1934, x_desc, x1938)); }; float* x1940 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1941 = (float*)myMalloc(1 * sizeof(float));; x1941[0] = 0.0f; float* x1943 = (float*)myMalloc(1 * sizeof(float));; x1943[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 1024, 256, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1943, in_desc, x1938, filt_desc, x548, conv_desc, algo, ws_data, ws_size, x1941, out_desc, x1940)); }; float* x1946 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1947 = (float*)myMalloc(1 * sizeof(float));; x1947[0] = 0.0f; float* x1949 = (float*)myMalloc(1 * sizeof(float));; x1949[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 1024, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1949, x1949, in_desc, x1940, out_desc, x1946, sbmv_desc, x1001, x536, x623, x806, 1.0E-5)); }; float* x1952 = (float*)myMalloc(1 * sizeof(float));; x1952[0] = 1.0f; float* x1954 = (float*)myMalloc(1 * sizeof(float));; x1954[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x1952, bias_desc, x1902, x1954, out_desc, x1946)); }; float* x1957 = (float*)myMalloc(1 * sizeof(float));; x1957[0] = 0.0f; float* x1959 = (float*)myMalloc(1 * sizeof(float));; x1959[0] = 1.0f; float* x1961 = (float*)myGpuMalloc(1048576 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1959, x_desc, x1946, x1957, x_desc, x1961)); }; float* x1963 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x1964 = (float*)myMalloc(1 * sizeof(float));; x1964[0] = 0.0f; float* x1966 = (float*)myMalloc(1 * sizeof(float));; x1966[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 512, 1024, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1966, in_desc, x1961, filt_desc, x674, conv_desc, algo, ws_data, ws_size, x1964, out_desc, x1963)); }; float* x1969 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x1970 = (float*)myMalloc(1 * sizeof(float));; x1970[0] = 0.0f; float* x1972 = (float*)myMalloc(1 * sizeof(float));; x1972[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 512, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1972, x1972, in_desc, x1963, out_desc, x1969, sbmv_desc, x860, x929, x458, x620, 1.0E-5)); }; float* x1975 = (float*)myMalloc(1 * sizeof(float));; x1975[0] = 0.0f; float* x1977 = (float*)myMalloc(1 * sizeof(float));; x1977[0] = 1.0f; float* x1979 = (float*)myGpuMalloc(524288 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1977, x_desc, x1969, x1975, x_desc, x1979)); }; float* x1981 = (float*)myGpuMalloc(131072 * sizeof(float)); float* x1982 = (float*)myMalloc(1 * sizeof(float));; x1982[0] = 0.0f; float* x1984 = (float*)myMalloc(1 * sizeof(float));; x1984[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 512, 512, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 2, 2, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1984, in_desc, x1979, filt_desc, x359, conv_desc, algo, ws_data, ws_size, x1982, out_desc, x1981)); }; float* x1987 = (float*)myGpuMalloc(131072 * sizeof(float)); float* x1988 = (float*)myMalloc(1 * sizeof(float));; x1988[0] = 0.0f; float* x1990 = (float*)myMalloc(1 * sizeof(float));; x1990[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 512, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1990, x1990, in_desc, x1981, out_desc, x1987, sbmv_desc, x872, x734, x596, x407, 1.0E-5)); }; float* x1993 = (float*)myMalloc(1 * sizeof(float));; x1993[0] = 0.0f; float* x1995 = (float*)myMalloc(1 * sizeof(float));; x1995[0] = 1.0f; float* x1997 = (float*)myGpuMalloc(131072 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1995, x_desc, x1987, x1993, x_desc, x1997)); }; float* x1999 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x2000 = (float*)myMalloc(1 * sizeof(float));; x2000[0] = 0.0f; float* x2002 = (float*)myMalloc(1 * sizeof(float));; x2002[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 2048, 512, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x2002, in_desc, x1997, filt_desc, x893, conv_desc, algo, ws_data, ws_size, x2000, out_desc, x1999)); }; float* x2005 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x2006 = (float*)myMalloc(1 * sizeof(float));; x2006[0] = 0.0f; float* x2008 = (float*)myMalloc(1 * sizeof(float));; x2008[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 2048, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x2008, x2008, in_desc, x1999, out_desc, x2005, sbmv_desc, x974, x443, x602, x836, 1.0E-5)); }; float* x2011 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x2012 = (float*)myMalloc(1 * sizeof(float));; x2012[0] = 0.0f; float* x2014 = (float*)myMalloc(1 * sizeof(float));; x2014[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 2048, 1024, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 2, 2, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x2014, in_desc, x1961, filt_desc, x899, conv_desc, algo, ws_data, ws_size, x2012, out_desc, x2011)); }; float* x2017 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x2018 = (float*)myMalloc(1 * sizeof(float));; x2018[0] = 0.0f; float* x2020 = (float*)myMalloc(1 * sizeof(float));; x2020[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 2048, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x2020, x2020, in_desc, x2011, out_desc, x2017, sbmv_desc, x776, x578, x449, x632, 1.0E-5)); }; float* x2023 = (float*)myMalloc(1 * sizeof(float));; x2023[0] = 1.0f; float* x2025 = (float*)myMalloc(1 * sizeof(float));; x2025[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x2023, bias_desc, x2017, x2025, out_desc, x2005)); }; float* x2028 = (float*)myMalloc(1 * sizeof(float));; x2028[0] = 0.0f; float* x2030 = (float*)myMalloc(1 * sizeof(float));; x2030[0] = 1.0f; float* x2032 = (float*)myGpuMalloc(524288 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x2030, x_desc, x2005, x2028, x_desc, x2032)); }; float* x2034 = (float*)myGpuMalloc(131072 * sizeof(float)); float* x2035 = (float*)myMalloc(1 * sizeof(float));; x2035[0] = 0.0f; float* x2037 = (float*)myMalloc(1 * sizeof(float));; x2037[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 512, 2048, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x2037, in_desc, x2032, filt_desc, x902, conv_desc, algo, ws_data, ws_size, x2035, out_desc, x2034)); }; float* x2040 = (float*)myGpuMalloc(131072 * sizeof(float)); float* x2041 = (float*)myMalloc(1 * sizeof(float));; x2041[0] = 0.0f; float* x2043 = (float*)myMalloc(1 * sizeof(float));; x2043[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 512, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x2043, x2043, in_desc, x2034, out_desc, x2040, sbmv_desc, x395, x668, x719, x452, 1.0E-5)); }; float* x2046 = (float*)myMalloc(1 * sizeof(float));; x2046[0] = 0.0f; float* x2048 = (float*)myMalloc(1 * sizeof(float));; x2048[0] = 1.0f; float* x2050 = (float*)myGpuMalloc(131072 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x2048, x_desc, x2040, x2046, x_desc, x2050)); }; float* x2052 = (float*)myGpuMalloc(131072 * sizeof(float)); float* x2053 = (float*)myMalloc(1 * sizeof(float));; x2053[0] = 0.0f; float* x2055 = (float*)myMalloc(1 * sizeof(float));; x2055[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 512, 512, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x2055, in_desc, x2050, filt_desc, x722, conv_desc, algo, ws_data, ws_size, x2053, out_desc, x2052)); }; float* x2058 = (float*)myGpuMalloc(131072 * sizeof(float)); float* x2059 = (float*)myMalloc(1 * sizeof(float));; x2059[0] = 0.0f; float* x2061 = (float*)myMalloc(1 * sizeof(float));; x2061[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 512, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x2061, x2061, in_desc, x2052, out_desc, x2058, sbmv_desc, x737, x455, x671, x842, 1.0E-5)); }; float* x2064 = (float*)myMalloc(1 * sizeof(float));; x2064[0] = 0.0f; float* x2066 = (float*)myMalloc(1 * sizeof(float));; x2066[0] = 1.0f; float* x2068 = (float*)myGpuMalloc(131072 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x2066, x_desc, x2058, x2064, x_desc, x2068)); }; float* x2070 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x2071 = (float*)myMalloc(1 * sizeof(float));; x2071[0] = 0.0f; float* x2073 = (float*)myMalloc(1 * sizeof(float));; x2073[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 2048, 512, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x2073, in_desc, x2068, filt_desc, x398, conv_desc, algo, ws_data, ws_size, x2071, out_desc, x2070)); }; float* x2076 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x2077 = (float*)myMalloc(1 * sizeof(float));; x2077[0] = 0.0f; float* x2079 = (float*)myMalloc(1 * sizeof(float));; x2079[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 2048, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x2079, x2079, in_desc, x2070, out_desc, x2076, sbmv_desc, x539, x689, x461, x992, 1.0E-5)); }; float* x2082 = (float*)myMalloc(1 * sizeof(float));; x2082[0] = 1.0f; float* x2084 = (float*)myMalloc(1 * sizeof(float));; x2084[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x2082, bias_desc, x2032, x2084, out_desc, x2076)); }; float* x2087 = (float*)myMalloc(1 * sizeof(float));; x2087[0] = 0.0f; float* x2089 = (float*)myMalloc(1 * sizeof(float));; x2089[0] = 1.0f; float* x2091 = (float*)myGpuMalloc(524288 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x2089, x_desc, x2076, x2087, x_desc, x2091)); }; float* x2093 = (float*)myGpuMalloc(131072 * sizeof(float)); float* x2094 = (float*)myMalloc(1 * sizeof(float));; x2094[0] = 0.0f; float* x2096 = (float*)myMalloc(1 * sizeof(float));; x2096[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 512, 2048, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x2096, in_desc, x2091, filt_desc, x1052, conv_desc, algo, ws_data, ws_size, x2094, out_desc, x2093)); }; float* x2099 = (float*)myGpuMalloc(131072 * sizeof(float)); float* x2100 = (float*)myMalloc(1 * sizeof(float));; x2100[0] = 0.0f; float* x2102 = (float*)myMalloc(1 * sizeof(float));; x2102[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 512, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x2102, x2102, in_desc, x2093, out_desc, x2099, sbmv_desc, x302, x491, x896, x1022, 1.0E-5)); }; float* x2105 = (float*)myMalloc(1 * sizeof(float));; x2105[0] = 0.0f; float* x2107 = (float*)myMalloc(1 * sizeof(float));; x2107[0] = 1.0f; float* x2109 = (float*)myGpuMalloc(131072 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x2107, x_desc, x2099, x2105, x_desc, x2109)); }; float* x2111 = (float*)myGpuMalloc(131072 * sizeof(float)); float* x2112 = (float*)myMalloc(1 * sizeof(float));; x2112[0] = 0.0f; float* x2114 = (float*)myMalloc(1 * sizeof(float));; x2114[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 512, 512, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x2114, in_desc, x2109, filt_desc, x341, conv_desc, algo, ws_data, ws_size, x2112, out_desc, x2111)); }; float* x2117 = (float*)myGpuMalloc(131072 * sizeof(float)); float* x2118 = (float*)myMalloc(1 * sizeof(float));; x2118[0] = 0.0f; float* x2120 = (float*)myMalloc(1 * sizeof(float));; x2120[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 512, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x2120, x2120, in_desc, x2111, out_desc, x2117, sbmv_desc, x839, x764, x293, x863, 1.0E-5)); }; float* x2123 = (float*)myMalloc(1 * sizeof(float));; x2123[0] = 0.0f; float* x2125 = (float*)myMalloc(1 * sizeof(float));; x2125[0] = 1.0f; float* x2127 = (float*)myGpuMalloc(131072 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x2125, x_desc, x2117, x2123, x_desc, x2127)); }; float* x2129 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x2130 = (float*)myMalloc(1 * sizeof(float));; x2130[0] = 0.0f; float* x2132 = (float*)myMalloc(1 * sizeof(float));; x2132[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 2048, 512, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x2132, in_desc, x2127, filt_desc, x356, conv_desc, algo, ws_data, ws_size, x2130, out_desc, x2129)); }; float* x2135 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x2136 = (float*)myMalloc(1 * sizeof(float));; x2136[0] = 0.0f; float* x2138 = (float*)myMalloc(1 * sizeof(float));; x2138[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 2048, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x2138, x2138, in_desc, x2129, out_desc, x2135, sbmv_desc, x566, x800, x1037, x626, 1.0E-5)); }; float* x2141 = (float*)myMalloc(1 * sizeof(float));; x2141[0] = 1.0f; float* x2143 = (float*)myMalloc(1 * sizeof(float));; x2143[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x2141, bias_desc, x2091, x2143, out_desc, x2135)); }; float* x2146 = (float*)myMalloc(1 * sizeof(float));; x2146[0] = 0.0f; float* x2148 = (float*)myMalloc(1 * sizeof(float));; x2148[0] = 1.0f; float* x2150 = (float*)myGpuMalloc(524288 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x2148, x_desc, x2135, x2146, x_desc, x2150)); }; float* x2152 = (float*)myMalloc(1 * sizeof(float));; x2152[0] = 0.0f; float* x2154 = (float*)myMalloc(1 * sizeof(float));; x2154[0] = 1.0f; float* x2156 = (float*)myGpuMalloc(131072 * sizeof(float)); { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 1, 1)); cudnnPoolingDescriptor_t poolingDesc; CUDNN_CALL(cudnnCreatePoolingDescriptor(&poolingDesc)); CUDNN_CALL(cudnnSetPooling2dDescriptor( poolingDesc, CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING, CUDNN_NOT_PROPAGATE_NAN, 2, 2, 0, 0, 1, 1 )); CUDNN_CALL(cudnnPoolingForward( cudnnHandle, poolingDesc, x2154, in_desc, x2150, x2152, out_desc, x2156)); }; // resize to WrappedArray(64, 2048) // gemm: WrappedArray(64, 2048), Vector(10, 2048) float* x2160 = (float*)myGpuMalloc(640 * sizeof(float)); float* x2161 = (float*)myMalloc(1 * sizeof(float));; x2161[0] = 0.0f; float* x2163 = (float*)myMalloc(1 * sizeof(float));; x2163[0] = 1.0f; CUBLAS_CALL(hipblasSgemm(cublasHandle, HIPBLAS_OP_T, HIPBLAS_OP_N, 10,64,2048,x2163,x938,2048,x2156,2048,x2161,x2160,10)); float* x2166 = (float*)myMalloc(1 * sizeof(float));; x2166[0] = 1.0f; float* x2168 = (float*)myMalloc(1 * sizeof(float));; x2168[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 10, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 10, 1, 1)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x2166, bias_desc, x401, x2168, out_desc, x2160)); }; // Tensor 'toCPU' invocation. float* x2172 = (float*)myMalloc(640 * sizeof(float));; CUDA_CALL(hipMemcpy(x2172, x2160, 640 * sizeof(float), hipMemcpyDeviceToHost)); printf("output (size 64 x 10)\n"); float x2175 = 0.0f; for(int x2177=0; x2177 < 640; x2177++) { float x2178 = x2175; float x2179 = x2172[x2177]; float x2180 = fabs(x2179); float x2181 = fabs(x2178); bool x2182 = x2180 > x2181; float x2183; if (x2182) { x2183 = x2179; } else { x2183 = x2178; } x2175 = x2183; } float x2187 = x2175; printf("Max Abs: %.5f || ",x2187); for(int x2189=0; x2189 < 10; x2189++) { float x2190 = x2172[x2189]; printf("%.5f ",x2190); } printf("\n"); assert(false && "stop"); } // Backend cleanup. CUBLAS_CALL(hipblasDestroy(cublasHandle)); CUDA_CALL(hipFree(gpuMallocBase)); CUDNN_CALL(cudnnDestroy(cudnnHandle)); } /***************************************** End of C Generated Code *******************************************/
3147817946a6fec05536427adacf5cd9a915bb02.cu
#include <assert.h> #include <err.h> #include <errno.h> #include <fcntl.h> #include <functional> #include <math.h> #include <memory> #include <random> #include <stdint.h> #include <stdio.h> #include <sys/mman.h> #include <sys/stat.h> #include <sys/time.h> #include <time.h> #include <unistd.h> #include <cblas.h> #include <algorithm> #include <cuda.h> #include <cuda_runtime.h> #include <cublas_v2.h> #include <cudnn.h> using namespace std; #ifndef MAP_FILE #define MAP_FILE MAP_SHARED #endif int fsize(int fd) { struct stat stat; int res = fstat(fd, &stat); return stat.st_size; } int printll(char *s) { while (*s != '\n' && *s != ',' && *s != '\t') { putchar(*s++); } return 0; } long hash(char *str0, int len) { unsigned char *str = (unsigned char *)str0; unsigned long hash = 5381; int c; while ((c = *str++) && len--) hash = ((hash << 5) + hash) + c; /* hash * 33 + c */ return hash; } long HEAP_SIZE_CPU = 1073741826; // 1048576; // 536870912; // 268435456; // 2097152; 1610612739; // 4294967304; // void *mallocBase = calloc(HEAP_SIZE_CPU, 1); void *mallocAddr = mallocBase; void *waterMark = mallocBase; void *myMalloc(size_t bytes) { void *res = mallocAddr; mallocAddr = (void *)((char *)mallocAddr + bytes); if ((long)mallocAddr >= (long)mallocBase + HEAP_SIZE_CPU) fprintf(stderr, "CPU memory breached limit of HEAP_SIZE_CPU\n"); return res; } long HEAP_SIZE = 4294967304; // this is for GPU int timeval_subtract(struct timeval *result, struct timeval *t2, struct timeval *t1) { long int diff = (t2->tv_usec + 1000000 * t2->tv_sec) - (t1->tv_usec + 1000000 * t1->tv_sec); result->tv_sec = diff / 1000000; result->tv_usec = diff % 1000000; return (diff < 0); } #define CUDA_CALL(f) { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error occurred: %s (%s:%d)\n", \ cudaGetErrorString(err), __FILE__, __LINE__); \ exit(err); \ } \ } #define CUBLAS_CALL(f) { \ cublasStatus_t stat = (f); \ if (stat != CUBLAS_STATUS_SUCCESS) { \ fprintf(stderr, "cuBLAS error occurred: %d (%s:%d)\n", \ stat, __FILE__, __LINE__); \ exit(stat); \ } \ } void *gpuMallocBase; void *gpuMallocAddr; // Alignment boundary size, in bytes. constexpr int N = 4; // 16 void *myGpuMalloc(size_t bytes) { bytes = ((bytes + (1 << N) - 1) >> N) << N; void *res = gpuMallocAddr; gpuMallocAddr = (void *)((char *)gpuMallocAddr + bytes); if ((long)gpuMallocAddr >= (long)gpuMallocBase + HEAP_SIZE) fprintf(stderr, "GPU breached memory limit of HEAP_SIZE\n"); return res; } template <typename T> __global__ void arrayUpdate(T *data, int index, T value) { data[index] = value; } __global__ void arrayFill(float *data, float value) { int tid = threadIdx.x + blockIdx.x * blockDim.x; data[tid] = value; } __global__ void arrayFill_greg(float* data, float value, int size) { int stride = gridDim.x * blockDim.x; int tid = threadIdx.x + blockIdx.x * blockDim.x; for (int i = tid; i < size; i += stride) data[i] = value; } __global__ void hardTanh(float* in, float* out, float min_val, float max_val, int size) { int tid = threadIdx.x + blockIdx.x * blockDim.x; int stride = gridDim.x * blockDim.x; for (int i = tid; i < size; i += stride) { out[i] = in[i] < min_val ? min_val : (in[i] > max_val ? max_val : in[i]); } } __global__ void hardTanh_grad(float* in_x, float* in_d, float* out_d, float min_val, float max_val, int size, bool inplace) { int tid = threadIdx.x + blockIdx.x * blockDim.x; int stride = gridDim.x * blockDim.x; for (int i = tid; i < size; i += stride) { if (inplace) { if (in_x[i] < min_val || in_x[i] > max_val) in_d[i] = 0; } else { if (in_x[i] >= min_val && in_x[i] <= max_val) in_d[i] += out_d[i]; } } } __global__ void nllLoss(float *x, int x_stride, float *y, int* target) { int tid = threadIdx.x + blockIdx.x * blockDim.x; int offset = tid * x_stride + target[tid]; y[tid] = -1 * x[offset]; } __global__ void nllLoss_grad(int x_stride, float *yGrad, int* target, float* xGrad) { int tid = threadIdx.x + blockIdx.x * blockDim.x; int offset = tid * x_stride + target[tid]; xGrad[offset] += -1 * yGrad[tid]; } // only for 4D tensor in and 3D tensor out __global__ void sum_grad(float* in, int inSize0, int inSize1, int inSize2, int inSize3, int nElement, float* out, int outStride0, int outStride1, int outStride2, int dim) { int tid = blockIdx.x * blockDim.x + threadIdx.x; int stride = gridDim.x * blockDim.x; for (int i = tid; i < nElement; i += stride) { int inOff2 = i / inSize3; int inDim3 = i - inOff2 * inSize3; int inOff1 = inOff2 / inSize2; int inDim2 = inOff2 - inOff1 * inSize2; int inDim0 = inOff1 / inSize1; int inDim1 = inOff1 - inDim0 * inSize1; int outOff = 0; if (dim == 0) outOff = inDim1 * outStride0 + inDim2 * outStride1 + inDim3 * outStride2; if (dim == 1) outOff = inDim0 * outStride0 + inDim2 * outStride1 + inDim3 * outStride2; if (dim == 2) outOff = inDim0 * outStride0 + inDim1 * outStride1 + inDim3 * outStride2; if (dim == 3) outOff = inDim0 * outStride0 + inDim1 * outStride1 + inDim2 * outStride2; in[i] += out[outOff]; } } //following - https://github.com/torch/cutorch/blob/master/lib/THC/THCTensorMath.cuh#L49 static inline __device__ int compute(int outputSize0, int outputSize1, int outputSize2, int outputSize3, int outputStride0, int outputStride1, int outputStride2, int outputStride3, const int dimSize, const int concatDim, int linearIndex) { int offset = 0; int curDimSize = 3 == concatDim ? dimSize : outputSize3; int nextDimIndex = linearIndex / curDimSize; int curDimIndex = linearIndex - curDimSize * nextDimIndex; int curDimOffset = curDimIndex * outputStride3; offset += curDimOffset; linearIndex = nextDimIndex; curDimSize = 2 == concatDim ? dimSize : outputSize2; nextDimIndex = linearIndex / curDimSize; curDimIndex = linearIndex - curDimSize * nextDimIndex; curDimOffset = curDimIndex * outputStride2; offset += curDimOffset; linearIndex = nextDimIndex; curDimSize = 1 == concatDim ? dimSize : outputSize1; nextDimIndex = linearIndex / curDimSize; curDimIndex = linearIndex - curDimSize * nextDimIndex; curDimOffset = curDimIndex * outputStride1; offset += curDimOffset; linearIndex = nextDimIndex; return offset + linearIndex * outputStride0; // for (int i = 3; i >= 1; i--) { // int curDimSize = i == concatDim ? dimSize : outputSize[i]; // int nextDimIndex = linearIndex / curDimSize; // int curDimIndex = linearIndex - curDimSize * nextDimIndex; // int curDimOffset = curDimIndex * outputStride[i]; // offset += curDimOffset; // linearIndex = nextDimIndex; // } // return offset + linearIndex * outputStride[0]; } // TODO: Only for Dim of rank 4, and only for 2 inputs, and only for concat at dim = 1 __global__ void concat2D_1D_greg(float* in1, int dimSize1, int nElement1, float* in2, int dimSize2, int nElement2, float* out, int concatDim, int outSize0, int outSize1, int outSize2, int outSize3, int outStride0, int outStride1, int outStride2, int outStride3) { int tid = blockIdx.x * blockDim.x + threadIdx.x; int nElement = blockIdx.y == 0 ? nElement1 : nElement2; if (tid >= nElement) return; float* data = blockIdx.y == 0 ? in1 : in2; int offset = blockIdx.y == 0 ? 0 : dimSize1; int dimSize = blockIdx.y == 0 ? dimSize1 : dimSize2; int dataOffset = offset * outStride1; int stride = gridDim.x * blockDim.x; while (tid < nElement) { int elementOffset = compute(outSize0, outSize1, outSize2, outSize3, outStride0, outStride1, outStride2, outStride3, dimSize, concatDim, tid); out[dataOffset + elementOffset] = data[tid]; tid += stride; } } // TODO: Only for Dim of rank 4, and only for 2 inputs, and only for concat at dim = 1 __global__ void concat2D_1D_greg_grad(float* in1, int dimSize1, int nElement1, float* in2, int dimSize2, int nElement2, float* out, int concatDim, int outSize0, int outSize1, int outSize2, int outSize3, int outStride0, int outStride1, int outStride2, int outStride3) { int tid = blockIdx.x * blockDim.x + threadIdx.x; int nElement = blockIdx.y == 0 ? nElement1 : nElement2; if (tid >= nElement) return; float* data = blockIdx.y == 0 ? in1 : in2; int offset = blockIdx.y == 0 ? 0 : dimSize1; int dimSize = blockIdx.y == 0 ? dimSize1 : dimSize2; int dataOffset = offset * outStride1; int stride = gridDim.x * blockDim.x; while (tid < nElement) { int elementOffset = compute(outSize0, outSize1, outSize2, outSize3, outStride0, outStride1, outStride2, outStride3, dimSize, concatDim, tid); data[tid] += out[dataOffset + elementOffset]; tid += stride; } } __global__ void concat2D_1D_loop(float* in1, float* in2, float* out, int sizeLow, int sizeHigh, int sizeDim1, int sizeDim2) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid >= sizeLow) return; if (blockIdx.y < sizeHigh) { // the first input int index_out = tid + blockIdx.y * sizeLow * (sizeDim1 + sizeDim2); int index_in1 = tid + blockIdx.y * sizeLow * sizeDim1; for (int i = 0; i < sizeDim1; i++) { out[index_out] = in1[index_in1]; index_out += sizeLow; index_in1 += sizeLow; } } else { // the second input int index_out = tid + (blockIdx.y - sizeHigh) * sizeLow * (sizeDim1 + sizeDim2) + sizeLow * sizeDim1; int index_in2 = tid + (blockIdx.y - sizeHigh) * sizeLow * sizeDim2; for (int i = 0; i < sizeDim2; i++) { out[index_out] = in2[index_in2]; index_out += sizeLow; index_in2 += sizeLow; } } } __global__ void concat2D_1D_loop_grad(float* in1, float* in2, float* out, int sizeLow, int sizeHigh, int sizeDim1, int sizeDim2) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid >= sizeLow) return; if (blockIdx.y < sizeHigh) { // the first input int index_out = tid + blockIdx.y * sizeLow * (sizeDim1 + sizeDim2); int index_in1 = tid + blockIdx.y * sizeLow * sizeDim1; for (int i = 0; i < sizeDim1; i++) { in1[index_in1] += out[index_out]; index_out += sizeLow; index_in1 += sizeLow; } } else { // the second input int index_out = tid + (blockIdx.y - sizeHigh) * sizeLow * (sizeDim1 + sizeDim2) + sizeLow * sizeDim1; int index_in2 = tid + (blockIdx.y - sizeHigh) * sizeLow * sizeDim2; for (int i = 0; i < sizeDim2; i++) { in2[index_in2] += out[index_out]; index_out += sizeLow; index_in2 += sizeLow; } } } __global__ void concat2D_1D(float* in1, float* in2, float* out, int dim2, int bound) { int tid = blockIdx.y * gridDim.x * blockDim.x + blockIdx.x * blockDim.x + threadIdx.x; if (blockIdx.x < bound * dim2) { int subid = blockIdx.y * bound * dim2 * blockDim.x + blockIdx.x * blockDim.x + threadIdx.x; out[tid] = in1[subid]; } else { int subid = blockIdx.y * (gridDim.x - bound * dim2) * blockDim.x + (blockIdx.x - bound * dim2) * blockDim.x + threadIdx.x; out[tid] = in2[subid]; } } __global__ void concat2D_1D_grad(float* in1, float* in2, float* out, int dim2, int bound) { int tid = blockIdx.y * gridDim.x * blockDim.x + blockIdx.x * blockDim.x + threadIdx.x; if (blockIdx.x < bound * dim2) { int subid = blockIdx.y * bound * dim2 * blockDim.x + blockIdx.x * blockDim.x + threadIdx.x; in1[subid] += out[tid]; } else { int subid = blockIdx.y * (gridDim.x - bound * dim2) * blockDim.x + (blockIdx.x - bound * dim2) * blockDim.x + threadIdx.x; in2[subid] += out[tid]; } } __global__ void adagrad_update_1D_1D(float* x, float* d, float* m, float clip, float lr, int size) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < size) { if (d[tid] > clip) d[tid] = clip; if (d[tid] < -clip) d[tid] = -clip; m[tid] += d[tid] * d[tid]; x[tid] -= lr * d[tid] / sqrt(m[tid] + 0.00000001); d[tid] = 0; } } __global__ void elementwise_1D_1D_mul(float* in1, float* in2, float* out, int size) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < size) out[tid] = in1[tid] * in2[tid]; } __global__ void elementwise_1D_1D_mul_mutate(float* in1, float* in2, float* out, int size) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < size) out[tid] += in1[tid] * in2[tid]; } __global__ void elementwise_1D_1D_add(float* in1, float* in2, float* out, int size) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < size) out[tid] = in1[tid] + in2[tid]; } __global__ void elementwise_1D_1D_minus(float* in1, float* in2, float* out, int size) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < size) out[tid] = in1[tid] - in2[tid]; } __global__ void elementwise_1D_1D_div(float* in1, float* in2, float* out, int size) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < size) out[tid] = in1[tid] / in2[tid]; } __global__ void elementwise_1D_1D_exp(float* in, float* out, int size) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < size) out[tid] = exp(in[tid]); } __global__ void elementwise_1D_1D_log(float* in, float* out, int size) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < size) out[tid] = log(in[tid]); } __global__ void elementwise_1D_1D_sqrt(float* in, float* out, int size) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < size) out[tid] = sqrt(in[tid]); } __global__ void elementwise_1D_1D_square(float* in, float* out, int size) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < size) out[tid] = in[tid] * in[tid]; } __global__ void elementwise_1D_1D_exp_grad(float* in_x, float* in_d, float* out_x, float * out_d, int size) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < size) in_d[tid] += out_d[tid] * out_x[tid]; } __global__ void elementwise_1D_1D_log_grad(float* in_x, float* in_d, float* out_x, float * out_d, int size) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < size) in_d[tid] += out_d[tid] / in_x[tid]; } __global__ void elementwise_1D_1D_sqrt_grad(float* in_x, float* in_d, float* out_x, float * out_d, int size) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < size) in_d[tid] += out_d[tid] / out_x[tid] / 2; } __global__ void elementwise_1D_1D_square_grad(float* in_x, float* in_d, float* out_x, float * out_d, int size) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < size) in_d[tid] += out_d[tid] * 2 * in_x[tid]; } // From: https://github.com/pytorch/pytorch/blob/master/aten/src/THC/THCIntegerDivider.cuh // Result of div/mod operation stored together. template <typename Value> struct DivMod { Value div, mod; __host__ __device__ DivMod(Value div, Value mod) : div(div), mod(mod) { } }; // Base case: we only have an implementation for uint32_t for now. For // everything else, we use plain division. template <typename Value> struct IntDivider { IntDivider() { } // Dummy constructor for arrays. IntDivider(Value d) : divisor(d) { } __host__ __device__ inline Value div(Value n) const { return n / divisor; } __host__ __device__ inline Value mod(Value n) const { return n % divisor; } __host__ __device__ inline DivMod<Value> divmod(Value n) const { return DivMod<Value>(n / divisor, n % divisor); } Value divisor; }; // Implement fast integer division. template <> struct IntDivider<unsigned int> { static_assert(sizeof(unsigned int) == 4, "Assumes 32-bit unsigned int."); IntDivider() { } // Dummy constructor for arrays. IntDivider(unsigned int d) : divisor(d) { assert(divisor >= 1 && divisor <= INT32_MAX); // TODO: gcc/clang has __builtin_clz() but it's not portable. for (shift = 0; shift < 32; shift++) if ((1U << shift) >= divisor) break; uint64_t one = 1; uint64_t magic = ((one << 32) * ((one << shift) - divisor)) / divisor + 1; m1 = magic; assert(m1 > 0 && m1 == magic); // m1 must fit in 32 bits. } __host__ __device__ inline unsigned int div(unsigned int n) const { #ifdef __CUDA_ARCH__ // 't' is the higher 32-bits of unsigned 32-bit multiplication of 'n' and // 'm1'. unsigned int t = __umulhi(n, m1); return (t + n) >> shift; #else // Using uint64_t so that the addition does not overflow. uint64_t t = ((uint64_t) n * m1) >> 32; return (t + n) >> shift; #endif } __host__ __device__ inline unsigned int mod(unsigned int n) const { return n - div(n) * divisor; } __host__ __device__ inline DivMod<unsigned int> divmod(unsigned int n) const { unsigned int q = div(n); return DivMod<unsigned int>(q, n - q * divisor); } unsigned int divisor; // d above. unsigned int m1; // Magic number: m' above. unsigned int shift; // Shift amounts. }; // From: https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/cuda/detail/OffsetCalculator.cuh /// OffsetCalculator calculates the offset in bytes of a linear index for NARGS /// operands that share the same shape, but may have different strides. template <int NARGS> struct OffsetCalculator { static constexpr int MAX_DIMS = 25; // The offset for each argument (in bytes). Wrapper around fixed-size array. struct offsets_t { __host__ __device__ uint32_t& operator[](int idx) { return values[idx]; } uint32_t values[NARGS]; }; // OffsetCalculator(int dims, const int64_t* sizes, const int64_t* const* strides) : dims(dims) { OffsetCalculator(int dims, const int32_t* sizes, const int32_t* const* strides) : dims(dims) { for (int i = 0; i < MAX_DIMS; ++i) { if (i < dims) { sizes_[i] = IntDivider<uint32_t>(sizes[i]); } else { sizes_[i] = IntDivider<uint32_t>(1); } for (int arg = 0; arg < NARGS; arg++) { strides_[i][arg] = i < dims ? strides[arg][i] : 0; } } } __host__ __device__ offsets_t get(uint32_t linear_idx) const { offsets_t offsets; #pragma unroll for (int arg = 0; arg < NARGS; arg++) { offsets[arg] = 0; } #pragma unroll for (int dim = 0; dim < MAX_DIMS; ++dim) { if (dim == dims) { break; } auto divmod = sizes_[dim].divmod(linear_idx); linear_idx = divmod.div; #pragma unroll for (int arg = 0; arg < NARGS; arg++) { offsets[arg] += divmod.mod * strides_[dim][arg]; } } return offsets; } void print() { for (auto i = 1; i < 128; i++) { auto offsets = get(i); printf("offsets[%d]: ", i); for (auto arg = 0; arg < NARGS; arg++) { printf("%d ", offsets[arg]); } printf("\n"); } } int dims; IntDivider<uint32_t> sizes_[MAX_DIMS]; uint32_t strides_[MAX_DIMS][NARGS]; }; // From: https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/cuda/Loops.cuh template<int nt, int vt, typename func_t> __launch_bounds__(nt, 4) __global__ void elementwise_kernel(int N, func_t f) { int tid = threadIdx.x; int nv = nt * vt; int idx = nv * blockIdx.x + tid; #pragma unroll for (int i = 0; i < vt; i++) { if (idx < N) { f(idx); idx += nt; } } } template<int nt, int vt, typename func_t> static void launch_kernel(int64_t N, const func_t& f) { if (N == 0) { return; } dim3 block(nt); dim3 grid((N + block.x * vt - 1) / (block.x * vt)); elementwise_kernel<nt, vt, func_t><<<grid, block, 0>>>(N, f); } template<typename func_t> void gpu_unary_kernel(float *res, float *x, int32_t resRank, const int32_t resScalarCount, const int32_t* resShape, const int32_t* const* strides, const func_t& f) { OffsetCalculator<2> calc(resRank, resShape, strides); launch_kernel<128, 4>(resScalarCount, [=]__device__(int idx) { auto offsets = calc.get(idx); float* out = &res[offsets[0]]; float* in = &x[offsets[1]]; *out = f(*in); }); } template<typename func_t> void gpu_binary_kernel(float *res, float *x, float *y, int32_t resRank, const int32_t resScalarCount, const int32_t* resShape, const int32_t* const* strides, const func_t& f) { OffsetCalculator<3> calc(resRank, resShape, strides); launch_kernel<128, 4>(resScalarCount, [=]__device__(int idx) { auto offsets = calc.get(idx); float* out = &res[offsets[0]]; float* in1 = &x[offsets[1]]; float* in2 = &y[offsets[2]]; *out = f(*in1, *in2); }); } #define CUDNN_CALL(f) { \ cudnnStatus_t stat = (f); \ if (stat != CUDNN_STATUS_SUCCESS) { \ fprintf(stderr, "cuDNN error occurred: %d (%s:%d)\n", \ stat, __FILE__, __LINE__); \ exit(stat); \ } \ } void Snippet(char *); std::random_device rd{}; std::mt19937 gen{rd()}; std::normal_distribution<> d{0, 0.01}; int main(int argc, char *argv[]) { if (argc != 2) { printf("usage: query <filename>\n"); return 0; } Snippet(argv[1]); return 0; } /***************************************** Emitting C Generated Code *******************************************/ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <stdbool.h> void Snippet(char* x0) { // Backend setup. cublasHandle_t cublasHandle; CUBLAS_CALL(cublasCreate(&cublasHandle)); CUDA_CALL(cudaMalloc(&gpuMallocBase, HEAP_SIZE)); CUDA_CALL(cudaMemset(gpuMallocBase, 0, HEAP_SIZE)); gpuMallocAddr = gpuMallocBase; cudnnHandle_t cudnnHandle; CUDNN_CALL(cudnnCreate(&cudnnHandle)); // Tensor 'toGPU' invocation. float* x275 = (float*)myGpuMalloc(262144 * sizeof(float)); int32_t x4 = open("/u/data/u99/wang603/TiarkMlEnv/Lantern/src/out/PLDI19evaluation/resnet50/resnet50.onnx.bin",0); int32_t x5 = fsize(x4); float* x6 = (float*)mmap(0, x5, PROT_READ | PROT_WRITE, MAP_FILE | MAP_PRIVATE, x4, 0); float* x7 = x6+5205440; CUDA_CALL(cudaMemcpy(x275, x7, 262144 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x278 = (float*)myGpuMalloc(256 * sizeof(float)); float* x8 = x6+148672; CUDA_CALL(cudaMemcpy(x278, x8, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x281 = (float*)myGpuMalloc(128 * sizeof(float)); float* x9 = x6+816064; CUDA_CALL(cudaMemcpy(x281, x9, 128 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x284 = (float*)myGpuMalloc(128 * sizeof(float)); float* x10 = x6+950080; CUDA_CALL(cudaMemcpy(x284, x10, 128 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x287 = (float*)myGpuMalloc(64 * sizeof(float)); float* x11 = x6+94784; CUDA_CALL(cudaMemcpy(x287, x11, 64 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x290 = (float*)myGpuMalloc(32768 * sizeof(float)); float* x12 = x6+220608; CUDA_CALL(cudaMemcpy(x290, x12, 32768 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x293 = (float*)myGpuMalloc(512 * sizeof(float)); float* x13 = x6+22495680; CUDA_CALL(cudaMemcpy(x293, x13, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x296 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x14 = x6+2964928; CUDA_CALL(cudaMemcpy(x296, x14, 262144 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x299 = (float*)myGpuMalloc(589824 * sizeof(float)); float* x15 = x6+4348352; CUDA_CALL(cudaMemcpy(x299, x15, 589824 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x302 = (float*)myGpuMalloc(512 * sizeof(float)); float* x16 = x6+20133312; CUDA_CALL(cudaMemcpy(x302, x16, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x305 = (float*)myGpuMalloc(256 * sizeof(float)); float* x17 = x6+2169536; CUDA_CALL(cudaMemcpy(x305, x17, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x308 = (float*)myGpuMalloc(128 * sizeof(float)); float* x18 = x6+668224; CUDA_CALL(cudaMemcpy(x308, x18, 128 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x311 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x19 = x6+2432448; CUDA_CALL(cudaMemcpy(x311, x19, 1024 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x314 = (float*)myGpuMalloc(512 * sizeof(float)); float* x20 = x6+1446336; CUDA_CALL(cudaMemcpy(x314, x20, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x317 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x21 = x6+4081088; CUDA_CALL(cudaMemcpy(x317, x21, 1024 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x320 = (float*)myGpuMalloc(256 * sizeof(float)); float* x22 = x6+1578688; CUDA_CALL(cudaMemcpy(x320, x22, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x323 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x23 = x6+6325696; CUDA_CALL(cudaMemcpy(x323, x23, 262144 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x326 = (float*)myGpuMalloc(512 * sizeof(float)); float* x24 = x6+602048; CUDA_CALL(cudaMemcpy(x326, x24, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x329 = (float*)myGpuMalloc(64 * sizeof(float)); float* x25 = x6+165888; CUDA_CALL(cudaMemcpy(x329, x25, 64 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x332 = (float*)myGpuMalloc(512 * sizeof(float)); float* x26 = x6+1164736; CUDA_CALL(cudaMemcpy(x332, x26, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x335 = (float*)myGpuMalloc(64 * sizeof(float)); float* x27 = x6+6080; CUDA_CALL(cudaMemcpy(x335, x27, 64 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x338 = (float*)myGpuMalloc(147456 * sizeof(float)); float* x28 = x6+253888; CUDA_CALL(cudaMemcpy(x338, x28, 147456 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x341 = (float*)myGpuMalloc(2359296 * sizeof(float)); float* x29 = x6+20135360; CUDA_CALL(cudaMemcpy(x341, x29, 2359296 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x344 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x30 = x6+2960832; CUDA_CALL(cudaMemcpy(x344, x30, 1024 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x347 = (float*)myGpuMalloc(256 * sizeof(float)); float* x31 = x6+3227072; CUDA_CALL(cudaMemcpy(x347, x31, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x350 = (float*)myGpuMalloc(589824 * sizeof(float)); float* x32 = x6+3228096; CUDA_CALL(cudaMemcpy(x350, x32, 589824 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x353 = (float*)myGpuMalloc(16384 * sizeof(float)); float* x33 = x6+43456; CUDA_CALL(cudaMemcpy(x353, x33, 16384 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x356 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x34 = x6+22496704; CUDA_CALL(cudaMemcpy(x356, x34, 1048576 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x359 = (float*)myGpuMalloc(2359296 * sizeof(float)); float* x35 = x6+9092544; CUDA_CALL(cudaMemcpy(x359, x35, 2359296 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x362 = (float*)myGpuMalloc(128 * sizeof(float)); float* x36 = x6+816320; CUDA_CALL(cudaMemcpy(x362, x36, 128 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x365 = (float*)myGpuMalloc(256 * sizeof(float)); float* x37 = x6+60608; CUDA_CALL(cudaMemcpy(x365, x37, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x368 = (float*)myGpuMalloc(256 * sizeof(float)); float* x38 = x6+219584; CUDA_CALL(cudaMemcpy(x368, x38, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x371 = (float*)myGpuMalloc(128 * sizeof(float)); float* x39 = x6+1379392; CUDA_CALL(cudaMemcpy(x371, x39, 128 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x374 = (float*)myGpuMalloc(128 * sizeof(float)); float* x40 = x6+1231296; CUDA_CALL(cudaMemcpy(x374, x40, 128 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x377 = (float*)myGpuMalloc(64 * sizeof(float)); float* x41 = x6+1856; CUDA_CALL(cudaMemcpy(x377, x41, 64 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x380 = (float*)myGpuMalloc(65536 * sizeof(float)); float* x42 = x6+1098176; CUDA_CALL(cudaMemcpy(x380, x42, 65536 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x383 = (float*)myGpuMalloc(512 * sizeof(float)); float* x43 = x6+601536; CUDA_CALL(cudaMemcpy(x383, x43, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x386 = (float*)myGpuMalloc(128 * sizeof(float)); float* x44 = x6+401728; CUDA_CALL(cudaMemcpy(x386, x44, 128 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x389 = (float*)myGpuMalloc(64 * sizeof(float)); float* x45 = x6+131904; CUDA_CALL(cudaMemcpy(x389, x45, 64 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x392 = (float*)myGpuMalloc(128 * sizeof(float)); float* x46 = x6+949696; CUDA_CALL(cudaMemcpy(x392, x46, 128 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x395 = (float*)myGpuMalloc(512 * sizeof(float)); float* x47 = x6+15664576; CUDA_CALL(cudaMemcpy(x395, x47, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x398 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x48 = x6+18027968; CUDA_CALL(cudaMemcpy(x398, x48, 1048576 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x401 = (float*)myGpuMalloc(10 * sizeof(float)); float* x49 = x6+23573952; CUDA_CALL(cudaMemcpy(x401, x49, 10 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x404 = (float*)myGpuMalloc(64 * sizeof(float)); float* x50 = x6+43264; CUDA_CALL(cudaMemcpy(x404, x50, 64 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x407 = (float*)myGpuMalloc(512 * sizeof(float)); float* x51 = x6+11453376; CUDA_CALL(cudaMemcpy(x407, x51, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x410 = (float*)myGpuMalloc(64 * sizeof(float)); float* x52 = x6+6272; CUDA_CALL(cudaMemcpy(x410, x52, 64 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x413 = (float*)myGpuMalloc(512 * sizeof(float)); float* x53 = x6+882112; CUDA_CALL(cudaMemcpy(x413, x53, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x416 = (float*)myGpuMalloc(64 * sizeof(float)); float* x54 = x6+6144; CUDA_CALL(cudaMemcpy(x416, x54, 64 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x419 = (float*)myGpuMalloc(512 * sizeof(float)); float* x55 = x6+1445824; CUDA_CALL(cudaMemcpy(x419, x55, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x422 = (float*)myGpuMalloc(65536 * sizeof(float)); float* x56 = x6+1379776; CUDA_CALL(cudaMemcpy(x422, x56, 65536 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x425 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x57 = x6+3818944; CUDA_CALL(cudaMemcpy(x425, x57, 262144 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x428 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x58 = x6+5202368; CUDA_CALL(cudaMemcpy(x428, x58, 1024 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x431 = (float*)myGpuMalloc(256 * sizeof(float)); float* x59 = x6+148416; CUDA_CALL(cudaMemcpy(x431, x59, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x434 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x60 = x6+7441856; CUDA_CALL(cudaMemcpy(x434, x60, 1024 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x437 = (float*)myGpuMalloc(64 * sizeof(float)); float* x61 = x6+94720; CUDA_CALL(cudaMemcpy(x437, x61, 64 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x440 = (float*)myGpuMalloc(128 * sizeof(float)); float* x62 = x6+1097792; CUDA_CALL(cudaMemcpy(x440, x62, 128 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x443 = (float*)myGpuMalloc(2048 * sizeof(float)); float* x63 = x6+12504512; CUDA_CALL(cudaMemcpy(x443, x63, 2048 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x446 = (float*)myGpuMalloc(256 * sizeof(float)); float* x64 = x6+4938944; CUDA_CALL(cudaMemcpy(x446, x64, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x449 = (float*)myGpuMalloc(2048 * sizeof(float)); float* x65 = x6+14611904; CUDA_CALL(cudaMemcpy(x449, x65, 2048 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x452 = (float*)myGpuMalloc(512 * sizeof(float)); float* x66 = x6+15666112; CUDA_CALL(cudaMemcpy(x452, x66, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x455 = (float*)myGpuMalloc(512 * sizeof(float)); float* x67 = x6+18026432; CUDA_CALL(cudaMemcpy(x455, x67, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x458 = (float*)myGpuMalloc(512 * sizeof(float)); float* x68 = x6+9091520; CUDA_CALL(cudaMemcpy(x458, x68, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x461 = (float*)myGpuMalloc(2048 * sizeof(float)); float* x69 = x6+19080640; CUDA_CALL(cudaMemcpy(x461, x69, 2048 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x464 = (float*)myGpuMalloc(256 * sizeof(float)); float* x70 = x6+6588608; CUDA_CALL(cudaMemcpy(x464, x70, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x467 = (float*)myGpuMalloc(256 * sizeof(float)); float* x71 = x6+8299456; CUDA_CALL(cudaMemcpy(x467, x71, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x470 = (float*)myGpuMalloc(256 * sizeof(float)); float* x72 = x6+60352; CUDA_CALL(cudaMemcpy(x470, x72, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x473 = (float*)myGpuMalloc(64 * sizeof(float)); float* x73 = x6+202944; CUDA_CALL(cudaMemcpy(x473, x73, 64 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x476 = (float*)myGpuMalloc(36864 * sizeof(float)); float* x74 = x6+166080; CUDA_CALL(cudaMemcpy(x476, x74, 36864 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x479 = (float*)myGpuMalloc(256 * sizeof(float)); float* x75 = x6+6058432; CUDA_CALL(cudaMemcpy(x479, x75, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x482 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x76 = x6+2436544; CUDA_CALL(cudaMemcpy(x482, x76, 524288 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x485 = (float*)myGpuMalloc(256 * sizeof(float)); float* x77 = x6+77248; CUDA_CALL(cudaMemcpy(x485, x77, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x488 = (float*)myGpuMalloc(256 * sizeof(float)); float* x78 = x6+6587840; CUDA_CALL(cudaMemcpy(x488, x78, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x491 = (float*)myGpuMalloc(512 * sizeof(float)); float* x79 = x6+20133824; CUDA_CALL(cudaMemcpy(x491, x79, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x494 = (float*)myGpuMalloc(128 * sizeof(float)); float* x80 = x6+1379264; CUDA_CALL(cudaMemcpy(x494, x80, 128 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x497 = (float*)myGpuMalloc(256 * sizeof(float)); float* x81 = x6+7708608; CUDA_CALL(cudaMemcpy(x497, x81, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x500 = (float*)myGpuMalloc(64 * sizeof(float)); float* x82 = x6+165824; CUDA_CALL(cudaMemcpy(x500, x82, 64 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x503 = (float*)myGpuMalloc(512 * sizeof(float)); float* x83 = x6+1164224; CUDA_CALL(cudaMemcpy(x503, x83, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x506 = (float*)myGpuMalloc(36864 * sizeof(float)); float* x84 = x6+94912; CUDA_CALL(cudaMemcpy(x506, x84, 36864 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x509 = (float*)myGpuMalloc(128 * sizeof(float)); float* x85 = x6+253376; CUDA_CALL(cudaMemcpy(x509, x85, 128 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x512 = (float*)myGpuMalloc(256 * sizeof(float)); float* x86 = x6+7708096; CUDA_CALL(cudaMemcpy(x512, x86, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x515 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x87 = x6+2962880; CUDA_CALL(cudaMemcpy(x515, x87, 1024 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x518 = (float*)myGpuMalloc(16384 * sizeof(float)); float* x88 = x6+203200; CUDA_CALL(cudaMemcpy(x518, x88, 16384 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x521 = (float*)myGpuMalloc(512 * sizeof(float)); float* x89 = x6+883648; CUDA_CALL(cudaMemcpy(x521, x89, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x524 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x90 = x6+6059456; CUDA_CALL(cudaMemcpy(x524, x90, 262144 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x527 = (float*)myGpuMalloc(36864 * sizeof(float)); float* x91 = x6+6336; CUDA_CALL(cudaMemcpy(x527, x91, 36864 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x530 = (float*)myGpuMalloc(256 * sizeof(float)); float* x92 = x6+148928; CUDA_CALL(cudaMemcpy(x530, x92, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x533 = (float*)myGpuMalloc(256 * sizeof(float)); float* x93 = x6+5467584; CUDA_CALL(cudaMemcpy(x533, x93, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x536 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x94 = x6+8563136; CUDA_CALL(cudaMemcpy(x536, x94, 1024 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x539 = (float*)myGpuMalloc(2048 * sizeof(float)); float* x95 = x6+19076544; CUDA_CALL(cudaMemcpy(x539, x95, 2048 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x542 = (float*)myGpuMalloc(128 * sizeof(float)); float* x96 = x6+816192; CUDA_CALL(cudaMemcpy(x542, x96, 128 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x545 = (float*)myGpuMalloc(256 * sizeof(float)); float* x97 = x6+3818176; CUDA_CALL(cudaMemcpy(x545, x97, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x548 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x98 = x6+8299968; CUDA_CALL(cudaMemcpy(x548, x98, 262144 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x551 = (float*)myGpuMalloc(256 * sizeof(float)); float* x99 = x6+5468352; CUDA_CALL(cudaMemcpy(x551, x99, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x554 = (float*)myGpuMalloc(256 * sizeof(float)); float* x100 = x6+2170048; CUDA_CALL(cudaMemcpy(x554, x100, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x557 = (float*)myGpuMalloc(128 * sizeof(float)); float* x101 = x6+668352; CUDA_CALL(cudaMemcpy(x557, x101, 128 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x560 = (float*)myGpuMalloc(512 * sizeof(float)); float* x102 = x6+468928; CUDA_CALL(cudaMemcpy(x560, x102, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x563 = (float*)myGpuMalloc(64 * sizeof(float)); float* x103 = x6+94848; CUDA_CALL(cudaMemcpy(x563, x103, 64 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x566 = (float*)myGpuMalloc(2048 * sizeof(float)); float* x104 = x6+23545280; CUDA_CALL(cudaMemcpy(x566, x104, 2048 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x569 = (float*)myGpuMalloc(256 * sizeof(float)); float* x105 = x6+7179456; CUDA_CALL(cudaMemcpy(x569, x105, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x572 = (float*)myGpuMalloc(64 * sizeof(float)); float* x106 = x6+43328; CUDA_CALL(cudaMemcpy(x572, x106, 64 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x575 = (float*)myGpuMalloc(65536 * sizeof(float)); float* x107 = x6+401856; CUDA_CALL(cudaMemcpy(x575, x107, 65536 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x578 = (float*)myGpuMalloc(2048 * sizeof(float)); float* x108 = x6+14609856; CUDA_CALL(cudaMemcpy(x578, x108, 2048 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x581 = (float*)myGpuMalloc(256 * sizeof(float)); float* x109 = x6+2169280; CUDA_CALL(cudaMemcpy(x581, x109, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x584 = (float*)myGpuMalloc(256 * sizeof(float)); float* x110 = x6+7178944; CUDA_CALL(cudaMemcpy(x584, x110, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x587 = (float*)myGpuMalloc(64 * sizeof(float)); float* x111 = x6+1920; CUDA_CALL(cudaMemcpy(x587, x111, 64 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x590 = (float*)myGpuMalloc(65536 * sizeof(float)); float* x112 = x6+816576; CUDA_CALL(cudaMemcpy(x590, x112, 65536 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x593 = (float*)myGpuMalloc(128 * sizeof(float)); float* x113 = x6+949952; CUDA_CALL(cudaMemcpy(x593, x113, 128 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x596 = (float*)myGpuMalloc(512 * sizeof(float)); float* x114 = x6+11452864; CUDA_CALL(cudaMemcpy(x596, x114, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x599 = (float*)myGpuMalloc(64 * sizeof(float)); float* x115 = x6+6208; CUDA_CALL(cudaMemcpy(x599, x115, 64 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x602 = (float*)myGpuMalloc(2048 * sizeof(float)); float* x116 = x6+12506560; CUDA_CALL(cudaMemcpy(x602, x116, 2048 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x605 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x117 = x6+4939200; CUDA_CALL(cudaMemcpy(x605, x117, 262144 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x608 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x118 = x6+2433472; CUDA_CALL(cudaMemcpy(x608, x118, 1024 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x611 = (float*)myGpuMalloc(64 * sizeof(float)); float* x119 = x6+203136; CUDA_CALL(cudaMemcpy(x611, x119, 64 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x614 = (float*)myGpuMalloc(512 * sizeof(float)); float* x120 = x6+601024; CUDA_CALL(cudaMemcpy(x614, x120, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x617 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x121 = x6+7442880; CUDA_CALL(cudaMemcpy(x617, x121, 1024 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x620 = (float*)myGpuMalloc(512 * sizeof(float)); float* x122 = x6+9092032; CUDA_CALL(cudaMemcpy(x620, x122, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x623 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x123 = x6+8564160; CUDA_CALL(cudaMemcpy(x623, x123, 1024 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x626 = (float*)myGpuMalloc(2048 * sizeof(float)); float* x124 = x6+23551424; CUDA_CALL(cudaMemcpy(x626, x124, 2048 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x629 = (float*)myGpuMalloc(256 * sizeof(float)); float* x125 = x6+4938688; CUDA_CALL(cudaMemcpy(x629, x125, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x632 = (float*)myGpuMalloc(2048 * sizeof(float)); float* x126 = x6+14613952; CUDA_CALL(cudaMemcpy(x632, x126, 2048 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x635 = (float*)myGpuMalloc(256 * sizeof(float)); float* x127 = x6+60096; CUDA_CALL(cudaMemcpy(x635, x127, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x638 = (float*)myGpuMalloc(128 * sizeof(float)); float* x128 = x6+1097664; CUDA_CALL(cudaMemcpy(x638, x128, 128 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x641 = (float*)myGpuMalloc(128 * sizeof(float)); float* x129 = x6+401600; CUDA_CALL(cudaMemcpy(x641, x129, 128 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x644 = (float*)myGpuMalloc(256 * sizeof(float)); float* x130 = x6+4347328; CUDA_CALL(cudaMemcpy(x644, x130, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x647 = (float*)myGpuMalloc(16384 * sizeof(float)); float* x131 = x6+132032; CUDA_CALL(cudaMemcpy(x647, x131, 16384 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x650 = (float*)myGpuMalloc(256 * sizeof(float)); float* x132 = x6+1578944; CUDA_CALL(cudaMemcpy(x650, x132, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x653 = (float*)myGpuMalloc(65536 * sizeof(float)); float* x133 = x6+1165760; CUDA_CALL(cudaMemcpy(x653, x133, 65536 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x656 = (float*)myGpuMalloc(256 * sizeof(float)); float* x134 = x6+220352; CUDA_CALL(cudaMemcpy(x656, x134, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x659 = (float*)myGpuMalloc(128 * sizeof(float)); float* x135 = x6+253760; CUDA_CALL(cudaMemcpy(x659, x135, 128 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x662 = (float*)myGpuMalloc(64 * sizeof(float)); float* x136 = x6+203008; CUDA_CALL(cudaMemcpy(x662, x136, 64 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x665 = (float*)myGpuMalloc(256 * sizeof(float)); float* x137 = x6+6058688; CUDA_CALL(cudaMemcpy(x665, x137, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x668 = (float*)myGpuMalloc(512 * sizeof(float)); float* x138 = x6+15665088; CUDA_CALL(cudaMemcpy(x668, x138, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x671 = (float*)myGpuMalloc(512 * sizeof(float)); float* x139 = x6+18026944; CUDA_CALL(cudaMemcpy(x671, x139, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x674 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x140 = x6+8566208; CUDA_CALL(cudaMemcpy(x674, x140, 524288 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x677 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x141 = x6+5203392; CUDA_CALL(cudaMemcpy(x677, x141, 1024 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x680 = (float*)myGpuMalloc(256 * sizeof(float)); float* x142 = x6+8298944; CUDA_CALL(cudaMemcpy(x680, x142, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x683 = (float*)myGpuMalloc(64 * sizeof(float)); float* x143 = x6+94656; CUDA_CALL(cudaMemcpy(x683, x143, 64 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x686 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x144 = x6+4084160; CUDA_CALL(cudaMemcpy(x686, x144, 1024 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x689 = (float*)myGpuMalloc(2048 * sizeof(float)); float* x145 = x6+19078592; CUDA_CALL(cudaMemcpy(x689, x145, 2048 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x692 = (float*)myGpuMalloc(512 * sizeof(float)); float* x146 = x6+467392; CUDA_CALL(cudaMemcpy(x692, x146, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x695 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x147 = x6+6322624; CUDA_CALL(cudaMemcpy(x695, x147, 1024 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x698 = (float*)myGpuMalloc(512 * sizeof(float)); float* x148 = x6+883136; CUDA_CALL(cudaMemcpy(x698, x148, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x701 = (float*)myGpuMalloc(128 * sizeof(float)); float* x149 = x6+1379648; CUDA_CALL(cudaMemcpy(x701, x149, 128 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x704 = (float*)myGpuMalloc(512 * sizeof(float)); float* x150 = x6+468416; CUDA_CALL(cudaMemcpy(x704, x150, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x707 = (float*)myGpuMalloc(16384 * sizeof(float)); float* x151 = x6+149440; CUDA_CALL(cudaMemcpy(x707, x151, 16384 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x710 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x152 = x6+7445952; CUDA_CALL(cudaMemcpy(x710, x152, 262144 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x713 = (float*)myGpuMalloc(1728 * sizeof(float)); float* x153 = x6+0; CUDA_CALL(cudaMemcpy(x713, x153, 1728 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x716 = (float*)myGpuMalloc(64 * sizeof(float)); float* x154 = x6+131840; CUDA_CALL(cudaMemcpy(x716, x154, 64 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x719 = (float*)myGpuMalloc(512 * sizeof(float)); float* x155 = x6+15665600; CUDA_CALL(cudaMemcpy(x719, x155, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x722 = (float*)myGpuMalloc(2359296 * sizeof(float)); float* x156 = x6+15666624; CUDA_CALL(cudaMemcpy(x722, x156, 2359296 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x725 = (float*)myGpuMalloc(512 * sizeof(float)); float* x157 = x6+1445312; CUDA_CALL(cudaMemcpy(x725, x157, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x728 = (float*)myGpuMalloc(256 * sizeof(float)); float* x158 = x6+3227840; CUDA_CALL(cudaMemcpy(x728, x158, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x731 = (float*)myGpuMalloc(64 * sizeof(float)); float* x159 = x6+43392; CUDA_CALL(cudaMemcpy(x731, x159, 64 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x734 = (float*)myGpuMalloc(512 * sizeof(float)); float* x160 = x6+11452352; CUDA_CALL(cudaMemcpy(x734, x160, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x737 = (float*)myGpuMalloc(512 * sizeof(float)); float* x161 = x6+18025920; CUDA_CALL(cudaMemcpy(x737, x161, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x740 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x162 = x6+6324672; CUDA_CALL(cudaMemcpy(x740, x162, 1024 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x743 = (float*)myGpuMalloc(16384 * sizeof(float)); float* x163 = x6+60864; CUDA_CALL(cudaMemcpy(x743, x163, 16384 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x746 = (float*)myGpuMalloc(256 * sizeof(float)); float* x164 = x6+5468096; CUDA_CALL(cudaMemcpy(x746, x164, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x749 = (float*)myGpuMalloc(64 * sizeof(float)); float* x165 = x6+43200; CUDA_CALL(cudaMemcpy(x749, x165, 64 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x752 = (float*)myGpuMalloc(147456 * sizeof(float)); float* x166 = x6+1231808; CUDA_CALL(cudaMemcpy(x752, x166, 147456 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x755 = (float*)myGpuMalloc(256 * sizeof(float)); float* x167 = x6+149184; CUDA_CALL(cudaMemcpy(x755, x167, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x758 = (float*)myGpuMalloc(512 * sizeof(float)); float* x168 = x6+1163712; CUDA_CALL(cudaMemcpy(x758, x168, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x761 = (float*)myGpuMalloc(256 * sizeof(float)); float* x169 = x6+7178688; CUDA_CALL(cudaMemcpy(x761, x169, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x764 = (float*)myGpuMalloc(512 * sizeof(float)); float* x170 = x6+22495168; CUDA_CALL(cudaMemcpy(x764, x170, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x767 = (float*)myGpuMalloc(128 * sizeof(float)); float* x171 = x6+949824; CUDA_CALL(cudaMemcpy(x767, x171, 128 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x770 = (float*)myGpuMalloc(16384 * sizeof(float)); float* x172 = x6+78272; CUDA_CALL(cudaMemcpy(x770, x172, 16384 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x773 = (float*)myGpuMalloc(128 * sizeof(float)); float* x173 = x6+253504; CUDA_CALL(cudaMemcpy(x773, x173, 128 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x776 = (float*)myGpuMalloc(2048 * sizeof(float)); float* x174 = x6+14607808; CUDA_CALL(cudaMemcpy(x776, x174, 2048 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x779 = (float*)myGpuMalloc(256 * sizeof(float)); float* x175 = x6+4348096; CUDA_CALL(cudaMemcpy(x779, x175, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x782 = (float*)myGpuMalloc(589824 * sizeof(float)); float* x176 = x6+1579456; CUDA_CALL(cudaMemcpy(x782, x176, 589824 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x785 = (float*)myGpuMalloc(256 * sizeof(float)); float* x177 = x6+7708864; CUDA_CALL(cudaMemcpy(x785, x177, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x788 = (float*)myGpuMalloc(128 * sizeof(float)); float* x178 = x6+668480; CUDA_CALL(cudaMemcpy(x788, x178, 128 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x791 = (float*)myGpuMalloc(256 * sizeof(float)); float* x179 = x6+4347840; CUDA_CALL(cudaMemcpy(x791, x179, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x794 = (float*)myGpuMalloc(64 * sizeof(float)); float* x180 = x6+203072; CUDA_CALL(cudaMemcpy(x794, x180, 64 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x797 = (float*)myGpuMalloc(131072 * sizeof(float)); float* x181 = x6+1447360; CUDA_CALL(cudaMemcpy(x797, x181, 131072 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x800 = (float*)myGpuMalloc(2048 * sizeof(float)); float* x182 = x6+23547328; CUDA_CALL(cudaMemcpy(x800, x182, 2048 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x803 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x183 = x6+4083136; CUDA_CALL(cudaMemcpy(x803, x183, 1024 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x806 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x184 = x6+8565184; CUDA_CALL(cudaMemcpy(x806, x184, 1024 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x809 = (float*)myGpuMalloc(256 * sizeof(float)); float* x185 = x6+220096; CUDA_CALL(cudaMemcpy(x809, x185, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x812 = (float*)myGpuMalloc(256 * sizeof(float)); float* x186 = x6+6588096; CUDA_CALL(cudaMemcpy(x812, x186, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x815 = (float*)myGpuMalloc(256 * sizeof(float)); float* x187 = x6+6058944; CUDA_CALL(cudaMemcpy(x815, x187, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x818 = (float*)myGpuMalloc(64 * sizeof(float)); float* x188 = x6+166016; CUDA_CALL(cudaMemcpy(x818, x188, 64 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x821 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x189 = x6+5204416; CUDA_CALL(cudaMemcpy(x821, x189, 1024 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x824 = (float*)myGpuMalloc(256 * sizeof(float)); float* x190 = x6+8299200; CUDA_CALL(cudaMemcpy(x824, x190, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x827 = (float*)myGpuMalloc(128 * sizeof(float)); float* x191 = x6+401472; CUDA_CALL(cudaMemcpy(x827, x191, 128 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x830 = (float*)myGpuMalloc(147456 * sizeof(float)); float* x192 = x6+950208; CUDA_CALL(cudaMemcpy(x830, x192, 147456 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x833 = (float*)myGpuMalloc(256 * sizeof(float)); float* x193 = x6+4938432; CUDA_CALL(cudaMemcpy(x833, x193, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x836 = (float*)myGpuMalloc(2048 * sizeof(float)); float* x194 = x6+12508608; CUDA_CALL(cudaMemcpy(x836, x194, 2048 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x839 = (float*)myGpuMalloc(512 * sizeof(float)); float* x195 = x6+22494656; CUDA_CALL(cudaMemcpy(x839, x195, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x842 = (float*)myGpuMalloc(512 * sizeof(float)); float* x196 = x6+18027456; CUDA_CALL(cudaMemcpy(x842, x196, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x845 = (float*)myGpuMalloc(65536 * sizeof(float)); float* x197 = x6+884160; CUDA_CALL(cudaMemcpy(x845, x197, 65536 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x848 = (float*)myGpuMalloc(256 * sizeof(float)); float* x198 = x6+4347584; CUDA_CALL(cudaMemcpy(x848, x198, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x851 = (float*)myGpuMalloc(256 * sizeof(float)); float* x199 = x6+1579200; CUDA_CALL(cudaMemcpy(x851, x199, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x854 = (float*)myGpuMalloc(256 * sizeof(float)); float* x200 = x6+59840; CUDA_CALL(cudaMemcpy(x854, x200, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x857 = (float*)myGpuMalloc(256 * sizeof(float)); float* x201 = x6+3818432; CUDA_CALL(cudaMemcpy(x857, x201, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x860 = (float*)myGpuMalloc(512 * sizeof(float)); float* x202 = x6+9090496; CUDA_CALL(cudaMemcpy(x860, x202, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x863 = (float*)myGpuMalloc(512 * sizeof(float)); float* x203 = x6+22496192; CUDA_CALL(cudaMemcpy(x863, x203, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x866 = (float*)myGpuMalloc(256 * sizeof(float)); float* x204 = x6+77504; CUDA_CALL(cudaMemcpy(x866, x204, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x869 = (float*)myGpuMalloc(128 * sizeof(float)); float* x205 = x6+253632; CUDA_CALL(cudaMemcpy(x869, x205, 128 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x872 = (float*)myGpuMalloc(512 * sizeof(float)); float* x206 = x6+11451840; CUDA_CALL(cudaMemcpy(x872, x206, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x875 = (float*)myGpuMalloc(64 * sizeof(float)); float* x207 = x6+1728; CUDA_CALL(cudaMemcpy(x875, x207, 64 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x878 = (float*)myGpuMalloc(512 * sizeof(float)); float* x208 = x6+600512; CUDA_CALL(cudaMemcpy(x878, x208, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x881 = (float*)myGpuMalloc(64 * sizeof(float)); float* x209 = x6+131776; CUDA_CALL(cudaMemcpy(x881, x209, 64 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x884 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x210 = x6+7443904; CUDA_CALL(cudaMemcpy(x884, x210, 1024 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x887 = (float*)myGpuMalloc(512 * sizeof(float)); float* x211 = x6+467904; CUDA_CALL(cudaMemcpy(x887, x211, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x890 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x212 = x6+2963904; CUDA_CALL(cudaMemcpy(x890, x212, 1024 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x893 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x213 = x6+11453888; CUDA_CALL(cudaMemcpy(x893, x213, 1048576 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x896 = (float*)myGpuMalloc(512 * sizeof(float)); float* x214 = x6+20134336; CUDA_CALL(cudaMemcpy(x896, x214, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x899 = (float*)myGpuMalloc(2097152 * sizeof(float)); float* x215 = x6+12510656; CUDA_CALL(cudaMemcpy(x899, x215, 2097152 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x902 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x216 = x6+14616000; CUDA_CALL(cudaMemcpy(x902, x216, 1048576 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x905 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x217 = x6+2434496; CUDA_CALL(cudaMemcpy(x905, x217, 1024 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x908 = (float*)myGpuMalloc(128 * sizeof(float)); float* x218 = x6+1097920; CUDA_CALL(cudaMemcpy(x908, x218, 128 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x911 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x219 = x6+4085184; CUDA_CALL(cudaMemcpy(x911, x219, 262144 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x914 = (float*)myGpuMalloc(256 * sizeof(float)); float* x220 = x6+3227328; CUDA_CALL(cudaMemcpy(x914, x220, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x917 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x221 = x6+2961856; CUDA_CALL(cudaMemcpy(x917, x221, 1024 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x920 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x222 = x6+7179712; CUDA_CALL(cudaMemcpy(x920, x222, 262144 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x923 = (float*)myGpuMalloc(128 * sizeof(float)); float* x223 = x6+668096; CUDA_CALL(cudaMemcpy(x923, x223, 128 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x926 = (float*)myGpuMalloc(512 * sizeof(float)); float* x224 = x6+1165248; CUDA_CALL(cudaMemcpy(x926, x224, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x929 = (float*)myGpuMalloc(512 * sizeof(float)); float* x225 = x6+9091008; CUDA_CALL(cudaMemcpy(x929, x225, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x932 = (float*)myGpuMalloc(128 * sizeof(float)); float* x226 = x6+816448; CUDA_CALL(cudaMemcpy(x932, x226, 128 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x935 = (float*)myGpuMalloc(589824 * sizeof(float)); float* x227 = x6+7709120; CUDA_CALL(cudaMemcpy(x935, x227, 589824 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x938 = (float*)myGpuMalloc(20480 * sizeof(float)); float* x228 = x6+23553472; CUDA_CALL(cudaMemcpy(x938, x228, 20480 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x941 = (float*)myGpuMalloc(256 * sizeof(float)); float* x229 = x6+4938176; CUDA_CALL(cudaMemcpy(x941, x229, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x944 = (float*)myGpuMalloc(256 * sizeof(float)); float* x230 = x6+2169792; CUDA_CALL(cudaMemcpy(x944, x230, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x947 = (float*)myGpuMalloc(256 * sizeof(float)); float* x231 = x6+6059200; CUDA_CALL(cudaMemcpy(x947, x231, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x950 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x232 = x6+6323648; CUDA_CALL(cudaMemcpy(x950, x232, 1024 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x953 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x233 = x6+4082112; CUDA_CALL(cudaMemcpy(x953, x233, 1024 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x956 = (float*)myGpuMalloc(4096 * sizeof(float)); float* x234 = x6+1984; CUDA_CALL(cudaMemcpy(x956, x234, 4096 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x959 = (float*)myGpuMalloc(512 * sizeof(float)); float* x235 = x6+1446848; CUDA_CALL(cudaMemcpy(x959, x235, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x962 = (float*)myGpuMalloc(147456 * sizeof(float)); float* x236 = x6+668608; CUDA_CALL(cudaMemcpy(x962, x236, 147456 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x965 = (float*)myGpuMalloc(128 * sizeof(float)); float* x237 = x6+1231552; CUDA_CALL(cudaMemcpy(x965, x237, 128 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x968 = (float*)myGpuMalloc(256 * sizeof(float)); float* x238 = x6+3818688; CUDA_CALL(cudaMemcpy(x968, x238, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x971 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x239 = x6+6321600; CUDA_CALL(cudaMemcpy(x971, x239, 1024 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x974 = (float*)myGpuMalloc(2048 * sizeof(float)); float* x240 = x6+12502464; CUDA_CALL(cudaMemcpy(x974, x240, 2048 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x977 = (float*)myGpuMalloc(256 * sizeof(float)); float* x241 = x6+8299712; CUDA_CALL(cudaMemcpy(x977, x241, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x980 = (float*)myGpuMalloc(256 * sizeof(float)); float* x242 = x6+5467840; CUDA_CALL(cudaMemcpy(x980, x242, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x983 = (float*)myGpuMalloc(128 * sizeof(float)); float* x243 = x6+1231424; CUDA_CALL(cudaMemcpy(x983, x243, 128 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x986 = (float*)myGpuMalloc(256 * sizeof(float)); float* x244 = x6+78016; CUDA_CALL(cudaMemcpy(x986, x244, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x989 = (float*)myGpuMalloc(64 * sizeof(float)); float* x245 = x6+131968; CUDA_CALL(cudaMemcpy(x989, x245, 64 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x992 = (float*)myGpuMalloc(2048 * sizeof(float)); float* x246 = x6+19082688; CUDA_CALL(cudaMemcpy(x992, x246, 2048 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x995 = (float*)myGpuMalloc(512 * sizeof(float)); float* x247 = x6+882624; CUDA_CALL(cudaMemcpy(x995, x247, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x998 = (float*)myGpuMalloc(256 * sizeof(float)); float* x248 = x6+219840; CUDA_CALL(cudaMemcpy(x998, x248, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1001 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x249 = x6+8562112; CUDA_CALL(cudaMemcpy(x1001, x249, 1024 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1004 = (float*)myGpuMalloc(589824 * sizeof(float)); float* x250 = x6+5468608; CUDA_CALL(cudaMemcpy(x1004, x250, 589824 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1007 = (float*)myGpuMalloc(256 * sizeof(float)); float* x251 = x6+7179200; CUDA_CALL(cudaMemcpy(x1007, x251, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1010 = (float*)myGpuMalloc(64 * sizeof(float)); float* x252 = x6+1792; CUDA_CALL(cudaMemcpy(x1010, x252, 64 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1013 = (float*)myGpuMalloc(128 * sizeof(float)); float* x253 = x6+401344; CUDA_CALL(cudaMemcpy(x1013, x253, 128 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1016 = (float*)myGpuMalloc(256 * sizeof(float)); float* x254 = x6+7708352; CUDA_CALL(cudaMemcpy(x1016, x254, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1019 = (float*)myGpuMalloc(256 * sizeof(float)); float* x255 = x6+6588352; CUDA_CALL(cudaMemcpy(x1019, x255, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1022 = (float*)myGpuMalloc(512 * sizeof(float)); float* x256 = x6+20134848; CUDA_CALL(cudaMemcpy(x1022, x256, 512 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1025 = (float*)myGpuMalloc(65536 * sizeof(float)); float* x257 = x6+602560; CUDA_CALL(cudaMemcpy(x1025, x257, 65536 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1028 = (float*)myGpuMalloc(64 * sizeof(float)); float* x258 = x6+165952; CUDA_CALL(cudaMemcpy(x1028, x258, 64 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1031 = (float*)myGpuMalloc(131072 * sizeof(float)); float* x259 = x6+469440; CUDA_CALL(cudaMemcpy(x1031, x259, 131072 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1034 = (float*)myGpuMalloc(256 * sizeof(float)); float* x260 = x6+3227584; CUDA_CALL(cudaMemcpy(x1034, x260, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1037 = (float*)myGpuMalloc(2048 * sizeof(float)); float* x261 = x6+23549376; CUDA_CALL(cudaMemcpy(x1037, x261, 2048 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1040 = (float*)myGpuMalloc(128 * sizeof(float)); float* x262 = x6+1231680; CUDA_CALL(cudaMemcpy(x1040, x262, 128 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1043 = (float*)myGpuMalloc(589824 * sizeof(float)); float* x263 = x6+6588864; CUDA_CALL(cudaMemcpy(x1043, x263, 589824 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1046 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x264 = x6+5201344; CUDA_CALL(cudaMemcpy(x1046, x264, 1024 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1049 = (float*)myGpuMalloc(256 * sizeof(float)); float* x265 = x6+77760; CUDA_CALL(cudaMemcpy(x1049, x265, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1052 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x266 = x6+19084736; CUDA_CALL(cudaMemcpy(x1052, x266, 1048576 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1055 = (float*)myGpuMalloc(128 * sizeof(float)); float* x267 = x6+1098048; CUDA_CALL(cudaMemcpy(x1055, x267, 128 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1058 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x268 = x6+2435520; CUDA_CALL(cudaMemcpy(x1058, x268, 1024 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1061 = (float*)myGpuMalloc(128 * sizeof(float)); float* x269 = x6+1379520; CUDA_CALL(cudaMemcpy(x1061, x269, 128 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1064 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x270 = x6+2170304; CUDA_CALL(cudaMemcpy(x1064, x270, 262144 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1067 = (float*)myGpuMalloc(256 * sizeof(float)); float* x271 = x6+1578432; CUDA_CALL(cudaMemcpy(x1067, x271, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1070 = (float*)myGpuMalloc(256 * sizeof(float)); float* x272 = x6+3817920; CUDA_CALL(cudaMemcpy(x1070, x272, 256 * sizeof(float), cudaMemcpyHostToDevice)); // Tensor 'toGPU' invocation. float* x1073 = (float*)myGpuMalloc(1024 * sizeof(float)); float* x273 = x6+7444928; CUDA_CALL(cudaMemcpy(x1073, x273, 1024 * sizeof(float), cudaMemcpyHostToDevice)); int32_t x1075 = open("../../cifar10_data/cifar-10-batches-bin/data_batch_1.bin",0); int32_t x1076 = fsize(x1075); int64_t x1078 = (int64_t)x1076; int64_t x1079 = x1078 / 3073LL; int32_t x1080 = (int32_t)x1079; int32_t x1081 = x1080 * 3072; float* x1082 = (float*)myMalloc(x1081 * sizeof(float));; int* x1083 = (int32_t*)myMalloc(x1080 * sizeof(int32_t));; char* x1077 = (char*)mmap(0, x1076, PROT_READ | PROT_WRITE, MAP_FILE | MAP_PRIVATE, x1075, 0); for(int x1085=0; x1085 < x1080; x1085++) { int32_t x1086 = x1085 * 3073; char x1087 = x1077[x1086]; int32_t x1088 = (int32_t)(unsigned char)x1087; x1083[x1085] = x1088; int32_t x1094 = x1086 + 1; int32_t x1092 = x1085 * 3072; for(int x1091=0; x1091 < 3072; x1091++) { int32_t x1095 = x1094 + x1091; char x1096 = x1077[x1095]; int32_t x1093 = x1092 + x1091; float x1097 = (float)(unsigned char)x1096; float x1098 = x1097 / 255.0f; x1082[x1093] = x1098; } } int32_t x1104 = x1080 / 64; for(int x1106=0; x1106 < x1104; x1106++) { int32_t x1107 = x1106 * 64; int32_t x1108 = x1107 * 3072; float* x1109 = x1082+x1108; int* x1110 = x1083+x1107; printf("input (size 64 x 3 x 32 x 32)\n"); float x1112 = 0.0f; for(int x1114=0; x1114 < 196608; x1114++) { float x1115 = x1112; float x1116 = x1109[x1114]; float x1117 = fabs(x1116); float x1118 = fabs(x1115); bool x1119 = x1117 > x1118; float x1120; if (x1119) { x1120 = x1116; } else { x1120 = x1115; } x1112 = x1120; } float x1124 = x1112; printf("Max Abs: %.5f || ",x1124); for(int x1127=0; x1127 < 10; x1127++) { float x1128 = x1109[x1127]; printf("%.5f ",x1128); } printf("\n"); // Tensor 'toGPU' invocation. float* x1134 = (float*)myGpuMalloc(196608 * sizeof(float)); CUDA_CALL(cudaMemcpy(x1134, x1109, 196608 * sizeof(float), cudaMemcpyHostToDevice)); float* x1136 = (float*)myGpuMalloc(4194304 * sizeof(float)); float* x1137 = (float*)myMalloc(1 * sizeof(float));; x1137[0] = 0.0f; float* x1139 = (float*)myMalloc(1 * sizeof(float));; x1139[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 3, 32, 32)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 64, 3, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 32, 32)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1139, in_desc, x1134, filt_desc, x713, conv_desc, algo, ws_data, ws_size, x1137, out_desc, x1136)); }; float* x1142 = (float*)myGpuMalloc(4194304 * sizeof(float)); float* x1143 = (float*)myMalloc(1 * sizeof(float));; x1143[0] = 0.0f; float* x1145 = (float*)myMalloc(1 * sizeof(float));; x1145[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 32, 32)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 32, 32)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 64, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1145, x1145, in_desc, x1136, out_desc, x1142, sbmv_desc, x875, x1010, x377, x587, 1.0E-5)); }; float* x1148 = (float*)myMalloc(1 * sizeof(float));; x1148[0] = 0.0f; float* x1150 = (float*)myMalloc(1 * sizeof(float));; x1150[0] = 1.0f; float* x1152 = (float*)myGpuMalloc(4194304 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 32, 32)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1150, x_desc, x1142, x1148, x_desc, x1152)); }; float* x1154 = (float*)myMalloc(1 * sizeof(float));; x1154[0] = 0.0f; float* x1156 = (float*)myMalloc(1 * sizeof(float));; x1156[0] = 1.0f; float* x1158 = (float*)myGpuMalloc(1048576 * sizeof(float)); { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 32, 32)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnPoolingDescriptor_t poolingDesc; CUDNN_CALL(cudnnCreatePoolingDescriptor(&poolingDesc)); CUDNN_CALL(cudnnSetPooling2dDescriptor( poolingDesc, CUDNN_POOLING_MAX, CUDNN_NOT_PROPAGATE_NAN, 2, 2, 0, 0, 2, 2 )); CUDNN_CALL(cudnnPoolingForward( cudnnHandle, poolingDesc, x1156, in_desc, x1152, x1154, out_desc, x1158)); }; float* x1160 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1161 = (float*)myMalloc(1 * sizeof(float));; x1161[0] = 0.0f; float* x1163 = (float*)myMalloc(1 * sizeof(float));; x1163[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 64, 64, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1163, in_desc, x1158, filt_desc, x956, conv_desc, algo, ws_data, ws_size, x1161, out_desc, x1160)); }; float* x1166 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1167 = (float*)myMalloc(1 * sizeof(float));; x1167[0] = 0.0f; float* x1169 = (float*)myMalloc(1 * sizeof(float));; x1169[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 64, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1169, x1169, in_desc, x1160, out_desc, x1166, sbmv_desc, x335, x416, x599, x410, 1.0E-5)); }; float* x1172 = (float*)myMalloc(1 * sizeof(float));; x1172[0] = 0.0f; float* x1174 = (float*)myMalloc(1 * sizeof(float));; x1174[0] = 1.0f; float* x1176 = (float*)myGpuMalloc(1048576 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1174, x_desc, x1166, x1172, x_desc, x1176)); }; float* x1178 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1179 = (float*)myMalloc(1 * sizeof(float));; x1179[0] = 0.0f; float* x1181 = (float*)myMalloc(1 * sizeof(float));; x1181[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 64, 64, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1181, in_desc, x1176, filt_desc, x527, conv_desc, algo, ws_data, ws_size, x1179, out_desc, x1178)); }; float* x1184 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1185 = (float*)myMalloc(1 * sizeof(float));; x1185[0] = 0.0f; float* x1187 = (float*)myMalloc(1 * sizeof(float));; x1187[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 64, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1187, x1187, in_desc, x1178, out_desc, x1184, sbmv_desc, x749, x404, x572, x731, 1.0E-5)); }; float* x1190 = (float*)myMalloc(1 * sizeof(float));; x1190[0] = 0.0f; float* x1192 = (float*)myMalloc(1 * sizeof(float));; x1192[0] = 1.0f; float* x1194 = (float*)myGpuMalloc(1048576 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1192, x_desc, x1184, x1190, x_desc, x1194)); }; float* x1196 = (float*)myGpuMalloc(4194304 * sizeof(float)); float* x1197 = (float*)myMalloc(1 * sizeof(float));; x1197[0] = 0.0f; float* x1199 = (float*)myMalloc(1 * sizeof(float));; x1199[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 256, 64, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1199, in_desc, x1194, filt_desc, x353, conv_desc, algo, ws_data, ws_size, x1197, out_desc, x1196)); }; float* x1202 = (float*)myGpuMalloc(4194304 * sizeof(float)); float* x1203 = (float*)myMalloc(1 * sizeof(float));; x1203[0] = 0.0f; float* x1205 = (float*)myMalloc(1 * sizeof(float));; x1205[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 256, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1205, x1205, in_desc, x1196, out_desc, x1202, sbmv_desc, x854, x635, x470, x365, 1.0E-5)); }; float* x1208 = (float*)myGpuMalloc(4194304 * sizeof(float)); float* x1209 = (float*)myMalloc(1 * sizeof(float));; x1209[0] = 0.0f; float* x1211 = (float*)myMalloc(1 * sizeof(float));; x1211[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 256, 64, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1211, in_desc, x1158, filt_desc, x743, conv_desc, algo, ws_data, ws_size, x1209, out_desc, x1208)); }; float* x1214 = (float*)myGpuMalloc(4194304 * sizeof(float)); float* x1215 = (float*)myMalloc(1 * sizeof(float));; x1215[0] = 0.0f; float* x1217 = (float*)myMalloc(1 * sizeof(float));; x1217[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 256, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1217, x1217, in_desc, x1208, out_desc, x1214, sbmv_desc, x485, x866, x1049, x986, 1.0E-5)); }; float* x1220 = (float*)myMalloc(1 * sizeof(float));; x1220[0] = 1.0f; float* x1222 = (float*)myMalloc(1 * sizeof(float));; x1222[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x1220, bias_desc, x1214, x1222, out_desc, x1202)); }; float* x1225 = (float*)myMalloc(1 * sizeof(float));; x1225[0] = 0.0f; float* x1227 = (float*)myMalloc(1 * sizeof(float));; x1227[0] = 1.0f; float* x1229 = (float*)myGpuMalloc(4194304 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1227, x_desc, x1202, x1225, x_desc, x1229)); }; float* x1231 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1232 = (float*)myMalloc(1 * sizeof(float));; x1232[0] = 0.0f; float* x1234 = (float*)myMalloc(1 * sizeof(float));; x1234[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 64, 256, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1234, in_desc, x1229, filt_desc, x770, conv_desc, algo, ws_data, ws_size, x1232, out_desc, x1231)); }; float* x1237 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1238 = (float*)myMalloc(1 * sizeof(float));; x1238[0] = 0.0f; float* x1240 = (float*)myMalloc(1 * sizeof(float));; x1240[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 64, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1240, x1240, in_desc, x1231, out_desc, x1237, sbmv_desc, x683, x437, x287, x563, 1.0E-5)); }; float* x1243 = (float*)myMalloc(1 * sizeof(float));; x1243[0] = 0.0f; float* x1245 = (float*)myMalloc(1 * sizeof(float));; x1245[0] = 1.0f; float* x1247 = (float*)myGpuMalloc(1048576 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1245, x_desc, x1237, x1243, x_desc, x1247)); }; float* x1249 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1250 = (float*)myMalloc(1 * sizeof(float));; x1250[0] = 0.0f; float* x1252 = (float*)myMalloc(1 * sizeof(float));; x1252[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 64, 64, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1252, in_desc, x1247, filt_desc, x506, conv_desc, algo, ws_data, ws_size, x1250, out_desc, x1249)); }; float* x1255 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1256 = (float*)myMalloc(1 * sizeof(float));; x1256[0] = 0.0f; float* x1258 = (float*)myMalloc(1 * sizeof(float));; x1258[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 64, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1258, x1258, in_desc, x1249, out_desc, x1255, sbmv_desc, x881, x716, x389, x989, 1.0E-5)); }; float* x1261 = (float*)myMalloc(1 * sizeof(float));; x1261[0] = 0.0f; float* x1263 = (float*)myMalloc(1 * sizeof(float));; x1263[0] = 1.0f; float* x1265 = (float*)myGpuMalloc(1048576 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1263, x_desc, x1255, x1261, x_desc, x1265)); }; float* x1267 = (float*)myGpuMalloc(4194304 * sizeof(float)); float* x1268 = (float*)myMalloc(1 * sizeof(float));; x1268[0] = 0.0f; float* x1270 = (float*)myMalloc(1 * sizeof(float));; x1270[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 256, 64, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1270, in_desc, x1265, filt_desc, x647, conv_desc, algo, ws_data, ws_size, x1268, out_desc, x1267)); }; float* x1273 = (float*)myGpuMalloc(4194304 * sizeof(float)); float* x1274 = (float*)myMalloc(1 * sizeof(float));; x1274[0] = 0.0f; float* x1276 = (float*)myMalloc(1 * sizeof(float));; x1276[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 256, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1276, x1276, in_desc, x1267, out_desc, x1273, sbmv_desc, x431, x278, x530, x755, 1.0E-5)); }; float* x1279 = (float*)myMalloc(1 * sizeof(float));; x1279[0] = 1.0f; float* x1281 = (float*)myMalloc(1 * sizeof(float));; x1281[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x1279, bias_desc, x1229, x1281, out_desc, x1273)); }; float* x1284 = (float*)myMalloc(1 * sizeof(float));; x1284[0] = 0.0f; float* x1286 = (float*)myMalloc(1 * sizeof(float));; x1286[0] = 1.0f; float* x1288 = (float*)myGpuMalloc(4194304 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1286, x_desc, x1273, x1284, x_desc, x1288)); }; float* x1290 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1291 = (float*)myMalloc(1 * sizeof(float));; x1291[0] = 0.0f; float* x1293 = (float*)myMalloc(1 * sizeof(float));; x1293[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 64, 256, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1293, in_desc, x1288, filt_desc, x707, conv_desc, algo, ws_data, ws_size, x1291, out_desc, x1290)); }; float* x1296 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1297 = (float*)myMalloc(1 * sizeof(float));; x1297[0] = 0.0f; float* x1299 = (float*)myMalloc(1 * sizeof(float));; x1299[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 64, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1299, x1299, in_desc, x1290, out_desc, x1296, sbmv_desc, x500, x329, x1028, x818, 1.0E-5)); }; float* x1302 = (float*)myMalloc(1 * sizeof(float));; x1302[0] = 0.0f; float* x1304 = (float*)myMalloc(1 * sizeof(float));; x1304[0] = 1.0f; float* x1306 = (float*)myGpuMalloc(1048576 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1304, x_desc, x1296, x1302, x_desc, x1306)); }; float* x1308 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1309 = (float*)myMalloc(1 * sizeof(float));; x1309[0] = 0.0f; float* x1311 = (float*)myMalloc(1 * sizeof(float));; x1311[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 64, 64, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1311, in_desc, x1306, filt_desc, x476, conv_desc, algo, ws_data, ws_size, x1309, out_desc, x1308)); }; float* x1314 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1315 = (float*)myMalloc(1 * sizeof(float));; x1315[0] = 0.0f; float* x1317 = (float*)myMalloc(1 * sizeof(float));; x1317[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 64, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1317, x1317, in_desc, x1308, out_desc, x1314, sbmv_desc, x473, x662, x794, x611, 1.0E-5)); }; float* x1320 = (float*)myMalloc(1 * sizeof(float));; x1320[0] = 0.0f; float* x1322 = (float*)myMalloc(1 * sizeof(float));; x1322[0] = 1.0f; float* x1324 = (float*)myGpuMalloc(1048576 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1322, x_desc, x1314, x1320, x_desc, x1324)); }; float* x1326 = (float*)myGpuMalloc(4194304 * sizeof(float)); float* x1327 = (float*)myMalloc(1 * sizeof(float));; x1327[0] = 0.0f; float* x1329 = (float*)myMalloc(1 * sizeof(float));; x1329[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 64, 16, 16)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 256, 64, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1329, in_desc, x1324, filt_desc, x518, conv_desc, algo, ws_data, ws_size, x1327, out_desc, x1326)); }; float* x1332 = (float*)myGpuMalloc(4194304 * sizeof(float)); float* x1333 = (float*)myMalloc(1 * sizeof(float));; x1333[0] = 0.0f; float* x1335 = (float*)myMalloc(1 * sizeof(float));; x1335[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 256, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1335, x1335, in_desc, x1326, out_desc, x1332, sbmv_desc, x368, x998, x809, x656, 1.0E-5)); }; float* x1338 = (float*)myMalloc(1 * sizeof(float));; x1338[0] = 1.0f; float* x1340 = (float*)myMalloc(1 * sizeof(float));; x1340[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x1338, bias_desc, x1288, x1340, out_desc, x1332)); }; float* x1343 = (float*)myMalloc(1 * sizeof(float));; x1343[0] = 0.0f; float* x1345 = (float*)myMalloc(1 * sizeof(float));; x1345[0] = 1.0f; float* x1347 = (float*)myGpuMalloc(4194304 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1345, x_desc, x1332, x1343, x_desc, x1347)); }; float* x1349 = (float*)myGpuMalloc(2097152 * sizeof(float)); float* x1350 = (float*)myMalloc(1 * sizeof(float));; x1350[0] = 0.0f; float* x1352 = (float*)myMalloc(1 * sizeof(float));; x1352[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 128, 256, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 16, 16)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1352, in_desc, x1347, filt_desc, x290, conv_desc, algo, ws_data, ws_size, x1350, out_desc, x1349)); }; float* x1355 = (float*)myGpuMalloc(2097152 * sizeof(float)); float* x1356 = (float*)myMalloc(1 * sizeof(float));; x1356[0] = 0.0f; float* x1358 = (float*)myMalloc(1 * sizeof(float));; x1358[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 16, 16)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 16, 16)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 128, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1358, x1358, in_desc, x1349, out_desc, x1355, sbmv_desc, x509, x773, x869, x659, 1.0E-5)); }; float* x1361 = (float*)myMalloc(1 * sizeof(float));; x1361[0] = 0.0f; float* x1363 = (float*)myMalloc(1 * sizeof(float));; x1363[0] = 1.0f; float* x1365 = (float*)myGpuMalloc(2097152 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 16, 16)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1363, x_desc, x1355, x1361, x_desc, x1365)); }; float* x1367 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x1368 = (float*)myMalloc(1 * sizeof(float));; x1368[0] = 0.0f; float* x1370 = (float*)myMalloc(1 * sizeof(float));; x1370[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 16, 16)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 128, 128, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 2, 2, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1370, in_desc, x1365, filt_desc, x338, conv_desc, algo, ws_data, ws_size, x1368, out_desc, x1367)); }; float* x1373 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x1374 = (float*)myMalloc(1 * sizeof(float));; x1374[0] = 0.0f; float* x1376 = (float*)myMalloc(1 * sizeof(float));; x1376[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 128, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1376, x1376, in_desc, x1367, out_desc, x1373, sbmv_desc, x1013, x827, x641, x386, 1.0E-5)); }; float* x1379 = (float*)myMalloc(1 * sizeof(float));; x1379[0] = 0.0f; float* x1381 = (float*)myMalloc(1 * sizeof(float));; x1381[0] = 1.0f; float* x1383 = (float*)myGpuMalloc(524288 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1381, x_desc, x1373, x1379, x_desc, x1383)); }; float* x1385 = (float*)myGpuMalloc(2097152 * sizeof(float)); float* x1386 = (float*)myMalloc(1 * sizeof(float));; x1386[0] = 0.0f; float* x1388 = (float*)myMalloc(1 * sizeof(float));; x1388[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 512, 128, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1388, in_desc, x1383, filt_desc, x575, conv_desc, algo, ws_data, ws_size, x1386, out_desc, x1385)); }; float* x1391 = (float*)myGpuMalloc(2097152 * sizeof(float)); float* x1392 = (float*)myMalloc(1 * sizeof(float));; x1392[0] = 0.0f; float* x1394 = (float*)myMalloc(1 * sizeof(float));; x1394[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 512, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1394, x1394, in_desc, x1385, out_desc, x1391, sbmv_desc, x692, x887, x704, x560, 1.0E-5)); }; float* x1397 = (float*)myGpuMalloc(2097152 * sizeof(float)); float* x1398 = (float*)myMalloc(1 * sizeof(float));; x1398[0] = 0.0f; float* x1400 = (float*)myMalloc(1 * sizeof(float));; x1400[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 16, 16)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 512, 256, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 2, 2, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1400, in_desc, x1347, filt_desc, x1031, conv_desc, algo, ws_data, ws_size, x1398, out_desc, x1397)); }; float* x1403 = (float*)myGpuMalloc(2097152 * sizeof(float)); float* x1404 = (float*)myMalloc(1 * sizeof(float));; x1404[0] = 0.0f; float* x1406 = (float*)myMalloc(1 * sizeof(float));; x1406[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 512, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1406, x1406, in_desc, x1397, out_desc, x1403, sbmv_desc, x878, x614, x383, x326, 1.0E-5)); }; float* x1409 = (float*)myMalloc(1 * sizeof(float));; x1409[0] = 1.0f; float* x1411 = (float*)myMalloc(1 * sizeof(float));; x1411[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x1409, bias_desc, x1403, x1411, out_desc, x1391)); }; float* x1414 = (float*)myMalloc(1 * sizeof(float));; x1414[0] = 0.0f; float* x1416 = (float*)myMalloc(1 * sizeof(float));; x1416[0] = 1.0f; float* x1418 = (float*)myGpuMalloc(2097152 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1416, x_desc, x1391, x1414, x_desc, x1418)); }; float* x1420 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x1421 = (float*)myMalloc(1 * sizeof(float));; x1421[0] = 0.0f; float* x1423 = (float*)myMalloc(1 * sizeof(float));; x1423[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 128, 512, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1423, in_desc, x1418, filt_desc, x1025, conv_desc, algo, ws_data, ws_size, x1421, out_desc, x1420)); }; float* x1426 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x1427 = (float*)myMalloc(1 * sizeof(float));; x1427[0] = 0.0f; float* x1429 = (float*)myMalloc(1 * sizeof(float));; x1429[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 128, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1429, x1429, in_desc, x1420, out_desc, x1426, sbmv_desc, x923, x308, x557, x788, 1.0E-5)); }; float* x1432 = (float*)myMalloc(1 * sizeof(float));; x1432[0] = 0.0f; float* x1434 = (float*)myMalloc(1 * sizeof(float));; x1434[0] = 1.0f; float* x1436 = (float*)myGpuMalloc(524288 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1434, x_desc, x1426, x1432, x_desc, x1436)); }; float* x1438 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x1439 = (float*)myMalloc(1 * sizeof(float));; x1439[0] = 0.0f; float* x1441 = (float*)myMalloc(1 * sizeof(float));; x1441[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 128, 128, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1441, in_desc, x1436, filt_desc, x962, conv_desc, algo, ws_data, ws_size, x1439, out_desc, x1438)); }; float* x1444 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x1445 = (float*)myMalloc(1 * sizeof(float));; x1445[0] = 0.0f; float* x1447 = (float*)myMalloc(1 * sizeof(float));; x1447[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 128, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1447, x1447, in_desc, x1438, out_desc, x1444, sbmv_desc, x281, x542, x362, x932, 1.0E-5)); }; float* x1450 = (float*)myMalloc(1 * sizeof(float));; x1450[0] = 0.0f; float* x1452 = (float*)myMalloc(1 * sizeof(float));; x1452[0] = 1.0f; float* x1454 = (float*)myGpuMalloc(524288 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1452, x_desc, x1444, x1450, x_desc, x1454)); }; float* x1456 = (float*)myGpuMalloc(2097152 * sizeof(float)); float* x1457 = (float*)myMalloc(1 * sizeof(float));; x1457[0] = 0.0f; float* x1459 = (float*)myMalloc(1 * sizeof(float));; x1459[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 512, 128, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1459, in_desc, x1454, filt_desc, x590, conv_desc, algo, ws_data, ws_size, x1457, out_desc, x1456)); }; float* x1462 = (float*)myGpuMalloc(2097152 * sizeof(float)); float* x1463 = (float*)myMalloc(1 * sizeof(float));; x1463[0] = 0.0f; float* x1465 = (float*)myMalloc(1 * sizeof(float));; x1465[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 512, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1465, x1465, in_desc, x1456, out_desc, x1462, sbmv_desc, x413, x995, x698, x521, 1.0E-5)); }; float* x1468 = (float*)myMalloc(1 * sizeof(float));; x1468[0] = 1.0f; float* x1470 = (float*)myMalloc(1 * sizeof(float));; x1470[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x1468, bias_desc, x1418, x1470, out_desc, x1462)); }; float* x1473 = (float*)myMalloc(1 * sizeof(float));; x1473[0] = 0.0f; float* x1475 = (float*)myMalloc(1 * sizeof(float));; x1475[0] = 1.0f; float* x1477 = (float*)myGpuMalloc(2097152 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1475, x_desc, x1462, x1473, x_desc, x1477)); }; float* x1479 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x1480 = (float*)myMalloc(1 * sizeof(float));; x1480[0] = 0.0f; float* x1482 = (float*)myMalloc(1 * sizeof(float));; x1482[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 128, 512, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1482, in_desc, x1477, filt_desc, x845, conv_desc, algo, ws_data, ws_size, x1480, out_desc, x1479)); }; float* x1485 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x1486 = (float*)myMalloc(1 * sizeof(float));; x1486[0] = 0.0f; float* x1488 = (float*)myMalloc(1 * sizeof(float));; x1488[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 128, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1488, x1488, in_desc, x1479, out_desc, x1485, sbmv_desc, x392, x767, x593, x284, 1.0E-5)); }; float* x1491 = (float*)myMalloc(1 * sizeof(float));; x1491[0] = 0.0f; float* x1493 = (float*)myMalloc(1 * sizeof(float));; x1493[0] = 1.0f; float* x1495 = (float*)myGpuMalloc(524288 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1493, x_desc, x1485, x1491, x_desc, x1495)); }; float* x1497 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x1498 = (float*)myMalloc(1 * sizeof(float));; x1498[0] = 0.0f; float* x1500 = (float*)myMalloc(1 * sizeof(float));; x1500[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 128, 128, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1500, in_desc, x1495, filt_desc, x830, conv_desc, algo, ws_data, ws_size, x1498, out_desc, x1497)); }; float* x1503 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x1504 = (float*)myMalloc(1 * sizeof(float));; x1504[0] = 0.0f; float* x1506 = (float*)myMalloc(1 * sizeof(float));; x1506[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 128, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1506, x1506, in_desc, x1497, out_desc, x1503, sbmv_desc, x638, x440, x908, x1055, 1.0E-5)); }; float* x1509 = (float*)myMalloc(1 * sizeof(float));; x1509[0] = 0.0f; float* x1511 = (float*)myMalloc(1 * sizeof(float));; x1511[0] = 1.0f; float* x1513 = (float*)myGpuMalloc(524288 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1511, x_desc, x1503, x1509, x_desc, x1513)); }; float* x1515 = (float*)myGpuMalloc(2097152 * sizeof(float)); float* x1516 = (float*)myMalloc(1 * sizeof(float));; x1516[0] = 0.0f; float* x1518 = (float*)myMalloc(1 * sizeof(float));; x1518[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 512, 128, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1518, in_desc, x1513, filt_desc, x380, conv_desc, algo, ws_data, ws_size, x1516, out_desc, x1515)); }; float* x1521 = (float*)myGpuMalloc(2097152 * sizeof(float)); float* x1522 = (float*)myMalloc(1 * sizeof(float));; x1522[0] = 0.0f; float* x1524 = (float*)myMalloc(1 * sizeof(float));; x1524[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 512, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1524, x1524, in_desc, x1515, out_desc, x1521, sbmv_desc, x758, x503, x332, x926, 1.0E-5)); }; float* x1527 = (float*)myMalloc(1 * sizeof(float));; x1527[0] = 1.0f; float* x1529 = (float*)myMalloc(1 * sizeof(float));; x1529[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x1527, bias_desc, x1477, x1529, out_desc, x1521)); }; float* x1532 = (float*)myMalloc(1 * sizeof(float));; x1532[0] = 0.0f; float* x1534 = (float*)myMalloc(1 * sizeof(float));; x1534[0] = 1.0f; float* x1536 = (float*)myGpuMalloc(2097152 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1534, x_desc, x1521, x1532, x_desc, x1536)); }; float* x1538 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x1539 = (float*)myMalloc(1 * sizeof(float));; x1539[0] = 0.0f; float* x1541 = (float*)myMalloc(1 * sizeof(float));; x1541[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 128, 512, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1541, in_desc, x1536, filt_desc, x653, conv_desc, algo, ws_data, ws_size, x1539, out_desc, x1538)); }; float* x1544 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x1545 = (float*)myMalloc(1 * sizeof(float));; x1545[0] = 0.0f; float* x1547 = (float*)myMalloc(1 * sizeof(float));; x1547[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 128, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1547, x1547, in_desc, x1538, out_desc, x1544, sbmv_desc, x374, x983, x965, x1040, 1.0E-5)); }; float* x1550 = (float*)myMalloc(1 * sizeof(float));; x1550[0] = 0.0f; float* x1552 = (float*)myMalloc(1 * sizeof(float));; x1552[0] = 1.0f; float* x1554 = (float*)myGpuMalloc(524288 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1552, x_desc, x1544, x1550, x_desc, x1554)); }; float* x1556 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x1557 = (float*)myMalloc(1 * sizeof(float));; x1557[0] = 0.0f; float* x1559 = (float*)myMalloc(1 * sizeof(float));; x1559[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 128, 128, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1559, in_desc, x1554, filt_desc, x752, conv_desc, algo, ws_data, ws_size, x1557, out_desc, x1556)); }; float* x1562 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x1563 = (float*)myMalloc(1 * sizeof(float));; x1563[0] = 0.0f; float* x1565 = (float*)myMalloc(1 * sizeof(float));; x1565[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 128, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1565, x1565, in_desc, x1556, out_desc, x1562, sbmv_desc, x494, x371, x1061, x701, 1.0E-5)); }; float* x1568 = (float*)myMalloc(1 * sizeof(float));; x1568[0] = 0.0f; float* x1570 = (float*)myMalloc(1 * sizeof(float));; x1570[0] = 1.0f; float* x1572 = (float*)myGpuMalloc(524288 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1570, x_desc, x1562, x1568, x_desc, x1572)); }; float* x1574 = (float*)myGpuMalloc(2097152 * sizeof(float)); float* x1575 = (float*)myMalloc(1 * sizeof(float));; x1575[0] = 0.0f; float* x1577 = (float*)myMalloc(1 * sizeof(float));; x1577[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 128, 8, 8)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 512, 128, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1577, in_desc, x1572, filt_desc, x422, conv_desc, algo, ws_data, ws_size, x1575, out_desc, x1574)); }; float* x1580 = (float*)myGpuMalloc(2097152 * sizeof(float)); float* x1581 = (float*)myMalloc(1 * sizeof(float));; x1581[0] = 0.0f; float* x1583 = (float*)myMalloc(1 * sizeof(float));; x1583[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 512, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1583, x1583, in_desc, x1574, out_desc, x1580, sbmv_desc, x725, x419, x314, x959, 1.0E-5)); }; float* x1586 = (float*)myMalloc(1 * sizeof(float));; x1586[0] = 1.0f; float* x1588 = (float*)myMalloc(1 * sizeof(float));; x1588[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x1586, bias_desc, x1536, x1588, out_desc, x1580)); }; float* x1591 = (float*)myMalloc(1 * sizeof(float));; x1591[0] = 0.0f; float* x1593 = (float*)myMalloc(1 * sizeof(float));; x1593[0] = 1.0f; float* x1595 = (float*)myGpuMalloc(2097152 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1593, x_desc, x1580, x1591, x_desc, x1595)); }; float* x1597 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1598 = (float*)myMalloc(1 * sizeof(float));; x1598[0] = 0.0f; float* x1600 = (float*)myMalloc(1 * sizeof(float));; x1600[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 256, 512, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 8, 8)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1600, in_desc, x1595, filt_desc, x797, conv_desc, algo, ws_data, ws_size, x1598, out_desc, x1597)); }; float* x1603 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1604 = (float*)myMalloc(1 * sizeof(float));; x1604[0] = 0.0f; float* x1606 = (float*)myMalloc(1 * sizeof(float));; x1606[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 8, 8)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 8, 8)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 256, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1606, x1606, in_desc, x1597, out_desc, x1603, sbmv_desc, x1067, x320, x650, x851, 1.0E-5)); }; float* x1609 = (float*)myMalloc(1 * sizeof(float));; x1609[0] = 0.0f; float* x1611 = (float*)myMalloc(1 * sizeof(float));; x1611[0] = 1.0f; float* x1613 = (float*)myGpuMalloc(1048576 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 8, 8)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1611, x_desc, x1603, x1609, x_desc, x1613)); }; float* x1615 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1616 = (float*)myMalloc(1 * sizeof(float));; x1616[0] = 0.0f; float* x1618 = (float*)myMalloc(1 * sizeof(float));; x1618[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 8, 8)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 256, 256, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 2, 2, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1618, in_desc, x1613, filt_desc, x782, conv_desc, algo, ws_data, ws_size, x1616, out_desc, x1615)); }; float* x1621 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1622 = (float*)myMalloc(1 * sizeof(float));; x1622[0] = 0.0f; float* x1624 = (float*)myMalloc(1 * sizeof(float));; x1624[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 256, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1624, x1624, in_desc, x1615, out_desc, x1621, sbmv_desc, x581, x305, x944, x554, 1.0E-5)); }; float* x1627 = (float*)myMalloc(1 * sizeof(float));; x1627[0] = 0.0f; float* x1629 = (float*)myMalloc(1 * sizeof(float));; x1629[0] = 1.0f; float* x1631 = (float*)myGpuMalloc(262144 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1629, x_desc, x1621, x1627, x_desc, x1631)); }; float* x1633 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1634 = (float*)myMalloc(1 * sizeof(float));; x1634[0] = 0.0f; float* x1636 = (float*)myMalloc(1 * sizeof(float));; x1636[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 1024, 256, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1636, in_desc, x1631, filt_desc, x1064, conv_desc, algo, ws_data, ws_size, x1634, out_desc, x1633)); }; float* x1639 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1640 = (float*)myMalloc(1 * sizeof(float));; x1640[0] = 0.0f; float* x1642 = (float*)myMalloc(1 * sizeof(float));; x1642[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 1024, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1642, x1642, in_desc, x1633, out_desc, x1639, sbmv_desc, x311, x608, x905, x1058, 1.0E-5)); }; float* x1645 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1646 = (float*)myMalloc(1 * sizeof(float));; x1646[0] = 0.0f; float* x1648 = (float*)myMalloc(1 * sizeof(float));; x1648[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 8, 8)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 1024, 512, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 2, 2, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1648, in_desc, x1595, filt_desc, x482, conv_desc, algo, ws_data, ws_size, x1646, out_desc, x1645)); }; float* x1651 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1652 = (float*)myMalloc(1 * sizeof(float));; x1652[0] = 0.0f; float* x1654 = (float*)myMalloc(1 * sizeof(float));; x1654[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 1024, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1654, x1654, in_desc, x1645, out_desc, x1651, sbmv_desc, x344, x917, x515, x890, 1.0E-5)); }; float* x1657 = (float*)myMalloc(1 * sizeof(float));; x1657[0] = 1.0f; float* x1659 = (float*)myMalloc(1 * sizeof(float));; x1659[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x1657, bias_desc, x1651, x1659, out_desc, x1639)); }; float* x1662 = (float*)myMalloc(1 * sizeof(float));; x1662[0] = 0.0f; float* x1664 = (float*)myMalloc(1 * sizeof(float));; x1664[0] = 1.0f; float* x1666 = (float*)myGpuMalloc(1048576 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1664, x_desc, x1639, x1662, x_desc, x1666)); }; float* x1668 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1669 = (float*)myMalloc(1 * sizeof(float));; x1669[0] = 0.0f; float* x1671 = (float*)myMalloc(1 * sizeof(float));; x1671[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 256, 1024, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1671, in_desc, x1666, filt_desc, x296, conv_desc, algo, ws_data, ws_size, x1669, out_desc, x1668)); }; float* x1674 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1675 = (float*)myMalloc(1 * sizeof(float));; x1675[0] = 0.0f; float* x1677 = (float*)myMalloc(1 * sizeof(float));; x1677[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 256, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1677, x1677, in_desc, x1668, out_desc, x1674, sbmv_desc, x347, x914, x1034, x728, 1.0E-5)); }; float* x1680 = (float*)myMalloc(1 * sizeof(float));; x1680[0] = 0.0f; float* x1682 = (float*)myMalloc(1 * sizeof(float));; x1682[0] = 1.0f; float* x1684 = (float*)myGpuMalloc(262144 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1682, x_desc, x1674, x1680, x_desc, x1684)); }; float* x1686 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1687 = (float*)myMalloc(1 * sizeof(float));; x1687[0] = 0.0f; float* x1689 = (float*)myMalloc(1 * sizeof(float));; x1689[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 256, 256, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1689, in_desc, x1684, filt_desc, x350, conv_desc, algo, ws_data, ws_size, x1687, out_desc, x1686)); }; float* x1692 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1693 = (float*)myMalloc(1 * sizeof(float));; x1693[0] = 0.0f; float* x1695 = (float*)myMalloc(1 * sizeof(float));; x1695[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 256, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1695, x1695, in_desc, x1686, out_desc, x1692, sbmv_desc, x1070, x545, x857, x968, 1.0E-5)); }; float* x1698 = (float*)myMalloc(1 * sizeof(float));; x1698[0] = 0.0f; float* x1700 = (float*)myMalloc(1 * sizeof(float));; x1700[0] = 1.0f; float* x1702 = (float*)myGpuMalloc(262144 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1700, x_desc, x1692, x1698, x_desc, x1702)); }; float* x1704 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1705 = (float*)myMalloc(1 * sizeof(float));; x1705[0] = 0.0f; float* x1707 = (float*)myMalloc(1 * sizeof(float));; x1707[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 1024, 256, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1707, in_desc, x1702, filt_desc, x425, conv_desc, algo, ws_data, ws_size, x1705, out_desc, x1704)); }; float* x1710 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1711 = (float*)myMalloc(1 * sizeof(float));; x1711[0] = 0.0f; float* x1713 = (float*)myMalloc(1 * sizeof(float));; x1713[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 1024, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1713, x1713, in_desc, x1704, out_desc, x1710, sbmv_desc, x317, x953, x803, x686, 1.0E-5)); }; float* x1716 = (float*)myMalloc(1 * sizeof(float));; x1716[0] = 1.0f; float* x1718 = (float*)myMalloc(1 * sizeof(float));; x1718[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x1716, bias_desc, x1666, x1718, out_desc, x1710)); }; float* x1721 = (float*)myMalloc(1 * sizeof(float));; x1721[0] = 0.0f; float* x1723 = (float*)myMalloc(1 * sizeof(float));; x1723[0] = 1.0f; float* x1725 = (float*)myGpuMalloc(1048576 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1723, x_desc, x1710, x1721, x_desc, x1725)); }; float* x1727 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1728 = (float*)myMalloc(1 * sizeof(float));; x1728[0] = 0.0f; float* x1730 = (float*)myMalloc(1 * sizeof(float));; x1730[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 256, 1024, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1730, in_desc, x1725, filt_desc, x911, conv_desc, algo, ws_data, ws_size, x1728, out_desc, x1727)); }; float* x1733 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1734 = (float*)myMalloc(1 * sizeof(float));; x1734[0] = 0.0f; float* x1736 = (float*)myMalloc(1 * sizeof(float));; x1736[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 256, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1736, x1736, in_desc, x1727, out_desc, x1733, sbmv_desc, x644, x848, x791, x779, 1.0E-5)); }; float* x1739 = (float*)myMalloc(1 * sizeof(float));; x1739[0] = 0.0f; float* x1741 = (float*)myMalloc(1 * sizeof(float));; x1741[0] = 1.0f; float* x1743 = (float*)myGpuMalloc(262144 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1741, x_desc, x1733, x1739, x_desc, x1743)); }; float* x1745 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1746 = (float*)myMalloc(1 * sizeof(float));; x1746[0] = 0.0f; float* x1748 = (float*)myMalloc(1 * sizeof(float));; x1748[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 256, 256, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1748, in_desc, x1743, filt_desc, x299, conv_desc, algo, ws_data, ws_size, x1746, out_desc, x1745)); }; float* x1751 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1752 = (float*)myMalloc(1 * sizeof(float));; x1752[0] = 0.0f; float* x1754 = (float*)myMalloc(1 * sizeof(float));; x1754[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 256, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1754, x1754, in_desc, x1745, out_desc, x1751, sbmv_desc, x941, x833, x629, x446, 1.0E-5)); }; float* x1757 = (float*)myMalloc(1 * sizeof(float));; x1757[0] = 0.0f; float* x1759 = (float*)myMalloc(1 * sizeof(float));; x1759[0] = 1.0f; float* x1761 = (float*)myGpuMalloc(262144 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1759, x_desc, x1751, x1757, x_desc, x1761)); }; float* x1763 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1764 = (float*)myMalloc(1 * sizeof(float));; x1764[0] = 0.0f; float* x1766 = (float*)myMalloc(1 * sizeof(float));; x1766[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 1024, 256, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1766, in_desc, x1761, filt_desc, x605, conv_desc, algo, ws_data, ws_size, x1764, out_desc, x1763)); }; float* x1769 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1770 = (float*)myMalloc(1 * sizeof(float));; x1770[0] = 0.0f; float* x1772 = (float*)myMalloc(1 * sizeof(float));; x1772[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 1024, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1772, x1772, in_desc, x1763, out_desc, x1769, sbmv_desc, x1046, x428, x677, x821, 1.0E-5)); }; float* x1775 = (float*)myMalloc(1 * sizeof(float));; x1775[0] = 1.0f; float* x1777 = (float*)myMalloc(1 * sizeof(float));; x1777[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x1775, bias_desc, x1725, x1777, out_desc, x1769)); }; float* x1780 = (float*)myMalloc(1 * sizeof(float));; x1780[0] = 0.0f; float* x1782 = (float*)myMalloc(1 * sizeof(float));; x1782[0] = 1.0f; float* x1784 = (float*)myGpuMalloc(1048576 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1782, x_desc, x1769, x1780, x_desc, x1784)); }; float* x1786 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1787 = (float*)myMalloc(1 * sizeof(float));; x1787[0] = 0.0f; float* x1789 = (float*)myMalloc(1 * sizeof(float));; x1789[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 256, 1024, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1789, in_desc, x1784, filt_desc, x275, conv_desc, algo, ws_data, ws_size, x1787, out_desc, x1786)); }; float* x1792 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1793 = (float*)myMalloc(1 * sizeof(float));; x1793[0] = 0.0f; float* x1795 = (float*)myMalloc(1 * sizeof(float));; x1795[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 256, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1795, x1795, in_desc, x1786, out_desc, x1792, sbmv_desc, x533, x980, x746, x551, 1.0E-5)); }; float* x1798 = (float*)myMalloc(1 * sizeof(float));; x1798[0] = 0.0f; float* x1800 = (float*)myMalloc(1 * sizeof(float));; x1800[0] = 1.0f; float* x1802 = (float*)myGpuMalloc(262144 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1800, x_desc, x1792, x1798, x_desc, x1802)); }; float* x1804 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1805 = (float*)myMalloc(1 * sizeof(float));; x1805[0] = 0.0f; float* x1807 = (float*)myMalloc(1 * sizeof(float));; x1807[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 256, 256, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1807, in_desc, x1802, filt_desc, x1004, conv_desc, algo, ws_data, ws_size, x1805, out_desc, x1804)); }; float* x1810 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1811 = (float*)myMalloc(1 * sizeof(float));; x1811[0] = 0.0f; float* x1813 = (float*)myMalloc(1 * sizeof(float));; x1813[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 256, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1813, x1813, in_desc, x1804, out_desc, x1810, sbmv_desc, x479, x665, x815, x947, 1.0E-5)); }; float* x1816 = (float*)myMalloc(1 * sizeof(float));; x1816[0] = 0.0f; float* x1818 = (float*)myMalloc(1 * sizeof(float));; x1818[0] = 1.0f; float* x1820 = (float*)myGpuMalloc(262144 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1818, x_desc, x1810, x1816, x_desc, x1820)); }; float* x1822 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1823 = (float*)myMalloc(1 * sizeof(float));; x1823[0] = 0.0f; float* x1825 = (float*)myMalloc(1 * sizeof(float));; x1825[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 1024, 256, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1825, in_desc, x1820, filt_desc, x524, conv_desc, algo, ws_data, ws_size, x1823, out_desc, x1822)); }; float* x1828 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1829 = (float*)myMalloc(1 * sizeof(float));; x1829[0] = 0.0f; float* x1831 = (float*)myMalloc(1 * sizeof(float));; x1831[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 1024, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1831, x1831, in_desc, x1822, out_desc, x1828, sbmv_desc, x971, x695, x950, x740, 1.0E-5)); }; float* x1834 = (float*)myMalloc(1 * sizeof(float));; x1834[0] = 1.0f; float* x1836 = (float*)myMalloc(1 * sizeof(float));; x1836[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x1834, bias_desc, x1784, x1836, out_desc, x1828)); }; float* x1839 = (float*)myMalloc(1 * sizeof(float));; x1839[0] = 0.0f; float* x1841 = (float*)myMalloc(1 * sizeof(float));; x1841[0] = 1.0f; float* x1843 = (float*)myGpuMalloc(1048576 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1841, x_desc, x1828, x1839, x_desc, x1843)); }; float* x1845 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1846 = (float*)myMalloc(1 * sizeof(float));; x1846[0] = 0.0f; float* x1848 = (float*)myMalloc(1 * sizeof(float));; x1848[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 256, 1024, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1848, in_desc, x1843, filt_desc, x323, conv_desc, algo, ws_data, ws_size, x1846, out_desc, x1845)); }; float* x1851 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1852 = (float*)myMalloc(1 * sizeof(float));; x1852[0] = 0.0f; float* x1854 = (float*)myMalloc(1 * sizeof(float));; x1854[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 256, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1854, x1854, in_desc, x1845, out_desc, x1851, sbmv_desc, x488, x812, x1019, x464, 1.0E-5)); }; float* x1857 = (float*)myMalloc(1 * sizeof(float));; x1857[0] = 0.0f; float* x1859 = (float*)myMalloc(1 * sizeof(float));; x1859[0] = 1.0f; float* x1861 = (float*)myGpuMalloc(262144 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1859, x_desc, x1851, x1857, x_desc, x1861)); }; float* x1863 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1864 = (float*)myMalloc(1 * sizeof(float));; x1864[0] = 0.0f; float* x1866 = (float*)myMalloc(1 * sizeof(float));; x1866[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 256, 256, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1866, in_desc, x1861, filt_desc, x1043, conv_desc, algo, ws_data, ws_size, x1864, out_desc, x1863)); }; float* x1869 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1870 = (float*)myMalloc(1 * sizeof(float));; x1870[0] = 0.0f; float* x1872 = (float*)myMalloc(1 * sizeof(float));; x1872[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 256, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1872, x1872, in_desc, x1863, out_desc, x1869, sbmv_desc, x761, x584, x1007, x569, 1.0E-5)); }; float* x1875 = (float*)myMalloc(1 * sizeof(float));; x1875[0] = 0.0f; float* x1877 = (float*)myMalloc(1 * sizeof(float));; x1877[0] = 1.0f; float* x1879 = (float*)myGpuMalloc(262144 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1877, x_desc, x1869, x1875, x_desc, x1879)); }; float* x1881 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1882 = (float*)myMalloc(1 * sizeof(float));; x1882[0] = 0.0f; float* x1884 = (float*)myMalloc(1 * sizeof(float));; x1884[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 1024, 256, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1884, in_desc, x1879, filt_desc, x920, conv_desc, algo, ws_data, ws_size, x1882, out_desc, x1881)); }; float* x1887 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1888 = (float*)myMalloc(1 * sizeof(float));; x1888[0] = 0.0f; float* x1890 = (float*)myMalloc(1 * sizeof(float));; x1890[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 1024, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1890, x1890, in_desc, x1881, out_desc, x1887, sbmv_desc, x434, x617, x884, x1073, 1.0E-5)); }; float* x1893 = (float*)myMalloc(1 * sizeof(float));; x1893[0] = 1.0f; float* x1895 = (float*)myMalloc(1 * sizeof(float));; x1895[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x1893, bias_desc, x1843, x1895, out_desc, x1887)); }; float* x1898 = (float*)myMalloc(1 * sizeof(float));; x1898[0] = 0.0f; float* x1900 = (float*)myMalloc(1 * sizeof(float));; x1900[0] = 1.0f; float* x1902 = (float*)myGpuMalloc(1048576 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1900, x_desc, x1887, x1898, x_desc, x1902)); }; float* x1904 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1905 = (float*)myMalloc(1 * sizeof(float));; x1905[0] = 0.0f; float* x1907 = (float*)myMalloc(1 * sizeof(float));; x1907[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 256, 1024, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1907, in_desc, x1902, filt_desc, x710, conv_desc, algo, ws_data, ws_size, x1905, out_desc, x1904)); }; float* x1910 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1911 = (float*)myMalloc(1 * sizeof(float));; x1911[0] = 0.0f; float* x1913 = (float*)myMalloc(1 * sizeof(float));; x1913[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 256, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1913, x1913, in_desc, x1904, out_desc, x1910, sbmv_desc, x512, x1016, x497, x785, 1.0E-5)); }; float* x1916 = (float*)myMalloc(1 * sizeof(float));; x1916[0] = 0.0f; float* x1918 = (float*)myMalloc(1 * sizeof(float));; x1918[0] = 1.0f; float* x1920 = (float*)myGpuMalloc(262144 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1918, x_desc, x1910, x1916, x_desc, x1920)); }; float* x1922 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1923 = (float*)myMalloc(1 * sizeof(float));; x1923[0] = 0.0f; float* x1925 = (float*)myMalloc(1 * sizeof(float));; x1925[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 256, 256, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1925, in_desc, x1920, filt_desc, x935, conv_desc, algo, ws_data, ws_size, x1923, out_desc, x1922)); }; float* x1928 = (float*)myGpuMalloc(262144 * sizeof(float)); float* x1929 = (float*)myMalloc(1 * sizeof(float));; x1929[0] = 0.0f; float* x1931 = (float*)myMalloc(1 * sizeof(float));; x1931[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 256, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1931, x1931, in_desc, x1922, out_desc, x1928, sbmv_desc, x680, x824, x467, x977, 1.0E-5)); }; float* x1934 = (float*)myMalloc(1 * sizeof(float));; x1934[0] = 0.0f; float* x1936 = (float*)myMalloc(1 * sizeof(float));; x1936[0] = 1.0f; float* x1938 = (float*)myGpuMalloc(262144 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1936, x_desc, x1928, x1934, x_desc, x1938)); }; float* x1940 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1941 = (float*)myMalloc(1 * sizeof(float));; x1941[0] = 0.0f; float* x1943 = (float*)myMalloc(1 * sizeof(float));; x1943[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 256, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 1024, 256, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1943, in_desc, x1938, filt_desc, x548, conv_desc, algo, ws_data, ws_size, x1941, out_desc, x1940)); }; float* x1946 = (float*)myGpuMalloc(1048576 * sizeof(float)); float* x1947 = (float*)myMalloc(1 * sizeof(float));; x1947[0] = 0.0f; float* x1949 = (float*)myMalloc(1 * sizeof(float));; x1949[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 1024, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1949, x1949, in_desc, x1940, out_desc, x1946, sbmv_desc, x1001, x536, x623, x806, 1.0E-5)); }; float* x1952 = (float*)myMalloc(1 * sizeof(float));; x1952[0] = 1.0f; float* x1954 = (float*)myMalloc(1 * sizeof(float));; x1954[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x1952, bias_desc, x1902, x1954, out_desc, x1946)); }; float* x1957 = (float*)myMalloc(1 * sizeof(float));; x1957[0] = 0.0f; float* x1959 = (float*)myMalloc(1 * sizeof(float));; x1959[0] = 1.0f; float* x1961 = (float*)myGpuMalloc(1048576 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1959, x_desc, x1946, x1957, x_desc, x1961)); }; float* x1963 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x1964 = (float*)myMalloc(1 * sizeof(float));; x1964[0] = 0.0f; float* x1966 = (float*)myMalloc(1 * sizeof(float));; x1966[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 512, 1024, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 4, 4)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1966, in_desc, x1961, filt_desc, x674, conv_desc, algo, ws_data, ws_size, x1964, out_desc, x1963)); }; float* x1969 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x1970 = (float*)myMalloc(1 * sizeof(float));; x1970[0] = 0.0f; float* x1972 = (float*)myMalloc(1 * sizeof(float));; x1972[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 4, 4)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 4, 4)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 512, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1972, x1972, in_desc, x1963, out_desc, x1969, sbmv_desc, x860, x929, x458, x620, 1.0E-5)); }; float* x1975 = (float*)myMalloc(1 * sizeof(float));; x1975[0] = 0.0f; float* x1977 = (float*)myMalloc(1 * sizeof(float));; x1977[0] = 1.0f; float* x1979 = (float*)myGpuMalloc(524288 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 4, 4)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1977, x_desc, x1969, x1975, x_desc, x1979)); }; float* x1981 = (float*)myGpuMalloc(131072 * sizeof(float)); float* x1982 = (float*)myMalloc(1 * sizeof(float));; x1982[0] = 0.0f; float* x1984 = (float*)myMalloc(1 * sizeof(float));; x1984[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 512, 512, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 2, 2, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x1984, in_desc, x1979, filt_desc, x359, conv_desc, algo, ws_data, ws_size, x1982, out_desc, x1981)); }; float* x1987 = (float*)myGpuMalloc(131072 * sizeof(float)); float* x1988 = (float*)myMalloc(1 * sizeof(float));; x1988[0] = 0.0f; float* x1990 = (float*)myMalloc(1 * sizeof(float));; x1990[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 512, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x1990, x1990, in_desc, x1981, out_desc, x1987, sbmv_desc, x872, x734, x596, x407, 1.0E-5)); }; float* x1993 = (float*)myMalloc(1 * sizeof(float));; x1993[0] = 0.0f; float* x1995 = (float*)myMalloc(1 * sizeof(float));; x1995[0] = 1.0f; float* x1997 = (float*)myGpuMalloc(131072 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x1995, x_desc, x1987, x1993, x_desc, x1997)); }; float* x1999 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x2000 = (float*)myMalloc(1 * sizeof(float));; x2000[0] = 0.0f; float* x2002 = (float*)myMalloc(1 * sizeof(float));; x2002[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 2048, 512, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x2002, in_desc, x1997, filt_desc, x893, conv_desc, algo, ws_data, ws_size, x2000, out_desc, x1999)); }; float* x2005 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x2006 = (float*)myMalloc(1 * sizeof(float));; x2006[0] = 0.0f; float* x2008 = (float*)myMalloc(1 * sizeof(float));; x2008[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 2048, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x2008, x2008, in_desc, x1999, out_desc, x2005, sbmv_desc, x974, x443, x602, x836, 1.0E-5)); }; float* x2011 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x2012 = (float*)myMalloc(1 * sizeof(float));; x2012[0] = 0.0f; float* x2014 = (float*)myMalloc(1 * sizeof(float));; x2014[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 1024, 4, 4)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 2048, 1024, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 2, 2, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x2014, in_desc, x1961, filt_desc, x899, conv_desc, algo, ws_data, ws_size, x2012, out_desc, x2011)); }; float* x2017 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x2018 = (float*)myMalloc(1 * sizeof(float));; x2018[0] = 0.0f; float* x2020 = (float*)myMalloc(1 * sizeof(float));; x2020[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 2048, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x2020, x2020, in_desc, x2011, out_desc, x2017, sbmv_desc, x776, x578, x449, x632, 1.0E-5)); }; float* x2023 = (float*)myMalloc(1 * sizeof(float));; x2023[0] = 1.0f; float* x2025 = (float*)myMalloc(1 * sizeof(float));; x2025[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x2023, bias_desc, x2017, x2025, out_desc, x2005)); }; float* x2028 = (float*)myMalloc(1 * sizeof(float));; x2028[0] = 0.0f; float* x2030 = (float*)myMalloc(1 * sizeof(float));; x2030[0] = 1.0f; float* x2032 = (float*)myGpuMalloc(524288 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x2030, x_desc, x2005, x2028, x_desc, x2032)); }; float* x2034 = (float*)myGpuMalloc(131072 * sizeof(float)); float* x2035 = (float*)myMalloc(1 * sizeof(float));; x2035[0] = 0.0f; float* x2037 = (float*)myMalloc(1 * sizeof(float));; x2037[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 512, 2048, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x2037, in_desc, x2032, filt_desc, x902, conv_desc, algo, ws_data, ws_size, x2035, out_desc, x2034)); }; float* x2040 = (float*)myGpuMalloc(131072 * sizeof(float)); float* x2041 = (float*)myMalloc(1 * sizeof(float));; x2041[0] = 0.0f; float* x2043 = (float*)myMalloc(1 * sizeof(float));; x2043[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 512, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x2043, x2043, in_desc, x2034, out_desc, x2040, sbmv_desc, x395, x668, x719, x452, 1.0E-5)); }; float* x2046 = (float*)myMalloc(1 * sizeof(float));; x2046[0] = 0.0f; float* x2048 = (float*)myMalloc(1 * sizeof(float));; x2048[0] = 1.0f; float* x2050 = (float*)myGpuMalloc(131072 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x2048, x_desc, x2040, x2046, x_desc, x2050)); }; float* x2052 = (float*)myGpuMalloc(131072 * sizeof(float)); float* x2053 = (float*)myMalloc(1 * sizeof(float));; x2053[0] = 0.0f; float* x2055 = (float*)myMalloc(1 * sizeof(float));; x2055[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 512, 512, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x2055, in_desc, x2050, filt_desc, x722, conv_desc, algo, ws_data, ws_size, x2053, out_desc, x2052)); }; float* x2058 = (float*)myGpuMalloc(131072 * sizeof(float)); float* x2059 = (float*)myMalloc(1 * sizeof(float));; x2059[0] = 0.0f; float* x2061 = (float*)myMalloc(1 * sizeof(float));; x2061[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 512, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x2061, x2061, in_desc, x2052, out_desc, x2058, sbmv_desc, x737, x455, x671, x842, 1.0E-5)); }; float* x2064 = (float*)myMalloc(1 * sizeof(float));; x2064[0] = 0.0f; float* x2066 = (float*)myMalloc(1 * sizeof(float));; x2066[0] = 1.0f; float* x2068 = (float*)myGpuMalloc(131072 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x2066, x_desc, x2058, x2064, x_desc, x2068)); }; float* x2070 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x2071 = (float*)myMalloc(1 * sizeof(float));; x2071[0] = 0.0f; float* x2073 = (float*)myMalloc(1 * sizeof(float));; x2073[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 2048, 512, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x2073, in_desc, x2068, filt_desc, x398, conv_desc, algo, ws_data, ws_size, x2071, out_desc, x2070)); }; float* x2076 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x2077 = (float*)myMalloc(1 * sizeof(float));; x2077[0] = 0.0f; float* x2079 = (float*)myMalloc(1 * sizeof(float));; x2079[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 2048, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x2079, x2079, in_desc, x2070, out_desc, x2076, sbmv_desc, x539, x689, x461, x992, 1.0E-5)); }; float* x2082 = (float*)myMalloc(1 * sizeof(float));; x2082[0] = 1.0f; float* x2084 = (float*)myMalloc(1 * sizeof(float));; x2084[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x2082, bias_desc, x2032, x2084, out_desc, x2076)); }; float* x2087 = (float*)myMalloc(1 * sizeof(float));; x2087[0] = 0.0f; float* x2089 = (float*)myMalloc(1 * sizeof(float));; x2089[0] = 1.0f; float* x2091 = (float*)myGpuMalloc(524288 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x2089, x_desc, x2076, x2087, x_desc, x2091)); }; float* x2093 = (float*)myGpuMalloc(131072 * sizeof(float)); float* x2094 = (float*)myMalloc(1 * sizeof(float));; x2094[0] = 0.0f; float* x2096 = (float*)myMalloc(1 * sizeof(float));; x2096[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 512, 2048, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x2096, in_desc, x2091, filt_desc, x1052, conv_desc, algo, ws_data, ws_size, x2094, out_desc, x2093)); }; float* x2099 = (float*)myGpuMalloc(131072 * sizeof(float)); float* x2100 = (float*)myMalloc(1 * sizeof(float));; x2100[0] = 0.0f; float* x2102 = (float*)myMalloc(1 * sizeof(float));; x2102[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 512, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x2102, x2102, in_desc, x2093, out_desc, x2099, sbmv_desc, x302, x491, x896, x1022, 1.0E-5)); }; float* x2105 = (float*)myMalloc(1 * sizeof(float));; x2105[0] = 0.0f; float* x2107 = (float*)myMalloc(1 * sizeof(float));; x2107[0] = 1.0f; float* x2109 = (float*)myGpuMalloc(131072 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x2107, x_desc, x2099, x2105, x_desc, x2109)); }; float* x2111 = (float*)myGpuMalloc(131072 * sizeof(float)); float* x2112 = (float*)myMalloc(1 * sizeof(float));; x2112[0] = 0.0f; float* x2114 = (float*)myMalloc(1 * sizeof(float));; x2114[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 512, 512, 3, 3)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 1, 1, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x2114, in_desc, x2109, filt_desc, x341, conv_desc, algo, ws_data, ws_size, x2112, out_desc, x2111)); }; float* x2117 = (float*)myGpuMalloc(131072 * sizeof(float)); float* x2118 = (float*)myMalloc(1 * sizeof(float));; x2118[0] = 0.0f; float* x2120 = (float*)myMalloc(1 * sizeof(float));; x2120[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 512, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x2120, x2120, in_desc, x2111, out_desc, x2117, sbmv_desc, x839, x764, x293, x863, 1.0E-5)); }; float* x2123 = (float*)myMalloc(1 * sizeof(float));; x2123[0] = 0.0f; float* x2125 = (float*)myMalloc(1 * sizeof(float));; x2125[0] = 1.0f; float* x2127 = (float*)myGpuMalloc(131072 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x2125, x_desc, x2117, x2123, x_desc, x2127)); }; float* x2129 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x2130 = (float*)myMalloc(1 * sizeof(float));; x2130[0] = 0.0f; float* x2132 = (float*)myMalloc(1 * sizeof(float));; x2132[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 512, 2, 2)); cudnnFilterDescriptor_t filt_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&filt_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor( filt_desc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 2048, 512, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL(cudnnSetConvolution2dDescriptor( conv_desc, 0, 0, 1, 1, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // Algorithm. cudnnConvolutionFwdAlgo_t algo; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo)); // Workspace. size_t ws_size; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( cudnnHandle, in_desc, filt_desc, conv_desc, out_desc, algo, &ws_size)); void *ws_data = myGpuMalloc(ws_size); // Execute convolution. CUDNN_CALL(cudnnConvolutionForward( cudnnHandle, x2132, in_desc, x2127, filt_desc, x356, conv_desc, algo, ws_data, ws_size, x2130, out_desc, x2129)); }; float* x2135 = (float*)myGpuMalloc(524288 * sizeof(float)); float* x2136 = (float*)myMalloc(1 * sizeof(float));; x2136[0] = 0.0f; float* x2138 = (float*)myMalloc(1 * sizeof(float));; x2138[0] = 1.0f; { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnTensorDescriptor_t sbmv_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&sbmv_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( sbmv_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 2048, 1, 1)); CUDNN_CALL(cudnnBatchNormalizationForwardInference( cudnnHandle, CUDNN_BATCHNORM_SPATIAL, x2138, x2138, in_desc, x2129, out_desc, x2135, sbmv_desc, x566, x800, x1037, x626, 1.0E-5)); }; float* x2141 = (float*)myMalloc(1 * sizeof(float));; x2141[0] = 1.0f; float* x2143 = (float*)myMalloc(1 * sizeof(float));; x2143[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x2141, bias_desc, x2091, x2143, out_desc, x2135)); }; float* x2146 = (float*)myMalloc(1 * sizeof(float));; x2146[0] = 0.0f; float* x2148 = (float*)myMalloc(1 * sizeof(float));; x2148[0] = 1.0f; float* x2150 = (float*)myGpuMalloc(524288 * sizeof(float)); { cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnActivationDescriptor_t act_desc; CUDNN_CALL(cudnnCreateActivationDescriptor(&act_desc)); CUDNN_CALL(cudnnSetActivationDescriptor(act_desc, /*mode=*/ CUDNN_ACTIVATION_RELU, /*reluNanOpt=*/ CUDNN_PROPAGATE_NAN, /*relu_coef=*/ 0)); CUDNN_CALL(cudnnActivationForward( cudnnHandle, act_desc, x2148, x_desc, x2135, x2146, x_desc, x2150)); }; float* x2152 = (float*)myMalloc(1 * sizeof(float));; x2152[0] = 0.0f; float* x2154 = (float*)myMalloc(1 * sizeof(float));; x2154[0] = 1.0f; float* x2156 = (float*)myGpuMalloc(131072 * sizeof(float)); { cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( in_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 2, 2)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 2048, 1, 1)); cudnnPoolingDescriptor_t poolingDesc; CUDNN_CALL(cudnnCreatePoolingDescriptor(&poolingDesc)); CUDNN_CALL(cudnnSetPooling2dDescriptor( poolingDesc, CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING, CUDNN_NOT_PROPAGATE_NAN, 2, 2, 0, 0, 1, 1 )); CUDNN_CALL(cudnnPoolingForward( cudnnHandle, poolingDesc, x2154, in_desc, x2150, x2152, out_desc, x2156)); }; // resize to WrappedArray(64, 2048) // gemm: WrappedArray(64, 2048), Vector(10, 2048) float* x2160 = (float*)myGpuMalloc(640 * sizeof(float)); float* x2161 = (float*)myMalloc(1 * sizeof(float));; x2161[0] = 0.0f; float* x2163 = (float*)myMalloc(1 * sizeof(float));; x2163[0] = 1.0f; CUBLAS_CALL(cublasSgemm(cublasHandle, CUBLAS_OP_T, CUBLAS_OP_N, 10,64,2048,x2163,x938,2048,x2156,2048,x2161,x2160,10)); float* x2166 = (float*)myMalloc(1 * sizeof(float));; x2166[0] = 1.0f; float* x2168 = (float*)myMalloc(1 * sizeof(float));; x2168[0] = 1.0f; { cudnnTensorDescriptor_t bias_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&bias_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( bias_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, 10, 1, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( out_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 64, 10, 1, 1)); CUDNN_CALL(cudnnAddTensor( cudnnHandle, x2166, bias_desc, x401, x2168, out_desc, x2160)); }; // Tensor 'toCPU' invocation. float* x2172 = (float*)myMalloc(640 * sizeof(float));; CUDA_CALL(cudaMemcpy(x2172, x2160, 640 * sizeof(float), cudaMemcpyDeviceToHost)); printf("output (size 64 x 10)\n"); float x2175 = 0.0f; for(int x2177=0; x2177 < 640; x2177++) { float x2178 = x2175; float x2179 = x2172[x2177]; float x2180 = fabs(x2179); float x2181 = fabs(x2178); bool x2182 = x2180 > x2181; float x2183; if (x2182) { x2183 = x2179; } else { x2183 = x2178; } x2175 = x2183; } float x2187 = x2175; printf("Max Abs: %.5f || ",x2187); for(int x2189=0; x2189 < 10; x2189++) { float x2190 = x2172[x2189]; printf("%.5f ",x2190); } printf("\n"); assert(false && "stop"); } // Backend cleanup. CUBLAS_CALL(cublasDestroy(cublasHandle)); CUDA_CALL(cudaFree(gpuMallocBase)); CUDNN_CALL(cudnnDestroy(cudnnHandle)); } /***************************************** End of C Generated Code *******************************************/
e3a170f4fc391e3dab82101fb84376e1ea984290.hip
// !!! This is a file automatically generated by hipify!!! #include <stdlib.h> #include "hip/hip_runtime.h" #include "../../common/book.h" #include "../../common/cpu_bitmap.h" #define RAND_MAX 2147483647 #define rnd( x ) (x * rand() / RAND_MAX) #define INF 2e10f #define SPHERES 100 #define DIM 1024 // center of sphere: x, y, z // sphere radius // color: r, b, g struct Sphere { float r, b, g; float radius; float x, y, z; __device__ float hit(float ox, float oy, float *n) { float dx = ox - x; float dy = oy - y; if (dx * dx + dy * dy < radius * radius) { float dz = sqrtf(radius * radius - dx * dx - dy * dy); *n = dz / sqrtf(radius * radius); return dz + z; } return -INF; } }; __constant__ Sphere s[SPHERES]; __global__ void kernel(unsigned char *ptr) { //threadIdx / blockIdx -> set pixel location int x = threadIdx.x + blockIdx.x * blockDim.x; int y = threadIdx.y + blockIdx.y * blockDim.y; int offset = x + y * blockDim.x * gridDim.x; float ox = (x - DIM/2); float oy = (y - DIM/2); float r = 0, g = 0, b = 0; float maxz = -INF; for (int i = 0; i < SPHERES; i++) { float n; float t = s[i].hit(ox, oy, &n); if (t > maxz) { float fscale = n; r = s[i].r * fscale; g = s[i].g * fscale; b = s[i].b * fscale; } } ptr[offset * 4 + 0] = (int) (r * 255); ptr[offset * 4 + 1] = (int) (g * 255); ptr[offset * 4 + 2] = (int) (b * 255); ptr[offset * 4 + 3] = 255; } //Sphere *s; void EXAMPLE_CONSTMEM_RAYSPHERE_REPO6() { //capture start time CPUBitmap bitmap(DIM, DIM); unsigned char *dev_bitmap; //Allocate GPU memory for output bitmap HANDLE_ERROR(hipMalloc((void**)&dev_bitmap, bitmap.image_size())); //Allocate temporary sphere memory and initialize it Sphere *temp_s = (Sphere *) malloc(sizeof(Sphere) * SPHERES); for (int i = 0; i < SPHERES; i++) { temp_s[i].r = rnd(1.0f); temp_s[i].g = rnd(1.0f); temp_s[i].b = rnd(1.0f); temp_s[i].x = rnd(1000.0f) - 500; temp_s[i].y = rnd(1000.0f) - 500; temp_s[i].z = rnd(1000.0f) - 500; temp_s[i].radius = rnd(100.0f) + 20; } //Copy sphere memory from Host to GPU //remove memory HANDLE_ERROR(hipMemcpyToSymbol(s, temp_s, sizeof(Sphere) * SPHERES)); free(temp_s); dim3 blocks(DIM/16, DIM/16); dim3 threads(16, 16); hipLaunchKernelGGL(( kernel), dim3(blocks), dim3(threads), 0, 0, dev_bitmap); HANDLE_ERROR(hipMemcpy(bitmap.get_ptr(), dev_bitmap, bitmap.image_size(), hipMemcpyDeviceToHost)); bitmap.display_and_exit(); hipFree(dev_bitmap); }
e3a170f4fc391e3dab82101fb84376e1ea984290.cu
#include <stdlib.h> #include "cuda.h" #include "../../common/book.h" #include "../../common/cpu_bitmap.h" #define RAND_MAX 2147483647 #define rnd( x ) (x * rand() / RAND_MAX) #define INF 2e10f #define SPHERES 100 #define DIM 1024 // center of sphere: x, y, z // sphere radius // color: r, b, g struct Sphere { float r, b, g; float radius; float x, y, z; __device__ float hit(float ox, float oy, float *n) { float dx = ox - x; float dy = oy - y; if (dx * dx + dy * dy < radius * radius) { float dz = sqrtf(radius * radius - dx * dx - dy * dy); *n = dz / sqrtf(radius * radius); return dz + z; } return -INF; } }; __constant__ Sphere s[SPHERES]; __global__ void kernel(unsigned char *ptr) { //threadIdx / blockIdx -> set pixel location int x = threadIdx.x + blockIdx.x * blockDim.x; int y = threadIdx.y + blockIdx.y * blockDim.y; int offset = x + y * blockDim.x * gridDim.x; float ox = (x - DIM/2); float oy = (y - DIM/2); float r = 0, g = 0, b = 0; float maxz = -INF; for (int i = 0; i < SPHERES; i++) { float n; float t = s[i].hit(ox, oy, &n); if (t > maxz) { float fscale = n; r = s[i].r * fscale; g = s[i].g * fscale; b = s[i].b * fscale; } } ptr[offset * 4 + 0] = (int) (r * 255); ptr[offset * 4 + 1] = (int) (g * 255); ptr[offset * 4 + 2] = (int) (b * 255); ptr[offset * 4 + 3] = 255; } //Sphere *s; void EXAMPLE_CONSTMEM_RAYSPHERE_REPO6() { //capture start time CPUBitmap bitmap(DIM, DIM); unsigned char *dev_bitmap; //Allocate GPU memory for output bitmap HANDLE_ERROR(cudaMalloc((void**)&dev_bitmap, bitmap.image_size())); //Allocate temporary sphere memory and initialize it Sphere *temp_s = (Sphere *) malloc(sizeof(Sphere) * SPHERES); for (int i = 0; i < SPHERES; i++) { temp_s[i].r = rnd(1.0f); temp_s[i].g = rnd(1.0f); temp_s[i].b = rnd(1.0f); temp_s[i].x = rnd(1000.0f) - 500; temp_s[i].y = rnd(1000.0f) - 500; temp_s[i].z = rnd(1000.0f) - 500; temp_s[i].radius = rnd(100.0f) + 20; } //Copy sphere memory from Host to GPU //remove memory HANDLE_ERROR(cudaMemcpyToSymbol(s, temp_s, sizeof(Sphere) * SPHERES)); free(temp_s); dim3 blocks(DIM/16, DIM/16); dim3 threads(16, 16); kernel<<<blocks, threads>>> (dev_bitmap); HANDLE_ERROR(cudaMemcpy(bitmap.get_ptr(), dev_bitmap, bitmap.image_size(), cudaMemcpyDeviceToHost)); bitmap.display_and_exit(); cudaFree(dev_bitmap); }
df1d7d9814bd4d3ad563c911bed786bb3be24396.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" // Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/operators/where_op.h" #include "paddle/fluid/platform/device/gpu/gpu_launch_config.h" namespace platform = paddle::platform; namespace paddle { namespace operators { template <typename T> __global__ void WhereCUDAKernel(const int N, const bool* cond, const T* x, const T* y, T* out) { int idx = blockDim.x * blockIdx.x + threadIdx.x; for (; idx < N; idx += blockDim.x * gridDim.x) { out[idx] = cond[idx] ? x[idx] : y[idx]; } } template <typename T> __global__ void WhereGradCUDAKernel(const int N, const T* dout, const bool* cond, T* dx, T* dy) { int idx = blockDim.x * blockIdx.x + threadIdx.x; for (; idx < N; idx += blockDim.x * gridDim.x) { if (dx != nullptr) { dx[idx] = cond[idx] ? dout[idx] : 0.; } if (dy != nullptr) { dy[idx] = cond[idx] ? 0. : dout[idx]; } } } template <typename T> class WhereKernel<platform::CUDADeviceContext, T> : public framework::OpKernel<T> { public: void Compute(const framework::ExecutionContext& context) const override { auto* condition = context.Input<framework::Tensor>("Condition"); auto* X = context.Input<framework::Tensor>("X"); auto* Y = context.Input<framework::Tensor>("Y"); auto* out = context.Output<framework::Tensor>("Out"); auto numel = condition->numel(); // TODO(GaaoWei8): Input of where can be broadcast const bool* cond_data = condition->data<bool>(); const T* x_data = X->data<T>(); const T* y_data = Y->data<T>(); T* out_data = out->mutable_data<T>(context.GetPlace()); auto stream = context.cuda_device_context().stream(); auto& dev_ctx = context.template device_context<platform::CUDADeviceContext>(); auto config = GetGpuLaunchConfig1D(dev_ctx, numel); hipLaunchKernelGGL(( WhereCUDAKernel< T>), dim3(config.block_per_grid.x), dim3(config.thread_per_block.x), 0, stream, numel, cond_data, x_data, y_data, out_data); } }; template <typename T> class WhereGradKernel<platform::CUDADeviceContext, T> : public framework::OpKernel<T> { public: void Compute(const framework::ExecutionContext& context) const override { auto* condition = context.Input<framework::Tensor>("Condition"); const bool* cond_data = condition->data<bool>(); auto numel = condition->numel(); auto* dout_t = context.Input<framework::Tensor>(framework::GradVarName("Out")); auto* dx_t = context.Output<framework::Tensor>(framework::GradVarName("X")); auto* dy_t = context.Output<framework::Tensor>(framework::GradVarName("Y")); auto* dout = dout_t->data<T>(); T* dx = (dx_t != nullptr) ? dx_t->mutable_data<T>(context.GetPlace()) : nullptr; T* dy = (dy_t != nullptr) ? dy_t->mutable_data<T>(context.GetPlace()) : nullptr; auto stream = context.cuda_device_context().stream(); auto& dev_ctx = context.template device_context<platform::CUDADeviceContext>(); auto config = GetGpuLaunchConfig1D(dev_ctx, condition->numel()); hipLaunchKernelGGL(( WhereGradCUDAKernel< T>), dim3(config.block_per_grid.x), dim3(config.thread_per_block.x), 0, stream, numel, dout, cond_data, dx, dy); } }; } // namespace operators } // namespace paddle REGISTER_OP_CUDA_KERNEL( where, paddle::operators::WhereKernel<platform::CUDADeviceContext, float>, paddle::operators::WhereKernel<platform::CUDADeviceContext, double>, paddle::operators::WhereKernel<platform::CUDADeviceContext, int>, paddle::operators::WhereKernel<platform::CUDADeviceContext, int64_t>); REGISTER_OP_CUDA_KERNEL( where_grad, paddle::operators::WhereGradKernel<platform::CUDADeviceContext, float>, paddle::operators::WhereGradKernel<platform::CUDADeviceContext, double>, paddle::operators::WhereGradKernel<platform::CUDADeviceContext, int>, paddle::operators::WhereGradKernel<platform::CUDADeviceContext, int64_t>);
df1d7d9814bd4d3ad563c911bed786bb3be24396.cu
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/operators/where_op.h" #include "paddle/fluid/platform/device/gpu/gpu_launch_config.h" namespace platform = paddle::platform; namespace paddle { namespace operators { template <typename T> __global__ void WhereCUDAKernel(const int N, const bool* cond, const T* x, const T* y, T* out) { int idx = blockDim.x * blockIdx.x + threadIdx.x; for (; idx < N; idx += blockDim.x * gridDim.x) { out[idx] = cond[idx] ? x[idx] : y[idx]; } } template <typename T> __global__ void WhereGradCUDAKernel(const int N, const T* dout, const bool* cond, T* dx, T* dy) { int idx = blockDim.x * blockIdx.x + threadIdx.x; for (; idx < N; idx += blockDim.x * gridDim.x) { if (dx != nullptr) { dx[idx] = cond[idx] ? dout[idx] : 0.; } if (dy != nullptr) { dy[idx] = cond[idx] ? 0. : dout[idx]; } } } template <typename T> class WhereKernel<platform::CUDADeviceContext, T> : public framework::OpKernel<T> { public: void Compute(const framework::ExecutionContext& context) const override { auto* condition = context.Input<framework::Tensor>("Condition"); auto* X = context.Input<framework::Tensor>("X"); auto* Y = context.Input<framework::Tensor>("Y"); auto* out = context.Output<framework::Tensor>("Out"); auto numel = condition->numel(); // TODO(GaaoWei8): Input of where can be broadcast const bool* cond_data = condition->data<bool>(); const T* x_data = X->data<T>(); const T* y_data = Y->data<T>(); T* out_data = out->mutable_data<T>(context.GetPlace()); auto stream = context.cuda_device_context().stream(); auto& dev_ctx = context.template device_context<platform::CUDADeviceContext>(); auto config = GetGpuLaunchConfig1D(dev_ctx, numel); WhereCUDAKernel< T><<<config.block_per_grid.x, config.thread_per_block.x, 0, stream>>>( numel, cond_data, x_data, y_data, out_data); } }; template <typename T> class WhereGradKernel<platform::CUDADeviceContext, T> : public framework::OpKernel<T> { public: void Compute(const framework::ExecutionContext& context) const override { auto* condition = context.Input<framework::Tensor>("Condition"); const bool* cond_data = condition->data<bool>(); auto numel = condition->numel(); auto* dout_t = context.Input<framework::Tensor>(framework::GradVarName("Out")); auto* dx_t = context.Output<framework::Tensor>(framework::GradVarName("X")); auto* dy_t = context.Output<framework::Tensor>(framework::GradVarName("Y")); auto* dout = dout_t->data<T>(); T* dx = (dx_t != nullptr) ? dx_t->mutable_data<T>(context.GetPlace()) : nullptr; T* dy = (dy_t != nullptr) ? dy_t->mutable_data<T>(context.GetPlace()) : nullptr; auto stream = context.cuda_device_context().stream(); auto& dev_ctx = context.template device_context<platform::CUDADeviceContext>(); auto config = GetGpuLaunchConfig1D(dev_ctx, condition->numel()); WhereGradCUDAKernel< T><<<config.block_per_grid.x, config.thread_per_block.x, 0, stream>>>( numel, dout, cond_data, dx, dy); } }; } // namespace operators } // namespace paddle REGISTER_OP_CUDA_KERNEL( where, paddle::operators::WhereKernel<platform::CUDADeviceContext, float>, paddle::operators::WhereKernel<platform::CUDADeviceContext, double>, paddle::operators::WhereKernel<platform::CUDADeviceContext, int>, paddle::operators::WhereKernel<platform::CUDADeviceContext, int64_t>); REGISTER_OP_CUDA_KERNEL( where_grad, paddle::operators::WhereGradKernel<platform::CUDADeviceContext, float>, paddle::operators::WhereGradKernel<platform::CUDADeviceContext, double>, paddle::operators::WhereGradKernel<platform::CUDADeviceContext, int>, paddle::operators::WhereGradKernel<platform::CUDADeviceContext, int64_t>);
144b449d7ec79545320359934938dfbc2a333534.hip
// !!! This is a file automatically generated by hipify!!! // Author: Nic Olsen #include <hip/hip_runtime.h> #include <iostream> #include "scan.cuh" #include <hip/hip_cooperative_groups.h> namespace cg = cooperative_groups; // Scans each block of g_idata separately and writes the result to g_odata. // g_idata and g_odata are arrays available on device of length n // Writes the sum of each block to lasts[blockIdx.x] __global__ void hillis_steele(float* g_odata, float* lasts, float* g_idata, unsigned int n, bool write_lasts) { extern volatile __shared__ float s[]; int tid = threadIdx.x; unsigned int index = blockDim.x * blockIdx.x + tid; int pout = 0; int pin = 1; if (index >= n) { s[tid] = 0.f; } else if (tid == 0) { s[tid] = 0.f; } else { s[tid] = g_idata[index - 1]; } __syncthreads(); for (unsigned int offset = 1; offset < blockDim.x; offset <<= 1) { pout = 1 - pout; pin = 1 - pout; if (tid >= offset) { s[pout * blockDim.x + tid] = s[pin * blockDim.x + tid] + s[pin * blockDim.x + tid - offset]; } else { s[pout * blockDim.x + tid] = s[pin * blockDim.x + tid]; } __syncthreads(); } if (index < n ) { g_odata[index] = s[pout * blockDim.x + tid]; printf("g_odata is %f at index %d\n", g_odata[index], index); } if (write_lasts && threadIdx.x == 0) { unsigned int block_end = blockIdx.x * blockDim.x + blockDim.x - 1; lasts[blockIdx.x] = s[pout * blockDim.x + blockDim.x - 1] + g_idata[block_end]; // printf("Lasts is %f for a %d and block ID is %d and output data is %f\n", lasts[blockIdx.x], gridDim.x, blockIdx.x, g_odata[index]); } } // Increment each element corresponding to block b_i of arr by lasts[b_i] __global__ void inc_blocks(float* arr, float* lasts, unsigned int n) { unsigned int index = blockDim.x * blockIdx.x + threadIdx.x; if (index < n) { //printf("arr_before is %f\n", arr[index]); arr[index] = arr[index] + lasts[blockIdx.x]; //printf("arr_adter is %f\n", arr[index]); } } __host__ void scan( float* in, float* out, unsigned int n, unsigned int threads_per_block) { // Sort each block indiviually unsigned int nBlocks = (n + threads_per_block - 1) / threads_per_block; float* lasts; hipMallocManaged(&lasts, nBlocks * sizeof(float)); unsigned int shmem = 2 * threads_per_block * sizeof(float); bool write_lasts = true; // hillis_steele<<<nBlocks, threads_per_block, shmem>>>(out, lasts, in, n, true); //hipDeviceSynchronize(); for (unsigned int a = n; a > 1; a = (a + threads_per_block - 1) / threads_per_block) { // void *kernelArgs[] = { // (void *)&out, (void *)&lasts, (void *)&in, (void *)&n, (void *)&write_lasts //}; //hipLaunchCooperativeKernel((void*)hillis_steele, nBlocks, threads_per_block, kernelArgs, shmem, 0); hipLaunchKernelGGL(( hillis_steele), dim3(((a + threads_per_block - 1) / threads_per_block)), dim3(threads_per_block), shmem, 0, out, lasts, in, a, true); // Swap input and output arrays hipDeviceSynchronize(); float* tmp = in; in = lasts; lasts = tmp; } // std::cout << in[a-1] << std::endl; // Scan lasts //hillis_steele<<<1, threads_per_block, shmem>>>(lasts, nullptr, lasts, nBlocks, false); hipDeviceSynchronize(); // Add starting value to each block hipLaunchKernelGGL(( inc_blocks), dim3(nBlocks), dim3(threads_per_block), 0, 0, out, in, n); hipDeviceSynchronize(); hipFree(lasts); }
144b449d7ec79545320359934938dfbc2a333534.cu
// Author: Nic Olsen #include <cuda.h> #include <iostream> #include "scan.cuh" #include <cooperative_groups.h> namespace cg = cooperative_groups; // Scans each block of g_idata separately and writes the result to g_odata. // g_idata and g_odata are arrays available on device of length n // Writes the sum of each block to lasts[blockIdx.x] __global__ void hillis_steele(float* g_odata, float* lasts, float* g_idata, unsigned int n, bool write_lasts) { extern volatile __shared__ float s[]; int tid = threadIdx.x; unsigned int index = blockDim.x * blockIdx.x + tid; int pout = 0; int pin = 1; if (index >= n) { s[tid] = 0.f; } else if (tid == 0) { s[tid] = 0.f; } else { s[tid] = g_idata[index - 1]; } __syncthreads(); for (unsigned int offset = 1; offset < blockDim.x; offset <<= 1) { pout = 1 - pout; pin = 1 - pout; if (tid >= offset) { s[pout * blockDim.x + tid] = s[pin * blockDim.x + tid] + s[pin * blockDim.x + tid - offset]; } else { s[pout * blockDim.x + tid] = s[pin * blockDim.x + tid]; } __syncthreads(); } if (index < n ) { g_odata[index] = s[pout * blockDim.x + tid]; printf("g_odata is %f at index %d\n", g_odata[index], index); } if (write_lasts && threadIdx.x == 0) { unsigned int block_end = blockIdx.x * blockDim.x + blockDim.x - 1; lasts[blockIdx.x] = s[pout * blockDim.x + blockDim.x - 1] + g_idata[block_end]; // printf("Lasts is %f for a %d and block ID is %d and output data is %f\n", lasts[blockIdx.x], gridDim.x, blockIdx.x, g_odata[index]); } } // Increment each element corresponding to block b_i of arr by lasts[b_i] __global__ void inc_blocks(float* arr, float* lasts, unsigned int n) { unsigned int index = blockDim.x * blockIdx.x + threadIdx.x; if (index < n) { //printf("arr_before is %f\n", arr[index]); arr[index] = arr[index] + lasts[blockIdx.x]; //printf("arr_adter is %f\n", arr[index]); } } __host__ void scan( float* in, float* out, unsigned int n, unsigned int threads_per_block) { // Sort each block indiviually unsigned int nBlocks = (n + threads_per_block - 1) / threads_per_block; float* lasts; cudaMallocManaged(&lasts, nBlocks * sizeof(float)); unsigned int shmem = 2 * threads_per_block * sizeof(float); bool write_lasts = true; // hillis_steele<<<nBlocks, threads_per_block, shmem>>>(out, lasts, in, n, true); //cudaDeviceSynchronize(); for (unsigned int a = n; a > 1; a = (a + threads_per_block - 1) / threads_per_block) { // void *kernelArgs[] = { // (void *)&out, (void *)&lasts, (void *)&in, (void *)&n, (void *)&write_lasts //}; //cudaLaunchCooperativeKernel((void*)hillis_steele, nBlocks, threads_per_block, kernelArgs, shmem, 0); hillis_steele<<<((a + threads_per_block - 1) / threads_per_block), threads_per_block, shmem>>>(out, lasts, in, a, true); // Swap input and output arrays cudaDeviceSynchronize(); float* tmp = in; in = lasts; lasts = tmp; } // std::cout << in[a-1] << std::endl; // Scan lasts //hillis_steele<<<1, threads_per_block, shmem>>>(lasts, nullptr, lasts, nBlocks, false); cudaDeviceSynchronize(); // Add starting value to each block inc_blocks<<<nBlocks, threads_per_block>>>(out, in, n); cudaDeviceSynchronize(); cudaFree(lasts); }
21e87a7f7b3e39fb9c57bdcd43d080d8b8f072d8.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" // http://www.orangeowlsolutions.com/archives/613 // https://github.com/OrangeOwlSolutions/General-CUDA-programming/wiki/hipMallocPitch-and-hipMemcpy2D #include<stdio.h> #include<cuda.h> #include<cuda_runtime.h> #include<device_launch_parameters.h> #include<assert.h> #define BLOCKSIZE_x 8 #define BLOCKSIZE_y 8 #define BLOCKSIZE_z 8 // x*y*z < 1024 // x*y*z < 1024 // x*y*z < 1024 #define Nrows 3 #define Ncols 5 #define NN 512 //#define NN 8 /*******************/ /* iDivUp FUNCTION */ /*******************/ int iDivUp(int hostPtr, int b){ return ((hostPtr % b) != 0) ? (hostPtr / b + 1) : (hostPtr / b); } #define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); } inline void gpuAssert(hipError_t code, const char *file, int line, bool abort=true) { if (code != hipSuccess) { fprintf(stderr,"GPUassert: %s %s %d\n", hipGetErrorString(code), file, line); if (abort) exit(code); } } /******************/ /* TEST KERNEL 2D */ /******************/ // https://stackoverflow.com/questions/16619274/cuda-griddim-and-blockdim/16619633 // https://stackoverflow.com/questions/16724844/divide-the-work-of-a-3d-kernel-among-blocks __global__ void test_kernel_3D(float **devPtr, size_t pitch) { int tidx = blockIdx.x*blockDim.x + threadIdx.x; int tidy = blockIdx.y*blockDim.y + threadIdx.y; int tidz = blockIdx.z*blockDim.z + threadIdx.z; // printf("%i %i %i\n", tidx, tidy, tidz); if ((tidx < Ncols) && (tidy < Nrows) && (tidz < NN)) { float *matrix_a = devPtr[tidz]; float *row_a = (float *)((char*)matrix_a + tidy * pitch); row_a[tidx] = row_a[tidx] * 2.0; } } __global__ void test_kernel_2D(float *devPtr, size_t pitch) { int tidx = blockIdx.x*blockDim.x + threadIdx.x; int tidy = blockIdx.y*blockDim.y + threadIdx.y; if ((tidx < Ncols) && (tidy < NN*Nrows)) { float *row_a = (float *)((char*)devPtr+ tidy * pitch); row_a[tidx] = row_a[tidx] * 2.0; } } /********/ /* MAIN */ /********/ int main() { // float hostPtr[Nrows][Ncols]; float xx = 0.0; float *hostPtr = (float*)malloc(NN*Nrows*Ncols*sizeof(float)); for(int k=0; k<NN; k++){ for (int i = 0; i < Nrows; i++){ for (int j = 0; j < Ncols; j++) { hostPtr[k*Nrows*Ncols+i*Ncols+j] = xx++;; //printf("row %i column %i value %f \n", i, j, hostPtr[i][j]); } } } // --- 2D pitched allocation and host->device memcopy float *devPtr; size_t pitch; gpuErrchk(hipMallocPitch(&devPtr, &pitch, Ncols * sizeof(float), Nrows*NN)); gpuErrchk(hipMemcpy2D(devPtr, pitch, hostPtr, Ncols*sizeof(float), Ncols*sizeof(float), Nrows*NN, hipMemcpyHostToDevice)); float **ListPtr = 0; ListPtr = (float**)malloc(NN*sizeof(float*)); for(int i=0; i<NN; i++){ ListPtr[i] = devPtr + pitch/sizeof(float)*Nrows*i; } float **devListPtr = 0; gpuErrchk(hipMalloc(&devListPtr, NN*sizeof(float*))); gpuErrchk(hipMemcpy(devListPtr, ListPtr, NN*sizeof(float*), hipMemcpyHostToDevice)); // 3D dim3 gridSize(iDivUp(Ncols, BLOCKSIZE_x), iDivUp(Nrows, BLOCKSIZE_y), iDivUp(NN, BLOCKSIZE_z)); dim3 blockSize(BLOCKSIZE_x, BLOCKSIZE_y, BLOCKSIZE_z); test_kernel_3D << <gridSize, blockSize >> >(devListPtr, pitch); // 2D //dim3 gridSize(iDivUp(Ncols, BLOCKSIZE_x), iDivUp(NN*Nrows, BLOCKSIZE_y)); //dim3 blockSize(BLOCKSIZE_x, BLOCKSIZE_y); //test_kernel_2D << <gridSize, blockSize >> >(devPtr, pitch); hipPeekAtLastError(); hipDeviceSynchronize(); //hipMemcpy2D(hostPtr, Ncols * sizeof(float), devPtr, pitch, Ncols * sizeof(float), Nrows*NN, hipMemcpyDeviceToHost); gpuErrchk(hipMemcpy2D(hostPtr, Ncols * sizeof(float), devPtr, pitch, Ncols * sizeof(float), Nrows*NN, hipMemcpyDeviceToHost)); for(int k=0; k<NN; k++){ printf("-----iteration: %i-----\n", k); for (int i = 0; i < Nrows; i++){ for (int j = 0; j < Ncols; j++) printf("%.1f ", hostPtr[k*Nrows*Ncols+i*Ncols+j]); // printf("N %i row %i column %i value %f \n", k, i, j, hostPtr[k*Nrows*Ncols+i*Nrows+j]); printf("\n"); } printf("-----done!-----\n"); } return 0; }
21e87a7f7b3e39fb9c57bdcd43d080d8b8f072d8.cu
// http://www.orangeowlsolutions.com/archives/613 // https://github.com/OrangeOwlSolutions/General-CUDA-programming/wiki/cudaMallocPitch-and-cudaMemcpy2D #include<stdio.h> #include<cuda.h> #include<cuda_runtime.h> #include<device_launch_parameters.h> #include<assert.h> #define BLOCKSIZE_x 8 #define BLOCKSIZE_y 8 #define BLOCKSIZE_z 8 // x*y*z < 1024 // x*y*z < 1024 // x*y*z < 1024 #define Nrows 3 #define Ncols 5 #define NN 512 //#define NN 8 /*******************/ /* iDivUp FUNCTION */ /*******************/ int iDivUp(int hostPtr, int b){ return ((hostPtr % b) != 0) ? (hostPtr / b + 1) : (hostPtr / b); } #define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); } inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true) { if (code != cudaSuccess) { fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line); if (abort) exit(code); } } /******************/ /* TEST KERNEL 2D */ /******************/ // https://stackoverflow.com/questions/16619274/cuda-griddim-and-blockdim/16619633 // https://stackoverflow.com/questions/16724844/divide-the-work-of-a-3d-kernel-among-blocks __global__ void test_kernel_3D(float **devPtr, size_t pitch) { int tidx = blockIdx.x*blockDim.x + threadIdx.x; int tidy = blockIdx.y*blockDim.y + threadIdx.y; int tidz = blockIdx.z*blockDim.z + threadIdx.z; // printf("%i %i %i\n", tidx, tidy, tidz); if ((tidx < Ncols) && (tidy < Nrows) && (tidz < NN)) { float *matrix_a = devPtr[tidz]; float *row_a = (float *)((char*)matrix_a + tidy * pitch); row_a[tidx] = row_a[tidx] * 2.0; } } __global__ void test_kernel_2D(float *devPtr, size_t pitch) { int tidx = blockIdx.x*blockDim.x + threadIdx.x; int tidy = blockIdx.y*blockDim.y + threadIdx.y; if ((tidx < Ncols) && (tidy < NN*Nrows)) { float *row_a = (float *)((char*)devPtr+ tidy * pitch); row_a[tidx] = row_a[tidx] * 2.0; } } /********/ /* MAIN */ /********/ int main() { // float hostPtr[Nrows][Ncols]; float xx = 0.0; float *hostPtr = (float*)malloc(NN*Nrows*Ncols*sizeof(float)); for(int k=0; k<NN; k++){ for (int i = 0; i < Nrows; i++){ for (int j = 0; j < Ncols; j++) { hostPtr[k*Nrows*Ncols+i*Ncols+j] = xx++;; //printf("row %i column %i value %f \n", i, j, hostPtr[i][j]); } } } // --- 2D pitched allocation and host->device memcopy float *devPtr; size_t pitch; gpuErrchk(cudaMallocPitch(&devPtr, &pitch, Ncols * sizeof(float), Nrows*NN)); gpuErrchk(cudaMemcpy2D(devPtr, pitch, hostPtr, Ncols*sizeof(float), Ncols*sizeof(float), Nrows*NN, cudaMemcpyHostToDevice)); float **ListPtr = 0; ListPtr = (float**)malloc(NN*sizeof(float*)); for(int i=0; i<NN; i++){ ListPtr[i] = devPtr + pitch/sizeof(float)*Nrows*i; } float **devListPtr = 0; gpuErrchk(cudaMalloc(&devListPtr, NN*sizeof(float*))); gpuErrchk(cudaMemcpy(devListPtr, ListPtr, NN*sizeof(float*), cudaMemcpyHostToDevice)); // 3D dim3 gridSize(iDivUp(Ncols, BLOCKSIZE_x), iDivUp(Nrows, BLOCKSIZE_y), iDivUp(NN, BLOCKSIZE_z)); dim3 blockSize(BLOCKSIZE_x, BLOCKSIZE_y, BLOCKSIZE_z); test_kernel_3D << <gridSize, blockSize >> >(devListPtr, pitch); // 2D //dim3 gridSize(iDivUp(Ncols, BLOCKSIZE_x), iDivUp(NN*Nrows, BLOCKSIZE_y)); //dim3 blockSize(BLOCKSIZE_x, BLOCKSIZE_y); //test_kernel_2D << <gridSize, blockSize >> >(devPtr, pitch); cudaPeekAtLastError(); cudaDeviceSynchronize(); //cudaMemcpy2D(hostPtr, Ncols * sizeof(float), devPtr, pitch, Ncols * sizeof(float), Nrows*NN, cudaMemcpyDeviceToHost); gpuErrchk(cudaMemcpy2D(hostPtr, Ncols * sizeof(float), devPtr, pitch, Ncols * sizeof(float), Nrows*NN, cudaMemcpyDeviceToHost)); for(int k=0; k<NN; k++){ printf("-----iteration: %i-----\n", k); for (int i = 0; i < Nrows; i++){ for (int j = 0; j < Ncols; j++) printf("%.1f ", hostPtr[k*Nrows*Ncols+i*Ncols+j]); // printf("N %i row %i column %i value %f \n", k, i, j, hostPtr[k*Nrows*Ncols+i*Nrows+j]); printf("\n"); } printf("-----done!-----\n"); } return 0; }
a8aab09ccf67a03b045c9a349f6e99aa64058bdd.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" // // auto-generated by ops.py // __constant__ int xdim0_update_halo_kernel2_xvel_plus_4_bot; int xdim0_update_halo_kernel2_xvel_plus_4_bot_h = -1; __constant__ int ydim0_update_halo_kernel2_xvel_plus_4_bot; int ydim0_update_halo_kernel2_xvel_plus_4_bot_h = -1; __constant__ int xdim1_update_halo_kernel2_xvel_plus_4_bot; int xdim1_update_halo_kernel2_xvel_plus_4_bot_h = -1; __constant__ int ydim1_update_halo_kernel2_xvel_plus_4_bot; int ydim1_update_halo_kernel2_xvel_plus_4_bot_h = -1; #undef OPS_ACC0 #undef OPS_ACC1 #define OPS_ACC0(x, y, z) \ (x + xdim0_update_halo_kernel2_xvel_plus_4_bot * (y) + \ xdim0_update_halo_kernel2_xvel_plus_4_bot * \ ydim0_update_halo_kernel2_xvel_plus_4_bot * (z)) #define OPS_ACC1(x, y, z) \ (x + xdim1_update_halo_kernel2_xvel_plus_4_bot * (y) + \ xdim1_update_halo_kernel2_xvel_plus_4_bot * \ ydim1_update_halo_kernel2_xvel_plus_4_bot * (z)) // user function __device__ inline void update_halo_kernel2_xvel_plus_4_bot(double *xvel0, double *xvel1, const int *fields) { if (fields[FIELD_XVEL0] == 1) xvel0[OPS_ACC0(0, 0, 0)] = xvel0[OPS_ACC0(0, 4, 0)]; if (fields[FIELD_XVEL1] == 1) xvel1[OPS_ACC1(0, 0, 0)] = xvel1[OPS_ACC1(0, 4, 0)]; } #undef OPS_ACC0 #undef OPS_ACC1 __global__ void ops_update_halo_kernel2_xvel_plus_4_bot( double *__restrict arg0, double *__restrict arg1, const int *__restrict arg2, int size0, int size1, int size2) { int idx_z = blockDim.z * blockIdx.z + threadIdx.z; int idx_y = blockDim.y * blockIdx.y + threadIdx.y; int idx_x = blockDim.x * blockIdx.x + threadIdx.x; arg0 += idx_x * 1 * 1 + idx_y * 1 * 1 * xdim0_update_halo_kernel2_xvel_plus_4_bot + idx_z * 1 * 1 * xdim0_update_halo_kernel2_xvel_plus_4_bot * ydim0_update_halo_kernel2_xvel_plus_4_bot; arg1 += idx_x * 1 * 1 + idx_y * 1 * 1 * xdim1_update_halo_kernel2_xvel_plus_4_bot + idx_z * 1 * 1 * xdim1_update_halo_kernel2_xvel_plus_4_bot * ydim1_update_halo_kernel2_xvel_plus_4_bot; if (idx_x < size0 && idx_y < size1 && idx_z < size2) { update_halo_kernel2_xvel_plus_4_bot(arg0, arg1, arg2); } } // host stub function void ops_par_loop_update_halo_kernel2_xvel_plus_4_bot(char const *name, ops_block block, int dim, int *range, ops_arg arg0, ops_arg arg1, ops_arg arg2) { // Timing double t1, t2, c1, c2; ops_arg args[3] = {arg0, arg1, arg2}; #ifdef CHECKPOINTING if (!ops_checkpointing_before(args, 3, range, 69)) return; #endif if (OPS_diags > 1) { ops_timing_realloc(69, "update_halo_kernel2_xvel_plus_4_bot"); OPS_kernels[69].count++; ops_timers_core(&c1, &t1); } // compute locally allocated range for the sub-block int start[3]; int end[3]; #ifdef OPS_MPI sub_block_list sb = OPS_sub_block_list[block->index]; if (!sb->owned) return; for (int n = 0; n < 3; n++) { start[n] = sb->decomp_disp[n]; end[n] = sb->decomp_disp[n] + sb->decomp_size[n]; if (start[n] >= range[2 * n]) { start[n] = 0; } else { start[n] = range[2 * n] - start[n]; } if (sb->id_m[n] == MPI_PROC_NULL && range[2 * n] < 0) start[n] = range[2 * n]; if (end[n] >= range[2 * n + 1]) { end[n] = range[2 * n + 1] - sb->decomp_disp[n]; } else { end[n] = sb->decomp_size[n]; } if (sb->id_p[n] == MPI_PROC_NULL && (range[2 * n + 1] > sb->decomp_disp[n] + sb->decomp_size[n])) end[n] += (range[2 * n + 1] - sb->decomp_disp[n] - sb->decomp_size[n]); } #else for (int n = 0; n < 3; n++) { start[n] = range[2 * n]; end[n] = range[2 * n + 1]; } #endif int x_size = MAX(0, end[0] - start[0]); int y_size = MAX(0, end[1] - start[1]); int z_size = MAX(0, end[2] - start[2]); int xdim0 = args[0].dat->size[0]; int ydim0 = args[0].dat->size[1]; int xdim1 = args[1].dat->size[0]; int ydim1 = args[1].dat->size[1]; if (xdim0 != xdim0_update_halo_kernel2_xvel_plus_4_bot_h || ydim0 != ydim0_update_halo_kernel2_xvel_plus_4_bot_h || xdim1 != xdim1_update_halo_kernel2_xvel_plus_4_bot_h || ydim1 != ydim1_update_halo_kernel2_xvel_plus_4_bot_h) { hipMemcpyToSymbol(xdim0_update_halo_kernel2_xvel_plus_4_bot, &xdim0, sizeof(int)); xdim0_update_halo_kernel2_xvel_plus_4_bot_h = xdim0; hipMemcpyToSymbol(ydim0_update_halo_kernel2_xvel_plus_4_bot, &ydim0, sizeof(int)); ydim0_update_halo_kernel2_xvel_plus_4_bot_h = ydim0; hipMemcpyToSymbol(xdim1_update_halo_kernel2_xvel_plus_4_bot, &xdim1, sizeof(int)); xdim1_update_halo_kernel2_xvel_plus_4_bot_h = xdim1; hipMemcpyToSymbol(ydim1_update_halo_kernel2_xvel_plus_4_bot, &ydim1, sizeof(int)); ydim1_update_halo_kernel2_xvel_plus_4_bot_h = ydim1; } int *arg2h = (int *)arg2.data; dim3 grid((x_size - 1) / OPS_block_size_x + 1, (y_size - 1) / OPS_block_size_y + 1, z_size); dim3 tblock(OPS_block_size_x, OPS_block_size_y, 1); int consts_bytes = 0; consts_bytes += ROUND_UP(NUM_FIELDS * sizeof(int)); reallocConstArrays(consts_bytes); consts_bytes = 0; arg2.data = OPS_consts_h + consts_bytes; arg2.data_d = OPS_consts_d + consts_bytes; for (int d = 0; d < NUM_FIELDS; d++) ((int *)arg2.data)[d] = arg2h[d]; consts_bytes += ROUND_UP(NUM_FIELDS * sizeof(int)); mvConstArraysToDevice(consts_bytes); int dat0 = args[0].dat->elem_size; int dat1 = args[1].dat->elem_size; char *p_a[3]; // set up initial pointers int d_m[OPS_MAX_DIM]; #ifdef OPS_MPI for (int d = 0; d < dim; d++) d_m[d] = args[0].dat->d_m[d] + OPS_sub_dat_list[args[0].dat->index]->d_im[d]; #else for (int d = 0; d < dim; d++) d_m[d] = args[0].dat->d_m[d]; #endif int base0 = dat0 * 1 * (start[0] * args[0].stencil->stride[0] - args[0].dat->base[0] - d_m[0]); base0 = base0 + dat0 * args[0].dat->size[0] * (start[1] * args[0].stencil->stride[1] - args[0].dat->base[1] - d_m[1]); base0 = base0 + dat0 * args[0].dat->size[0] * args[0].dat->size[1] * (start[2] * args[0].stencil->stride[2] - args[0].dat->base[2] - d_m[2]); p_a[0] = (char *)args[0].data_d + base0; #ifdef OPS_MPI for (int d = 0; d < dim; d++) d_m[d] = args[1].dat->d_m[d] + OPS_sub_dat_list[args[1].dat->index]->d_im[d]; #else for (int d = 0; d < dim; d++) d_m[d] = args[1].dat->d_m[d]; #endif int base1 = dat1 * 1 * (start[0] * args[1].stencil->stride[0] - args[1].dat->base[0] - d_m[0]); base1 = base1 + dat1 * args[1].dat->size[0] * (start[1] * args[1].stencil->stride[1] - args[1].dat->base[1] - d_m[1]); base1 = base1 + dat1 * args[1].dat->size[0] * args[1].dat->size[1] * (start[2] * args[1].stencil->stride[2] - args[1].dat->base[2] - d_m[2]); p_a[1] = (char *)args[1].data_d + base1; ops_H_D_exchanges_device(args, 3); ops_halo_exchanges(args, 3, range); if (OPS_diags > 1) { ops_timers_core(&c2, &t2); OPS_kernels[69].mpi_time += t2 - t1; } // call kernel wrapper function, passing in pointers to data hipLaunchKernelGGL(( ops_update_halo_kernel2_xvel_plus_4_bot), dim3(grid), dim3(tblock), 0, 0, (double *)p_a[0], (double *)p_a[1], (int *)arg2.data_d, x_size, y_size, z_size); if (OPS_diags > 1) { cutilSafeCall(hipDeviceSynchronize()); ops_timers_core(&c1, &t1); OPS_kernels[69].time += t1 - t2; } ops_set_dirtybit_device(args, 3); ops_set_halo_dirtybit3(&args[0], range); ops_set_halo_dirtybit3(&args[1], range); if (OPS_diags > 1) { // Update kernel record ops_timers_core(&c2, &t2); OPS_kernels[69].mpi_time += t2 - t1; OPS_kernels[69].transfer += ops_compute_transfer(dim, start, end, &arg0); OPS_kernels[69].transfer += ops_compute_transfer(dim, start, end, &arg1); } }
a8aab09ccf67a03b045c9a349f6e99aa64058bdd.cu
// // auto-generated by ops.py // __constant__ int xdim0_update_halo_kernel2_xvel_plus_4_bot; int xdim0_update_halo_kernel2_xvel_plus_4_bot_h = -1; __constant__ int ydim0_update_halo_kernel2_xvel_plus_4_bot; int ydim0_update_halo_kernel2_xvel_plus_4_bot_h = -1; __constant__ int xdim1_update_halo_kernel2_xvel_plus_4_bot; int xdim1_update_halo_kernel2_xvel_plus_4_bot_h = -1; __constant__ int ydim1_update_halo_kernel2_xvel_plus_4_bot; int ydim1_update_halo_kernel2_xvel_plus_4_bot_h = -1; #undef OPS_ACC0 #undef OPS_ACC1 #define OPS_ACC0(x, y, z) \ (x + xdim0_update_halo_kernel2_xvel_plus_4_bot * (y) + \ xdim0_update_halo_kernel2_xvel_plus_4_bot * \ ydim0_update_halo_kernel2_xvel_plus_4_bot * (z)) #define OPS_ACC1(x, y, z) \ (x + xdim1_update_halo_kernel2_xvel_plus_4_bot * (y) + \ xdim1_update_halo_kernel2_xvel_plus_4_bot * \ ydim1_update_halo_kernel2_xvel_plus_4_bot * (z)) // user function __device__ inline void update_halo_kernel2_xvel_plus_4_bot(double *xvel0, double *xvel1, const int *fields) { if (fields[FIELD_XVEL0] == 1) xvel0[OPS_ACC0(0, 0, 0)] = xvel0[OPS_ACC0(0, 4, 0)]; if (fields[FIELD_XVEL1] == 1) xvel1[OPS_ACC1(0, 0, 0)] = xvel1[OPS_ACC1(0, 4, 0)]; } #undef OPS_ACC0 #undef OPS_ACC1 __global__ void ops_update_halo_kernel2_xvel_plus_4_bot( double *__restrict arg0, double *__restrict arg1, const int *__restrict arg2, int size0, int size1, int size2) { int idx_z = blockDim.z * blockIdx.z + threadIdx.z; int idx_y = blockDim.y * blockIdx.y + threadIdx.y; int idx_x = blockDim.x * blockIdx.x + threadIdx.x; arg0 += idx_x * 1 * 1 + idx_y * 1 * 1 * xdim0_update_halo_kernel2_xvel_plus_4_bot + idx_z * 1 * 1 * xdim0_update_halo_kernel2_xvel_plus_4_bot * ydim0_update_halo_kernel2_xvel_plus_4_bot; arg1 += idx_x * 1 * 1 + idx_y * 1 * 1 * xdim1_update_halo_kernel2_xvel_plus_4_bot + idx_z * 1 * 1 * xdim1_update_halo_kernel2_xvel_plus_4_bot * ydim1_update_halo_kernel2_xvel_plus_4_bot; if (idx_x < size0 && idx_y < size1 && idx_z < size2) { update_halo_kernel2_xvel_plus_4_bot(arg0, arg1, arg2); } } // host stub function void ops_par_loop_update_halo_kernel2_xvel_plus_4_bot(char const *name, ops_block block, int dim, int *range, ops_arg arg0, ops_arg arg1, ops_arg arg2) { // Timing double t1, t2, c1, c2; ops_arg args[3] = {arg0, arg1, arg2}; #ifdef CHECKPOINTING if (!ops_checkpointing_before(args, 3, range, 69)) return; #endif if (OPS_diags > 1) { ops_timing_realloc(69, "update_halo_kernel2_xvel_plus_4_bot"); OPS_kernels[69].count++; ops_timers_core(&c1, &t1); } // compute locally allocated range for the sub-block int start[3]; int end[3]; #ifdef OPS_MPI sub_block_list sb = OPS_sub_block_list[block->index]; if (!sb->owned) return; for (int n = 0; n < 3; n++) { start[n] = sb->decomp_disp[n]; end[n] = sb->decomp_disp[n] + sb->decomp_size[n]; if (start[n] >= range[2 * n]) { start[n] = 0; } else { start[n] = range[2 * n] - start[n]; } if (sb->id_m[n] == MPI_PROC_NULL && range[2 * n] < 0) start[n] = range[2 * n]; if (end[n] >= range[2 * n + 1]) { end[n] = range[2 * n + 1] - sb->decomp_disp[n]; } else { end[n] = sb->decomp_size[n]; } if (sb->id_p[n] == MPI_PROC_NULL && (range[2 * n + 1] > sb->decomp_disp[n] + sb->decomp_size[n])) end[n] += (range[2 * n + 1] - sb->decomp_disp[n] - sb->decomp_size[n]); } #else for (int n = 0; n < 3; n++) { start[n] = range[2 * n]; end[n] = range[2 * n + 1]; } #endif int x_size = MAX(0, end[0] - start[0]); int y_size = MAX(0, end[1] - start[1]); int z_size = MAX(0, end[2] - start[2]); int xdim0 = args[0].dat->size[0]; int ydim0 = args[0].dat->size[1]; int xdim1 = args[1].dat->size[0]; int ydim1 = args[1].dat->size[1]; if (xdim0 != xdim0_update_halo_kernel2_xvel_plus_4_bot_h || ydim0 != ydim0_update_halo_kernel2_xvel_plus_4_bot_h || xdim1 != xdim1_update_halo_kernel2_xvel_plus_4_bot_h || ydim1 != ydim1_update_halo_kernel2_xvel_plus_4_bot_h) { cudaMemcpyToSymbol(xdim0_update_halo_kernel2_xvel_plus_4_bot, &xdim0, sizeof(int)); xdim0_update_halo_kernel2_xvel_plus_4_bot_h = xdim0; cudaMemcpyToSymbol(ydim0_update_halo_kernel2_xvel_plus_4_bot, &ydim0, sizeof(int)); ydim0_update_halo_kernel2_xvel_plus_4_bot_h = ydim0; cudaMemcpyToSymbol(xdim1_update_halo_kernel2_xvel_plus_4_bot, &xdim1, sizeof(int)); xdim1_update_halo_kernel2_xvel_plus_4_bot_h = xdim1; cudaMemcpyToSymbol(ydim1_update_halo_kernel2_xvel_plus_4_bot, &ydim1, sizeof(int)); ydim1_update_halo_kernel2_xvel_plus_4_bot_h = ydim1; } int *arg2h = (int *)arg2.data; dim3 grid((x_size - 1) / OPS_block_size_x + 1, (y_size - 1) / OPS_block_size_y + 1, z_size); dim3 tblock(OPS_block_size_x, OPS_block_size_y, 1); int consts_bytes = 0; consts_bytes += ROUND_UP(NUM_FIELDS * sizeof(int)); reallocConstArrays(consts_bytes); consts_bytes = 0; arg2.data = OPS_consts_h + consts_bytes; arg2.data_d = OPS_consts_d + consts_bytes; for (int d = 0; d < NUM_FIELDS; d++) ((int *)arg2.data)[d] = arg2h[d]; consts_bytes += ROUND_UP(NUM_FIELDS * sizeof(int)); mvConstArraysToDevice(consts_bytes); int dat0 = args[0].dat->elem_size; int dat1 = args[1].dat->elem_size; char *p_a[3]; // set up initial pointers int d_m[OPS_MAX_DIM]; #ifdef OPS_MPI for (int d = 0; d < dim; d++) d_m[d] = args[0].dat->d_m[d] + OPS_sub_dat_list[args[0].dat->index]->d_im[d]; #else for (int d = 0; d < dim; d++) d_m[d] = args[0].dat->d_m[d]; #endif int base0 = dat0 * 1 * (start[0] * args[0].stencil->stride[0] - args[0].dat->base[0] - d_m[0]); base0 = base0 + dat0 * args[0].dat->size[0] * (start[1] * args[0].stencil->stride[1] - args[0].dat->base[1] - d_m[1]); base0 = base0 + dat0 * args[0].dat->size[0] * args[0].dat->size[1] * (start[2] * args[0].stencil->stride[2] - args[0].dat->base[2] - d_m[2]); p_a[0] = (char *)args[0].data_d + base0; #ifdef OPS_MPI for (int d = 0; d < dim; d++) d_m[d] = args[1].dat->d_m[d] + OPS_sub_dat_list[args[1].dat->index]->d_im[d]; #else for (int d = 0; d < dim; d++) d_m[d] = args[1].dat->d_m[d]; #endif int base1 = dat1 * 1 * (start[0] * args[1].stencil->stride[0] - args[1].dat->base[0] - d_m[0]); base1 = base1 + dat1 * args[1].dat->size[0] * (start[1] * args[1].stencil->stride[1] - args[1].dat->base[1] - d_m[1]); base1 = base1 + dat1 * args[1].dat->size[0] * args[1].dat->size[1] * (start[2] * args[1].stencil->stride[2] - args[1].dat->base[2] - d_m[2]); p_a[1] = (char *)args[1].data_d + base1; ops_H_D_exchanges_device(args, 3); ops_halo_exchanges(args, 3, range); if (OPS_diags > 1) { ops_timers_core(&c2, &t2); OPS_kernels[69].mpi_time += t2 - t1; } // call kernel wrapper function, passing in pointers to data ops_update_halo_kernel2_xvel_plus_4_bot<<<grid, tblock>>>( (double *)p_a[0], (double *)p_a[1], (int *)arg2.data_d, x_size, y_size, z_size); if (OPS_diags > 1) { cutilSafeCall(cudaDeviceSynchronize()); ops_timers_core(&c1, &t1); OPS_kernels[69].time += t1 - t2; } ops_set_dirtybit_device(args, 3); ops_set_halo_dirtybit3(&args[0], range); ops_set_halo_dirtybit3(&args[1], range); if (OPS_diags > 1) { // Update kernel record ops_timers_core(&c2, &t2); OPS_kernels[69].mpi_time += t2 - t1; OPS_kernels[69].transfer += ops_compute_transfer(dim, start, end, &arg0); OPS_kernels[69].transfer += ops_compute_transfer(dim, start, end, &arg1); } }
629458965b2a218277799fa1a4909dc09683bc4d.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <stdio.h> #include <stdlib.h> #include <sys/time.h> #include <float.h> #include <math.h> struct timeval startwtime, endwtime; double seq_time; // CPU variable int N = 5000; // number of elements int D = 2; // dimensions int nT = 500; // number of threads per block float sigma = 250.0; float MS_error = 0.0001; // mean shift error float error = 504820*0.001; // mean value of dataset * 10^(-3) int iter_limit = 30; size_t cols; size_t rows; //GPU variables int *gp_N; int *gp_D; float *gp_sigma; size_t gp_pitch; //CPU matrices float *x; // initilal matrix float *y; // final matrix float **val_y; // validation final matrix float *m; // mean shift vectrors // GPU matrices float *gp_x; float *gp_y; float *gp_y_new; float *gp_m; // mean shift vectrors float *gp_g; // gaussian float *gp_numer; // numerator float *gp_denom; // denominator __global__ void cuda_mean_shift(void); void init(void); void mean_shift(void); void test(void); void free_arrays(void); int main(int argc, char **argv) { MS_error = MS_error*sigma; init(); gettimeofday (&startwtime, NULL); mean_shift(); gettimeofday (&endwtime, NULL); seq_time = (long double)((endwtime.tv_usec - startwtime.tv_usec)/1.0e6 + endwtime.tv_sec - startwtime.tv_sec); printf("KNN wall clock time = %f\n", seq_time); // Copy matrices to memory hipMemcpy(y,gp_y, N*D*sizeof(float), hipMemcpyDeviceToHost); test(); free_arrays(); } /** procedure init() : initialize array "a" with data **/ void init() { int i,j; int ret_code=0; FILE *f; // Allocate system memmory x = (float *) malloc(N*D * sizeof(float)); y = (float *) malloc(N*D * sizeof(float)); m = (float *) malloc(N*D * sizeof(float)); val_y = (float **) malloc(N * sizeof(float*)); for (i = 0; i < N; i++) { val_y[i] = (float *) malloc(D * sizeof(float)); } // Allocate GPU variables hipMalloc( (void**)&gp_N , sizeof(int)); hipMalloc( (void**)&gp_D , sizeof(int)); hipMalloc( (void**)&gp_sigma , sizeof(float)); // Allocate GPU matrices hipMallocPitch(&gp_x, &gp_pitch, N * sizeof(float), D); hipMallocPitch(&gp_y, &gp_pitch, N * sizeof(float), D); hipMallocPitch(&gp_y_new, &gp_pitch, N * sizeof(float), D); hipMallocPitch(&gp_m, &gp_pitch, N * sizeof(float), D); hipMallocPitch(&gp_g, &gp_pitch, N * sizeof(float), N); hipMallocPitch(&gp_numer, &gp_pitch, N * sizeof(float), D); hipMallocPitch(&gp_denom, &gp_pitch, N * sizeof(float), D); f = fopen("../../data/S_set/S_set_5000x2.txt","r"); for (i = 0; i < N; ++i) { for (j = 0; j < D; ++j) { ret_code = fscanf(f, "%f\t", &x[i*D+j]); } ret_code = fscanf(f,"\n"); } fclose(f); for (i = 0; i < N; ++i) { for (j = 0; j < D; ++j) { y[i*D+j] = x[i*D+j]; } } for (i = 0; i < N; ++i) { for (j = 0; j < D; ++j) { m[i*D+j] =FLT_MAX; } } // Copy variables to GPU hipMemcpy(gp_N,&N,sizeof(int),hipMemcpyHostToDevice); hipMemcpy(gp_D,&D,sizeof(int),hipMemcpyHostToDevice); hipMemcpy(gp_sigma,&sigma,sizeof(int),hipMemcpyHostToDevice); // Copy matrices to GPU hipMemcpy(gp_x,x,N*D*sizeof(float), hipMemcpyHostToDevice); hipMemcpy(gp_y,y,N*D*sizeof(float), hipMemcpyHostToDevice); hipMemcpy(gp_m,m,N*D*sizeof(float), hipMemcpyHostToDevice); } __global__ void cuda_mean_shift(int *N,int *D,float *sigma,float *x, float *y, float *y_new,float *m, float *g,float *numer,float *denom,size_t pitch){ int tids = threadIdx.x; int tid = threadIdx.x + blockIdx.x * blockDim.x; int j,z; float r; float dist=0; __shared__ float s_y[500*2]; __shared__ float s_m[500*2]; __shared__ float s_y_new[500*2]; __shared__ float s_numer[500*2]; __shared__ float s_denom[500*2]; for(z=0;z<*D;z++){ s_y[tids*(*D)+z] = y[tid*(*D)+z]; s_m[tids*(*D)+z] = m[tid*(*D)+z]; s_numer[tids*(*D)+z] = 0; s_denom[tids*(*D)+z] = 0; } __syncthreads(); if(tid<*N){ for(j=0;j<*N;j++){ float *row_g = (float *)((char*)g + j * pitch); for(z=0;z<*D;z++){ dist += powf((s_y[tids*(*D)+z]-x[j*(*D)+z]),2.0); } dist = sqrtf(dist); if (dist>powf(*sigma,2.0)) row_g[tid]=0; else row_g[tid] = expf(-dist/(2*powf(*sigma,2.0))); if (tid==j) row_g[tid] += 1; dist=0; for(z=0;z<*D;z++){ s_numer[tids*(*D)+z] += row_g[tid]*x[j*(*D)+z]; s_denom[tids*(*D)+z] +=row_g[tid]; } __syncthreads(); } for(z=0;z<*D;z++){ s_y_new[tids*(*D)+z] = s_numer[tids*(*D)+z]/s_denom[tids*(*D)+z]; s_m[tids*(*D)+z] = s_y_new[tids*(*D)+z] - s_y[tids*(*D)+z]; } for(z=0;z<*D;z++){ s_y[tids*(*D)+z] = s_y_new[tids*(*D)+z]; s_numer[tids*(*D)+z] = 0; s_denom[tids*(*D)+z] = 0; } __syncthreads(); } for(z=0;z<*D;z++){ y[tid*(*D)+z] = s_y[tids*(*D)+z]; m[tid*(*D)+z] = s_m[tids*(*D)+z]; } __syncthreads(); } void mean_shift() { int iter = 0; int i,z; float er = FLT_MAX; float last_er = FLT_MAX; float temp = 0; while(er > MS_error && iter<iter_limit && last_er >= er) { last_er = er; iter++; er = 0; hipLaunchKernelGGL(( cuda_mean_shift), dim3(N/nT),dim3(nT), 0, 0, gp_N,gp_D,gp_sigma,gp_x,gp_y,gp_y_new,gp_m,gp_g,gp_numer,gp_denom,gp_pitch); hipMemcpy(m,gp_m,N*D*sizeof(float), hipMemcpyDeviceToHost); for(i=0;i<N;i++){ for(z=0;z<D;z++){ temp += pow(m[i*D+z],2); } er += temp; temp = 0; } er = sqrt(er); printf("Iteration = %d, Error = %lf\n",iter,er); } } void test() { int i,j; int pass = 1; int ret_code = 0; int count = 0; FILE *f; f = fopen("../../data/S_set/validation_S_set_5000x2.txt","r"); for (i = 0; i < N; ++i) { for (j = 0; j < D; ++j) { ret_code = fscanf(f, "%f\t", &val_y[i][j]); } ret_code = fscanf(f,"\n"); } fclose(f); f = fopen("yout.txt","w+"); for (i = 0; i < N; i++) { for (j = 0; j < D; j++) { fprintf(f,"%f\t",y[i*D+j]); } fprintf(f,"\n"); } fclose(f); for (i = 0; i < N; ++i) { for (j = 0; j < D; ++j) { if(fabs(val_y[i][j] - y[i*D+j]) > error){ count++; pass=0; } } } printf(" TEST %s\n",(pass) ? "PASSed" : "FAILed"); printf(" Errors = %d\n",count); } void free_arrays(){ free(x); free(y); free(val_y); free(m); hipFree(gp_N); hipFree(gp_D); hipFree(gp_sigma); hipFree(gp_x); hipFree(gp_y); hipFree(gp_y_new); hipFree(gp_m); hipFree(gp_g); hipFree(gp_numer); hipFree(gp_denom); }
629458965b2a218277799fa1a4909dc09683bc4d.cu
#include <stdio.h> #include <stdlib.h> #include <sys/time.h> #include <float.h> #include <math.h> struct timeval startwtime, endwtime; double seq_time; // CPU variable int N = 5000; // number of elements int D = 2; // dimensions int nT = 500; // number of threads per block float sigma = 250.0; float MS_error = 0.0001; // mean shift error float error = 504820*0.001; // mean value of dataset * 10^(-3) int iter_limit = 30; size_t cols; size_t rows; //GPU variables int *gp_N; int *gp_D; float *gp_sigma; size_t gp_pitch; //CPU matrices float *x; // initilal matrix float *y; // final matrix float **val_y; // validation final matrix float *m; // mean shift vectrors // GPU matrices float *gp_x; float *gp_y; float *gp_y_new; float *gp_m; // mean shift vectrors float *gp_g; // gaussian float *gp_numer; // numerator float *gp_denom; // denominator __global__ void cuda_mean_shift(void); void init(void); void mean_shift(void); void test(void); void free_arrays(void); int main(int argc, char **argv) { MS_error = MS_error*sigma; init(); gettimeofday (&startwtime, NULL); mean_shift(); gettimeofday (&endwtime, NULL); seq_time = (long double)((endwtime.tv_usec - startwtime.tv_usec)/1.0e6 + endwtime.tv_sec - startwtime.tv_sec); printf("KNN wall clock time = %f\n", seq_time); // Copy matrices to memory cudaMemcpy(y,gp_y, N*D*sizeof(float), cudaMemcpyDeviceToHost); test(); free_arrays(); } /** procedure init() : initialize array "a" with data **/ void init() { int i,j; int ret_code=0; FILE *f; // Allocate system memmory x = (float *) malloc(N*D * sizeof(float)); y = (float *) malloc(N*D * sizeof(float)); m = (float *) malloc(N*D * sizeof(float)); val_y = (float **) malloc(N * sizeof(float*)); for (i = 0; i < N; i++) { val_y[i] = (float *) malloc(D * sizeof(float)); } // Allocate GPU variables cudaMalloc( (void**)&gp_N , sizeof(int)); cudaMalloc( (void**)&gp_D , sizeof(int)); cudaMalloc( (void**)&gp_sigma , sizeof(float)); // Allocate GPU matrices cudaMallocPitch(&gp_x, &gp_pitch, N * sizeof(float), D); cudaMallocPitch(&gp_y, &gp_pitch, N * sizeof(float), D); cudaMallocPitch(&gp_y_new, &gp_pitch, N * sizeof(float), D); cudaMallocPitch(&gp_m, &gp_pitch, N * sizeof(float), D); cudaMallocPitch(&gp_g, &gp_pitch, N * sizeof(float), N); cudaMallocPitch(&gp_numer, &gp_pitch, N * sizeof(float), D); cudaMallocPitch(&gp_denom, &gp_pitch, N * sizeof(float), D); f = fopen("../../data/S_set/S_set_5000x2.txt","r"); for (i = 0; i < N; ++i) { for (j = 0; j < D; ++j) { ret_code = fscanf(f, "%f\t", &x[i*D+j]); } ret_code = fscanf(f,"\n"); } fclose(f); for (i = 0; i < N; ++i) { for (j = 0; j < D; ++j) { y[i*D+j] = x[i*D+j]; } } for (i = 0; i < N; ++i) { for (j = 0; j < D; ++j) { m[i*D+j] =FLT_MAX; } } // Copy variables to GPU cudaMemcpy(gp_N,&N,sizeof(int),cudaMemcpyHostToDevice); cudaMemcpy(gp_D,&D,sizeof(int),cudaMemcpyHostToDevice); cudaMemcpy(gp_sigma,&sigma,sizeof(int),cudaMemcpyHostToDevice); // Copy matrices to GPU cudaMemcpy(gp_x,x,N*D*sizeof(float), cudaMemcpyHostToDevice); cudaMemcpy(gp_y,y,N*D*sizeof(float), cudaMemcpyHostToDevice); cudaMemcpy(gp_m,m,N*D*sizeof(float), cudaMemcpyHostToDevice); } __global__ void cuda_mean_shift(int *N,int *D,float *sigma,float *x, float *y, float *y_new,float *m, float *g,float *numer,float *denom,size_t pitch){ int tids = threadIdx.x; int tid = threadIdx.x + blockIdx.x * blockDim.x; int j,z; float r; float dist=0; __shared__ float s_y[500*2]; __shared__ float s_m[500*2]; __shared__ float s_y_new[500*2]; __shared__ float s_numer[500*2]; __shared__ float s_denom[500*2]; for(z=0;z<*D;z++){ s_y[tids*(*D)+z] = y[tid*(*D)+z]; s_m[tids*(*D)+z] = m[tid*(*D)+z]; s_numer[tids*(*D)+z] = 0; s_denom[tids*(*D)+z] = 0; } __syncthreads(); if(tid<*N){ for(j=0;j<*N;j++){ float *row_g = (float *)((char*)g + j * pitch); for(z=0;z<*D;z++){ dist += powf((s_y[tids*(*D)+z]-x[j*(*D)+z]),2.0); } dist = sqrtf(dist); if (dist>powf(*sigma,2.0)) row_g[tid]=0; else row_g[tid] = expf(-dist/(2*powf(*sigma,2.0))); if (tid==j) row_g[tid] += 1; dist=0; for(z=0;z<*D;z++){ s_numer[tids*(*D)+z] += row_g[tid]*x[j*(*D)+z]; s_denom[tids*(*D)+z] +=row_g[tid]; } __syncthreads(); } for(z=0;z<*D;z++){ s_y_new[tids*(*D)+z] = s_numer[tids*(*D)+z]/s_denom[tids*(*D)+z]; s_m[tids*(*D)+z] = s_y_new[tids*(*D)+z] - s_y[tids*(*D)+z]; } for(z=0;z<*D;z++){ s_y[tids*(*D)+z] = s_y_new[tids*(*D)+z]; s_numer[tids*(*D)+z] = 0; s_denom[tids*(*D)+z] = 0; } __syncthreads(); } for(z=0;z<*D;z++){ y[tid*(*D)+z] = s_y[tids*(*D)+z]; m[tid*(*D)+z] = s_m[tids*(*D)+z]; } __syncthreads(); } void mean_shift() { int iter = 0; int i,z; float er = FLT_MAX; float last_er = FLT_MAX; float temp = 0; while(er > MS_error && iter<iter_limit && last_er >= er) { last_er = er; iter++; er = 0; cuda_mean_shift<<<N/nT,nT>>>(gp_N,gp_D,gp_sigma,gp_x,gp_y,gp_y_new,gp_m,gp_g,gp_numer,gp_denom,gp_pitch); cudaMemcpy(m,gp_m,N*D*sizeof(float), cudaMemcpyDeviceToHost); for(i=0;i<N;i++){ for(z=0;z<D;z++){ temp += pow(m[i*D+z],2); } er += temp; temp = 0; } er = sqrt(er); printf("Iteration = %d, Error = %lf\n",iter,er); } } void test() { int i,j; int pass = 1; int ret_code = 0; int count = 0; FILE *f; f = fopen("../../data/S_set/validation_S_set_5000x2.txt","r"); for (i = 0; i < N; ++i) { for (j = 0; j < D; ++j) { ret_code = fscanf(f, "%f\t", &val_y[i][j]); } ret_code = fscanf(f,"\n"); } fclose(f); f = fopen("yout.txt","w+"); for (i = 0; i < N; i++) { for (j = 0; j < D; j++) { fprintf(f,"%f\t",y[i*D+j]); } fprintf(f,"\n"); } fclose(f); for (i = 0; i < N; ++i) { for (j = 0; j < D; ++j) { if(fabs(val_y[i][j] - y[i*D+j]) > error){ count++; pass=0; } } } printf(" TEST %s\n",(pass) ? "PASSed" : "FAILed"); printf(" Errors = %d\n",count); } void free_arrays(){ free(x); free(y); free(val_y); free(m); cudaFree(gp_N); cudaFree(gp_D); cudaFree(gp_sigma); cudaFree(gp_x); cudaFree(gp_y); cudaFree(gp_y_new); cudaFree(gp_m); cudaFree(gp_g); cudaFree(gp_numer); cudaFree(gp_denom); }
25bb43985ad91f9fb14729bc7d0d28dee2ab5d93.hip
// !!! This is a file automatically generated by hipify!!! /* * svmMain.cu * * Created on: May 21, 2012 * Author: Zeyi Wen */ #include <iostream> #include <cassert> #include <stdio.h> #include <helper_cuda.h> #include <hip/hip_runtime.h> #include "cvFunction.h" #include "SVMCmdLineParser.h" #include "../SharedUtility/initCuda.h" #include "svmModel.h" #include "trainClassifier.h" #include "classifierEvaluater.h" using std::cout; using std::endl; int main(int argc, char **argv) { char fileName[1024]; char savedFileName[1024]; SVMCmdLineParser parser; parser.ParseLine(argc, argv, fileName, savedFileName); hipCtx_t context; if(!InitCUDA(context, 'G')) return 0; printf("CUDA initialized.\n"); if(parser.task_type == 0){ //perform svm training cout << "performing training" << endl; SvmModel model; trainSVM(parser.param, fileName, parser.numFeature, model, parser.compute_training_error); }else if(parser.task_type == 1){ //perform cross validation*/ cout << "performing cross-validation" << endl; crossValidation(parser.param, fileName); }else if(parser.task_type == 2){ //perform svm evaluation cout << "performing evaluation" << endl; SvmModel model; cout << "start training..." << endl; string name=fileName; name="./result/"+name; ofstream ofs(name.c_str(),ios::app); if(!ofs.is_open()){ cout<<"open ./result/ error "<<name<<endl; return 0; } ofs<<"OVA"<<fileName<<"\n"; ofs<<"g "<<parser.param.gamma<<"C"<<parser.param.C<<"\n"; trainSVM(parser.param, fileName, parser.numFeature, model, parser.compute_training_error); cout << "start evaluation..." << endl; evaluateSVMClassifier(model, parser.testSetName, parser.numFeature); ofs<<"\n"; ofs.close(); }else if(parser.task_type == 4){ //perform selecting best C cout << "perform C selection" << endl; vector<real> vC; for(int i = 0; i < 3; i++){ SvmModel model; model.vC = vC; cout << "start training..." << endl; trainSVM(parser.param, fileName, parser.numFeature, model, parser.compute_training_error); cout << "start evaluation..." << endl; //evaluateSVMClassifier(model, strcat(fileName, ".t"), parser.numFeature); evaluateSVMClassifier(model, fileName, parser.numFeature); vC = ClassifierEvaluater::updateC(model.vC); } } else if(parser.task_type == 3){ cout << "performing grid search" << endl; Grid paramGrid; paramGrid.vfC.push_back(parser.param.C); paramGrid.vfGamma.push_back(parser.param.gamma); gridSearch(paramGrid, fileName); }else if(parser.task_type == 5){ //perform svm evaluation cout << "performing evaluation" << endl; cout << "start training..." << endl; string name=fileName; name="./result/"+name; ofstream ofs(name.c_str(),ios::app); if(!ofs.is_open()){ cout<<"open ./result/ error "<<name<<endl; return 0; } ofs<<"OVA"<<fileName<<"\n"; //double gamma=parser.param.gamma; //double C=parser.param.C; //for(int grid=1; grid<3;grid*=2){ // parser.param.gamma=gamma*grid*2; // for(int grid2=1;grid2<17;grid2*=2){ // parser.param.C=C*grid2*2; ofs<<"g "<<parser.param.gamma<<"C"<<parser.param.C<<"\n"; trainOVASVM(parser.param, fileName, parser.numFeature, parser.compute_training_error, parser.testSetName, ofs); ofs<<"\n"; //} // } ofs.close(); }else{ cout << "unknown task type" << endl; } return 0; }
25bb43985ad91f9fb14729bc7d0d28dee2ab5d93.cu
/* * svmMain.cu * * Created on: May 21, 2012 * Author: Zeyi Wen */ #include <iostream> #include <cassert> #include <stdio.h> #include <helper_cuda.h> #include <cuda.h> #include "cvFunction.h" #include "SVMCmdLineParser.h" #include "../SharedUtility/initCuda.h" #include "svmModel.h" #include "trainClassifier.h" #include "classifierEvaluater.h" using std::cout; using std::endl; int main(int argc, char **argv) { char fileName[1024]; char savedFileName[1024]; SVMCmdLineParser parser; parser.ParseLine(argc, argv, fileName, savedFileName); CUcontext context; if(!InitCUDA(context, 'G')) return 0; printf("CUDA initialized.\n"); if(parser.task_type == 0){ //perform svm training cout << "performing training" << endl; SvmModel model; trainSVM(parser.param, fileName, parser.numFeature, model, parser.compute_training_error); }else if(parser.task_type == 1){ //perform cross validation*/ cout << "performing cross-validation" << endl; crossValidation(parser.param, fileName); }else if(parser.task_type == 2){ //perform svm evaluation cout << "performing evaluation" << endl; SvmModel model; cout << "start training..." << endl; string name=fileName; name="./result/"+name; ofstream ofs(name.c_str(),ios::app); if(!ofs.is_open()){ cout<<"open ./result/ error "<<name<<endl; return 0; } ofs<<"OVA"<<fileName<<"\n"; ofs<<"g "<<parser.param.gamma<<"C"<<parser.param.C<<"\n"; trainSVM(parser.param, fileName, parser.numFeature, model, parser.compute_training_error); cout << "start evaluation..." << endl; evaluateSVMClassifier(model, parser.testSetName, parser.numFeature); ofs<<"\n"; ofs.close(); }else if(parser.task_type == 4){ //perform selecting best C cout << "perform C selection" << endl; vector<real> vC; for(int i = 0; i < 3; i++){ SvmModel model; model.vC = vC; cout << "start training..." << endl; trainSVM(parser.param, fileName, parser.numFeature, model, parser.compute_training_error); cout << "start evaluation..." << endl; //evaluateSVMClassifier(model, strcat(fileName, ".t"), parser.numFeature); evaluateSVMClassifier(model, fileName, parser.numFeature); vC = ClassifierEvaluater::updateC(model.vC); } } else if(parser.task_type == 3){ cout << "performing grid search" << endl; Grid paramGrid; paramGrid.vfC.push_back(parser.param.C); paramGrid.vfGamma.push_back(parser.param.gamma); gridSearch(paramGrid, fileName); }else if(parser.task_type == 5){ //perform svm evaluation cout << "performing evaluation" << endl; cout << "start training..." << endl; string name=fileName; name="./result/"+name; ofstream ofs(name.c_str(),ios::app); if(!ofs.is_open()){ cout<<"open ./result/ error "<<name<<endl; return 0; } ofs<<"OVA"<<fileName<<"\n"; //double gamma=parser.param.gamma; //double C=parser.param.C; //for(int grid=1; grid<3;grid*=2){ // parser.param.gamma=gamma*grid*2; // for(int grid2=1;grid2<17;grid2*=2){ // parser.param.C=C*grid2*2; ofs<<"g "<<parser.param.gamma<<"C"<<parser.param.C<<"\n"; trainOVASVM(parser.param, fileName, parser.numFeature, parser.compute_training_error, parser.testSetName, ofs); ofs<<"\n"; //} // } ofs.close(); }else{ cout << "unknown task type" << endl; } return 0; }
040d76c96206f0ff1e1ed5a6ccbd98379d762395.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "./brute_kernel.h" #define BLOCK 16 typedef struct sites_type sites_t; __device__ float calc_dist(int x1, int x2, int y1, int y2) { return sqrtf(powf(x1-x2,2) + powf(y1-y2,2)); } __global__ void brute_kernel(sites_t* sites, uchar4* out_pix, const int nsites, const int nrows, const int ncols) { int x = blockIdx.x*blockDim.x + threadIdx.x; int y = blockIdx.y*blockDim.y + threadIdx.y; // uchar4 black = make_uchar4(0, 0, 0, 255); if (y < nrows && x < ncols) { int index = y*ncols + x; float min_dist = 99999999; int min_dist_site = -1; for (int s = 0; s < nsites; ++s) { float current_dist = calc_dist(x, sites[s].x, y, sites[s].y); /*if (current_dist == min_dist) { min_dist_site = -1; out_pix[index] = black; }*/ /*else*/ if (current_dist < min_dist) { min_dist = current_dist; min_dist_site = s; } } //if (min_dist_site != -1) //{ out_pix[index] = sites[min_dist_site].color; //} } } __global__ void s_brute_kernel(const sites_t* sites, uchar4* out_pix, const int nsites, const int nrows, const int ncols) { const int shared_size = 32; int x = blockIdx.x*blockDim.x + threadIdx.x; int y = blockIdx.y*blockDim.y + threadIdx.y; uchar4 my_color; __shared__ sites_t s_sites[shared_size]; if (y < nrows && x < ncols) { int global_index = y*ncols + x; int local_index = threadIdx.y*blockDim.x + threadIdx.x; float min_dist = 99999999; for (int s = 0; s < nsites; s += shared_size) { // load sites into shared memory if (local_index < shared_size && local_index+s < nsites) { s_sites[local_index] = sites[local_index+s]; } __syncthreads(); for (int i = 0; i < shared_size; ++i) { // only run for valid sites if (s+i >= nsites) { break; } float current_dist = calc_dist(x, s_sites[i].x, y, s_sites[i].y); if (current_dist < min_dist) { min_dist = current_dist; my_color = s_sites[i].color; } } __syncthreads(); } out_pix[global_index] = my_color; } } // color the sites of the diagram black __global__ void color_sites(sites_t* sites, uchar4* out_pix, const int nsites, const int nrows, const int ncols) { int i = blockIdx.x*blockDim.x + threadIdx.x; if (i < nsites) { uchar4 black = make_uchar4(0, 0, 0, 255); for (int r = -2; r <= 2; ++r) { for (int c = -2; c <= 2; ++c) { // make the sites appear bigger than 1 pixel if (sites[i].y + r < 0 || sites[i].y + r >= nrows || sites[i].x + c < 0 || sites[i].x + c >= ncols) { continue; } out_pix[(sites[i].y+r)*ncols + (sites[i].x+c)] = black; } } } } void launch_kernel(sites_t* sites, uchar4* out_pix, const int nsites, const int nrows, const int ncols) { dim3 block_dim(BLOCK,BLOCK,1); dim3 grid_dim((ncols-1)/BLOCK+1,(nrows-1)/BLOCK+1,1); hipLaunchKernelGGL(( s_brute_kernel), dim3(grid_dim), dim3(block_dim), 0, 0, sites, out_pix, nsites, nrows, ncols); hipDeviceSynchronize(); checkCudaErrors(hipGetLastError()); hipLaunchKernelGGL(( color_sites), dim3(nsites/256+1), dim3(256), 0, 0, sites, out_pix, nsites, nrows, ncols); hipDeviceSynchronize(); checkCudaErrors(hipGetLastError()); }
040d76c96206f0ff1e1ed5a6ccbd98379d762395.cu
#include "./brute_kernel.h" #define BLOCK 16 typedef struct sites_type sites_t; __device__ float calc_dist(int x1, int x2, int y1, int y2) { return sqrtf(powf(x1-x2,2) + powf(y1-y2,2)); } __global__ void brute_kernel(sites_t* sites, uchar4* out_pix, const int nsites, const int nrows, const int ncols) { int x = blockIdx.x*blockDim.x + threadIdx.x; int y = blockIdx.y*blockDim.y + threadIdx.y; // uchar4 black = make_uchar4(0, 0, 0, 255); if (y < nrows && x < ncols) { int index = y*ncols + x; float min_dist = 99999999; int min_dist_site = -1; for (int s = 0; s < nsites; ++s) { float current_dist = calc_dist(x, sites[s].x, y, sites[s].y); /*if (current_dist == min_dist) { min_dist_site = -1; out_pix[index] = black; }*/ /*else*/ if (current_dist < min_dist) { min_dist = current_dist; min_dist_site = s; } } //if (min_dist_site != -1) //{ out_pix[index] = sites[min_dist_site].color; //} } } __global__ void s_brute_kernel(const sites_t* sites, uchar4* out_pix, const int nsites, const int nrows, const int ncols) { const int shared_size = 32; int x = blockIdx.x*blockDim.x + threadIdx.x; int y = blockIdx.y*blockDim.y + threadIdx.y; uchar4 my_color; __shared__ sites_t s_sites[shared_size]; if (y < nrows && x < ncols) { int global_index = y*ncols + x; int local_index = threadIdx.y*blockDim.x + threadIdx.x; float min_dist = 99999999; for (int s = 0; s < nsites; s += shared_size) { // load sites into shared memory if (local_index < shared_size && local_index+s < nsites) { s_sites[local_index] = sites[local_index+s]; } __syncthreads(); for (int i = 0; i < shared_size; ++i) { // only run for valid sites if (s+i >= nsites) { break; } float current_dist = calc_dist(x, s_sites[i].x, y, s_sites[i].y); if (current_dist < min_dist) { min_dist = current_dist; my_color = s_sites[i].color; } } __syncthreads(); } out_pix[global_index] = my_color; } } // color the sites of the diagram black __global__ void color_sites(sites_t* sites, uchar4* out_pix, const int nsites, const int nrows, const int ncols) { int i = blockIdx.x*blockDim.x + threadIdx.x; if (i < nsites) { uchar4 black = make_uchar4(0, 0, 0, 255); for (int r = -2; r <= 2; ++r) { for (int c = -2; c <= 2; ++c) { // make the sites appear bigger than 1 pixel if (sites[i].y + r < 0 || sites[i].y + r >= nrows || sites[i].x + c < 0 || sites[i].x + c >= ncols) { continue; } out_pix[(sites[i].y+r)*ncols + (sites[i].x+c)] = black; } } } } void launch_kernel(sites_t* sites, uchar4* out_pix, const int nsites, const int nrows, const int ncols) { dim3 block_dim(BLOCK,BLOCK,1); dim3 grid_dim((ncols-1)/BLOCK+1,(nrows-1)/BLOCK+1,1); s_brute_kernel<<<grid_dim, block_dim>>>(sites, out_pix, nsites, nrows, ncols); cudaDeviceSynchronize(); checkCudaErrors(cudaGetLastError()); color_sites<<<nsites/256+1, 256>>>(sites, out_pix, nsites, nrows, ncols); cudaDeviceSynchronize(); checkCudaErrors(cudaGetLastError()); }
55ae3c85449c0e6d8ac4dbceff7a658447d2ca5a.hip
// !!! This is a file automatically generated by hipify!!! // Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #if !defined(WITH_NV_JETSON) && !defined(PADDLE_WITH_HIP) #include <string> #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/platform/dynload/nvjpeg.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/stream/cuda_stream.h" namespace paddle { namespace operators { static hipStream_t nvjpeg_stream = nullptr; static nvjpegHandle_t nvjpeg_handle = nullptr; void InitNvjpegImage(nvjpegImage_t* img) { for (int c = 0; c < NVJPEG_MAX_COMPONENT; c++) { img->channel[c] = nullptr; img->pitch[c] = 0; } } template <typename T> class GPUDecodeJpegKernel : public framework::OpKernel<T> { public: void Compute(const framework::ExecutionContext& ctx) const override { // Create nvJPEG handle if (nvjpeg_handle == nullptr) { nvjpegStatus_t create_status = platform::dynload::nvjpegCreateSimple(&nvjpeg_handle); PADDLE_ENFORCE_EQ(create_status, NVJPEG_STATUS_SUCCESS, platform::errors::Fatal("nvjpegCreateSimple failed: ", create_status)); } nvjpegJpegState_t nvjpeg_state; nvjpegStatus_t state_status = platform::dynload::nvjpegJpegStateCreate(nvjpeg_handle, &nvjpeg_state); PADDLE_ENFORCE_EQ(state_status, NVJPEG_STATUS_SUCCESS, platform::errors::Fatal("nvjpegJpegStateCreate failed: ", state_status)); int components; nvjpegChromaSubsampling_t subsampling; int widths[NVJPEG_MAX_COMPONENT]; int heights[NVJPEG_MAX_COMPONENT]; auto* x = ctx.Input<framework::Tensor>("X"); auto* x_data = x->data<T>(); nvjpegStatus_t info_status = platform::dynload::nvjpegGetImageInfo( nvjpeg_handle, x_data, (size_t)x->numel(), &components, &subsampling, widths, heights); PADDLE_ENFORCE_EQ( info_status, NVJPEG_STATUS_SUCCESS, platform::errors::Fatal("nvjpegGetImageInfo failed: ", info_status)); int width = widths[0]; int height = heights[0]; nvjpegOutputFormat_t output_format; int output_components; auto mode = ctx.Attr<std::string>("mode"); if (mode == "unchanged") { if (components == 1) { output_format = NVJPEG_OUTPUT_Y; output_components = 1; } else if (components == 3) { output_format = NVJPEG_OUTPUT_RGB; output_components = 3; } else { platform::dynload::nvjpegJpegStateDestroy(nvjpeg_state); PADDLE_THROW(platform::errors::Fatal( "The provided mode is not supported for JPEG files on GPU")); } } else if (mode == "gray") { output_format = NVJPEG_OUTPUT_Y; output_components = 1; } else if (mode == "rgb") { output_format = NVJPEG_OUTPUT_RGB; output_components = 3; } else { platform::dynload::nvjpegJpegStateDestroy(nvjpeg_state); PADDLE_THROW(platform::errors::Fatal( "The provided mode is not supported for JPEG files on GPU")); } nvjpegImage_t out_image; InitNvjpegImage(&out_image); // create nvjpeg stream if (nvjpeg_stream == nullptr) { hipStreamCreateWithFlags(&nvjpeg_stream, hipStreamNonBlocking); } int sz = widths[0] * heights[0]; auto* out = ctx.Output<framework::LoDTensor>("Out"); std::vector<int64_t> out_shape = {output_components, height, width}; out->Resize(phi::make_ddim(out_shape)); T* data = out->mutable_data<T>(ctx.GetPlace()); for (int c = 0; c < output_components; c++) { out_image.channel[c] = data + c * sz; out_image.pitch[c] = width; } nvjpegStatus_t decode_status = platform::dynload::nvjpegDecode( nvjpeg_handle, nvjpeg_state, x_data, x->numel(), output_format, &out_image, nvjpeg_stream); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_CUDA_KERNEL(decode_jpeg, ops::GPUDecodeJpegKernel<uint8_t>) #endif
55ae3c85449c0e6d8ac4dbceff7a658447d2ca5a.cu
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #if !defined(WITH_NV_JETSON) && !defined(PADDLE_WITH_HIP) #include <string> #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/platform/dynload/nvjpeg.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/stream/cuda_stream.h" namespace paddle { namespace operators { static cudaStream_t nvjpeg_stream = nullptr; static nvjpegHandle_t nvjpeg_handle = nullptr; void InitNvjpegImage(nvjpegImage_t* img) { for (int c = 0; c < NVJPEG_MAX_COMPONENT; c++) { img->channel[c] = nullptr; img->pitch[c] = 0; } } template <typename T> class GPUDecodeJpegKernel : public framework::OpKernel<T> { public: void Compute(const framework::ExecutionContext& ctx) const override { // Create nvJPEG handle if (nvjpeg_handle == nullptr) { nvjpegStatus_t create_status = platform::dynload::nvjpegCreateSimple(&nvjpeg_handle); PADDLE_ENFORCE_EQ(create_status, NVJPEG_STATUS_SUCCESS, platform::errors::Fatal("nvjpegCreateSimple failed: ", create_status)); } nvjpegJpegState_t nvjpeg_state; nvjpegStatus_t state_status = platform::dynload::nvjpegJpegStateCreate(nvjpeg_handle, &nvjpeg_state); PADDLE_ENFORCE_EQ(state_status, NVJPEG_STATUS_SUCCESS, platform::errors::Fatal("nvjpegJpegStateCreate failed: ", state_status)); int components; nvjpegChromaSubsampling_t subsampling; int widths[NVJPEG_MAX_COMPONENT]; int heights[NVJPEG_MAX_COMPONENT]; auto* x = ctx.Input<framework::Tensor>("X"); auto* x_data = x->data<T>(); nvjpegStatus_t info_status = platform::dynload::nvjpegGetImageInfo( nvjpeg_handle, x_data, (size_t)x->numel(), &components, &subsampling, widths, heights); PADDLE_ENFORCE_EQ( info_status, NVJPEG_STATUS_SUCCESS, platform::errors::Fatal("nvjpegGetImageInfo failed: ", info_status)); int width = widths[0]; int height = heights[0]; nvjpegOutputFormat_t output_format; int output_components; auto mode = ctx.Attr<std::string>("mode"); if (mode == "unchanged") { if (components == 1) { output_format = NVJPEG_OUTPUT_Y; output_components = 1; } else if (components == 3) { output_format = NVJPEG_OUTPUT_RGB; output_components = 3; } else { platform::dynload::nvjpegJpegStateDestroy(nvjpeg_state); PADDLE_THROW(platform::errors::Fatal( "The provided mode is not supported for JPEG files on GPU")); } } else if (mode == "gray") { output_format = NVJPEG_OUTPUT_Y; output_components = 1; } else if (mode == "rgb") { output_format = NVJPEG_OUTPUT_RGB; output_components = 3; } else { platform::dynload::nvjpegJpegStateDestroy(nvjpeg_state); PADDLE_THROW(platform::errors::Fatal( "The provided mode is not supported for JPEG files on GPU")); } nvjpegImage_t out_image; InitNvjpegImage(&out_image); // create nvjpeg stream if (nvjpeg_stream == nullptr) { cudaStreamCreateWithFlags(&nvjpeg_stream, cudaStreamNonBlocking); } int sz = widths[0] * heights[0]; auto* out = ctx.Output<framework::LoDTensor>("Out"); std::vector<int64_t> out_shape = {output_components, height, width}; out->Resize(phi::make_ddim(out_shape)); T* data = out->mutable_data<T>(ctx.GetPlace()); for (int c = 0; c < output_components; c++) { out_image.channel[c] = data + c * sz; out_image.pitch[c] = width; } nvjpegStatus_t decode_status = platform::dynload::nvjpegDecode( nvjpeg_handle, nvjpeg_state, x_data, x->numel(), output_format, &out_image, nvjpeg_stream); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_CUDA_KERNEL(decode_jpeg, ops::GPUDecodeJpegKernel<uint8_t>) #endif
c406d591cc7286609c056defabd1eedebcccb2ae.hip
// !!! This is a file automatically generated by hipify!!! #include <cudf/column/column_view.hpp> #include <cudf/copying.hpp> #include <cudf/detail/gather.cuh> #include <cudf/detail/gather.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/table/table.hpp> #include <cudf/table/table_view.hpp> #include <cudf/types.hpp> #include <cudf/utilities/type_dispatcher.hpp> #include <rmm/thrust_rmm_allocator.h> #include <thrust/count.h> #include <memory> namespace cudf { namespace detail { struct dispatch_map_type { template <typename map_type, std::enable_if_t<std::is_integral<map_type>::value and not std::is_same<map_type, bool>::value>* = nullptr> std::unique_ptr<table> operator()( table_view const& source_table, column_view const& gather_map, size_type num_destination_rows, bool check_bounds, bool ignore_out_of_bounds, bool allow_negative_indices = false, rmm::mr::device_memory_resource* mr = rmm::mr::get_default_resource(), hipStream_t stream = 0) { std::unique_ptr<table> destination_table; if (check_bounds) { cudf::size_type begin = (allow_negative_indices) ? -source_table.num_rows() : 0; CUDF_EXPECTS(num_destination_rows == thrust::count_if(rmm::exec_policy()->on(0), gather_map.begin<map_type>(), gather_map.end<map_type>(), bounds_checker<map_type>{begin, source_table.num_rows()}), "Index out of bounds."); } if (allow_negative_indices) { destination_table = gather(source_table, thrust::make_transform_iterator(gather_map.begin<map_type>(), index_converter<map_type>{source_table.num_rows()}), thrust::make_transform_iterator(gather_map.end<map_type>(), index_converter<map_type>{source_table.num_rows()}), ignore_out_of_bounds, mr, stream); } else { destination_table = gather(source_table, gather_map.begin<map_type>(), gather_map.end<map_type>(), ignore_out_of_bounds, mr, stream); } return destination_table; } template <typename map_type, std::enable_if_t<not std::is_integral<map_type>::value or std::is_same<map_type, bool>::value>* = nullptr> std::unique_ptr<table> operator()( table_view const& source_table, column_view const& gather_map, size_type num_destination_rows, bool check_bounds, bool ignore_out_of_bounds, bool allow_negative_indices = false, rmm::mr::device_memory_resource* mr = rmm::mr::get_default_resource(), hipStream_t stream = 0) { CUDF_FAIL("Gather map must be an integral type."); } }; std::unique_ptr<table> gather(table_view const& source_table, column_view const& gather_map, bool check_bounds, bool ignore_out_of_bounds, bool allow_negative_indices, rmm::mr::device_memory_resource* mr, hipStream_t stream) { CUDF_EXPECTS(gather_map.has_nulls() == false, "gather_map contains nulls"); std::unique_ptr<table> destination_table = cudf::type_dispatcher(gather_map.type(), dispatch_map_type{}, source_table, gather_map, gather_map.size(), check_bounds, ignore_out_of_bounds, allow_negative_indices, mr, stream); return destination_table; } } // namespace detail std::unique_ptr<table> gather(table_view const& source_table, column_view const& gather_map, bool check_bounds, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::gather(source_table, gather_map, check_bounds, false, true, mr); } } // namespace cudf
c406d591cc7286609c056defabd1eedebcccb2ae.cu
#include <cudf/column/column_view.hpp> #include <cudf/copying.hpp> #include <cudf/detail/gather.cuh> #include <cudf/detail/gather.hpp> #include <cudf/detail/nvtx/ranges.hpp> #include <cudf/table/table.hpp> #include <cudf/table/table_view.hpp> #include <cudf/types.hpp> #include <cudf/utilities/type_dispatcher.hpp> #include <rmm/thrust_rmm_allocator.h> #include <thrust/count.h> #include <memory> namespace cudf { namespace detail { struct dispatch_map_type { template <typename map_type, std::enable_if_t<std::is_integral<map_type>::value and not std::is_same<map_type, bool>::value>* = nullptr> std::unique_ptr<table> operator()( table_view const& source_table, column_view const& gather_map, size_type num_destination_rows, bool check_bounds, bool ignore_out_of_bounds, bool allow_negative_indices = false, rmm::mr::device_memory_resource* mr = rmm::mr::get_default_resource(), cudaStream_t stream = 0) { std::unique_ptr<table> destination_table; if (check_bounds) { cudf::size_type begin = (allow_negative_indices) ? -source_table.num_rows() : 0; CUDF_EXPECTS(num_destination_rows == thrust::count_if(rmm::exec_policy()->on(0), gather_map.begin<map_type>(), gather_map.end<map_type>(), bounds_checker<map_type>{begin, source_table.num_rows()}), "Index out of bounds."); } if (allow_negative_indices) { destination_table = gather(source_table, thrust::make_transform_iterator(gather_map.begin<map_type>(), index_converter<map_type>{source_table.num_rows()}), thrust::make_transform_iterator(gather_map.end<map_type>(), index_converter<map_type>{source_table.num_rows()}), ignore_out_of_bounds, mr, stream); } else { destination_table = gather(source_table, gather_map.begin<map_type>(), gather_map.end<map_type>(), ignore_out_of_bounds, mr, stream); } return destination_table; } template <typename map_type, std::enable_if_t<not std::is_integral<map_type>::value or std::is_same<map_type, bool>::value>* = nullptr> std::unique_ptr<table> operator()( table_view const& source_table, column_view const& gather_map, size_type num_destination_rows, bool check_bounds, bool ignore_out_of_bounds, bool allow_negative_indices = false, rmm::mr::device_memory_resource* mr = rmm::mr::get_default_resource(), cudaStream_t stream = 0) { CUDF_FAIL("Gather map must be an integral type."); } }; std::unique_ptr<table> gather(table_view const& source_table, column_view const& gather_map, bool check_bounds, bool ignore_out_of_bounds, bool allow_negative_indices, rmm::mr::device_memory_resource* mr, cudaStream_t stream) { CUDF_EXPECTS(gather_map.has_nulls() == false, "gather_map contains nulls"); std::unique_ptr<table> destination_table = cudf::type_dispatcher(gather_map.type(), dispatch_map_type{}, source_table, gather_map, gather_map.size(), check_bounds, ignore_out_of_bounds, allow_negative_indices, mr, stream); return destination_table; } } // namespace detail std::unique_ptr<table> gather(table_view const& source_table, column_view const& gather_map, bool check_bounds, rmm::mr::device_memory_resource* mr) { CUDF_FUNC_RANGE(); return detail::gather(source_table, gather_map, check_bounds, false, true, mr); } } // namespace cudf
8a29407f0d3be7f71bf8ad29f4e29faf3202f5c1.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" //: nvcc add0.cu -o add0 #include <stdlib.h> #include <stdio.h> __global__ void cuda_add(int a, int b, int *c) { *c = a + b; } int main(int argc, char **argv) { int c; int *dev_c; hipMalloc((void**)&dev_c, sizeof(int)); hipLaunchKernelGGL(( cuda_add), dim3(1),dim3(1), 0, 0, 2, 2, dev_c); /* * Arguments pour hipMemcpy * 1 : destination * 2 : memoire sur le device * 3 : taille du bloc * 4 : direction de la copie */ hipMemcpy(&c, dev_c, sizeof(int), hipMemcpyDeviceToHost); printf("Almighty CUDA's answer: 2 + 2 = %d.\n", c); hipFree(dev_c); return EXIT_SUCCESS; }
8a29407f0d3be7f71bf8ad29f4e29faf3202f5c1.cu
//: nvcc add0.cu -o add0 #include <stdlib.h> #include <stdio.h> __global__ void cuda_add(int a, int b, int *c) { *c = a + b; } int main(int argc, char **argv) { int c; int *dev_c; cudaMalloc((void**)&dev_c, sizeof(int)); cuda_add<<<1,1>>>(2, 2, dev_c); /* * Arguments pour cudaMemcpy * 1 : destination * 2 : memoire sur le device * 3 : taille du bloc * 4 : direction de la copie */ cudaMemcpy(&c, dev_c, sizeof(int), cudaMemcpyDeviceToHost); printf("Almighty CUDA's answer: 2 + 2 = %d.\n", c); cudaFree(dev_c); return EXIT_SUCCESS; }
ac0e8376dbfc124b1650177f920ec90a51bc970d.hip
// !!! This is a file automatically generated by hipify!!! #include <stdio.h> #include <stdlib.h> #include <hip/hip_runtime.h> #include <math.h> //----------------------------------------------------------------------------- // GpuConstantsPackage: a struct to hold many constants (including pointers // to allocated memory on the device) that can be // uploaded all at once. Placing this in the "constants // cache" is a convenient and performant way of handling // constant information on the GPU. //----------------------------------------------------------------------------- struct GpuConstantsPackage { int nparticle; int* partType; float* partX; float* partY; float* partZ; float* partQ; float* Etot; }; typedef struct GpuConstantsPackage cribSheet; // This device constant is available to all functions in this CUDA unit __device__ __constant__ cribSheet cSh; //----------------------------------------------------------------------------- // GpuMirroredInt: a struct holding mirrored int data on both the CPU and the // GPU. Functions below will operate on this struct // (because this isn't a workshop on C++) //----------------------------------------------------------------------------- struct GpuMirroredInt { int len; // Length of the array (again, this is not a C++ course) int IsPinned; // "Pinned" memory is best for Host <= => GPU transfers. // In fact, if non-pinned memory is transferred to the // GPU from the host, a temporary allocation of pinned // memory will be created and then destroyed. Pinned // memory is not host-pageable, but the only performance // implication is that creating lots of pinned memory // may make it harder for the host OS to manage large // memory jobs. int* HostData; // Pointer to allocated memory on the host int* DevcData; // Pointer to allocated memory on the GPU. Note that the // host can know what the address of memory on the GPU // is, but it cannot simply de-reference that pointer // in host code. }; typedef struct GpuMirroredInt gpuInt; //----------------------------------------------------------------------------- // GpuMirroredInt: a struct holding mirrored fp32 data on both the CPU and the // GPU. Functions below will operate on this struct // (because this isn't a workshop on C++) //----------------------------------------------------------------------------- struct GpuMirroredFloat { int len; // Length of the array (again, this is not a C++ course) int IsPinned; // "Pinned" memory is best for Host <= => GPU transfers. // In fact, if non-pinned memory is transferred to the // GPU from the host, a temporary allocation of pinned // memory will be created and then destroyed. Pinned // memory is not host-pageable, but the only performance // implication is that creating lots of pinned memory // may make it harder for the host OS to manage large // memory jobs. float* HostData; // Pointer to allocated memory on the host float* DevcData; // Pointer to allocated memory on the GPU. Note that the // host can know what the address of memory on the GPU // is, but it cannot simply de-reference that pointer // in host code. }; typedef struct GpuMirroredFloat gpuFloat; //----------------------------------------------------------------------------- // ParticleSimulator: run a rudimentary simulation of particles //----------------------------------------------------------------------------- __global__ void ParticleSimulator() { // Show that the device understands the number of particles if (threadIdx.x == 0) { printf("There are %d particles active.\n", cSh.nparticle); } // Loop over all atoms to report positions. This will NOT necessarily // report all particles in orer 0, 1, 2, ..., N. The second warp // (threadIdx.x >= 32 and threadIdx.x < 64) may fire off before the first, // printing particles 32, 33, ... before 0, 1, 2, and so forth. Race // conditions are mitigable with good programming practices to insulate // code against thread access before results are ready. int tidx = threadIdx.x; while (tidx < cSh.nparticle) { printf("Particle %3d: %9.4f %9.4f %9.4f with %9.4f charge\n", tidx, cSh.partX[tidx], cSh.partY[tidx], cSh.partZ[tidx], cSh.partQ[tidx]); tidx += blockDim.x; } // Loop over all particles and compute the electrostatic potential. // Each thread will accumulate its own portion of the potential, // then pool the results at the end. tidx = threadIdx.x; float qq = 0.0; while (tidx < cSh.nparticle) { // Naive way: each thread takes a particle and then loops over all // other particles, up to but not including itself. Low-numbered // threads will have little work to do while high-numbered threads // will cause the rest of the thread block to idle. int i; for (i = 0; i < tidx; i++) { float dx = cSh.partX[tidx] - cSh.partX[i]; float dy = cSh.partY[tidx] - cSh.partY[i]; float dz = cSh.partZ[tidx] - cSh.partZ[i]; float r = sqrt(dx*dx + dy*dy + dz*dz); qq += cSh.partQ[tidx] * cSh.partQ[i] / r; } // Advance the counter by the number of threads in the block. // The kernel of 64 threads processes particles 0-63, 64-127, // 128-191, etc. until reaching nparticle. tidx += blockDim.x; } // Each thread's qq could contain information pertaining to multiple atoms // each interacting with their respective pairs. That's fine--the goal is // to compute a total potential energy, not anything for one atom in // particular. atomicAdd(&cSh.Etot[0], qq); // For edification, let's try that without atomic instructions: every // thread simply accumulates to a number without regard to whether // other threads are trying to edit the same number. cSh.Etot[1] += qq; } //----------------------------------------------------------------------------- // CreateGpuInt: constructor function for allocating memory in a gpuInt // instance. // // Arguments: // len: the length of array to allocate // pin: flag to have the memory pinned (non-pageable on the host side // for optimal transfer speed to the device) //----------------------------------------------------------------------------- gpuInt CreateGpuInt(int len, int pin) { gpuInt G; G.len = len; G.IsPinned = pin; // Now that the official length is recorded, upgrade the real length // to the next convenient multiple of 128, so as to always allocate // GPU memory in 512-byte blocks. This is for alignment purposes, // and keeping host to device transfers in line. len = ((len + 127) / 128) * 128; if (pin == 1) { hipHostMalloc((void **)&G.HostData, len * sizeof(int), hipHostMallocMapped); } else { G.HostData = (int*)malloc(len * sizeof(int)); } hipMalloc((void **)&G.DevcData, len * sizeof(int)); memset(G.HostData, 0, len * sizeof(int)); hipMemset((void *)G.DevcData, 0, len * sizeof(int)); return G; } //----------------------------------------------------------------------------- // DestroyGpuInt: destructor function for freeing memory in a gpuInt // instance. //----------------------------------------------------------------------------- void DestroyGpuInt(gpuInt *G) { if (G->IsPinned == 1) { hipHostFree(G->HostData); } else { free(G->HostData); } hipFree(G->DevcData); } //----------------------------------------------------------------------------- // UploadGpuInt: upload an integer array from the host to the device. //----------------------------------------------------------------------------- void UploadGpuInt(gpuInt *G) { hipMemcpy(G->DevcData, G->HostData, G->len * sizeof(int), hipMemcpyHostToDevice); } //----------------------------------------------------------------------------- // DownloadGpuInt: download an integer array from the host to the device. //----------------------------------------------------------------------------- void DownloadGpuInt(gpuInt *G) { hipMemcpy(G->HostData, G->DevcData, G->len * sizeof(int), hipMemcpyHostToDevice); } //----------------------------------------------------------------------------- // CreateGpuFloat: constructor function for allocating memory in a gpuFloat // instance. // // Arguments: // len: the length of array to allocate // pin: flag to have the memory pinned (non-pageable on the host side // for optimal transfer speed ot the device) //----------------------------------------------------------------------------- gpuFloat CreateGpuFloat(int len, int pin) { gpuFloat G; G.len = len; G.IsPinned = pin; // Now that the official length is recorded, upgrade the real length // to the next convenient multiple of 128, so as to always allocate // GPU memory in 512-byte blocks. This is for alignment purposes, // and keeping host to device transfers in line. len = ((len + 127) / 128) * 128; if (pin == 1) { hipHostMalloc((void **)&G.HostData, len * sizeof(float), hipHostMallocMapped); } else { G.HostData = (float*)malloc(len * sizeof(float)); } hipMalloc((void **)&G.DevcData, len * sizeof(float)); memset(G.HostData, 0, len * sizeof(float)); hipMemset((void *)G.DevcData, 0, len * sizeof(float)); return G; } //----------------------------------------------------------------------------- // DestroyGpuFloat: destructor function for freeing memory in a gpuFloat // instance. //----------------------------------------------------------------------------- void DestroyGpuFloat(gpuFloat *G) { if (G->IsPinned == 1) { hipHostFree(G->HostData); } else { free(G->HostData); } hipFree(G->DevcData); } //----------------------------------------------------------------------------- // UploadGpuFloat: upload an float array from the host to the device. //----------------------------------------------------------------------------- void UploadGpuFloat(gpuFloat *G) { hipMemcpy(G->DevcData, G->HostData, G->len * sizeof(float), hipMemcpyHostToDevice); } //----------------------------------------------------------------------------- // DownloadGpuFloat: download an float array from the host to the device. //----------------------------------------------------------------------------- void DownloadGpuFloat(gpuFloat *G) { hipMemcpy(G->HostData, G->DevcData, G->len * sizeof(float), hipMemcpyHostToDevice); } //----------------------------------------------------------------------------- // main //----------------------------------------------------------------------------- int main() { int i, np; gpuInt particleTypes; gpuFloat particleXcoord, particleYcoord, particleZcoord, particleCharge; gpuFloat etot; // Create a small array of particles and populate it particleTypes = CreateGpuInt(1000, 1); particleXcoord = CreateGpuFloat(1000, 1); particleYcoord = CreateGpuFloat(1000, 1); particleZcoord = CreateGpuFloat(1000, 1); particleCharge = CreateGpuFloat(1000, 1); // Allocate and initialize the total energy // accumulator on the host and on the device. etot = CreateGpuFloat(2, 1); etot.HostData[0] = 0.0; etot.HostData[1] = 0.0; UploadGpuFloat(&etot); // Initialize random number generator. srand() SEEDS the generator, // thereafter each call to rand() will return a different number. // This is a reeally bad generator (much better methods with longer // periods before they start looping back over the same sequence are // available). srand(62052); // We have allocated for a maximum of 100 particles, // but let's say there are only 47 in this case. np = 47; for (i = 0; i < np; i++) { // Integer truncation would happen anyway, I'm just making it explicit particleTypes.HostData[i] = (int)(8 * rand()); // Create some random coordinates (double-to-float conversion // is happening here. On the GPU this can have performance // impact, so keep an eye on the data types at all times! particleXcoord.HostData[i] = 20.0 * (double)rand() / (double)RAND_MAX; particleYcoord.HostData[i] = 20.0 * (double)rand() / (double)RAND_MAX; particleZcoord.HostData[i] = 20.0 * (double)rand() / (double)RAND_MAX; particleCharge.HostData[i] = 0.5 - rand() / (double)RAND_MAX; } // Stage critical constants--see cribSheet struct instance cSh above. cribSheet cnstage; cnstage.nparticle = np; cnstage.partX = particleXcoord.DevcData; cnstage.partY = particleYcoord.DevcData; cnstage.partZ = particleZcoord.DevcData; cnstage.partQ = particleCharge.DevcData; cnstage.Etot = etot.DevcData; // Upload all data to the device UploadGpuInt(&particleTypes); UploadGpuFloat(&particleXcoord); UploadGpuFloat(&particleYcoord); UploadGpuFloat(&particleZcoord); UploadGpuFloat(&particleCharge); // Upload the constants to the constants cache hipMemcpyToSymbol(cSh, &cnstage, sizeof(cribSheet)); // Launch the kernel hipLaunchKernelGGL(( ParticleSimulator), dim3(1), dim3(64), 0, 0, ); // Download the total energy DownloadGpuFloat(&etot); printf("Total energy (atomic adds) = %10.4f\n", etot.HostData[0]); printf("Total energy (straight adds) = %10.4f\n", etot.HostData[1]); // Device synchronization hipDeviceSynchronize(); return 0; }
ac0e8376dbfc124b1650177f920ec90a51bc970d.cu
#include <stdio.h> #include <stdlib.h> #include <cuda.h> #include <math.h> //----------------------------------------------------------------------------- // GpuConstantsPackage: a struct to hold many constants (including pointers // to allocated memory on the device) that can be // uploaded all at once. Placing this in the "constants // cache" is a convenient and performant way of handling // constant information on the GPU. //----------------------------------------------------------------------------- struct GpuConstantsPackage { int nparticle; int* partType; float* partX; float* partY; float* partZ; float* partQ; float* Etot; }; typedef struct GpuConstantsPackage cribSheet; // This device constant is available to all functions in this CUDA unit __device__ __constant__ cribSheet cSh; //----------------------------------------------------------------------------- // GpuMirroredInt: a struct holding mirrored int data on both the CPU and the // GPU. Functions below will operate on this struct // (because this isn't a workshop on C++) //----------------------------------------------------------------------------- struct GpuMirroredInt { int len; // Length of the array (again, this is not a C++ course) int IsPinned; // "Pinned" memory is best for Host <= => GPU transfers. // In fact, if non-pinned memory is transferred to the // GPU from the host, a temporary allocation of pinned // memory will be created and then destroyed. Pinned // memory is not host-pageable, but the only performance // implication is that creating lots of pinned memory // may make it harder for the host OS to manage large // memory jobs. int* HostData; // Pointer to allocated memory on the host int* DevcData; // Pointer to allocated memory on the GPU. Note that the // host can know what the address of memory on the GPU // is, but it cannot simply de-reference that pointer // in host code. }; typedef struct GpuMirroredInt gpuInt; //----------------------------------------------------------------------------- // GpuMirroredInt: a struct holding mirrored fp32 data on both the CPU and the // GPU. Functions below will operate on this struct // (because this isn't a workshop on C++) //----------------------------------------------------------------------------- struct GpuMirroredFloat { int len; // Length of the array (again, this is not a C++ course) int IsPinned; // "Pinned" memory is best for Host <= => GPU transfers. // In fact, if non-pinned memory is transferred to the // GPU from the host, a temporary allocation of pinned // memory will be created and then destroyed. Pinned // memory is not host-pageable, but the only performance // implication is that creating lots of pinned memory // may make it harder for the host OS to manage large // memory jobs. float* HostData; // Pointer to allocated memory on the host float* DevcData; // Pointer to allocated memory on the GPU. Note that the // host can know what the address of memory on the GPU // is, but it cannot simply de-reference that pointer // in host code. }; typedef struct GpuMirroredFloat gpuFloat; //----------------------------------------------------------------------------- // ParticleSimulator: run a rudimentary simulation of particles //----------------------------------------------------------------------------- __global__ void ParticleSimulator() { // Show that the device understands the number of particles if (threadIdx.x == 0) { printf("There are %d particles active.\n", cSh.nparticle); } // Loop over all atoms to report positions. This will NOT necessarily // report all particles in orer 0, 1, 2, ..., N. The second warp // (threadIdx.x >= 32 and threadIdx.x < 64) may fire off before the first, // printing particles 32, 33, ... before 0, 1, 2, and so forth. Race // conditions are mitigable with good programming practices to insulate // code against thread access before results are ready. int tidx = threadIdx.x; while (tidx < cSh.nparticle) { printf("Particle %3d: %9.4f %9.4f %9.4f with %9.4f charge\n", tidx, cSh.partX[tidx], cSh.partY[tidx], cSh.partZ[tidx], cSh.partQ[tidx]); tidx += blockDim.x; } // Loop over all particles and compute the electrostatic potential. // Each thread will accumulate its own portion of the potential, // then pool the results at the end. tidx = threadIdx.x; float qq = 0.0; while (tidx < cSh.nparticle) { // Naive way: each thread takes a particle and then loops over all // other particles, up to but not including itself. Low-numbered // threads will have little work to do while high-numbered threads // will cause the rest of the thread block to idle. int i; for (i = 0; i < tidx; i++) { float dx = cSh.partX[tidx] - cSh.partX[i]; float dy = cSh.partY[tidx] - cSh.partY[i]; float dz = cSh.partZ[tidx] - cSh.partZ[i]; float r = sqrt(dx*dx + dy*dy + dz*dz); qq += cSh.partQ[tidx] * cSh.partQ[i] / r; } // Advance the counter by the number of threads in the block. // The kernel of 64 threads processes particles 0-63, 64-127, // 128-191, etc. until reaching nparticle. tidx += blockDim.x; } // Each thread's qq could contain information pertaining to multiple atoms // each interacting with their respective pairs. That's fine--the goal is // to compute a total potential energy, not anything for one atom in // particular. atomicAdd(&cSh.Etot[0], qq); // For edification, let's try that without atomic instructions: every // thread simply accumulates to a number without regard to whether // other threads are trying to edit the same number. cSh.Etot[1] += qq; } //----------------------------------------------------------------------------- // CreateGpuInt: constructor function for allocating memory in a gpuInt // instance. // // Arguments: // len: the length of array to allocate // pin: flag to have the memory pinned (non-pageable on the host side // for optimal transfer speed to the device) //----------------------------------------------------------------------------- gpuInt CreateGpuInt(int len, int pin) { gpuInt G; G.len = len; G.IsPinned = pin; // Now that the official length is recorded, upgrade the real length // to the next convenient multiple of 128, so as to always allocate // GPU memory in 512-byte blocks. This is for alignment purposes, // and keeping host to device transfers in line. len = ((len + 127) / 128) * 128; if (pin == 1) { cudaHostAlloc((void **)&G.HostData, len * sizeof(int), cudaHostAllocMapped); } else { G.HostData = (int*)malloc(len * sizeof(int)); } cudaMalloc((void **)&G.DevcData, len * sizeof(int)); memset(G.HostData, 0, len * sizeof(int)); cudaMemset((void *)G.DevcData, 0, len * sizeof(int)); return G; } //----------------------------------------------------------------------------- // DestroyGpuInt: destructor function for freeing memory in a gpuInt // instance. //----------------------------------------------------------------------------- void DestroyGpuInt(gpuInt *G) { if (G->IsPinned == 1) { cudaFreeHost(G->HostData); } else { free(G->HostData); } cudaFree(G->DevcData); } //----------------------------------------------------------------------------- // UploadGpuInt: upload an integer array from the host to the device. //----------------------------------------------------------------------------- void UploadGpuInt(gpuInt *G) { cudaMemcpy(G->DevcData, G->HostData, G->len * sizeof(int), cudaMemcpyHostToDevice); } //----------------------------------------------------------------------------- // DownloadGpuInt: download an integer array from the host to the device. //----------------------------------------------------------------------------- void DownloadGpuInt(gpuInt *G) { cudaMemcpy(G->HostData, G->DevcData, G->len * sizeof(int), cudaMemcpyHostToDevice); } //----------------------------------------------------------------------------- // CreateGpuFloat: constructor function for allocating memory in a gpuFloat // instance. // // Arguments: // len: the length of array to allocate // pin: flag to have the memory pinned (non-pageable on the host side // for optimal transfer speed ot the device) //----------------------------------------------------------------------------- gpuFloat CreateGpuFloat(int len, int pin) { gpuFloat G; G.len = len; G.IsPinned = pin; // Now that the official length is recorded, upgrade the real length // to the next convenient multiple of 128, so as to always allocate // GPU memory in 512-byte blocks. This is for alignment purposes, // and keeping host to device transfers in line. len = ((len + 127) / 128) * 128; if (pin == 1) { cudaHostAlloc((void **)&G.HostData, len * sizeof(float), cudaHostAllocMapped); } else { G.HostData = (float*)malloc(len * sizeof(float)); } cudaMalloc((void **)&G.DevcData, len * sizeof(float)); memset(G.HostData, 0, len * sizeof(float)); cudaMemset((void *)G.DevcData, 0, len * sizeof(float)); return G; } //----------------------------------------------------------------------------- // DestroyGpuFloat: destructor function for freeing memory in a gpuFloat // instance. //----------------------------------------------------------------------------- void DestroyGpuFloat(gpuFloat *G) { if (G->IsPinned == 1) { cudaFreeHost(G->HostData); } else { free(G->HostData); } cudaFree(G->DevcData); } //----------------------------------------------------------------------------- // UploadGpuFloat: upload an float array from the host to the device. //----------------------------------------------------------------------------- void UploadGpuFloat(gpuFloat *G) { cudaMemcpy(G->DevcData, G->HostData, G->len * sizeof(float), cudaMemcpyHostToDevice); } //----------------------------------------------------------------------------- // DownloadGpuFloat: download an float array from the host to the device. //----------------------------------------------------------------------------- void DownloadGpuFloat(gpuFloat *G) { cudaMemcpy(G->HostData, G->DevcData, G->len * sizeof(float), cudaMemcpyHostToDevice); } //----------------------------------------------------------------------------- // main //----------------------------------------------------------------------------- int main() { int i, np; gpuInt particleTypes; gpuFloat particleXcoord, particleYcoord, particleZcoord, particleCharge; gpuFloat etot; // Create a small array of particles and populate it particleTypes = CreateGpuInt(1000, 1); particleXcoord = CreateGpuFloat(1000, 1); particleYcoord = CreateGpuFloat(1000, 1); particleZcoord = CreateGpuFloat(1000, 1); particleCharge = CreateGpuFloat(1000, 1); // Allocate and initialize the total energy // accumulator on the host and on the device. etot = CreateGpuFloat(2, 1); etot.HostData[0] = 0.0; etot.HostData[1] = 0.0; UploadGpuFloat(&etot); // Initialize random number generator. srand() SEEDS the generator, // thereafter each call to rand() will return a different number. // This is a reeally bad generator (much better methods with longer // periods before they start looping back over the same sequence are // available). srand(62052); // We have allocated for a maximum of 100 particles, // but let's say there are only 47 in this case. np = 47; for (i = 0; i < np; i++) { // Integer truncation would happen anyway, I'm just making it explicit particleTypes.HostData[i] = (int)(8 * rand()); // Create some random coordinates (double-to-float conversion // is happening here. On the GPU this can have performance // impact, so keep an eye on the data types at all times! particleXcoord.HostData[i] = 20.0 * (double)rand() / (double)RAND_MAX; particleYcoord.HostData[i] = 20.0 * (double)rand() / (double)RAND_MAX; particleZcoord.HostData[i] = 20.0 * (double)rand() / (double)RAND_MAX; particleCharge.HostData[i] = 0.5 - rand() / (double)RAND_MAX; } // Stage critical constants--see cribSheet struct instance cSh above. cribSheet cnstage; cnstage.nparticle = np; cnstage.partX = particleXcoord.DevcData; cnstage.partY = particleYcoord.DevcData; cnstage.partZ = particleZcoord.DevcData; cnstage.partQ = particleCharge.DevcData; cnstage.Etot = etot.DevcData; // Upload all data to the device UploadGpuInt(&particleTypes); UploadGpuFloat(&particleXcoord); UploadGpuFloat(&particleYcoord); UploadGpuFloat(&particleZcoord); UploadGpuFloat(&particleCharge); // Upload the constants to the constants cache cudaMemcpyToSymbol(cSh, &cnstage, sizeof(cribSheet)); // Launch the kernel ParticleSimulator<<<1, 64>>>(); // Download the total energy DownloadGpuFloat(&etot); printf("Total energy (atomic adds) = %10.4f\n", etot.HostData[0]); printf("Total energy (straight adds) = %10.4f\n", etot.HostData[1]); // Device synchronization cudaDeviceSynchronize(); return 0; }
262b7d37e827e2d6580e398b15f1630a54a70650.hip
// !!! This is a file automatically generated by hipify!!! // ### // ### // ### Practical Course: GPU Programming in Computer Vision // ### // ### // ### Technical University Munich, Computer Vision Group // ### Summer Semester 2014, September 8 - October 10 // ### // ### // ### Maria Klodt, Jan Stuehmer, Mohamed Souiai, Thomas Moellenhoff // ### // ### // ### // ### THIS FILE IS SUPPOSED TO REMAIN UNCHANGED // ### // ### #include "aux.h" #include <cstdlib> #include <iostream> using std::stringstream; using std::cerr; using std::cout; using std::endl; using std::string; // parameter processing: template specialization for T=bool template<> bool getParam<bool>(std::string param, bool &var, int argc, char **argv) { const char *c_param = param.c_str(); for(int i=argc-1; i>=1; i--) { if (argv[i][0]!='-') continue; if (strcmp(argv[i]+1, c_param)==0) { if (!(i+1<argc) || argv[i+1][0]=='-') { var = true; return true; } std::stringstream ss; ss << argv[i+1]; ss >> var; return (bool)ss; } } return false; } // opencv helpers void convert_layered_to_interleaved(float *aOut, const float *aIn, int w, int h, int nc) { if (nc==1) { memcpy(aOut, aIn, w*h*sizeof(float)); return; } size_t nOmega = (size_t)w*h; for (int y=0; y<h; y++) { for (int x=0; x<w; x++) { for (int c=0; c<nc; c++) { aOut[(nc-1-c) + nc*(x + (size_t)w*y)] = aIn[x + (size_t)w*y + nOmega*c]; } } } } void convert_layered_to_mat(cv::Mat &mOut, const float *aIn) { convert_layered_to_interleaved((float*)mOut.data, aIn, mOut.cols, mOut.rows, mOut.channels()); } void convert_interleaved_to_layered(float *aOut, const float *aIn, int w, int h, int nc) { if (nc==1) { memcpy(aOut, aIn, w*h*sizeof(float)); return; } size_t nOmega = (size_t)w*h; for (int y=0; y<h; y++) { for (int x=0; x<w; x++) { for (int c=0; c<nc; c++) { aOut[x + (size_t)w*y + nOmega*c] = aIn[(nc-1-c) + nc*(x + (size_t)w*y)]; } } } } void convert_mat_to_layered(float *aOut, const cv::Mat &mIn) { convert_interleaved_to_layered(aOut, (float*)mIn.data, mIn.cols, mIn.rows, mIn.channels()); } void showImage(string title, const cv::Mat &mat, int x, int y) { const char *wTitle = title.c_str(); cv::namedWindow(wTitle, CV_WINDOW_AUTOSIZE); cvMoveWindow(wTitle, x, y); cv::imshow(wTitle, mat); } // adding Gaussian noise float noise(float sigma) { float x1 = (float)rand()/RAND_MAX; float x2 = (float)rand()/RAND_MAX; return sigma * sqrtf(-2*log(::max(x1,0.000001f)))*cosf(2*M_PI*x2); } void addNoise(cv::Mat &m, float sigma) { float *data = (float*)m.data; int w = m.cols; int h = m.rows; int nc = m.channels(); size_t n = (size_t)w*h*nc; for(size_t i=0; i<n; i++) { data[i] += noise(sigma); } } // cuda error checking string prev_file = ""; int prev_line = 0; void cuda_check(string file, int line) { hipError_t e = hipGetLastError(); if (e != hipSuccess) { cout << endl << file << ", line " << line << ": " << hipGetErrorString(e) << " (" << e << ")" << endl; if (prev_line>0) cout << "Previous CUDA call:" << endl << prev_file << ", line " << prev_line << endl; exit(1); } prev_file = file; prev_line = line; } // Color transformation // source : http://linuxtv.org/downloads/v4l-dvb-apis/colorspaces.html float clamp (double x) { float r = x; /* round to nearest */ if (r < 0.0) return 0.0f; else if (r > 1.0) return 1.0f; else return r; } void forward_color_transf( float *imgRGB, float *imgChrom, int w, int h, int nc ) { //int ER, EG, EB; /* gamma corrected RGB input [0;255] */ //int Y1, Cb, Cr; /* output [0;255] */ double r, g, b; /* temporaries */ double y1, pb, pr; if (nc != 1) { for( int i = 0; i < w; i++ ){ for( int j = 0; j < h; j++ ){ //for( int channel; channel < nc; channel++ ){ r = imgRGB[ i + j*w + w*h*0 ]; // r = ER / 255.0; g = imgRGB[ i + j*w + w*h*1 ]; // g = EG / 255.0; b = imgRGB[ i + j*w + w*h*2 ]; // b = EB / 255.0; y1 = 0.299 * r + 0.587 * g + 0.114 * b; pb = -0.169 * r - 0.331 * g + 0.5 * b; pr = 0.5 * r - 0.419 * g - 0.081 * b; imgChrom[i + j*w + w*h*0] = clamp ( ( 219 / 255.0 ) * y1 + ( 16 / 255.0 )); // Y1 = clamp (219 * y1 + 16); imgChrom[i + j*w + w*h*1] = clamp ( ( 224 / 255.0 ) * pb + ( 128 / 255.0 )); // Cb = clamp (224 * pb + 128); imgChrom[i + j*w + w*h*2] = clamp ( ( 224 / 255.0 ) * pr + ( 128 / 255.0 )); // Cr = clamp (224 * pr + 128); } } } else { return; } } //Inverse Transformation void inverse_color_transf( float *imgChrom, float *imgRGB, int w, int h, int nc ) { //int Y1, Cb, Cr; /* gamma pre-corrected input [0;255] */ //int ER, EG, EB; /* output [0;255] */ double r, g, b; /* temporaries */ double y1, pb, pr; if (nc != 1) { for( int i = 0; i < w; i++ ){ for( int j = 0; j < h; j++ ){ y1 = ( imgChrom[i + j*w + w*h*0] - ( 16 / 255.0 )) / ( 219 / 255.0 ); // y1 = (Y1 - 16) / 219.0; pb = ( imgChrom[i + j*w + w*h*1] - ( 128 / 255.0 )) / ( 224 / 255.0 ); // pb = (Cb - 128) / 224.0; pr = ( imgChrom[i + j*w + w*h*2] - ( 128 / 255.0 )) / ( 224 / 255.0 ); // pr = (Cr - 128) / 224.0; r = 1.0 * y1 + 0 * pb + 1.402 * pr; g = 1.0 * y1 - 0.344 * pb - 0.714 * pr; b = 1.0 * y1 + 1.772 * pb + 0 * pr; imgRGB[ i + j*w + w*h*0 ] = clamp (r); // ER = clamp (r * 255); /* [ok? one should prob. limit y1,pb,pr] */ imgRGB[ i + j*w + w*h*1 ] = clamp (g); // EG = clamp (g * 255); imgRGB[ i + j*w + w*h*2 ] = clamp (b); // EB = clamp (b * 255); } } } else { return; } }
262b7d37e827e2d6580e398b15f1630a54a70650.cu
// ### // ### // ### Practical Course: GPU Programming in Computer Vision // ### // ### // ### Technical University Munich, Computer Vision Group // ### Summer Semester 2014, September 8 - October 10 // ### // ### // ### Maria Klodt, Jan Stuehmer, Mohamed Souiai, Thomas Moellenhoff // ### // ### // ### // ### THIS FILE IS SUPPOSED TO REMAIN UNCHANGED // ### // ### #include "aux.h" #include <cstdlib> #include <iostream> using std::stringstream; using std::cerr; using std::cout; using std::endl; using std::string; // parameter processing: template specialization for T=bool template<> bool getParam<bool>(std::string param, bool &var, int argc, char **argv) { const char *c_param = param.c_str(); for(int i=argc-1; i>=1; i--) { if (argv[i][0]!='-') continue; if (strcmp(argv[i]+1, c_param)==0) { if (!(i+1<argc) || argv[i+1][0]=='-') { var = true; return true; } std::stringstream ss; ss << argv[i+1]; ss >> var; return (bool)ss; } } return false; } // opencv helpers void convert_layered_to_interleaved(float *aOut, const float *aIn, int w, int h, int nc) { if (nc==1) { memcpy(aOut, aIn, w*h*sizeof(float)); return; } size_t nOmega = (size_t)w*h; for (int y=0; y<h; y++) { for (int x=0; x<w; x++) { for (int c=0; c<nc; c++) { aOut[(nc-1-c) + nc*(x + (size_t)w*y)] = aIn[x + (size_t)w*y + nOmega*c]; } } } } void convert_layered_to_mat(cv::Mat &mOut, const float *aIn) { convert_layered_to_interleaved((float*)mOut.data, aIn, mOut.cols, mOut.rows, mOut.channels()); } void convert_interleaved_to_layered(float *aOut, const float *aIn, int w, int h, int nc) { if (nc==1) { memcpy(aOut, aIn, w*h*sizeof(float)); return; } size_t nOmega = (size_t)w*h; for (int y=0; y<h; y++) { for (int x=0; x<w; x++) { for (int c=0; c<nc; c++) { aOut[x + (size_t)w*y + nOmega*c] = aIn[(nc-1-c) + nc*(x + (size_t)w*y)]; } } } } void convert_mat_to_layered(float *aOut, const cv::Mat &mIn) { convert_interleaved_to_layered(aOut, (float*)mIn.data, mIn.cols, mIn.rows, mIn.channels()); } void showImage(string title, const cv::Mat &mat, int x, int y) { const char *wTitle = title.c_str(); cv::namedWindow(wTitle, CV_WINDOW_AUTOSIZE); cvMoveWindow(wTitle, x, y); cv::imshow(wTitle, mat); } // adding Gaussian noise float noise(float sigma) { float x1 = (float)rand()/RAND_MAX; float x2 = (float)rand()/RAND_MAX; return sigma * sqrtf(-2*log(std::max(x1,0.000001f)))*cosf(2*M_PI*x2); } void addNoise(cv::Mat &m, float sigma) { float *data = (float*)m.data; int w = m.cols; int h = m.rows; int nc = m.channels(); size_t n = (size_t)w*h*nc; for(size_t i=0; i<n; i++) { data[i] += noise(sigma); } } // cuda error checking string prev_file = ""; int prev_line = 0; void cuda_check(string file, int line) { cudaError_t e = cudaGetLastError(); if (e != cudaSuccess) { cout << endl << file << ", line " << line << ": " << cudaGetErrorString(e) << " (" << e << ")" << endl; if (prev_line>0) cout << "Previous CUDA call:" << endl << prev_file << ", line " << prev_line << endl; exit(1); } prev_file = file; prev_line = line; } // Color transformation // source : http://linuxtv.org/downloads/v4l-dvb-apis/colorspaces.html float clamp (double x) { float r = x; /* round to nearest */ if (r < 0.0) return 0.0f; else if (r > 1.0) return 1.0f; else return r; } void forward_color_transf( float *imgRGB, float *imgChrom, int w, int h, int nc ) { //int ER, EG, EB; /* gamma corrected RGB input [0;255] */ //int Y1, Cb, Cr; /* output [0;255] */ double r, g, b; /* temporaries */ double y1, pb, pr; if (nc != 1) { for( int i = 0; i < w; i++ ){ for( int j = 0; j < h; j++ ){ //for( int channel; channel < nc; channel++ ){ r = imgRGB[ i + j*w + w*h*0 ]; // r = ER / 255.0; g = imgRGB[ i + j*w + w*h*1 ]; // g = EG / 255.0; b = imgRGB[ i + j*w + w*h*2 ]; // b = EB / 255.0; y1 = 0.299 * r + 0.587 * g + 0.114 * b; pb = -0.169 * r - 0.331 * g + 0.5 * b; pr = 0.5 * r - 0.419 * g - 0.081 * b; imgChrom[i + j*w + w*h*0] = clamp ( ( 219 / 255.0 ) * y1 + ( 16 / 255.0 )); // Y1 = clamp (219 * y1 + 16); imgChrom[i + j*w + w*h*1] = clamp ( ( 224 / 255.0 ) * pb + ( 128 / 255.0 )); // Cb = clamp (224 * pb + 128); imgChrom[i + j*w + w*h*2] = clamp ( ( 224 / 255.0 ) * pr + ( 128 / 255.0 )); // Cr = clamp (224 * pr + 128); } } } else { return; } } //Inverse Transformation void inverse_color_transf( float *imgChrom, float *imgRGB, int w, int h, int nc ) { //int Y1, Cb, Cr; /* gamma pre-corrected input [0;255] */ //int ER, EG, EB; /* output [0;255] */ double r, g, b; /* temporaries */ double y1, pb, pr; if (nc != 1) { for( int i = 0; i < w; i++ ){ for( int j = 0; j < h; j++ ){ y1 = ( imgChrom[i + j*w + w*h*0] - ( 16 / 255.0 )) / ( 219 / 255.0 ); // y1 = (Y1 - 16) / 219.0; pb = ( imgChrom[i + j*w + w*h*1] - ( 128 / 255.0 )) / ( 224 / 255.0 ); // pb = (Cb - 128) / 224.0; pr = ( imgChrom[i + j*w + w*h*2] - ( 128 / 255.0 )) / ( 224 / 255.0 ); // pr = (Cr - 128) / 224.0; r = 1.0 * y1 + 0 * pb + 1.402 * pr; g = 1.0 * y1 - 0.344 * pb - 0.714 * pr; b = 1.0 * y1 + 1.772 * pb + 0 * pr; imgRGB[ i + j*w + w*h*0 ] = clamp (r); // ER = clamp (r * 255); /* [ok? one should prob. limit y1,pb,pr] */ imgRGB[ i + j*w + w*h*1 ] = clamp (g); // EG = clamp (g * 255); imgRGB[ i + j*w + w*h*2 ] = clamp (b); // EB = clamp (b * 255); } } } else { return; } }
34e0acb3ea90b9d6b021236a2822653b8b1b803a.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <cstdio> #include <vector> using std::vector; // parameter describing the size of matrix A const int rows = 4096; const int cols = 4096; const int BLOCK_SIZE = 32; // naive transpose kernel __global__ void matrixTransposeNaive(float *_a, // pointer to matrix A on the device float *_b) // pointer to matrix B on the device { int i = blockIdx.x * blockDim.x + threadIdx.x; // row int j = blockIdx.y * blockDim.y + threadIdx.y; // col int index_in = i*cols+j; // (i,j) from matrix A int index_out = j*rows+i; // becomes (j,i) in matrix B = transpose(A) _b[index_out] = _a[index_in]; } // coalesced memory transpose kernel __global__ void matrixTransposeShared(float *_a, // pointer to matrix A on the device float *_b) // pointer to matrix B on the device { int i = blockIdx.x * blockDim.x + threadIdx.x; int j = blockIdx.y * blockDim.y + threadIdx.y; int index_in = j*cols+i; // (i,j) from matrix A // this thread fills in the appropriate box inside the shared memory in this block __shared__ float tile[BLOCK_SIZE][BLOCK_SIZE]; tile [ threadIdx.x ] [ threadIdx.y ] = _a [index_in]; // wait until all threads in this block are done writing to shared memory in parallel __syncthreads(); i = blockIdx.y * blockDim.x + threadIdx.x; j = blockIdx.x * blockDim.y + threadIdx.y; int index_out = j*rows+i; // (i,j) from matrix A becomes (j,i) in matrix B = transpose(A) _b[index_out] = tile[ threadIdx.y ] [ threadIdx.x ]; } // coalesced memory transpose kernel without banking conflicts __global__ void matrixTransposeNoBankConflicts(float *_a, // pointer to matrix A on the device float *_b) // pointer to matrix B on the device { int i = blockIdx.x * blockDim.x + threadIdx.x; int j = blockIdx.y * blockDim.y + threadIdx.y; int index_in = j*cols+i; // (i,j) from matrix A // this thread fills in the appropriate box inside the shared memory in this block __shared__ float tile[BLOCK_SIZE][BLOCK_SIZE+1]; tile [ threadIdx.x ] [ threadIdx.y ] = _a [index_in]; i = blockIdx.y * blockDim.x + threadIdx.x; j = blockIdx.x * blockDim.y + threadIdx.y; int index_out = j*rows+i; // (i,j) from matrix A becomes (j,i) in matrix B = transpose(A) // wait until all threads in this block are done writing to shared memory in parallel __syncthreads(); _b[index_out] = tile[ threadIdx.y ] [ threadIdx.x ]; } // the main program starts life on the CPU and calls device kernels as required int main(int argc, char *argv[]) { // allocate space in the host for storing input arrays (a and b) and the output array (c) vector<float> a(rows*cols); vector<float> b(rows*cols); // define device pointers for the same arrays when they'll be copied to the device float *_a, *_b; // allocate memory on the device (GPU) and check for errors (if any) during this call hipError_t err; // allocate space for matrix A if (err = hipMalloc((void **) &_a, rows*cols*sizeof(float))) { printf("%s in %s at line %d\n", hipGetErrorString(err), __FILE__, __LINE__); exit(EXIT_FAILURE); } // allocate space for matrix B if (err = hipMalloc((void **) &_b, rows*cols*sizeof(float))) { printf("%s in %s at line %d\n", hipGetErrorString(err), __FILE__, __LINE__); exit(EXIT_FAILURE); } // Fill matrix A for (int row = 0; row < rows; row++) { for (int col = 0; col < cols; col++) { a[row + col*rows] = row + col*rows; } } // Copy array contents of A from the host (CPU) to the device (GPU) // Note that this is copied to the "global" memory on the device and is accessible to all threads in all blocks hipMemcpy(_a, a.data(), rows*cols*sizeof(float), hipMemcpyHostToDevice); // assign a 2D distribution of 16 x 16 x 1 CUDA "threads" within each CUDA "block" dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE, 1); // calculate number of blocks along X and Y in a 2D CUDA "grid" dim3 dimGrid( ceil(float(rows)/float(dimBlock.x)), ceil(float(cols)/float(dimBlock.y)), 1 ); float time; // create CUDA events hipEvent_t start, stop; hipEventCreate(&start); hipEventCreate(&stop); // start the timer hipEventRecord( start, 0); // launch the GPU kernel // hipMemcpy(_b, _a, cols*rows*sizeof(float), hipMemcpyDeviceToDevice); // matrixTransposeNaive<<<dimGrid,dimBlock>>>(_a, _b); // matrixTransposeShared<<<dimGrid,dimBlock>>>(_a, _b); hipLaunchKernelGGL(( matrixTransposeNoBankConflicts), dim3(dimGrid),dim3(dimBlock), 0, 0, _a, _b); // stop the timer hipEventRecord( stop, 0); hipEventSynchronize( stop ); hipEventElapsedTime( &time, start, stop); // print out the time required for the kernel to finish the transpose operation double data = 2.0 * (rows * cols * sizeof(float)) / (1024 * 1024 * 1024); printf("data %f \n", data); printf("time %f \n", time/1000); double Bandwidth = data/(time/1000); printf("Elapsed Time = %f ms Bandwidth achieved (GB/s) = %f\n", time, Bandwidth); // copy the answer back to the host (CPU) from the device (GPU) hipMemcpy(b.data(), _b, cols*rows*sizeof(float), hipMemcpyDeviceToHost); // for(int i = 0; i < 64; i++) { // for(int j = 0; j < 64; j++) { // printf("%f ", b[i * rows + j]); // } // printf("\n"); // } // free device memory hipFree(_a); hipFree(_b); // successful program termination return 0; }
34e0acb3ea90b9d6b021236a2822653b8b1b803a.cu
#include <cstdio> #include <vector> using std::vector; // parameter describing the size of matrix A const int rows = 4096; const int cols = 4096; const int BLOCK_SIZE = 32; // naive transpose kernel __global__ void matrixTransposeNaive(float *_a, // pointer to matrix A on the device float *_b) // pointer to matrix B on the device { int i = blockIdx.x * blockDim.x + threadIdx.x; // row int j = blockIdx.y * blockDim.y + threadIdx.y; // col int index_in = i*cols+j; // (i,j) from matrix A int index_out = j*rows+i; // becomes (j,i) in matrix B = transpose(A) _b[index_out] = _a[index_in]; } // coalesced memory transpose kernel __global__ void matrixTransposeShared(float *_a, // pointer to matrix A on the device float *_b) // pointer to matrix B on the device { int i = blockIdx.x * blockDim.x + threadIdx.x; int j = blockIdx.y * blockDim.y + threadIdx.y; int index_in = j*cols+i; // (i,j) from matrix A // this thread fills in the appropriate box inside the shared memory in this block __shared__ float tile[BLOCK_SIZE][BLOCK_SIZE]; tile [ threadIdx.x ] [ threadIdx.y ] = _a [index_in]; // wait until all threads in this block are done writing to shared memory in parallel __syncthreads(); i = blockIdx.y * blockDim.x + threadIdx.x; j = blockIdx.x * blockDim.y + threadIdx.y; int index_out = j*rows+i; // (i,j) from matrix A becomes (j,i) in matrix B = transpose(A) _b[index_out] = tile[ threadIdx.y ] [ threadIdx.x ]; } // coalesced memory transpose kernel without banking conflicts __global__ void matrixTransposeNoBankConflicts(float *_a, // pointer to matrix A on the device float *_b) // pointer to matrix B on the device { int i = blockIdx.x * blockDim.x + threadIdx.x; int j = blockIdx.y * blockDim.y + threadIdx.y; int index_in = j*cols+i; // (i,j) from matrix A // this thread fills in the appropriate box inside the shared memory in this block __shared__ float tile[BLOCK_SIZE][BLOCK_SIZE+1]; tile [ threadIdx.x ] [ threadIdx.y ] = _a [index_in]; i = blockIdx.y * blockDim.x + threadIdx.x; j = blockIdx.x * blockDim.y + threadIdx.y; int index_out = j*rows+i; // (i,j) from matrix A becomes (j,i) in matrix B = transpose(A) // wait until all threads in this block are done writing to shared memory in parallel __syncthreads(); _b[index_out] = tile[ threadIdx.y ] [ threadIdx.x ]; } // the main program starts life on the CPU and calls device kernels as required int main(int argc, char *argv[]) { // allocate space in the host for storing input arrays (a and b) and the output array (c) vector<float> a(rows*cols); vector<float> b(rows*cols); // define device pointers for the same arrays when they'll be copied to the device float *_a, *_b; // allocate memory on the device (GPU) and check for errors (if any) during this call cudaError_t err; // allocate space for matrix A if (err = cudaMalloc((void **) &_a, rows*cols*sizeof(float))) { printf("%s in %s at line %d\n", cudaGetErrorString(err), __FILE__, __LINE__); exit(EXIT_FAILURE); } // allocate space for matrix B if (err = cudaMalloc((void **) &_b, rows*cols*sizeof(float))) { printf("%s in %s at line %d\n", cudaGetErrorString(err), __FILE__, __LINE__); exit(EXIT_FAILURE); } // Fill matrix A for (int row = 0; row < rows; row++) { for (int col = 0; col < cols; col++) { a[row + col*rows] = row + col*rows; } } // Copy array contents of A from the host (CPU) to the device (GPU) // Note that this is copied to the "global" memory on the device and is accessible to all threads in all blocks cudaMemcpy(_a, a.data(), rows*cols*sizeof(float), cudaMemcpyHostToDevice); // assign a 2D distribution of 16 x 16 x 1 CUDA "threads" within each CUDA "block" dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE, 1); // calculate number of blocks along X and Y in a 2D CUDA "grid" dim3 dimGrid( ceil(float(rows)/float(dimBlock.x)), ceil(float(cols)/float(dimBlock.y)), 1 ); float time; // create CUDA events cudaEvent_t start, stop; cudaEventCreate(&start); cudaEventCreate(&stop); // start the timer cudaEventRecord( start, 0); // launch the GPU kernel // cudaMemcpy(_b, _a, cols*rows*sizeof(float), cudaMemcpyDeviceToDevice); // matrixTransposeNaive<<<dimGrid,dimBlock>>>(_a, _b); // matrixTransposeShared<<<dimGrid,dimBlock>>>(_a, _b); matrixTransposeNoBankConflicts<<<dimGrid,dimBlock>>>(_a, _b); // stop the timer cudaEventRecord( stop, 0); cudaEventSynchronize( stop ); cudaEventElapsedTime( &time, start, stop); // print out the time required for the kernel to finish the transpose operation double data = 2.0 * (rows * cols * sizeof(float)) / (1024 * 1024 * 1024); printf("data %f \n", data); printf("time %f \n", time/1000); double Bandwidth = data/(time/1000); printf("Elapsed Time = %f ms Bandwidth achieved (GB/s) = %f\n", time, Bandwidth); // copy the answer back to the host (CPU) from the device (GPU) cudaMemcpy(b.data(), _b, cols*rows*sizeof(float), cudaMemcpyDeviceToHost); // for(int i = 0; i < 64; i++) { // for(int j = 0; j < 64; j++) { // printf("%f ", b[i * rows + j]); // } // printf("\n"); // } // free device memory cudaFree(_a); cudaFree(_b); // successful program termination return 0; }
be7519778e8d065c85f1e1499f22bfb47499addc.hip
// !!! This is a file automatically generated by hipify!!! #include<stdio.h> #include<cuda.h> #include<cuda_runtime.h> #include"io.h" #include"cuda_mpi_routines.h" /*! \fn int initialize_cuda_mpi(int myid, int nprocs); * \brief CUDA initialization within MPI. */ int initialize_cuda_mpi(int myid, int nprocs) { int i_device = 0; //GPU device for this process int n_device; //number of GPU devices available hipError_t flag_error; //get the number of cuda devices flag_error = hipGetDeviceCount(&n_device); //check for errors if(flag_error!=hipSuccess) { if(flag_error==hipErrorNoDevice) fprintf(stderr,"hipGetDeviceCount: Error! for myid = %d and n_device = %d; hipErrorNoDevice\n",myid,n_device); if(flag_error==hipErrorInsufficientDriver) fprintf(stderr,"hipGetDeviceCount: Error! for myid = %d and n_device = %d; hipErrorInsufficientDriver\n",myid,n_device); fflush(stderr); return 1; } //set a cuda device for each process hipSetDevice(myid%n_device); //double check hipGetDevice(&i_device); // printf("In initialize_cuda_mpi: myid = %d, i_device = %d, n_device = %d\n",myid,i_device,n_device); // fflush(stdout); return 0; }
be7519778e8d065c85f1e1499f22bfb47499addc.cu
#include<stdio.h> #include<cuda.h> #include<cuda_runtime.h> #include"io.h" #include"cuda_mpi_routines.h" /*! \fn int initialize_cuda_mpi(int myid, int nprocs); * \brief CUDA initialization within MPI. */ int initialize_cuda_mpi(int myid, int nprocs) { int i_device = 0; //GPU device for this process int n_device; //number of GPU devices available cudaError_t flag_error; //get the number of cuda devices flag_error = cudaGetDeviceCount(&n_device); //check for errors if(flag_error!=cudaSuccess) { if(flag_error==cudaErrorNoDevice) fprintf(stderr,"cudaGetDeviceCount: Error! for myid = %d and n_device = %d; cudaErrorNoDevice\n",myid,n_device); if(flag_error==cudaErrorInsufficientDriver) fprintf(stderr,"cudaGetDeviceCount: Error! for myid = %d and n_device = %d; cudaErrorInsufficientDriver\n",myid,n_device); fflush(stderr); return 1; } //set a cuda device for each process cudaSetDevice(myid%n_device); //double check cudaGetDevice(&i_device); // printf("In initialize_cuda_mpi: myid = %d, i_device = %d, n_device = %d\n",myid,i_device,n_device); // fflush(stdout); return 0; }
3c8a9a074837cd94a14665d3b15b08f377d89039.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include<bits/stdc++.h> #include<cuda.h> using namespace std; struct edge{ int u, v, c, f; }; // pushes flow along the edges adjacent to a vertex, concurrently for all vertices __global__ void push(int n, int* excess, int* excess_inc, int* prefix_deg, int* adj, int* height, int* new_height, edge* d_edges){ int id = blockIdx.x * blockDim.x + threadIdx.x; // push flow only for intermediate vertices (non-terminals) if(id > 0 && id < n - 1){ new_height[id] = 3 * n; for(int i = prefix_deg[id]; i < prefix_deg[id + 1] && excess[id]; i++){ int idx = adj[i]; int u = d_edges[idx].u, v = d_edges[idx].v, c = d_edges[idx].c, f = d_edges[idx].f; // pushes flow along forward edge if(u == id && f < c && height[u] > height[v]){ int push_flow = min(c - f, excess[u]); atomicAdd(excess_inc + v, push_flow); atomicAdd(&(d_edges[idx].f), push_flow); excess[u] -= push_flow; } // pushes flow along reverse edge if(v == id && f && height[v] > height[u]){ int push_flow = min(f, excess[v]); atomicAdd(excess_inc + u, push_flow); atomicAdd(&(d_edges[idx].f), -push_flow); excess[v] -= push_flow; } } } } // computes labels (out of place) __global__ void compute_label(int n, int m, int* excess, int* excess_inc, int* height, int* new_height, edge* d_edges){ int id = blockIdx.x * blockDim.x + threadIdx.x; if(id < m){ int u = d_edges[id].u, v = d_edges[id].v, c = d_edges[id].c, f = d_edges[id].f; if(u > 0 && u < n - 1 && (excess[u] || excess_inc[u]) && f < c) atomicMin(new_height + u, height[v] + 1); if(v > 0 && v < n - 1 && (excess[v] || excess_inc[v]) && f) atomicMin(new_height + v, height[u] + 1); } } // applies the labels found in computer_label and updates excess of each vertex __global__ void relabel(int n, int* excess, int* excess_inc, int* height, int* new_height, int* is_excess){ int id = blockIdx.x * blockDim.x + threadIdx.x; if(id > 0 && id < n - 1){ if(new_height[id] != 3 * n) height[id] = new_height[id]; excess[id] += excess_inc[id]; excess_inc[id] = 0; if(excess[id]) atomicAdd(is_excess, 1); } } // computes the flow out of source __global__ void compute_maxflow(int m, int* total_flow, edge* d_edges) { int id = blockIdx.x * blockDim.x + threadIdx.x; if(id < m){ int u = d_edges[id].u, v = d_edges[id].v, f = d_edges[id].f; if(!u) atomicAdd(total_flow, f); if(!v) atomicAdd(total_flow, -f); } } // global relabeling heuristic - performs BFS from sink to find lower bound on labels __global__ void global_label(int m, int cur_wave, int* height, int* wave, int* progress, edge* d_edges) { int id = blockIdx.x * blockDim.x + threadIdx.x; if(id < m){ int u = d_edges[id].u, v = d_edges[id].v, c = d_edges[id].c, f = d_edges[id].f; if(wave[v] == cur_wave && f < c && atomicCAS(wave + u, -1, cur_wave + 1) == -1){ height[u] = height[v] + 1; atomicAdd(progress, 1); } if(wave[u] == cur_wave && f && atomicCAS(wave + v, -1, cur_wave + 1) == -1){ height[v]=height[u] + 1; atomicAdd(progress, 1); } } } int main(int argc, char* argv[]){ auto clk=clock(); if(argc < 3){ cout<<"Enter file name (graph) and global relabel heuristic flag (0 or 1)"<<endl; return 0; } int n, m; edge *edges, *d_edges; int *excess, *d_excess, *prefix_deg, *d_prefix_deg, *adj, *d_adj, *d_excess_inc, *d_is_excess, *height, *new_height, *d_total_flow, *progress, *wave; ifstream fin(argv[1]); int global_relabel_flag = atoi(argv[2]); fin >> n >> m; vector<int> deg(n); vector<vector<int>> edge_idx(n); edges = new edge[m]; for(int i = 0; i < m; i++){ fin >> edges[i].u >> edges[i].v >> edges[i].c; edges[i].u--; edges[i].v--; deg[edges[i].u]++; deg[edges[i].v]++; edge_idx[edges[i].u].push_back(i); edge_idx[edges[i].v].push_back(i); edges[i].f = 0; } int* reset_height = new int[n]; for(int i = 0; i < n;i++) reset_height[i] = n; excess = (int*) malloc(n * sizeof(int)); memset(excess, 0, n * sizeof(int)); for(int i: edge_idx[0]){ int u = edges[i].u, v = edges[i].v, c = edges[i].c; if(!u){ edges[i].f = edges[i].c; excess[v] += c; } } prefix_deg = (int*) malloc((n + 1) * sizeof(int)); prefix_deg[0] = 0; for(int i = 1; i <= n; i++){ prefix_deg[i] = prefix_deg[i-1] + deg[i-1]; } adj = (int*) malloc(2 * m * sizeof(int)); for(int i = 0, c = 0; i < n ; i++){ for(int j = 0; j < edge_idx[i].size(); j++, c++){ adj[c] = edge_idx[i][j]; } } hipMalloc(&d_excess, n * sizeof(int)); hipMalloc(&d_excess_inc, n * sizeof(int)); hipMalloc(&progress, sizeof(int)); hipMalloc(&wave, n * sizeof(int)); hipMalloc(&d_prefix_deg, (n + 1) * sizeof(int)); hipMalloc(&d_adj, 2 * m * sizeof(int)); hipMalloc(&height, n * sizeof(int)); hipMalloc(&new_height, n * sizeof(int)); hipMalloc(&d_edges, m * sizeof(edge)); hipMalloc(&d_is_excess, sizeof(int)); hipMemset(height, 0, n * sizeof(int)); hipMemset(d_excess_inc, 0, n * sizeof(int)); hipMemcpy(d_excess, excess, n * sizeof(int), hipMemcpyHostToDevice); hipMemcpy(d_prefix_deg, prefix_deg, (n + 1) * sizeof(int), hipMemcpyHostToDevice); hipMemcpy(d_adj, adj, 2 * m * sizeof(int), hipMemcpyHostToDevice); hipMemcpy(height, &n, sizeof(int), hipMemcpyHostToDevice); hipMemcpy(d_edges, edges, m * sizeof(edge), hipMemcpyHostToDevice); int threads = 1024; int m_blocks = ceil((float)m/threads); int n_blocks = ceil((float)n/threads); int total_flow = 0; int is_excess; int iter = 0,prog; // loop to push flow along edges // if there is no excess vertex, the loop breaks do{ iter++; hipLaunchKernelGGL(( push), dim3(n_blocks), dim3(threads), 0, 0, n, d_excess, d_excess_inc, d_prefix_deg, d_adj, height, new_height, d_edges); hipLaunchKernelGGL(( compute_label), dim3(m_blocks), dim3(threads), 0, 0, n, m, d_excess, d_excess_inc, height, new_height, d_edges); hipMemset(d_is_excess, 0, sizeof(int)); hipLaunchKernelGGL(( relabel), dim3(n_blocks), dim3(threads), 0, 0, n, d_excess, d_excess_inc, height, new_height, d_is_excess); hipMemcpy(&is_excess, d_is_excess, sizeof(int), hipMemcpyDeviceToHost); // applies global relabeling every n iterations if(global_relabel_flag && iter % n == 0){ // perform global relabeling heuristic hipMemset(wave, -1, n * sizeof(int)); hipMemset(wave + (n - 1) , 0, sizeof(int)); int cur_wave = 0; do{ hipMemset(progress, 0, sizeof(int)); hipLaunchKernelGGL(( global_label), dim3(m_blocks), dim3(threads), 0, 0, m, cur_wave++, height, wave, progress, d_edges); hipMemcpy(&prog, progress, sizeof(int), hipMemcpyDeviceToHost); }while(prog); } }while(is_excess); hipMalloc(&d_total_flow, sizeof(int)); hipMemset(d_total_flow, 0, sizeof(int)); hipLaunchKernelGGL(( compute_maxflow), dim3(m_blocks), dim3(threads), 0, 0, m, d_total_flow, d_edges); hipMemcpy(&total_flow, d_total_flow, sizeof(int), hipMemcpyDeviceToHost); double t_elapsed = (double)(clock()-clk)/CLOCKS_PER_SEC; printf("|V|:%d |E|:%d Flow:%d\nTime:%f\n", n, m, total_flow, t_elapsed); }
3c8a9a074837cd94a14665d3b15b08f377d89039.cu
#include<bits/stdc++.h> #include<cuda.h> using namespace std; struct edge{ int u, v, c, f; }; // pushes flow along the edges adjacent to a vertex, concurrently for all vertices __global__ void push(int n, int* excess, int* excess_inc, int* prefix_deg, int* adj, int* height, int* new_height, edge* d_edges){ int id = blockIdx.x * blockDim.x + threadIdx.x; // push flow only for intermediate vertices (non-terminals) if(id > 0 && id < n - 1){ new_height[id] = 3 * n; for(int i = prefix_deg[id]; i < prefix_deg[id + 1] && excess[id]; i++){ int idx = adj[i]; int u = d_edges[idx].u, v = d_edges[idx].v, c = d_edges[idx].c, f = d_edges[idx].f; // pushes flow along forward edge if(u == id && f < c && height[u] > height[v]){ int push_flow = min(c - f, excess[u]); atomicAdd(excess_inc + v, push_flow); atomicAdd(&(d_edges[idx].f), push_flow); excess[u] -= push_flow; } // pushes flow along reverse edge if(v == id && f && height[v] > height[u]){ int push_flow = min(f, excess[v]); atomicAdd(excess_inc + u, push_flow); atomicAdd(&(d_edges[idx].f), -push_flow); excess[v] -= push_flow; } } } } // computes labels (out of place) __global__ void compute_label(int n, int m, int* excess, int* excess_inc, int* height, int* new_height, edge* d_edges){ int id = blockIdx.x * blockDim.x + threadIdx.x; if(id < m){ int u = d_edges[id].u, v = d_edges[id].v, c = d_edges[id].c, f = d_edges[id].f; if(u > 0 && u < n - 1 && (excess[u] || excess_inc[u]) && f < c) atomicMin(new_height + u, height[v] + 1); if(v > 0 && v < n - 1 && (excess[v] || excess_inc[v]) && f) atomicMin(new_height + v, height[u] + 1); } } // applies the labels found in computer_label and updates excess of each vertex __global__ void relabel(int n, int* excess, int* excess_inc, int* height, int* new_height, int* is_excess){ int id = blockIdx.x * blockDim.x + threadIdx.x; if(id > 0 && id < n - 1){ if(new_height[id] != 3 * n) height[id] = new_height[id]; excess[id] += excess_inc[id]; excess_inc[id] = 0; if(excess[id]) atomicAdd(is_excess, 1); } } // computes the flow out of source __global__ void compute_maxflow(int m, int* total_flow, edge* d_edges) { int id = blockIdx.x * blockDim.x + threadIdx.x; if(id < m){ int u = d_edges[id].u, v = d_edges[id].v, f = d_edges[id].f; if(!u) atomicAdd(total_flow, f); if(!v) atomicAdd(total_flow, -f); } } // global relabeling heuristic - performs BFS from sink to find lower bound on labels __global__ void global_label(int m, int cur_wave, int* height, int* wave, int* progress, edge* d_edges) { int id = blockIdx.x * blockDim.x + threadIdx.x; if(id < m){ int u = d_edges[id].u, v = d_edges[id].v, c = d_edges[id].c, f = d_edges[id].f; if(wave[v] == cur_wave && f < c && atomicCAS(wave + u, -1, cur_wave + 1) == -1){ height[u] = height[v] + 1; atomicAdd(progress, 1); } if(wave[u] == cur_wave && f && atomicCAS(wave + v, -1, cur_wave + 1) == -1){ height[v]=height[u] + 1; atomicAdd(progress, 1); } } } int main(int argc, char* argv[]){ auto clk=clock(); if(argc < 3){ cout<<"Enter file name (graph) and global relabel heuristic flag (0 or 1)"<<endl; return 0; } int n, m; edge *edges, *d_edges; int *excess, *d_excess, *prefix_deg, *d_prefix_deg, *adj, *d_adj, *d_excess_inc, *d_is_excess, *height, *new_height, *d_total_flow, *progress, *wave; ifstream fin(argv[1]); int global_relabel_flag = atoi(argv[2]); fin >> n >> m; vector<int> deg(n); vector<vector<int>> edge_idx(n); edges = new edge[m]; for(int i = 0; i < m; i++){ fin >> edges[i].u >> edges[i].v >> edges[i].c; edges[i].u--; edges[i].v--; deg[edges[i].u]++; deg[edges[i].v]++; edge_idx[edges[i].u].push_back(i); edge_idx[edges[i].v].push_back(i); edges[i].f = 0; } int* reset_height = new int[n]; for(int i = 0; i < n;i++) reset_height[i] = n; excess = (int*) malloc(n * sizeof(int)); memset(excess, 0, n * sizeof(int)); for(int i: edge_idx[0]){ int u = edges[i].u, v = edges[i].v, c = edges[i].c; if(!u){ edges[i].f = edges[i].c; excess[v] += c; } } prefix_deg = (int*) malloc((n + 1) * sizeof(int)); prefix_deg[0] = 0; for(int i = 1; i <= n; i++){ prefix_deg[i] = prefix_deg[i-1] + deg[i-1]; } adj = (int*) malloc(2 * m * sizeof(int)); for(int i = 0, c = 0; i < n ; i++){ for(int j = 0; j < edge_idx[i].size(); j++, c++){ adj[c] = edge_idx[i][j]; } } cudaMalloc(&d_excess, n * sizeof(int)); cudaMalloc(&d_excess_inc, n * sizeof(int)); cudaMalloc(&progress, sizeof(int)); cudaMalloc(&wave, n * sizeof(int)); cudaMalloc(&d_prefix_deg, (n + 1) * sizeof(int)); cudaMalloc(&d_adj, 2 * m * sizeof(int)); cudaMalloc(&height, n * sizeof(int)); cudaMalloc(&new_height, n * sizeof(int)); cudaMalloc(&d_edges, m * sizeof(edge)); cudaMalloc(&d_is_excess, sizeof(int)); cudaMemset(height, 0, n * sizeof(int)); cudaMemset(d_excess_inc, 0, n * sizeof(int)); cudaMemcpy(d_excess, excess, n * sizeof(int), cudaMemcpyHostToDevice); cudaMemcpy(d_prefix_deg, prefix_deg, (n + 1) * sizeof(int), cudaMemcpyHostToDevice); cudaMemcpy(d_adj, adj, 2 * m * sizeof(int), cudaMemcpyHostToDevice); cudaMemcpy(height, &n, sizeof(int), cudaMemcpyHostToDevice); cudaMemcpy(d_edges, edges, m * sizeof(edge), cudaMemcpyHostToDevice); int threads = 1024; int m_blocks = ceil((float)m/threads); int n_blocks = ceil((float)n/threads); int total_flow = 0; int is_excess; int iter = 0,prog; // loop to push flow along edges // if there is no excess vertex, the loop breaks do{ iter++; push<<<n_blocks, threads>>>(n, d_excess, d_excess_inc, d_prefix_deg, d_adj, height, new_height, d_edges); compute_label<<<m_blocks, threads>>>(n, m, d_excess, d_excess_inc, height, new_height, d_edges); cudaMemset(d_is_excess, 0, sizeof(int)); relabel<<<n_blocks, threads>>>(n, d_excess, d_excess_inc, height, new_height, d_is_excess); cudaMemcpy(&is_excess, d_is_excess, sizeof(int), cudaMemcpyDeviceToHost); // applies global relabeling every n iterations if(global_relabel_flag && iter % n == 0){ // perform global relabeling heuristic cudaMemset(wave, -1, n * sizeof(int)); cudaMemset(wave + (n - 1) , 0, sizeof(int)); int cur_wave = 0; do{ cudaMemset(progress, 0, sizeof(int)); global_label<<<m_blocks, threads>>>(m, cur_wave++, height, wave, progress, d_edges); cudaMemcpy(&prog, progress, sizeof(int), cudaMemcpyDeviceToHost); }while(prog); } }while(is_excess); cudaMalloc(&d_total_flow, sizeof(int)); cudaMemset(d_total_flow, 0, sizeof(int)); compute_maxflow<<<m_blocks, threads>>>(m, d_total_flow, d_edges); cudaMemcpy(&total_flow, d_total_flow, sizeof(int), cudaMemcpyDeviceToHost); double t_elapsed = (double)(clock()-clk)/CLOCKS_PER_SEC; printf("|V|:%d |E|:%d Flow:%d\nTime:%f\n", n, m, total_flow, t_elapsed); }
c77b40b27c2fcc86306ce71e39acf14cedddf073.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <stdio.h> #include <iostream> //#include <hip/hip_cooperative_groups.h> #include <math.h> #include <sstream> #include <string.h> #include <fstream> //#include <bits/stdc++.h> //#include <stdlib.h> //# <time.h> using namespace std; //using namespace cooperative_groups; /***DEFINING THE DEFINES FOR THE ARRAY INDICES****************************/ //#define N 128 #define C 3 #define H 227 #define W 227 #define R 11 #define S 11 #define M 96 #define E 55 #define F 55 #define U 4 __global__ void red_ch(float* d_r, float* d_o, int num_ch, int num_img, int num_wt, int height, int width) { int row = threadIdx.y; int col = threadIdx.x; for (int y=0;y<2;y++){ for (int x=0;x<2;x++){ float red_sum = 0; for(int i=0; i<num_ch; i++) { //if((2*row+y<height)&&(2*col+x<width)) red_sum += d_o[i*(num_wt*num_img*height*width)+blockIdx.x*num_wt*height*width+blockIdx.y*height*width+(row+y*blockDim.y)*width+(col+x*blockDim.x)] ; } if((row+y*blockDim.y<height)&&(col+x*blockDim.x<width)) d_r[blockIdx.x*num_wt*height*width+blockIdx.y*height*width+(row+y*blockDim.y)*width+(col+x*blockDim.x)] = red_sum; } }} __global__ void ew_gpu_mmul(float* d_o, float* d_i, float* d_w, int width, int height, int stride, int ip_height, int wt_width, int num_wt,int num_img, int num_ch) {//float prod=0; int row = threadIdx.y; int col = threadIdx.x; __shared__ float s_w[R*S]; if(row*blockDim.x+col<R*S) { s_w[row*blockDim.x+col] = d_w[blockIdx.y*num_ch*wt_width*wt_width+blockIdx.z*wt_width*wt_width+(row*blockDim.x+col)]; } __syncthreads(); for (int y=0; y<2; y++){ for (int x=0; x<2; x++){ float prod = 0; for (int i=0; i<wt_width; i++){ float3 wt1 = *((float3*)(s_w+i*wt_width)); float3 ip1 = *((float3*)(d_i+blockIdx.x*num_ch*ip_height*ip_height+blockIdx.z*ip_height*ip_height+(stride*(row+y*blockDim.y)+i)*ip_height+stride*(col+x*blockDim.x))); float3 wt2 = *((float3*)(s_w+i*wt_width+3));float3 ip2 = *((float3*)(d_i+blockIdx.x*num_ch*ip_height*ip_height+blockIdx.z*ip_height*ip_height+(stride*(row+y*blockDim.y)+i)*ip_height+3+stride*(col+x*blockDim.x))); float3 wt3 = *((float3*)(s_w+i*wt_width+6));float3 ip3 = *((float3*)(d_i+blockIdx.x*num_ch*ip_height*ip_height+blockIdx.z*ip_height*ip_height+(stride*(row+y*blockDim.y)+i)*ip_height+6+stride*(col+x*blockDim.x))); float3 wt4 = *((float3*)(s_w+i*wt_width+9));float3 ip4 = *((float3*)(d_i+blockIdx.x*num_ch*ip_height*ip_height+blockIdx.z*ip_height*ip_height+(stride*(row+y*blockDim.y)+i)*ip_height+9+stride*(col+x*blockDim.x))); prod += ip1.x*wt1.x+ip1.y*wt1.y+ip1.z*wt1.z+ip2.x*wt2.x+ip2.y*wt2.y+ip2.z*wt2.z+ip3.x*wt3.x+ip3.y*wt3.y+ip3.z*wt3.z+ip4.x*wt4.x+ip4.y*wt4.y; __syncthreads(); } if((row+y*blockDim.y<height)&&(col+x*blockDim.x<width)) {if (prod>=0) d_o[0*(num_wt*num_img*height*width)+blockIdx.x*num_wt*height*width+blockIdx.y*height*width+(row+y*blockDim.y)*width+(col+x*blockDim.x)] += prod; } } } if(row*blockDim.x+col < R*S) { s_w[(row*blockDim.x+col)] = 0; } __syncthreads(); } void element_wise_mmul(float* output, float* input, float* weight, int batch_size) { int x,y,i,j,m,n,k; for(n=0; n<batch_size; n++){ for (m=0 ; m<M; m++){ for (x=0; x<F; x++){ for(y=0; y<E; y++){ // OP[x][y] = 0; // adding bias to output for (i=0; i<R; i++){ for (j=0; j<S; j++){ for(k=0; k<C; k++){ float ip = input[n*C*H*W+k*H*W+(U*x+i)*H+(U*y+j)]; float wt = weight[m*C*R*S+k*R*S+i*S+j]; float prod = ip*wt; if(prod>=0) output[n*E*F*M+m*E*F+x*E+y] += prod; //OP[x][y] += IP[U*x+i][U*y+j]*WT[i][j]; }} } } } } } } int main(int argc, char* argv[]) { int batch_size = atoi(argv[1]); /*************INITALIZING MATRICES*********************************/ float *IP = (float*) malloc(batch_size*C*H*W*sizeof(float)); //float IP[H][W]; float *OP = (float*) malloc(batch_size*M*F*E*sizeof(float)); //float OP[F][E]; float *OPG = (float*) malloc(batch_size*M*F*E*sizeof(float)); float *WT = (float*) malloc(M*C*R*S*sizeof(float)); //float WT[R][S]; float* d_o; float* d_i; float* d_w; float* d_r; //clock_t cpu_start, gpu_start, cpu_end, gpu_end; //int a,b,c,d; int c,d,m,n,k; /* WEIGHT MATRIX*/ for (m=0; m<M; m++){ for(k=0;k<C;k++){ for (c=0; c<R; c++){ for(d=0; d<S; d++){ //WT[c][d] = 2.0; //WT[m*C*R*S+k*R*S+c*S+d] = (int)k+1; WT[m*C*R*S+k*R*S+c*S+d] = (float)rand()/(float)(RAND_MAX+1.0); } } } } /*INITIALIZING OUTPUT MATRIX*/ for (n=0; n<batch_size;n++){ for (m=0; m<M; m++){ for (c=0; c<F; c++){ for(d=0; d<E; d++){ //OP[c][d] = 0; OP[n*M*F*E+m*F*E+c*E+d] = 0; } } } } /*INITIALIZING INPUT MATRIX*/ for (n=0; n<batch_size; n++){ for(k=0;k<C;k++){ for (c=0; c<H; c++){ for(d=0; d<W; d++){ // IP[c][d] = (a+b+c+d); // IP[n*C*H*W+k*H*W+c*W+d] = (float)(k+c+d)/255; IP[n*C*H*W+k*H*W+c*W+d] = (float)rand()/(float)(RAND_MAX+1.0); } } } } if(hipSuccess != hipMalloc((void**) &d_i,batch_size*C*H*W*sizeof(float))) { printf("error in d_i malloc\n"); } hipMemcpy(d_i, IP, batch_size*C*H*W*sizeof(float), hipMemcpyHostToDevice); if(hipSuccess != hipMalloc((void**) &d_w, M*C*R*S*sizeof(float))) { printf("error in d_w malloc\n"); } hipMemcpy(d_w, WT, M*C*R*S*sizeof(float), hipMemcpyHostToDevice); if(hipSuccess != hipMalloc((void**) &d_o,(long int)batch_size*M*E*F*sizeof(float))) { printf("error in d_o malloc\n"); } if(hipSuccess != hipMalloc((void**) &d_r,batch_size*M*E*F*sizeof(float))) { printf("error in d_r malloc\n"); } clock_t cpu_start = clock(); //element_wise_mmul(OP, IP, WT, batch_size); clock_t cpu_end = clock(); dim3 dimGrid(batch_size,96,3); dim3 dimBlock(28,28,1); //dim3 dimGridRed(batch_size,96,1); //dim3 dimBlockRed(28,28,1);hipLaunchKernelGGL(( ew_gpu_mmul), dim3(dimGrid), dim3(dimBlock), 0, 0, d_o,d_i,d_w,55,55,4,227,11,96,batch_size,3); hipDeviceSynchronize(); //red_ch<<<dimGridRed, dimBlockRed>>>(d_r,d_o,3,batch_size,96,55,55); hipMemcpy(OPG,d_o,(long int)batch_size*M*E*F*sizeof(float), hipMemcpyDeviceToHost); /**print outputs**/ //int e,f,g,h; int g,h,s,u,t; float max_error = 0; string filename = "layer_1_"+to_string(batch_size); ifstream fin(filename.c_str()); string line ; //for (t=0;t<C;t++){ for (u=0;u<batch_size;u++){ for (s=0;s<M;s++){ for (g=0; g<F; g++){ for(h=0; h<E; h++){ getline(fin,line); float error = abs(OPG[u*M*F*E+s*E*F+g*E+h]-atof(line.c_str())); //float error = abs(OPG[u*M*F*E+s*E*F+g*E+h]-OP[u*M*F*E+s*E*F+g*E+h]); if(error > max_error) max_error = error; //printf("the output is %f for index %d, %d,%d,%d.\n",OP[u*M*F*E+s*E*F+g*E+h],u,s,g,h); //printf("diff CPU and GPU is %f for index %d,%d,%d,%d.\n", OPG[u*M*F*E+s*E*F+g*E+h]-OP[u*M*F*E+s*E*F+g*E+h],u,s,g,h); //printf("the output from GPU is %f for index,%d,%d,%d,%d.\n",OPG[u*M*F*E+s*E*F+g*E+h],u,s,g,h); } } } } fin.close(); printf("max error is %f\n", max_error); //} cout<<"time taken by cpu call is "<<((double)(cpu_end-cpu_start))/CLOCKS_PER_SEC<<"secs"<<endl; //cout<<"time taken by gpu call is "<<((double)(gpu_end-gpu_start))/CLOCKS_PER_SEC<<"secs"<<endl; hipFree(d_o); hipFree(d_i); hipFree(d_w); hipFree(d_r); free(OPG); free(IP); free(WT); free(OP); return 0; }
c77b40b27c2fcc86306ce71e39acf14cedddf073.cu
#include <stdio.h> #include <iostream> //#include <cooperative_groups.h> #include <math.h> #include <sstream> #include <string.h> #include <fstream> //#include <bits/stdc++.h> //#include <stdlib.h> //# <time.h> using namespace std; //using namespace cooperative_groups; /***DEFINING THE DEFINES FOR THE ARRAY INDICES****************************/ //#define N 128 #define C 3 #define H 227 #define W 227 #define R 11 #define S 11 #define M 96 #define E 55 #define F 55 #define U 4 __global__ void red_ch(float* d_r, float* d_o, int num_ch, int num_img, int num_wt, int height, int width) { int row = threadIdx.y; int col = threadIdx.x; for (int y=0;y<2;y++){ for (int x=0;x<2;x++){ float red_sum = 0; for(int i=0; i<num_ch; i++) { //if((2*row+y<height)&&(2*col+x<width)) red_sum += d_o[i*(num_wt*num_img*height*width)+blockIdx.x*num_wt*height*width+blockIdx.y*height*width+(row+y*blockDim.y)*width+(col+x*blockDim.x)] ; } if((row+y*blockDim.y<height)&&(col+x*blockDim.x<width)) d_r[blockIdx.x*num_wt*height*width+blockIdx.y*height*width+(row+y*blockDim.y)*width+(col+x*blockDim.x)] = red_sum; } }} __global__ void ew_gpu_mmul(float* d_o, float* d_i, float* d_w, int width, int height, int stride, int ip_height, int wt_width, int num_wt,int num_img, int num_ch) {//float prod=0; int row = threadIdx.y; int col = threadIdx.x; __shared__ float s_w[R*S]; if(row*blockDim.x+col<R*S) { s_w[row*blockDim.x+col] = d_w[blockIdx.y*num_ch*wt_width*wt_width+blockIdx.z*wt_width*wt_width+(row*blockDim.x+col)]; } __syncthreads(); for (int y=0; y<2; y++){ for (int x=0; x<2; x++){ float prod = 0; for (int i=0; i<wt_width; i++){ float3 wt1 = *((float3*)(s_w+i*wt_width)); float3 ip1 = *((float3*)(d_i+blockIdx.x*num_ch*ip_height*ip_height+blockIdx.z*ip_height*ip_height+(stride*(row+y*blockDim.y)+i)*ip_height+stride*(col+x*blockDim.x))); float3 wt2 = *((float3*)(s_w+i*wt_width+3));float3 ip2 = *((float3*)(d_i+blockIdx.x*num_ch*ip_height*ip_height+blockIdx.z*ip_height*ip_height+(stride*(row+y*blockDim.y)+i)*ip_height+3+stride*(col+x*blockDim.x))); float3 wt3 = *((float3*)(s_w+i*wt_width+6));float3 ip3 = *((float3*)(d_i+blockIdx.x*num_ch*ip_height*ip_height+blockIdx.z*ip_height*ip_height+(stride*(row+y*blockDim.y)+i)*ip_height+6+stride*(col+x*blockDim.x))); float3 wt4 = *((float3*)(s_w+i*wt_width+9));float3 ip4 = *((float3*)(d_i+blockIdx.x*num_ch*ip_height*ip_height+blockIdx.z*ip_height*ip_height+(stride*(row+y*blockDim.y)+i)*ip_height+9+stride*(col+x*blockDim.x))); prod += ip1.x*wt1.x+ip1.y*wt1.y+ip1.z*wt1.z+ip2.x*wt2.x+ip2.y*wt2.y+ip2.z*wt2.z+ip3.x*wt3.x+ip3.y*wt3.y+ip3.z*wt3.z+ip4.x*wt4.x+ip4.y*wt4.y; __syncthreads(); } if((row+y*blockDim.y<height)&&(col+x*blockDim.x<width)) {if (prod>=0) d_o[0*(num_wt*num_img*height*width)+blockIdx.x*num_wt*height*width+blockIdx.y*height*width+(row+y*blockDim.y)*width+(col+x*blockDim.x)] += prod; } } } if(row*blockDim.x+col < R*S) { s_w[(row*blockDim.x+col)] = 0; } __syncthreads(); } void element_wise_mmul(float* output, float* input, float* weight, int batch_size) { int x,y,i,j,m,n,k; for(n=0; n<batch_size; n++){ for (m=0 ; m<M; m++){ for (x=0; x<F; x++){ for(y=0; y<E; y++){ // OP[x][y] = 0; // adding bias to output for (i=0; i<R; i++){ for (j=0; j<S; j++){ for(k=0; k<C; k++){ float ip = input[n*C*H*W+k*H*W+(U*x+i)*H+(U*y+j)]; float wt = weight[m*C*R*S+k*R*S+i*S+j]; float prod = ip*wt; if(prod>=0) output[n*E*F*M+m*E*F+x*E+y] += prod; //OP[x][y] += IP[U*x+i][U*y+j]*WT[i][j]; }} } } } } } } int main(int argc, char* argv[]) { int batch_size = atoi(argv[1]); /*************INITALIZING MATRICES*********************************/ float *IP = (float*) malloc(batch_size*C*H*W*sizeof(float)); //float IP[H][W]; float *OP = (float*) malloc(batch_size*M*F*E*sizeof(float)); //float OP[F][E]; float *OPG = (float*) malloc(batch_size*M*F*E*sizeof(float)); float *WT = (float*) malloc(M*C*R*S*sizeof(float)); //float WT[R][S]; float* d_o; float* d_i; float* d_w; float* d_r; //clock_t cpu_start, gpu_start, cpu_end, gpu_end; //int a,b,c,d; int c,d,m,n,k; /* WEIGHT MATRIX*/ for (m=0; m<M; m++){ for(k=0;k<C;k++){ for (c=0; c<R; c++){ for(d=0; d<S; d++){ //WT[c][d] = 2.0; //WT[m*C*R*S+k*R*S+c*S+d] = (int)k+1; WT[m*C*R*S+k*R*S+c*S+d] = (float)rand()/(float)(RAND_MAX+1.0); } } } } /*INITIALIZING OUTPUT MATRIX*/ for (n=0; n<batch_size;n++){ for (m=0; m<M; m++){ for (c=0; c<F; c++){ for(d=0; d<E; d++){ //OP[c][d] = 0; OP[n*M*F*E+m*F*E+c*E+d] = 0; } } } } /*INITIALIZING INPUT MATRIX*/ for (n=0; n<batch_size; n++){ for(k=0;k<C;k++){ for (c=0; c<H; c++){ for(d=0; d<W; d++){ // IP[c][d] = (a+b+c+d); // IP[n*C*H*W+k*H*W+c*W+d] = (float)(k+c+d)/255; IP[n*C*H*W+k*H*W+c*W+d] = (float)rand()/(float)(RAND_MAX+1.0); } } } } if(cudaSuccess != cudaMalloc((void**) &d_i,batch_size*C*H*W*sizeof(float))) { printf("error in d_i malloc\n"); } cudaMemcpy(d_i, IP, batch_size*C*H*W*sizeof(float), cudaMemcpyHostToDevice); if(cudaSuccess != cudaMalloc((void**) &d_w, M*C*R*S*sizeof(float))) { printf("error in d_w malloc\n"); } cudaMemcpy(d_w, WT, M*C*R*S*sizeof(float), cudaMemcpyHostToDevice); if(cudaSuccess != cudaMalloc((void**) &d_o,(long int)batch_size*M*E*F*sizeof(float))) { printf("error in d_o malloc\n"); } if(cudaSuccess != cudaMalloc((void**) &d_r,batch_size*M*E*F*sizeof(float))) { printf("error in d_r malloc\n"); } clock_t cpu_start = clock(); //element_wise_mmul(OP, IP, WT, batch_size); clock_t cpu_end = clock(); dim3 dimGrid(batch_size,96,3); dim3 dimBlock(28,28,1); //dim3 dimGridRed(batch_size,96,1); //dim3 dimBlockRed(28,28,1); ew_gpu_mmul<<<dimGrid, dimBlock>>>(d_o,d_i,d_w,55,55,4,227,11,96,batch_size,3); cudaDeviceSynchronize(); //red_ch<<<dimGridRed, dimBlockRed>>>(d_r,d_o,3,batch_size,96,55,55); cudaMemcpy(OPG,d_o,(long int)batch_size*M*E*F*sizeof(float), cudaMemcpyDeviceToHost); /**print outputs**/ //int e,f,g,h; int g,h,s,u,t; float max_error = 0; string filename = "layer_1_"+to_string(batch_size); ifstream fin(filename.c_str()); string line ; //for (t=0;t<C;t++){ for (u=0;u<batch_size;u++){ for (s=0;s<M;s++){ for (g=0; g<F; g++){ for(h=0; h<E; h++){ getline(fin,line); float error = abs(OPG[u*M*F*E+s*E*F+g*E+h]-atof(line.c_str())); //float error = abs(OPG[u*M*F*E+s*E*F+g*E+h]-OP[u*M*F*E+s*E*F+g*E+h]); if(error > max_error) max_error = error; //printf("the output is %f for index %d, %d,%d,%d.\n",OP[u*M*F*E+s*E*F+g*E+h],u,s,g,h); //printf("diff CPU and GPU is %f for index %d,%d,%d,%d.\n", OPG[u*M*F*E+s*E*F+g*E+h]-OP[u*M*F*E+s*E*F+g*E+h],u,s,g,h); //printf("the output from GPU is %f for index,%d,%d,%d,%d.\n",OPG[u*M*F*E+s*E*F+g*E+h],u,s,g,h); } } } } fin.close(); printf("max error is %f\n", max_error); //} cout<<"time taken by cpu call is "<<((double)(cpu_end-cpu_start))/CLOCKS_PER_SEC<<"secs"<<endl; //cout<<"time taken by gpu call is "<<((double)(gpu_end-gpu_start))/CLOCKS_PER_SEC<<"secs"<<endl; cudaFree(d_o); cudaFree(d_i); cudaFree(d_w); cudaFree(d_r); free(OPG); free(IP); free(WT); free(OP); return 0; }
9eac6cef6eca2058615acde8ba5e6de3d9b4b15a.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #ifndef THC_GENERIC_FILE #define THC_GENERIC_FILE "generic/TemporalUpSamplingLinear.cu" #else #include "../linear_upsampling.h" static inline void THNN_(TemporalUpSamplingLinear_shapeCheck) (THCState *state, THCTensor *input, THCTensor *gradOutput, int nBatch, int nChannels, int inputWidth, int outputWidth) { THArgCheck(inputWidth > 0 && outputWidth > 0, 2, "input and output sizes should be greater than 0," " but got input (W: %d) output (W: %d)", inputWidth, outputWidth); if (input != NULL) { THCUNN_argCheck(state, input->nDimension == 3, 2, input, "3D input tensor expected but got: %s"); } if (gradOutput != NULL) { THCUNN_check_dim_size(state, gradOutput, 3, 0, nBatch); THCUNN_check_dim_size(state, gradOutput, 3, 1, nChannels); THCUNN_check_dim_size(state, gradOutput, 3, 2, outputWidth); } } void THNN_(TemporalUpSamplingLinear_updateOutput)( THCState *state, THCTensor *input, THCTensor *output, int outputWidth, bool align_corners) { int nbatch = THCTensor_(size)(state, input, 0); int channels = THCTensor_(size)(state, input, 1); int inputWidth = THCTensor_(size)(state, input, 2); THNN_(TemporalUpSamplingLinear_shapeCheck) (state, input, NULL, nbatch, channels, inputWidth, outputWidth); input = THCTensor_(newContiguous)(state, input); THCUNN_assertSameGPU(state, 2, input, output); THCTensor_(resize3d)(state, output, THCTensor_(size)(state, input, 0), THCTensor_(size)(state, input, 1), outputWidth); THCTensor_(zero)(state, output); THCDeviceTensor<real, 3> idata = toDeviceTensor<real, 3>(state, input); THCDeviceTensor<real, 3> odata = toDeviceTensor<real, 3>(state, output); THAssert(inputWidth > 0 && outputWidth > 0); const accreal rwidth = linear_upsampling_compute_scale<accreal>(inputWidth, outputWidth, align_corners); const int num_kernels = outputWidth; const int num_threads = THCState_getCurrentDeviceProperties(state)->maxThreadsPerBlock; hipStream_t stream = THCState_getCurrentStream(state); hipLaunchKernelGGL(( caffe_gpu_interp2_kernel<real, accreal>) , dim3(THCCeilDiv(num_kernels, num_threads)), dim3(num_threads) , 0 , stream, num_kernels, rwidth, align_corners, idata, odata); THCudaCheck(hipGetLastError()); THCTensor_(free)(state, input); } void THNN_(TemporalUpSamplingLinear_updateGradInput)( THCState *state, THCTensor *gradOutput, THCTensor *gradInput, int nbatch, int nchannels, int inputWidth, int outputWidth, bool align_corners) { THNN_(TemporalUpSamplingLinear_shapeCheck) (state, NULL, gradOutput, nbatch, nchannels, inputWidth, outputWidth); gradInput = THCTensor_(newContiguous)(state, gradInput); gradOutput = THCTensor_(newContiguous)(state, gradOutput); THCUNN_assertSameGPU(state, 2, gradOutput, gradInput); THCTensor_(resize3d)(state, gradInput, nbatch, nchannels, inputWidth); THCTensor_(zero)(state, gradInput); THCDeviceTensor<real, 3> data1 = toDeviceTensor<real, 3>(state, gradInput); THCDeviceTensor<real, 3> data2 = toDeviceTensor<real, 3>(state, gradOutput); const accreal rwidth = linear_upsampling_compute_scale<accreal>(inputWidth, outputWidth, align_corners); const int num_kernels = outputWidth; const int num_threads = THCState_getCurrentDeviceProperties(state)->maxThreadsPerBlock; hipStream_t stream = THCState_getCurrentStream(state); hipLaunchKernelGGL(( caffe_gpu_interp2_kernel_backward<real ,accreal>) , dim3(THCCeilDiv(num_kernels, num_threads)), dim3(num_threads), 0, stream, num_kernels, rwidth, align_corners, data1, data2); THCudaCheck(hipGetLastError()); THCTensor_(free)(state, gradInput); THCTensor_(free)(state, gradOutput); } #endif
9eac6cef6eca2058615acde8ba5e6de3d9b4b15a.cu
#ifndef THC_GENERIC_FILE #define THC_GENERIC_FILE "generic/TemporalUpSamplingLinear.cu" #else #include "../linear_upsampling.h" static inline void THNN_(TemporalUpSamplingLinear_shapeCheck) (THCState *state, THCTensor *input, THCTensor *gradOutput, int nBatch, int nChannels, int inputWidth, int outputWidth) { THArgCheck(inputWidth > 0 && outputWidth > 0, 2, "input and output sizes should be greater than 0," " but got input (W: %d) output (W: %d)", inputWidth, outputWidth); if (input != NULL) { THCUNN_argCheck(state, input->nDimension == 3, 2, input, "3D input tensor expected but got: %s"); } if (gradOutput != NULL) { THCUNN_check_dim_size(state, gradOutput, 3, 0, nBatch); THCUNN_check_dim_size(state, gradOutput, 3, 1, nChannels); THCUNN_check_dim_size(state, gradOutput, 3, 2, outputWidth); } } void THNN_(TemporalUpSamplingLinear_updateOutput)( THCState *state, THCTensor *input, THCTensor *output, int outputWidth, bool align_corners) { int nbatch = THCTensor_(size)(state, input, 0); int channels = THCTensor_(size)(state, input, 1); int inputWidth = THCTensor_(size)(state, input, 2); THNN_(TemporalUpSamplingLinear_shapeCheck) (state, input, NULL, nbatch, channels, inputWidth, outputWidth); input = THCTensor_(newContiguous)(state, input); THCUNN_assertSameGPU(state, 2, input, output); THCTensor_(resize3d)(state, output, THCTensor_(size)(state, input, 0), THCTensor_(size)(state, input, 1), outputWidth); THCTensor_(zero)(state, output); THCDeviceTensor<real, 3> idata = toDeviceTensor<real, 3>(state, input); THCDeviceTensor<real, 3> odata = toDeviceTensor<real, 3>(state, output); THAssert(inputWidth > 0 && outputWidth > 0); const accreal rwidth = linear_upsampling_compute_scale<accreal>(inputWidth, outputWidth, align_corners); const int num_kernels = outputWidth; const int num_threads = THCState_getCurrentDeviceProperties(state)->maxThreadsPerBlock; cudaStream_t stream = THCState_getCurrentStream(state); caffe_gpu_interp2_kernel<real, accreal> <<<THCCeilDiv(num_kernels, num_threads), num_threads , 0 , stream>>>(num_kernels, rwidth, align_corners, idata, odata); THCudaCheck(cudaGetLastError()); THCTensor_(free)(state, input); } void THNN_(TemporalUpSamplingLinear_updateGradInput)( THCState *state, THCTensor *gradOutput, THCTensor *gradInput, int nbatch, int nchannels, int inputWidth, int outputWidth, bool align_corners) { THNN_(TemporalUpSamplingLinear_shapeCheck) (state, NULL, gradOutput, nbatch, nchannels, inputWidth, outputWidth); gradInput = THCTensor_(newContiguous)(state, gradInput); gradOutput = THCTensor_(newContiguous)(state, gradOutput); THCUNN_assertSameGPU(state, 2, gradOutput, gradInput); THCTensor_(resize3d)(state, gradInput, nbatch, nchannels, inputWidth); THCTensor_(zero)(state, gradInput); THCDeviceTensor<real, 3> data1 = toDeviceTensor<real, 3>(state, gradInput); THCDeviceTensor<real, 3> data2 = toDeviceTensor<real, 3>(state, gradOutput); const accreal rwidth = linear_upsampling_compute_scale<accreal>(inputWidth, outputWidth, align_corners); const int num_kernels = outputWidth; const int num_threads = THCState_getCurrentDeviceProperties(state)->maxThreadsPerBlock; cudaStream_t stream = THCState_getCurrentStream(state); caffe_gpu_interp2_kernel_backward<real ,accreal> <<<THCCeilDiv(num_kernels, num_threads), num_threads, 0, stream>>>(num_kernels, rwidth, align_corners, data1, data2); THCudaCheck(cudaGetLastError()); THCTensor_(free)(state, gradInput); THCTensor_(free)(state, gradOutput); } #endif
98109146bc35d1cde42dc1af00132fe8369a1406.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <algorithm> #include <vector> #include "caffe/layer.hpp" #include "caffe/vision_layers.hpp" namespace caffe { template <typename Dtype> __global__ void ReLUForward(const int n, const Dtype* in, Dtype* out, Dtype negative_slope) { CUDA_KERNEL_LOOP(index, n) { out[index] = in[index] > 0 ? in[index] : in[index] * negative_slope; } } template <typename Dtype> void ReLULayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom, vector<Blob<Dtype>*>* top) { const Dtype* bottom_data = bottom[0]->gpu_data(); Dtype* top_data = (*top)[0]->mutable_gpu_data(); const int count = bottom[0]->count(); Dtype negative_slope = this->layer_param_.relu_param().negative_slope(); // NOLINT_NEXT_LINE(whitespace/operators) hipLaunchKernelGGL(( ReLUForward<Dtype>), dim3(CAFFE_GET_BLOCKS(count)), dim3(CAFFE_CUDA_NUM_THREADS), 0, 0, count, bottom_data, top_data, negative_slope); CUDA_POST_KERNEL_CHECK; // << " count: " << count << " bottom_data: " // << (unsigned long)bottom_data // << " top_data: " << (unsigned long)top_data // << " blocks: " << CAFFE_GET_BLOCKS(count) // << " threads: " << CAFFE_CUDA_NUM_THREADS; } template <typename Dtype> __global__ void ReLUBackward(const int n, const Dtype* in_diff, const Dtype* in_data, Dtype* out_diff, Dtype negative_slope) { CUDA_KERNEL_LOOP(index, n) { out_diff[index] = in_diff[index] * ((in_data[index] > 0) + (in_data[index] <= 0) * negative_slope); } } template <typename Dtype> void ReLULayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom) { if (propagate_down[0]) { const Dtype* bottom_data = (*bottom)[0]->gpu_data(); const Dtype* top_diff = top[0]->gpu_diff(); Dtype* bottom_diff = (*bottom)[0]->mutable_gpu_diff(); const int count = (*bottom)[0]->count(); Dtype negative_slope = this->layer_param_.relu_param().negative_slope(); // NOLINT_NEXT_LINE(whitespace/operators) hipLaunchKernelGGL(( ReLUBackward<Dtype>), dim3(CAFFE_GET_BLOCKS(count)), dim3(CAFFE_CUDA_NUM_THREADS), 0, 0, count, top_diff, bottom_data, bottom_diff, negative_slope); CUDA_POST_KERNEL_CHECK; } } INSTANTIATE_CLASS(ReLULayer); } // namespace caffe
98109146bc35d1cde42dc1af00132fe8369a1406.cu
#include <algorithm> #include <vector> #include "caffe/layer.hpp" #include "caffe/vision_layers.hpp" namespace caffe { template <typename Dtype> __global__ void ReLUForward(const int n, const Dtype* in, Dtype* out, Dtype negative_slope) { CUDA_KERNEL_LOOP(index, n) { out[index] = in[index] > 0 ? in[index] : in[index] * negative_slope; } } template <typename Dtype> void ReLULayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom, vector<Blob<Dtype>*>* top) { const Dtype* bottom_data = bottom[0]->gpu_data(); Dtype* top_data = (*top)[0]->mutable_gpu_data(); const int count = bottom[0]->count(); Dtype negative_slope = this->layer_param_.relu_param().negative_slope(); // NOLINT_NEXT_LINE(whitespace/operators) ReLUForward<Dtype><<<CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS>>>( count, bottom_data, top_data, negative_slope); CUDA_POST_KERNEL_CHECK; // << " count: " << count << " bottom_data: " // << (unsigned long)bottom_data // << " top_data: " << (unsigned long)top_data // << " blocks: " << CAFFE_GET_BLOCKS(count) // << " threads: " << CAFFE_CUDA_NUM_THREADS; } template <typename Dtype> __global__ void ReLUBackward(const int n, const Dtype* in_diff, const Dtype* in_data, Dtype* out_diff, Dtype negative_slope) { CUDA_KERNEL_LOOP(index, n) { out_diff[index] = in_diff[index] * ((in_data[index] > 0) + (in_data[index] <= 0) * negative_slope); } } template <typename Dtype> void ReLULayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom) { if (propagate_down[0]) { const Dtype* bottom_data = (*bottom)[0]->gpu_data(); const Dtype* top_diff = top[0]->gpu_diff(); Dtype* bottom_diff = (*bottom)[0]->mutable_gpu_diff(); const int count = (*bottom)[0]->count(); Dtype negative_slope = this->layer_param_.relu_param().negative_slope(); // NOLINT_NEXT_LINE(whitespace/operators) ReLUBackward<Dtype><<<CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS>>>( count, top_diff, bottom_data, bottom_diff, negative_slope); CUDA_POST_KERNEL_CHECK; } } INSTANTIATE_CLASS(ReLULayer); } // namespace caffe
67a8813190188b88fefb9ba846a2b79dfe92e135.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /** * dropc dev implementation * */ #include <dropc/dropc_dev.hpp> #include <cassert> #include <dropc/cuda_common.hpp> #define USE_TEXTURE_CACHE //#define FCDROPC_BLK_SIZE 16 #define FCDROPC_BLK_SIZE 8 // texutre reference #ifdef USE_TEXTURE_CACHE texture<float,hipTextureType1D,hipReadModeElementType> texMaskWeights; texture<float,hipTextureType1D,hipReadModeElementType> texMaskBiases; #endif // FCDrop connection fprop kernel __global__ void kFCDropC_fprop( const float* x, ///<[in] input matrix x, col major, numData x inDim const float* w, ///<[in] weight matrix w, col major, inDim x outDim const float* b, ///<[in] bias matrix, row major, 1 x outDim int m, ///<[in] output dimension int n, ///<[in] input dimension int d, ///<[in] number of data in this batch #ifndef USE_TEXTURE_CACHE const float* mw, ///<[in] maskWeights, col major, inDim x (outDimxdataDim) const float* mb, ///<[in] maskBiases, col major, dataDim x outDim #endif float* y ///<[in,out] target matrix y, col major, dataDim x outDim ){ // bx,by,tx,ty int bx = blockIdx.x * FCDROPC_BLK_SIZE; int by = blockIdx.y * FCDROPC_BLK_SIZE; int tx = threadIdx.x; int ty = threadIdx.y; // define shared memory __shared__ float sA[FCDROPC_BLK_SIZE][FCDROPC_BLK_SIZE]; __shared__ float sB[FCDROPC_BLK_SIZE][FCDROPC_BLK_SIZE]; float c = 0; if( (bx+tx) < m && (by + ty) < d ) { // get old y value c = y[ (bx+tx)*d + (by+ty) ]; } //loop over cols of x and rows of w for( int i = 0; i < n; i += FCDROPC_BLK_SIZE ) { // load value from x, w into shared memory and sync if( (i+tx) < n && (by+ty) < d ) sA[ty][tx] = x[(i+tx)*d + (by+ty)]; else sA[ty][tx] = 0.0f; if( (i+ty) < n && (bx+tx) < m ) sB[ty][tx] = w[(tx+bx)*n + (i+ty)]; else sB[ty][tx] = 0.0f; __syncthreads(); // inc c value if( (bx+tx) < m && (by + ty) < d ) { #pragma unroll for( int j = 0; j < FCDROPC_BLK_SIZE; j++ ) { float maskW = 0.0f; if( (i+j) < n ) { // get m row: (i+j), col: (by+ty)^th matrix of col bx+tx size_t maskW_index = size_t(m)*n*(by+ty)+(bx+tx)*n + (i+j); #ifdef USE_TEXTURE_CACHE // only hipArray can use tex1D which is faster than tex1Dfeatch //maskW = tex1D( texMaskWeights, maskW_index ); maskW = tex1Dfetch( texMaskWeights, maskW_index ); #else maskW = mw[ maskW_index ]; #endif } c += sA[ty][j] * sB[j][tx] * maskW; } } __syncthreads(); } if( (bx+tx) < m && (by + ty) < d ) { #ifdef USE_TEXTURE_CACHE float maskB = tex1Dfetch( texMaskBiases, (tx+bx)*d+(ty+by) ); #else float maskB = mb[(tx+bx)*d+(ty+by)]; #endif // inc c value by bias c += b[tx+bx] * maskB; y[ (bx+tx)*d + (by+ty) ] = c; } } // FCDrop connection bprop act kernel __global__ void kFCDropC_bpropa( const float* v, ///<[in] bprop act from previous layer, col major,numData x outDim const float* w, ///<[in] weight matrix w, col major, inDim x outDim int m, ///<[in] output dimension int n, ///<[in] input dimension int d, ///<[in] number of data in this batch float scale_g, ///<[in] input gradient scale #ifndef USE_TEXTURE_CACHE const float* mw, ///<[in] maskWeights, col major, inDim x (outDimxdataDim) #endif float* da, ///<[in,out] d-active, col major, numData x inDim float scale_da ///<[in] da scale ){ // bx,by,tx,ty int bx = blockIdx.x * FCDROPC_BLK_SIZE; int by = blockIdx.y * FCDROPC_BLK_SIZE; int tx = threadIdx.x; int ty = threadIdx.y; // define shared memory __shared__ float sA[FCDROPC_BLK_SIZE+1][FCDROPC_BLK_SIZE+1]; __shared__ float sB[FCDROPC_BLK_SIZE+1][FCDROPC_BLK_SIZE+1]; float prev_da = 0; if( (bx+tx) < n && (by+ty)<d ) { // get old value prev_da = da[ (bx+tx)*d + (by+ty) ]; } float c = 0; //loop over cols of v and rows of w^T(cols of w) for( int i = 0; i < m; i+= FCDROPC_BLK_SIZE ) { // load value from v and wt into shared memory and sync if( (i+tx) < m && (by+ty) < d ) sA[ty][tx] = v[ (i+tx)*d + (by+ty) ]; else sA[ty][tx] = 0.0f; if( (i+ty) < m && (tx+bx) < n ){ // wt row: i+ty col: tx+bx sB[ty][tx] = w[ (i+ty)*n + (tx+bx) ]; } else sB[ty][tx] = 0.0f; __syncthreads(); // inc c value if( (bx+tx) < n && (by+ty)<d ) { #pragma unroll for( int j = 0; j < FCDROPC_BLK_SIZE; j++ ) { float maskW = 0.0f; if( (i+j) < m ) { size_t maskW_index = size_t(m)*n*(ty+by)+(i+j)*n+(tx+bx); #ifdef USE_TEXTURE_CACHE // only hipArray can use tex1D which is faster than tex1Dfeatch //maskW = tex1D( texMaskWeights, maskW_index ); maskW = tex1Dfetch( texMaskWeights, maskW_index ); #else maskW = mw[ maskW_index ]; #endif } c += sA[ty][j] * sB[j][tx] * maskW; } } __syncthreads(); } // set output data if( (bx+tx) < n && (by+ty)<d ) { da[ (bx+tx)*d + (by+ty) ] = prev_da * scale_da + scale_g * c; } } //FCDrop connection bprop weights kernel __global__ void kFCDropC_bpropw( const float* a, ///<[in] prev activation matrix, col major, numData x inDim const float* v, ///<[in] gradient matrix, col major, numData x outDim int m, ///<[in] output dimension int n, ///<[in] input dimension int d, ///<[in] number of data in this batch float scale_g, ///<[in] inc scale #ifndef USE_TEXTURE_CACHE const float* mw, ///<[in] maskWeights, col major, inDim x (outDimxdataDim) #endif float* dw, ///<[in,out] w gradient, col major, inDim x outDim float scale_dw ///<[in] gradient scale ){ // bx,by,tx,ty int bx = blockIdx.x * FCDROPC_BLK_SIZE; int by = blockIdx.y * FCDROPC_BLK_SIZE; int tx = threadIdx.x; int ty = threadIdx.y; // define shared memory __shared__ float sA[FCDROPC_BLK_SIZE+1][FCDROPC_BLK_SIZE+1]; __shared__ float sB[FCDROPC_BLK_SIZE+1][FCDROPC_BLK_SIZE+1]; float prev_dw = 0; if( (bx+tx) < m && (by+ty) < n ) { // get the old value prev_dw = dw[ (bx+tx)*n + (by+ty) ]; } float c = 0; // loop over cols of a^T(rows of a) and rows of v for( int i = 0; i < d; i += FCDROPC_BLK_SIZE ) { // load value from at and v into shared memory and sync if( (ty+by) < n && (i+tx) < d ) sA[ty][tx] = a[ (by+ty)*d + (i+tx) ]; else sA[ty][tx] = 0.0f; if( (tx+bx) < m && (i+ty) < d ) sB[ty][tx] = v[ (bx+tx)*d + (i+ty) ]; else sB[ty][tx] = 0.0f; __syncthreads(); // inc c value if( (bx+tx) < m && (by+ty) < n ) { #pragma unroll for( int j = 0; j < FCDROPC_BLK_SIZE; j++ ) { float maskW = 0.0f; if( (i+j) < d ) { size_t maskW_index = size_t(m)*n*(i+j)+(bx+tx)*n+(by+ty); #ifdef USE_TEXTURE_CACHE // only hipArray can use tex1D which is faster than tex1Dfeatch //maskW = tex1D( texMaskWeights, maskW_index ); maskW = tex1Dfetch( texMaskWeights, maskW_index ); #else maskW = mw[ maskW_index ]; #endif } c += sA[ty][j] * sB[j][tx] * maskW; } } __syncthreads(); } // set output data if( (bx+tx) < m && (by+ty) < n ) { // get the old value dw[ (bx+tx)*n + (by+ty) ] = prev_dw * scale_dw + scale_g * c; } } //---------------------------------------------------- // main entry point: dropc_dev.cu //---------------------------------------------------- void computeFCDropC_fprop_d( const float* x, ///<[in] input matrix x, col major, numData x inDim const float* w, ///<[in] weight matrix w, col major, inDim x outDim const float* b, ///<[in] bias matrix, row major, 1 x outDim int outDim, ///<[in] output dimension int inDim, ///<[in] input dimension int numData, ///<[in] number of data in this batch const float * mw, ///<[in] maskWeights, col major, inDim x (outDimxdataDim) const float * mb, ///<[in] maskBiases, col major, dataDim x outDim float * y ///<[in,out] target matrix y, col major, dataDim x outDim ){ #ifdef USE_TEXTURE_CACHE // bind texture for maskWeights hipChannelFormatDesc channelDescFloat = hipCreateChannelDesc<float>(); size_t offset_w; checkCuda( hipBindTexture( &offset_w, &texMaskWeights, mw, &channelDescFloat, sizeof(float) * inDim * outDim * numData ) ); assert( offset_w == 0 ); // set clamp,point mode texMaskWeights.addressMode[0] = hipAddressModeClamp; texMaskWeights.filterMode = hipFilterModePoint; texMaskWeights.normalized= false; // bind texture for maskBiases size_t offset_b; checkCuda( hipBindTexture( &offset_b, &texMaskBiases, mb, &channelDescFloat, sizeof(float) * numData * outDim ) ); assert( offset_b == 0 ); // set clamp,point mode texMaskBiases.addressMode[0] = hipAddressModeClamp; texMaskBiases.filterMode = hipFilterModePoint; texMaskBiases.normalized= false; #else checkCuda( hipDeviceSetCacheConfig( hipFuncCachePreferL1 ) ); #endif // define block/thread info dim3 threads( FCDROPC_BLK_SIZE, FCDROPC_BLK_SIZE ); dim3 blocks( divup(outDim,FCDROPC_BLK_SIZE), divup(numData, FCDROPC_BLK_SIZE) ); // invoke kernel hipLaunchKernelGGL(( kFCDropC_fprop), dim3(blocks),dim3(threads), 0, 0, x, w, b, outDim, inDim, numData, #ifndef USE_TEXTURE_CACHE mw, mb, #endif y ); // check error checkLastCudaError(); // unbind texture #ifdef USE_TEXTURE_CACHE checkCuda( hipUnbindTexture( &texMaskWeights ) ); checkCuda( hipUnbindTexture( &texMaskBiases ) ); #endif } void computeFCDropC_bpropActs_d( const float* v, ///<[in] bprop act from previous layer, col major,numData x outDim const float* w, ///<[in] weight matrix w, col major, inDim x outDim int outDim, ///<[in] output dimension int inDim, ///<[in] input dimension int numData, ///<[in] number of data in this batch float scale_g, ///<[in] input gradient scale const float* mw, ///<[in] maskWeights, col major, inDim x (outDimxdataDim) float* da, ///<[in,out] d-active, col major, numData x inDim float scale_da ///<[in] da scale ){ #ifdef USE_TEXTURE_CACHE // bind texture for maskWeights hipChannelFormatDesc channelDescFloat = hipCreateChannelDesc<float>(); size_t offset_w; checkCuda( hipBindTexture( &offset_w, &texMaskWeights, mw, &channelDescFloat, sizeof(float) * inDim * outDim * numData ) ); assert( offset_w == 0 ); // set clamp,point mode texMaskWeights.addressMode[0] = hipAddressModeClamp; texMaskWeights.filterMode = hipFilterModePoint; texMaskWeights.normalized= false; #else checkCuda( hipDeviceSetCacheConfig( hipFuncCachePreferL1 ) ); #endif // define block/thread info dim3 threads( FCDROPC_BLK_SIZE, FCDROPC_BLK_SIZE ); dim3 blocks( divup(inDim,FCDROPC_BLK_SIZE), divup(numData, FCDROPC_BLK_SIZE) ); // invoke kernel hipLaunchKernelGGL(( kFCDropC_bpropa), dim3(blocks),dim3(threads), 0, 0, v, w, outDim, inDim, numData, scale_g, #ifndef USE_TEXTURE_CACHE mw, #endif da, scale_da ); // check error checkLastCudaError(); // unbind texture #ifdef USE_TEXTURE_CACHE checkCuda( hipUnbindTexture( &texMaskWeights ) ); checkCuda( hipUnbindTexture( &texMaskBiases ) ); #endif } void computeFCDropC_bpropWeights_d( const float* a, ///<[in] prev activation matrix, col major, numData x inDim const float* v, ///<[in] gradient matrix, col major, numData x outDim int outDim, ///<[in] output dimension int inDim, ///<[in] input dimension int numData, ///<[in] number of data in this batch float scale_g, ///<[in] inc scale const float* mw, ///<[in] maskWeights, col major, inDim x (outDimxdataDim) float* dw, ///<[in,out] w gradient, col major, inDim x outDim float scale_dw ///<[in] gradient scale ){ #ifdef USE_TEXTURE_CACHE // bind texture for maskWeights hipChannelFormatDesc channelDescFloat = hipCreateChannelDesc<float>(); size_t offset_w; checkCuda( hipBindTexture( &offset_w, &texMaskWeights, mw, &channelDescFloat, sizeof(float) * inDim * outDim * numData ) ); assert( offset_w == 0 ); // set clamp,point mode texMaskWeights.addressMode[0] = hipAddressModeClamp; texMaskWeights.filterMode = hipFilterModePoint; texMaskWeights.normalized= false; #else checkCuda( hipDeviceSetCacheConfig( hipFuncCachePreferL1 ) ); #endif // define block/thread info dim3 threads( FCDROPC_BLK_SIZE, FCDROPC_BLK_SIZE ); dim3 blocks( divup(outDim,FCDROPC_BLK_SIZE), divup(inDim, FCDROPC_BLK_SIZE) ); // invoke kernel hipLaunchKernelGGL(( kFCDropC_bpropw), dim3(blocks),dim3(threads), 0, 0, a, v, outDim, inDim, numData, scale_g, #ifndef USE_TEXTURE_CACHE mw, #endif dw, scale_dw ); // check error checkLastCudaError(); // unbind texture #ifdef USE_TEXTURE_CACHE checkCuda( hipUnbindTexture( &texMaskWeights ) ); checkCuda( hipUnbindTexture( &texMaskBiases ) ); #endif }
67a8813190188b88fefb9ba846a2b79dfe92e135.cu
/** * dropc dev implementation * */ #include <dropc/dropc_dev.hpp> #include <cassert> #include <dropc/cuda_common.hpp> #define USE_TEXTURE_CACHE //#define FCDROPC_BLK_SIZE 16 #define FCDROPC_BLK_SIZE 8 // texutre reference #ifdef USE_TEXTURE_CACHE texture<float,cudaTextureType1D,cudaReadModeElementType> texMaskWeights; texture<float,cudaTextureType1D,cudaReadModeElementType> texMaskBiases; #endif // FCDrop connection fprop kernel __global__ void kFCDropC_fprop( const float* x, ///<[in] input matrix x, col major, numData x inDim const float* w, ///<[in] weight matrix w, col major, inDim x outDim const float* b, ///<[in] bias matrix, row major, 1 x outDim int m, ///<[in] output dimension int n, ///<[in] input dimension int d, ///<[in] number of data in this batch #ifndef USE_TEXTURE_CACHE const float* mw, ///<[in] maskWeights, col major, inDim x (outDimxdataDim) const float* mb, ///<[in] maskBiases, col major, dataDim x outDim #endif float* y ///<[in,out] target matrix y, col major, dataDim x outDim ){ // bx,by,tx,ty int bx = blockIdx.x * FCDROPC_BLK_SIZE; int by = blockIdx.y * FCDROPC_BLK_SIZE; int tx = threadIdx.x; int ty = threadIdx.y; // define shared memory __shared__ float sA[FCDROPC_BLK_SIZE][FCDROPC_BLK_SIZE]; __shared__ float sB[FCDROPC_BLK_SIZE][FCDROPC_BLK_SIZE]; float c = 0; if( (bx+tx) < m && (by + ty) < d ) { // get old y value c = y[ (bx+tx)*d + (by+ty) ]; } //loop over cols of x and rows of w for( int i = 0; i < n; i += FCDROPC_BLK_SIZE ) { // load value from x, w into shared memory and sync if( (i+tx) < n && (by+ty) < d ) sA[ty][tx] = x[(i+tx)*d + (by+ty)]; else sA[ty][tx] = 0.0f; if( (i+ty) < n && (bx+tx) < m ) sB[ty][tx] = w[(tx+bx)*n + (i+ty)]; else sB[ty][tx] = 0.0f; __syncthreads(); // inc c value if( (bx+tx) < m && (by + ty) < d ) { #pragma unroll for( int j = 0; j < FCDROPC_BLK_SIZE; j++ ) { float maskW = 0.0f; if( (i+j) < n ) { // get m row: (i+j), col: (by+ty)^th matrix of col bx+tx size_t maskW_index = size_t(m)*n*(by+ty)+(bx+tx)*n + (i+j); #ifdef USE_TEXTURE_CACHE // only cudaArray can use tex1D which is faster than tex1Dfeatch //maskW = tex1D( texMaskWeights, maskW_index ); maskW = tex1Dfetch( texMaskWeights, maskW_index ); #else maskW = mw[ maskW_index ]; #endif } c += sA[ty][j] * sB[j][tx] * maskW; } } __syncthreads(); } if( (bx+tx) < m && (by + ty) < d ) { #ifdef USE_TEXTURE_CACHE float maskB = tex1Dfetch( texMaskBiases, (tx+bx)*d+(ty+by) ); #else float maskB = mb[(tx+bx)*d+(ty+by)]; #endif // inc c value by bias c += b[tx+bx] * maskB; y[ (bx+tx)*d + (by+ty) ] = c; } } // FCDrop connection bprop act kernel __global__ void kFCDropC_bpropa( const float* v, ///<[in] bprop act from previous layer, col major,numData x outDim const float* w, ///<[in] weight matrix w, col major, inDim x outDim int m, ///<[in] output dimension int n, ///<[in] input dimension int d, ///<[in] number of data in this batch float scale_g, ///<[in] input gradient scale #ifndef USE_TEXTURE_CACHE const float* mw, ///<[in] maskWeights, col major, inDim x (outDimxdataDim) #endif float* da, ///<[in,out] d-active, col major, numData x inDim float scale_da ///<[in] da scale ){ // bx,by,tx,ty int bx = blockIdx.x * FCDROPC_BLK_SIZE; int by = blockIdx.y * FCDROPC_BLK_SIZE; int tx = threadIdx.x; int ty = threadIdx.y; // define shared memory __shared__ float sA[FCDROPC_BLK_SIZE+1][FCDROPC_BLK_SIZE+1]; __shared__ float sB[FCDROPC_BLK_SIZE+1][FCDROPC_BLK_SIZE+1]; float prev_da = 0; if( (bx+tx) < n && (by+ty)<d ) { // get old value prev_da = da[ (bx+tx)*d + (by+ty) ]; } float c = 0; //loop over cols of v and rows of w^T(cols of w) for( int i = 0; i < m; i+= FCDROPC_BLK_SIZE ) { // load value from v and wt into shared memory and sync if( (i+tx) < m && (by+ty) < d ) sA[ty][tx] = v[ (i+tx)*d + (by+ty) ]; else sA[ty][tx] = 0.0f; if( (i+ty) < m && (tx+bx) < n ){ // wt row: i+ty col: tx+bx sB[ty][tx] = w[ (i+ty)*n + (tx+bx) ]; } else sB[ty][tx] = 0.0f; __syncthreads(); // inc c value if( (bx+tx) < n && (by+ty)<d ) { #pragma unroll for( int j = 0; j < FCDROPC_BLK_SIZE; j++ ) { float maskW = 0.0f; if( (i+j) < m ) { size_t maskW_index = size_t(m)*n*(ty+by)+(i+j)*n+(tx+bx); #ifdef USE_TEXTURE_CACHE // only cudaArray can use tex1D which is faster than tex1Dfeatch //maskW = tex1D( texMaskWeights, maskW_index ); maskW = tex1Dfetch( texMaskWeights, maskW_index ); #else maskW = mw[ maskW_index ]; #endif } c += sA[ty][j] * sB[j][tx] * maskW; } } __syncthreads(); } // set output data if( (bx+tx) < n && (by+ty)<d ) { da[ (bx+tx)*d + (by+ty) ] = prev_da * scale_da + scale_g * c; } } //FCDrop connection bprop weights kernel __global__ void kFCDropC_bpropw( const float* a, ///<[in] prev activation matrix, col major, numData x inDim const float* v, ///<[in] gradient matrix, col major, numData x outDim int m, ///<[in] output dimension int n, ///<[in] input dimension int d, ///<[in] number of data in this batch float scale_g, ///<[in] inc scale #ifndef USE_TEXTURE_CACHE const float* mw, ///<[in] maskWeights, col major, inDim x (outDimxdataDim) #endif float* dw, ///<[in,out] w gradient, col major, inDim x outDim float scale_dw ///<[in] gradient scale ){ // bx,by,tx,ty int bx = blockIdx.x * FCDROPC_BLK_SIZE; int by = blockIdx.y * FCDROPC_BLK_SIZE; int tx = threadIdx.x; int ty = threadIdx.y; // define shared memory __shared__ float sA[FCDROPC_BLK_SIZE+1][FCDROPC_BLK_SIZE+1]; __shared__ float sB[FCDROPC_BLK_SIZE+1][FCDROPC_BLK_SIZE+1]; float prev_dw = 0; if( (bx+tx) < m && (by+ty) < n ) { // get the old value prev_dw = dw[ (bx+tx)*n + (by+ty) ]; } float c = 0; // loop over cols of a^T(rows of a) and rows of v for( int i = 0; i < d; i += FCDROPC_BLK_SIZE ) { // load value from at and v into shared memory and sync if( (ty+by) < n && (i+tx) < d ) sA[ty][tx] = a[ (by+ty)*d + (i+tx) ]; else sA[ty][tx] = 0.0f; if( (tx+bx) < m && (i+ty) < d ) sB[ty][tx] = v[ (bx+tx)*d + (i+ty) ]; else sB[ty][tx] = 0.0f; __syncthreads(); // inc c value if( (bx+tx) < m && (by+ty) < n ) { #pragma unroll for( int j = 0; j < FCDROPC_BLK_SIZE; j++ ) { float maskW = 0.0f; if( (i+j) < d ) { size_t maskW_index = size_t(m)*n*(i+j)+(bx+tx)*n+(by+ty); #ifdef USE_TEXTURE_CACHE // only cudaArray can use tex1D which is faster than tex1Dfeatch //maskW = tex1D( texMaskWeights, maskW_index ); maskW = tex1Dfetch( texMaskWeights, maskW_index ); #else maskW = mw[ maskW_index ]; #endif } c += sA[ty][j] * sB[j][tx] * maskW; } } __syncthreads(); } // set output data if( (bx+tx) < m && (by+ty) < n ) { // get the old value dw[ (bx+tx)*n + (by+ty) ] = prev_dw * scale_dw + scale_g * c; } } //---------------------------------------------------- // main entry point: dropc_dev.cu //---------------------------------------------------- void computeFCDropC_fprop_d( const float* x, ///<[in] input matrix x, col major, numData x inDim const float* w, ///<[in] weight matrix w, col major, inDim x outDim const float* b, ///<[in] bias matrix, row major, 1 x outDim int outDim, ///<[in] output dimension int inDim, ///<[in] input dimension int numData, ///<[in] number of data in this batch const float * mw, ///<[in] maskWeights, col major, inDim x (outDimxdataDim) const float * mb, ///<[in] maskBiases, col major, dataDim x outDim float * y ///<[in,out] target matrix y, col major, dataDim x outDim ){ #ifdef USE_TEXTURE_CACHE // bind texture for maskWeights cudaChannelFormatDesc channelDescFloat = cudaCreateChannelDesc<float>(); size_t offset_w; checkCuda( cudaBindTexture( &offset_w, &texMaskWeights, mw, &channelDescFloat, sizeof(float) * inDim * outDim * numData ) ); assert( offset_w == 0 ); // set clamp,point mode texMaskWeights.addressMode[0] = cudaAddressModeClamp; texMaskWeights.filterMode = cudaFilterModePoint; texMaskWeights.normalized= false; // bind texture for maskBiases size_t offset_b; checkCuda( cudaBindTexture( &offset_b, &texMaskBiases, mb, &channelDescFloat, sizeof(float) * numData * outDim ) ); assert( offset_b == 0 ); // set clamp,point mode texMaskBiases.addressMode[0] = cudaAddressModeClamp; texMaskBiases.filterMode = cudaFilterModePoint; texMaskBiases.normalized= false; #else checkCuda( cudaDeviceSetCacheConfig( cudaFuncCachePreferL1 ) ); #endif // define block/thread info dim3 threads( FCDROPC_BLK_SIZE, FCDROPC_BLK_SIZE ); dim3 blocks( divup(outDim,FCDROPC_BLK_SIZE), divup(numData, FCDROPC_BLK_SIZE) ); // invoke kernel kFCDropC_fprop<<<blocks,threads>>>( x, w, b, outDim, inDim, numData, #ifndef USE_TEXTURE_CACHE mw, mb, #endif y ); // check error checkLastCudaError(); // unbind texture #ifdef USE_TEXTURE_CACHE checkCuda( cudaUnbindTexture( &texMaskWeights ) ); checkCuda( cudaUnbindTexture( &texMaskBiases ) ); #endif } void computeFCDropC_bpropActs_d( const float* v, ///<[in] bprop act from previous layer, col major,numData x outDim const float* w, ///<[in] weight matrix w, col major, inDim x outDim int outDim, ///<[in] output dimension int inDim, ///<[in] input dimension int numData, ///<[in] number of data in this batch float scale_g, ///<[in] input gradient scale const float* mw, ///<[in] maskWeights, col major, inDim x (outDimxdataDim) float* da, ///<[in,out] d-active, col major, numData x inDim float scale_da ///<[in] da scale ){ #ifdef USE_TEXTURE_CACHE // bind texture for maskWeights cudaChannelFormatDesc channelDescFloat = cudaCreateChannelDesc<float>(); size_t offset_w; checkCuda( cudaBindTexture( &offset_w, &texMaskWeights, mw, &channelDescFloat, sizeof(float) * inDim * outDim * numData ) ); assert( offset_w == 0 ); // set clamp,point mode texMaskWeights.addressMode[0] = cudaAddressModeClamp; texMaskWeights.filterMode = cudaFilterModePoint; texMaskWeights.normalized= false; #else checkCuda( cudaDeviceSetCacheConfig( cudaFuncCachePreferL1 ) ); #endif // define block/thread info dim3 threads( FCDROPC_BLK_SIZE, FCDROPC_BLK_SIZE ); dim3 blocks( divup(inDim,FCDROPC_BLK_SIZE), divup(numData, FCDROPC_BLK_SIZE) ); // invoke kernel kFCDropC_bpropa<<<blocks,threads>>>( v, w, outDim, inDim, numData, scale_g, #ifndef USE_TEXTURE_CACHE mw, #endif da, scale_da ); // check error checkLastCudaError(); // unbind texture #ifdef USE_TEXTURE_CACHE checkCuda( cudaUnbindTexture( &texMaskWeights ) ); checkCuda( cudaUnbindTexture( &texMaskBiases ) ); #endif } void computeFCDropC_bpropWeights_d( const float* a, ///<[in] prev activation matrix, col major, numData x inDim const float* v, ///<[in] gradient matrix, col major, numData x outDim int outDim, ///<[in] output dimension int inDim, ///<[in] input dimension int numData, ///<[in] number of data in this batch float scale_g, ///<[in] inc scale const float* mw, ///<[in] maskWeights, col major, inDim x (outDimxdataDim) float* dw, ///<[in,out] w gradient, col major, inDim x outDim float scale_dw ///<[in] gradient scale ){ #ifdef USE_TEXTURE_CACHE // bind texture for maskWeights cudaChannelFormatDesc channelDescFloat = cudaCreateChannelDesc<float>(); size_t offset_w; checkCuda( cudaBindTexture( &offset_w, &texMaskWeights, mw, &channelDescFloat, sizeof(float) * inDim * outDim * numData ) ); assert( offset_w == 0 ); // set clamp,point mode texMaskWeights.addressMode[0] = cudaAddressModeClamp; texMaskWeights.filterMode = cudaFilterModePoint; texMaskWeights.normalized= false; #else checkCuda( cudaDeviceSetCacheConfig( cudaFuncCachePreferL1 ) ); #endif // define block/thread info dim3 threads( FCDROPC_BLK_SIZE, FCDROPC_BLK_SIZE ); dim3 blocks( divup(outDim,FCDROPC_BLK_SIZE), divup(inDim, FCDROPC_BLK_SIZE) ); // invoke kernel kFCDropC_bpropw<<<blocks,threads>>>( a, v, outDim, inDim, numData, scale_g, #ifndef USE_TEXTURE_CACHE mw, #endif dw, scale_dw ); // check error checkLastCudaError(); // unbind texture #ifdef USE_TEXTURE_CACHE checkCuda( cudaUnbindTexture( &texMaskWeights ) ); checkCuda( cudaUnbindTexture( &texMaskBiases ) ); #endif }
bebf7249f23bae057d1b9e7084c1d08f3b16c5d6.hip
// !!! This is a file automatically generated by hipify!!! /* ljForce.cu */ #include "ljForce.h" //#include <hip/hip_runtime.h> __global__ void ljForce(float *a, float *b) { //does nothing for now } extern "C" void lunch_ljForce_kernel(real_t *pot, int nLocalBoxes, int *nAtoms, int *gridSize, int *gid, real3 *r, real_t *U, real3 *f, int sz) { float *A_d; float *B_d; dim3 Dimgrid(1,1,1); dim3 Dimblock(512,1,1); hipMalloc((void**)&A_d, sizeof(float)); hipMalloc((void**)&B_d, sizeof(float)); hipLaunchKernelGGL(( ljForce), dim3(Dimgrid), dim3(Dimblock), 0, 0, A_d, B_d); hipFree(A_d); hipFree(B_d); }
bebf7249f23bae057d1b9e7084c1d08f3b16c5d6.cu
/* ljForce.cu */ #include "ljForce.h" //#include <cuda_runtime.h> __global__ void ljForce(float *a, float *b) { //does nothing for now } extern "C" void lunch_ljForce_kernel(real_t *pot, int nLocalBoxes, int *nAtoms, int *gridSize, int *gid, real3 *r, real_t *U, real3 *f, int sz) { float *A_d; float *B_d; dim3 Dimgrid(1,1,1); dim3 Dimblock(512,1,1); cudaMalloc((void**)&A_d, sizeof(float)); cudaMalloc((void**)&B_d, sizeof(float)); ljForce<<<Dimgrid, Dimblock>>>(A_d, B_d); cudaFree(A_d); cudaFree(B_d); }
ecfc07e2d567026a5083f515d72384064aabafe3.hip
// !!! This is a file automatically generated by hipify!!! //=================================================================// // CUDA BFS kernel // Topological-Driven: one node per thread, thread_centric, // use atomicAdd instruction // // Reference: // T. Schank. Algorithmic Aspects of Triangle-Based Network Analysis //=================================================================// #include <hip/hip_runtime.h> #include <stdint.h> #include <stdio.h> #include "cudaGraph.h" #define STACK_SZ 2048 #define SEED 123 __device__ void quicksort(uint64_t array[], unsigned len) { uint64_t left = 0, stack[STACK_SZ], pos = 0, seed = SEED; for ( ; ; ) /* outer loop */ { for (; left+1 < len; len++) /* sort left to len-1 */ { if (pos == STACK_SZ) len = stack[pos = 0]; /* stack overflow, reset */ uint64_t pivot = array[left+seed%(len-left)]; /* pick random pivot */ seed = seed*69069+1; /* next pseudorandom number */ stack[pos++] = len; /* sort right part later */ for (unsigned right = left-1; ; ) /* inner loop: partitioning */ { while (array[++right] < pivot); /* look for greater element */ while (pivot < array[--len]); /* look for smaller element */ if (right >= len) break; /* partition point found? */ uint64_t temp = array[right]; array[right] = array[len]; /* the only swap */ array[len] = temp; } /* partitioned, continue left part */ } if (pos == 0) break; /* stack empty? */ left = len; /* left to right is sorted */ len = stack[--pos]; /* get next range to sort */ } } __device__ unsigned get_intersect_cnt(uint64_t* setA, unsigned sizeA, uint64_t* setB, unsigned sizeB) { unsigned ret=0; unsigned iter1=0, iter2=0; while (iter1<sizeA && iter2<sizeB) { if (setA[iter1] < setB[iter2]) iter1++; else if (setA[iter1] > setB[iter2]) iter2++; else { ret++; iter1++; iter2++; } } return ret; } __global__ void initialize(uint32_t * d_graph_property, uint64_t num_vertex) { size_t tid = blockIdx.x * blockDim.x + threadIdx.x; if ( tid < num_vertex ) { d_graph_property[tid] = 0; } } // sort the outgoing edges accoring to their ID order __global__ void kernel_step1(uint32_t * vplist, cudaGraph graph) { uint64_t tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid >= graph.vertex_cnt) return; uint64_t start; start = graph.get_firstedge_index(tid); quicksort(graph.get_edge_ptr(start), graph.get_vertex_degree(tid)); } // get neighbour set intersections of the vertices with edge links __global__ void kernel_step2(uint32_t * vplist, cudaGraph graph) { uint64_t tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid >= graph.vertex_cnt) return; uint64_t start, end; start = graph.get_firstedge_index(tid); end = start + graph.get_vertex_degree(tid); for (uint64_t i=start; i<end; i++) { uint64_t dest = graph.get_edge_dest(i); if (tid > dest) continue; // skip reverse edges uint64_t dest_start = graph.get_firstedge_index(dest); unsigned cnt = get_intersect_cnt(graph.get_edge_ptr(start), graph.get_vertex_degree(tid), graph.get_edge_ptr(dest_start), graph.get_vertex_degree(dest)); atomicAdd(&(vplist[tid]), cnt); atomicAdd(&(vplist[dest]), cnt); } } // reduction to get the total count __global__ void kernel_step3(uint32_t * vplist, cudaGraph graph, unsigned * d_tcount) { uint64_t tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid >= graph.vertex_cnt) return; vplist[tid] = vplist[tid] / 2; atomicAdd(d_tcount, vplist[tid]); } unsigned cuda_triangle_count(uint64_t * vertexlist, uint64_t * edgelist, uint32_t * vproplist, uint64_t vertex_cnt, uint64_t edge_cnt) { unsigned tcount = 0; uint32_t * device_vpl = 0; unsigned * device_tcount = 0; float h2d_copy_time = 0; // host to device data transfer time float d2h_copy_time = 0; // device to host data transfer time float kernel_time = 0; // kernel execution time int device; hipGetDevice(&device); hipDeviceProp_t devProp; hipGetDeviceProperties(&devProp,device); // Try to use as many threads as possible so that each thread // is processing one vertex. If max thread is reached, // split them into multiple blocks. unsigned int num_thread_per_block = (unsigned int) vertex_cnt; if (num_thread_per_block > devProp.maxThreadsPerBlock) num_thread_per_block = devProp.maxThreadsPerBlock; unsigned int num_block = (unsigned int)ceil( vertex_cnt/(double)num_thread_per_block ); // malloc of gpu side cudaErrCheck( hipMalloc((void**)&device_vpl, vertex_cnt*sizeof(uint32_t)) ); cudaErrCheck( hipMalloc((void**)&device_tcount, sizeof(unsigned)) ); hipEvent_t start_event, stop_event; cudaErrCheck( hipEventCreate(&start_event) ); cudaErrCheck( hipEventCreate(&stop_event) ); // initialization hipLaunchKernelGGL(( initialize), dim3(num_block), dim3(num_thread_per_block), 0, 0, device_vpl, vertex_cnt); // prepare graph struct // one for host side, one for device side cudaGraph h_graph, d_graph; // here copy only the pointers h_graph.read(vertexlist, edgelist, vertex_cnt, edge_cnt); // memcpy from host to device hipEventRecord(start_event, 0); // copy graph data to device h_graph.cudaGraphCopy(&d_graph); unsigned zeronum = 0; cudaErrCheck( hipMemcpy(device_tcount, &zeronum, sizeof(unsigned), hipMemcpyHostToDevice) ); hipEventRecord(stop_event, 0); hipEventSynchronize(stop_event); hipEventElapsedTime(&h2d_copy_time, start_event, stop_event); hipEventRecord(start_event, 0); hipLaunchKernelGGL(( kernel_step1), dim3(num_block), dim3(num_thread_per_block), 0, 0, device_vpl, d_graph); hipLaunchKernelGGL(( kernel_step2), dim3(num_block), dim3(num_thread_per_block), 0, 0, device_vpl, d_graph); hipLaunchKernelGGL(( kernel_step3), dim3(num_block), dim3(num_thread_per_block), 0, 0, device_vpl, d_graph, device_tcount); cudaErrCheck( hipMemcpy(&tcount, device_tcount, sizeof(unsigned), hipMemcpyDeviceToHost) ); tcount /= 3; hipEventRecord(stop_event, 0); hipEventSynchronize(stop_event); hipEventElapsedTime(&kernel_time, start_event, stop_event); hipEventRecord(start_event, 0); cudaErrCheck( hipMemcpy(vproplist, device_vpl, vertex_cnt*sizeof(uint32_t), hipMemcpyDeviceToHost) ); hipEventRecord(stop_event, 0); hipEventSynchronize(stop_event); hipEventElapsedTime(&d2h_copy_time, start_event, stop_event); #ifndef ENABLE_VERIFY printf("%f,", h2d_copy_time / 1000); printf("%f,", d2h_copy_time / 1000); printf("%f,", kernel_time / 1000); printf("%f,", (h2d_copy_time + d2h_copy_time + kernel_time) / 1000); // printf("== host->device copy time: %f ms\n", h2d_copy_time); // printf("== device->host copy time: %f ms\n", d2h_copy_time); // printf("== kernel time: %f ms\n", kernel_time); #endif hipEventDestroy(start_event); hipEventDestroy(stop_event); // free graph struct on device side d_graph.cudaGraphFree(); cudaErrCheck( hipFree(device_vpl) ); cudaErrCheck( hipFree(device_tcount) ); return tcount; }
ecfc07e2d567026a5083f515d72384064aabafe3.cu
//=================================================================// // CUDA BFS kernel // Topological-Driven: one node per thread, thread_centric, // use atomicAdd instruction // // Reference: // T. Schank. Algorithmic Aspects of Triangle-Based Network Analysis //=================================================================// #include <cuda.h> #include <stdint.h> #include <stdio.h> #include "cudaGraph.h" #define STACK_SZ 2048 #define SEED 123 __device__ void quicksort(uint64_t array[], unsigned len) { uint64_t left = 0, stack[STACK_SZ], pos = 0, seed = SEED; for ( ; ; ) /* outer loop */ { for (; left+1 < len; len++) /* sort left to len-1 */ { if (pos == STACK_SZ) len = stack[pos = 0]; /* stack overflow, reset */ uint64_t pivot = array[left+seed%(len-left)]; /* pick random pivot */ seed = seed*69069+1; /* next pseudorandom number */ stack[pos++] = len; /* sort right part later */ for (unsigned right = left-1; ; ) /* inner loop: partitioning */ { while (array[++right] < pivot); /* look for greater element */ while (pivot < array[--len]); /* look for smaller element */ if (right >= len) break; /* partition point found? */ uint64_t temp = array[right]; array[right] = array[len]; /* the only swap */ array[len] = temp; } /* partitioned, continue left part */ } if (pos == 0) break; /* stack empty? */ left = len; /* left to right is sorted */ len = stack[--pos]; /* get next range to sort */ } } __device__ unsigned get_intersect_cnt(uint64_t* setA, unsigned sizeA, uint64_t* setB, unsigned sizeB) { unsigned ret=0; unsigned iter1=0, iter2=0; while (iter1<sizeA && iter2<sizeB) { if (setA[iter1] < setB[iter2]) iter1++; else if (setA[iter1] > setB[iter2]) iter2++; else { ret++; iter1++; iter2++; } } return ret; } __global__ void initialize(uint32_t * d_graph_property, uint64_t num_vertex) { size_t tid = blockIdx.x * blockDim.x + threadIdx.x; if ( tid < num_vertex ) { d_graph_property[tid] = 0; } } // sort the outgoing edges accoring to their ID order __global__ void kernel_step1(uint32_t * vplist, cudaGraph graph) { uint64_t tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid >= graph.vertex_cnt) return; uint64_t start; start = graph.get_firstedge_index(tid); quicksort(graph.get_edge_ptr(start), graph.get_vertex_degree(tid)); } // get neighbour set intersections of the vertices with edge links __global__ void kernel_step2(uint32_t * vplist, cudaGraph graph) { uint64_t tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid >= graph.vertex_cnt) return; uint64_t start, end; start = graph.get_firstedge_index(tid); end = start + graph.get_vertex_degree(tid); for (uint64_t i=start; i<end; i++) { uint64_t dest = graph.get_edge_dest(i); if (tid > dest) continue; // skip reverse edges uint64_t dest_start = graph.get_firstedge_index(dest); unsigned cnt = get_intersect_cnt(graph.get_edge_ptr(start), graph.get_vertex_degree(tid), graph.get_edge_ptr(dest_start), graph.get_vertex_degree(dest)); atomicAdd(&(vplist[tid]), cnt); atomicAdd(&(vplist[dest]), cnt); } } // reduction to get the total count __global__ void kernel_step3(uint32_t * vplist, cudaGraph graph, unsigned * d_tcount) { uint64_t tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid >= graph.vertex_cnt) return; vplist[tid] = vplist[tid] / 2; atomicAdd(d_tcount, vplist[tid]); } unsigned cuda_triangle_count(uint64_t * vertexlist, uint64_t * edgelist, uint32_t * vproplist, uint64_t vertex_cnt, uint64_t edge_cnt) { unsigned tcount = 0; uint32_t * device_vpl = 0; unsigned * device_tcount = 0; float h2d_copy_time = 0; // host to device data transfer time float d2h_copy_time = 0; // device to host data transfer time float kernel_time = 0; // kernel execution time int device; cudaGetDevice(&device); cudaDeviceProp devProp; cudaGetDeviceProperties(&devProp,device); // Try to use as many threads as possible so that each thread // is processing one vertex. If max thread is reached, // split them into multiple blocks. unsigned int num_thread_per_block = (unsigned int) vertex_cnt; if (num_thread_per_block > devProp.maxThreadsPerBlock) num_thread_per_block = devProp.maxThreadsPerBlock; unsigned int num_block = (unsigned int)ceil( vertex_cnt/(double)num_thread_per_block ); // malloc of gpu side cudaErrCheck( cudaMalloc((void**)&device_vpl, vertex_cnt*sizeof(uint32_t)) ); cudaErrCheck( cudaMalloc((void**)&device_tcount, sizeof(unsigned)) ); cudaEvent_t start_event, stop_event; cudaErrCheck( cudaEventCreate(&start_event) ); cudaErrCheck( cudaEventCreate(&stop_event) ); // initialization initialize<<<num_block, num_thread_per_block>>>(device_vpl, vertex_cnt); // prepare graph struct // one for host side, one for device side cudaGraph h_graph, d_graph; // here copy only the pointers h_graph.read(vertexlist, edgelist, vertex_cnt, edge_cnt); // memcpy from host to device cudaEventRecord(start_event, 0); // copy graph data to device h_graph.cudaGraphCopy(&d_graph); unsigned zeronum = 0; cudaErrCheck( cudaMemcpy(device_tcount, &zeronum, sizeof(unsigned), cudaMemcpyHostToDevice) ); cudaEventRecord(stop_event, 0); cudaEventSynchronize(stop_event); cudaEventElapsedTime(&h2d_copy_time, start_event, stop_event); cudaEventRecord(start_event, 0); kernel_step1<<<num_block, num_thread_per_block>>>(device_vpl, d_graph); kernel_step2<<<num_block, num_thread_per_block>>>(device_vpl, d_graph); kernel_step3<<<num_block, num_thread_per_block>>>(device_vpl, d_graph, device_tcount); cudaErrCheck( cudaMemcpy(&tcount, device_tcount, sizeof(unsigned), cudaMemcpyDeviceToHost) ); tcount /= 3; cudaEventRecord(stop_event, 0); cudaEventSynchronize(stop_event); cudaEventElapsedTime(&kernel_time, start_event, stop_event); cudaEventRecord(start_event, 0); cudaErrCheck( cudaMemcpy(vproplist, device_vpl, vertex_cnt*sizeof(uint32_t), cudaMemcpyDeviceToHost) ); cudaEventRecord(stop_event, 0); cudaEventSynchronize(stop_event); cudaEventElapsedTime(&d2h_copy_time, start_event, stop_event); #ifndef ENABLE_VERIFY printf("%f,", h2d_copy_time / 1000); printf("%f,", d2h_copy_time / 1000); printf("%f,", kernel_time / 1000); printf("%f,", (h2d_copy_time + d2h_copy_time + kernel_time) / 1000); // printf("== host->device copy time: %f ms\n", h2d_copy_time); // printf("== device->host copy time: %f ms\n", d2h_copy_time); // printf("== kernel time: %f ms\n", kernel_time); #endif cudaEventDestroy(start_event); cudaEventDestroy(stop_event); // free graph struct on device side d_graph.cudaGraphFree(); cudaErrCheck( cudaFree(device_vpl) ); cudaErrCheck( cudaFree(device_tcount) ); return tcount; }
5c6fdcc7696b1dd4f83864ce2d4f5f3ced402c07.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" // Student: Catalin Consantin Usurelu // Grupa: 333CA /* * Copyright 1993-2006 NVIDIA Corporation. All rights reserved. * * NOTICE TO USER: * * This source code is subject to NVIDIA ownership rights under U.S. and * international Copyright laws. * * This software and the information contained herein is PROPRIETARY and * CONFIDENTIAL to NVIDIA and is being provided under the terms and * conditions of a Non-Disclosure Agreement. Any reproduction or * disclosure to any third party without the express written consent of * NVIDIA is prohibited. * * NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THIS SOURCE * CODE FOR ANY PURPOSE. IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR * IMPLIED WARRANTY OF ANY KIND. NVIDIA DISCLAIMS ALL WARRANTIES WITH * REGARD TO THIS SOURCE CODE, INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE. * IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, * OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS * OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE * OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE * OR PERFORMANCE OF THIS SOURCE CODE. * * U.S. Government End Users. This source code is a "commercial item" as * that term is defined at 48 C.F.R. 2.101 (OCT 1995), consisting of * "commercial computer software" and "commercial computer software * documentation" as such terms are used in 48 C.F.R. 12.212 (SEPT 1995) * and is provided to the U.S. Government only as a commercial end item. * Consistent with 48 C.F.R.12.212 and 48 C.F.R. 227.7202-1 through * 227.7202-4 (JUNE 1995), all U.S. Government End Users acquire the * source code with only those rights set forth herein. */ // includes, system #include <stdlib.h> #include <stdio.h> #include <string.h> #include <math.h> #include <helper_cuda.h> #include <helper_timer.h> #include <helper_functions.h> #include <helper_math.h> // includes, project #include "2Dconvolution.h" #define OFFSET KERNEL_SIZE / 2 #define ALLIGN_MID KERNEL_SIZE / 2 //////////////////////////////////////////////////////////////////////////////// // declarations, forward extern "C" void computeGold(float*, const float*, const float*, unsigned int, unsigned int); Matrix AllocateDeviceMatrix(int width, int height); Matrix AllocateMatrix(int width, int height); void FreeDeviceMatrix(Matrix* M); void FreeMatrix(Matrix* M); void ConvolutionOnDevice(const Matrix M, const Matrix N, Matrix P); void ConvolutionOnDeviceShared(const Matrix M, const Matrix N, Matrix P); // Get a matrix element __device__ float GetElement(const Matrix A, int row, int col) { return A.elements[row * A.pitch + col]; } // Set a matrix element __device__ void SetElement(Matrix A, int row, int col, float value) { A.elements[row * A.pitch + col] = value; } //////////////////////////////////////////////////////////////////////////////// // nmulirea fr memorie partajat //////////////////////////////////////////////////////////////////////////////// __global__ void ConvolutionKernel(Matrix M, Matrix N, Matrix P) { // Each thread computes one element of P // by accumulating results into Pvalue float Pvalue = 0; int row = blockIdx.y * blockDim.y + threadIdx.y; int col = blockIdx.x * blockDim.x + threadIdx.x; // Outside of range if(row >= N.height || col >= N.width) { return; } // check the start and end values of m and n to prevent overrunning the // matrix edges unsigned int mbegin = (row < 2)? 2 - row : 0; unsigned int mend = (row > (N.height - 3))? N.height - row + 2 : 5; unsigned int nbegin = (col < 2)? 2 - col : 0; unsigned int nend = (col > (N.width - 3))? (N.width - col) + 2 : 5; // overlay A over B centered at element (i,j). For each // overlapping element, multiply the two and accumulate for(unsigned int m = mbegin; m < mend; m++) { for(unsigned int n = nbegin; n < nend; n++) { Pvalue += M.elements[m * 5 + n] * N.elements[N.width * (row + m - 2) + (col + n - 2)]; } } // store the result P.elements[row * N.width + col] = (float)Pvalue; } //////////////////////////////////////////////////////////////////////////////// // nmulirea cu memorie partajat //////////////////////////////////////////////////////////////////////////////// __global__ void ConvolutionKernelShared(Matrix M, Matrix N, Matrix P) { float Pvalue = 0; int row = blockIdx.y * blockDim.y + threadIdx.y; int col = blockIdx.x * blockDim.x + threadIdx.x; __shared__ float Ms[KERNEL_SIZE * KERNEL_SIZE]; __shared__ float Ns[BLOCK_SIZE + KERNEL_SIZE - 1][BLOCK_SIZE + KERNEL_SIZE - 1]; // Primul bloc de 5X5 threaduri copiaza matricea shared if(threadIdx.x < 5 && threadIdx.y < 5) Ms[threadIdx.y * KERNEL_SIZE + threadIdx.x] = M.elements[threadIdx.y * KERNEL_SIZE + threadIdx.x]; __syncthreads(); // ns_row, ns_col sunt defapt niste indici care repezinta blocul de threaduri // relativ la coltul stanga sus al lui Ns (matricea N shared) // matricea este centrata in mijloc (adica decalam cu 2) - practic // la inceput se suprapune cu blocul pentru care calculam valori int ns_row = threadIdx.y + ALLIGN_MID; int ns_col = threadIdx.x + ALLIGN_MID; // Explicatii cod in Readme // Aici doar folosim "blocul de threaduri" (sau parti ale lui) pentru a // copia parti din N in Ns if(row - OFFSET >= 0 && col - OFFSET >= 0) Ns[ns_row - OFFSET][ns_col - OFFSET] = GetElement(N, row - OFFSET, col - OFFSET); if(threadIdx.y >= BLOCK_SIZE - 4) { if(row + OFFSET < N.height && col - OFFSET >= 0) Ns[ns_row + OFFSET][ns_col - OFFSET] = GetElement(N, row + OFFSET, col - OFFSET); if(threadIdx.x >= BLOCK_SIZE - 4) { if(row + OFFSET < N.height && col + OFFSET < N.width) Ns[ns_row + OFFSET][ns_col + OFFSET] = GetElement(N, row + OFFSET, col + OFFSET); } } if(threadIdx.x >= BLOCK_SIZE - 4) if(row - OFFSET >= 0 && col + OFFSET < N.width) Ns[ns_row - OFFSET][ns_col + OFFSET] = GetElement(N, row - OFFSET, col + OFFSET); // Aveam nevoie de toate thread-urile pentru partea de mai sus (mai usor de implementat) if(row >= N.height || col >= N.width) { return; } // Asteptam sa se termine copierea in Ns __syncthreads(); // Ne intereseaza doar "mijlocul lui Ns", adica fara margini // => incepem cu un offset de 2 fata de coltul stanga sus // Restul codului este ca la non-shared sau varianta seriala // doar ca accesam matricile shared int NsRow = threadIdx.y + KERNEL_SIZE / 2; int NsCol = threadIdx.x + KERNEL_SIZE / 2; // check the start and end values of m and n to prevent overrunning the // matrix edges unsigned int mbegin = (row < 2)? 2 - row : 0; unsigned int mend = (row > (N.height - 3))? N.height - row + 2 : 5; unsigned int nbegin = (col < 2)? 2 - col : 0; unsigned int nend = (col > (N.width - 3))? (N.width - col) + 2 : 5; // overlay A over B centered at element (i,j). For each // overlapping element, multiply the two and accumulate for(unsigned int m = mbegin; m < mend; m++) { for(unsigned int n = nbegin; n < nend; n++) { Pvalue += Ms[m * 5 + n] * Ns[NsRow + m - 2][NsCol + n - 2]; } } // store the result P.elements[row * N.width + col] = (float)Pvalue; } //////////////////////////////////////////////////////////////////////////////// // Returneaz 1 dac matricele sunt ~ egale //////////////////////////////////////////////////////////////////////////////// int CompareMatrices(Matrix A, Matrix B) { int i; if(A.width != B.width || A.height != B.height || A.pitch != B.pitch) return 0; int size = A.width * A.height; for(i = 0; i < size; i++) if(fabs(A.elements[i] - B.elements[i]) > MAX_ERR) return 0; return 1; } void GenerateRandomMatrix(Matrix m) { int i; int size = m.width * m.height; srand(time(NULL)); for(i = 0; i < size; i++) m.elements[i] = rand() / (float)RAND_MAX; } //////////////////////////////////////////////////////////////////////////////// // main //////////////////////////////////////////////////////////////////////////////// int main(int argc, char** argv) { int width = 0, height = 0; FILE *f, *out; if(argc < 2) { printf("Argumente prea puine, trimitei id-ul testului care trebuie rulat\n"); return 0; } char name[100]; sprintf(name, "./tests/test_%s.txt", argv[1]); f = fopen(name, "r"); out = fopen("out.txt", "a"); fscanf(f, "%d%d", &width, &height); Matrix M;//kernel de pe host Matrix N;//matrice iniial de pe host Matrix P;//rezultat fr memorie partajat calculat pe GPU Matrix PS;//rezultatul cu memorie partajat calculat pe GPU M = AllocateMatrix(KERNEL_SIZE, KERNEL_SIZE); N = AllocateMatrix(width, height); P = AllocateMatrix(width, height); PS = AllocateMatrix(width, height); GenerateRandomMatrix(M); GenerateRandomMatrix(N); printf("Test for matrix size %dX%d = %d\n", height, width, height * width); // M * N pe device ConvolutionOnDevice(M, N, P); // M * N pe device cu memorie partajat ConvolutionOnDeviceShared(M, N, PS); //pentru msurarea timpului de execuie pe CPU StopWatchInterface *kernelTime = NULL; sdkCreateTimer(&kernelTime); sdkResetTimer(&kernelTime); // calculeaz rezultatul pe CPU pentru comparaie Matrix reference = AllocateMatrix(P.width, P.height); sdkStartTimer(&kernelTime); computeGold(reference.elements, M.elements, N.elements, N.height, N.width); sdkStopTimer(&kernelTime); printf ("Timp execuie CPU: %f ms\n", sdkGetTimerValue(&kernelTime)); // verific dac rezultatul obinut pe device este cel ateptat int res = CompareMatrices(reference, P); printf("Test global %s\n", (1 == res) ? "PASSED" : "FAILED"); fprintf(out, "Test global %s %s\n", argv[1], (1 == res) ? "PASSED" : "FAILED"); // verific dac rezultatul obinut pe device cu memorie partajat este cel ateptat // int ress = CompareMatrices(reference, PS); int ress = CompareMatrices(reference, PS); printf("Test shared %s\n", (1 == ress) ? "PASSED" : "FAILED"); fprintf(out, "Test shared %s %s\n", argv[1], (1 == ress) ? "PASSED" : "FAILED"); printf("\n"); // Free matrices FreeMatrix(&M); FreeMatrix(&N); FreeMatrix(&P); FreeMatrix(&PS); fclose(f); fclose(out); return 0; } //////////////////////////////////////////////////////////////////////////////// //! Run a simple test for CUDA //////////////////////////////////////////////////////////////////////////////// void ConvolutionOnDevice(const Matrix M, const Matrix N, Matrix P) { Matrix Md, Nd, Pd; //matricele corespunztoare de pe device size_t size; //pentru msurarea timpului de execuie n kernel StopWatchInterface *kernelTime = NULL; sdkCreateTimer(&kernelTime); sdkResetTimer(&kernelTime); Md = AllocateDeviceMatrix(M.width, M.height); Nd = AllocateDeviceMatrix(N.width, N.height); Pd = AllocateDeviceMatrix(P.width, P.height); //matrice kernel size = M.width * M.height * sizeof(float); hipMemcpy(Md.elements, M.elements, size, hipMemcpyHostToDevice); //matrice iniial de pe host size = N.width * N.height * sizeof(float); hipMemcpy( Nd.elements, N.elements, size, hipMemcpyHostToDevice); // dimGrid: daca nu se imparte perfect o dimensiune, facem ceil() pe rezultat // ca sa acoperim toate cazurile dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE); dim3 dimGrid((N.width + dimBlock.x - 1) / dimBlock.x, (N.height + dimBlock.y - 1) / dimBlock.y); sdkStartTimer(&kernelTime); hipLaunchKernelGGL(( ConvolutionKernel), dim3(dimGrid), dim3(dimBlock), 0, 0, Md, Nd, Pd); hipDeviceSynchronize(); sdkStopTimer(&kernelTime); printf ("Timp execuie kernel: %f ms\n", sdkGetTimerValue(&kernelTime)); size = P.width * P.height * sizeof(float); hipMemcpy(P.elements, Pd.elements, size, hipMemcpyDeviceToHost); FreeDeviceMatrix(&Md); FreeDeviceMatrix(&Nd); FreeDeviceMatrix(&Pd); } void ConvolutionOnDeviceShared(const Matrix M, const Matrix N, Matrix P) { Matrix Md, Nd, Pd; //matricele corespunztoare de pe device size_t size; //pentru msurarea timpului de execuie n kernel StopWatchInterface *kernelTime = NULL; sdkCreateTimer(&kernelTime); sdkResetTimer(&kernelTime); Md = AllocateDeviceMatrix(M.width, M.height); Nd = AllocateDeviceMatrix(N.width, N.height); Pd = AllocateDeviceMatrix(P.width, P.height); //matrice kernel size = M.width * M.height * sizeof(float); hipMemcpy(Md.elements, M.elements, size, hipMemcpyHostToDevice); //matrice iniial de pe host size = N.width * N.height * sizeof(float); hipMemcpy( Nd.elements, N.elements, size, hipMemcpyHostToDevice); dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE); dim3 dimGrid((N.width + dimBlock.x - 1) / dimBlock.x, (N.height + dimBlock.y - 1) / dimBlock.y); sdkStartTimer(&kernelTime); hipLaunchKernelGGL(( ConvolutionKernelShared), dim3(dimGrid), dim3(dimBlock), 0, 0, Md, Nd, Pd); hipDeviceSynchronize(); sdkStopTimer(&kernelTime); printf ("Timp execuie kernel cu memorie partajat: %f ms\n", sdkGetTimerValue(&kernelTime)); size = P.width * P.height * sizeof(float); hipMemcpy(P.elements, Pd.elements, size, hipMemcpyDeviceToHost); FreeDeviceMatrix(&Md); FreeDeviceMatrix(&Nd); FreeDeviceMatrix(&Pd); } // Aloc o matrice de dimensiune height*width pe device Matrix AllocateDeviceMatrix(int width, int height) { Matrix m; m.width = width; m.height = height; m.pitch = width; size_t size = m.width * m.height * sizeof(float); hipMalloc( (void**) &(m.elements), size); return m; } // Aloc matrice pe host de dimensiune height*width Matrix AllocateMatrix(int width, int height) { Matrix M; M.width = M.pitch = width; M.height = height; int size = M.width * M.height; M.elements = (float*) malloc(size*sizeof(float)); return M; } // Elibereaz o matrice de pe device void FreeDeviceMatrix(Matrix* M) { hipFree(M->elements); M->elements = NULL; } // Elibereaz o matrice de pe host void FreeMatrix(Matrix* M) { free(M->elements); M->elements = NULL; }
5c6fdcc7696b1dd4f83864ce2d4f5f3ced402c07.cu
// Student: Catalin Consantin Usurelu // Grupa: 333CA /* * Copyright 1993-2006 NVIDIA Corporation. All rights reserved. * * NOTICE TO USER: * * This source code is subject to NVIDIA ownership rights under U.S. and * international Copyright laws. * * This software and the information contained herein is PROPRIETARY and * CONFIDENTIAL to NVIDIA and is being provided under the terms and * conditions of a Non-Disclosure Agreement. Any reproduction or * disclosure to any third party without the express written consent of * NVIDIA is prohibited. * * NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THIS SOURCE * CODE FOR ANY PURPOSE. IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR * IMPLIED WARRANTY OF ANY KIND. NVIDIA DISCLAIMS ALL WARRANTIES WITH * REGARD TO THIS SOURCE CODE, INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE. * IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, * OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS * OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE * OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE * OR PERFORMANCE OF THIS SOURCE CODE. * * U.S. Government End Users. This source code is a "commercial item" as * that term is defined at 48 C.F.R. 2.101 (OCT 1995), consisting of * "commercial computer software" and "commercial computer software * documentation" as such terms are used in 48 C.F.R. 12.212 (SEPT 1995) * and is provided to the U.S. Government only as a commercial end item. * Consistent with 48 C.F.R.12.212 and 48 C.F.R. 227.7202-1 through * 227.7202-4 (JUNE 1995), all U.S. Government End Users acquire the * source code with only those rights set forth herein. */ // includes, system #include <stdlib.h> #include <stdio.h> #include <string.h> #include <math.h> #include <helper_cuda.h> #include <helper_timer.h> #include <helper_functions.h> #include <helper_math.h> // includes, project #include "2Dconvolution.h" #define OFFSET KERNEL_SIZE / 2 #define ALLIGN_MID KERNEL_SIZE / 2 //////////////////////////////////////////////////////////////////////////////// // declarations, forward extern "C" void computeGold(float*, const float*, const float*, unsigned int, unsigned int); Matrix AllocateDeviceMatrix(int width, int height); Matrix AllocateMatrix(int width, int height); void FreeDeviceMatrix(Matrix* M); void FreeMatrix(Matrix* M); void ConvolutionOnDevice(const Matrix M, const Matrix N, Matrix P); void ConvolutionOnDeviceShared(const Matrix M, const Matrix N, Matrix P); // Get a matrix element __device__ float GetElement(const Matrix A, int row, int col) { return A.elements[row * A.pitch + col]; } // Set a matrix element __device__ void SetElement(Matrix A, int row, int col, float value) { A.elements[row * A.pitch + col] = value; } //////////////////////////////////////////////////////////////////////////////// // Înmulțirea fără memorie partajată //////////////////////////////////////////////////////////////////////////////// __global__ void ConvolutionKernel(Matrix M, Matrix N, Matrix P) { // Each thread computes one element of P // by accumulating results into Pvalue float Pvalue = 0; int row = blockIdx.y * blockDim.y + threadIdx.y; int col = blockIdx.x * blockDim.x + threadIdx.x; // Outside of range if(row >= N.height || col >= N.width) { return; } // check the start and end values of m and n to prevent overrunning the // matrix edges unsigned int mbegin = (row < 2)? 2 - row : 0; unsigned int mend = (row > (N.height - 3))? N.height - row + 2 : 5; unsigned int nbegin = (col < 2)? 2 - col : 0; unsigned int nend = (col > (N.width - 3))? (N.width - col) + 2 : 5; // overlay A over B centered at element (i,j). For each // overlapping element, multiply the two and accumulate for(unsigned int m = mbegin; m < mend; m++) { for(unsigned int n = nbegin; n < nend; n++) { Pvalue += M.elements[m * 5 + n] * N.elements[N.width * (row + m - 2) + (col + n - 2)]; } } // store the result P.elements[row * N.width + col] = (float)Pvalue; } //////////////////////////////////////////////////////////////////////////////// // Înmulțirea cu memorie partajată //////////////////////////////////////////////////////////////////////////////// __global__ void ConvolutionKernelShared(Matrix M, Matrix N, Matrix P) { float Pvalue = 0; int row = blockIdx.y * blockDim.y + threadIdx.y; int col = blockIdx.x * blockDim.x + threadIdx.x; __shared__ float Ms[KERNEL_SIZE * KERNEL_SIZE]; __shared__ float Ns[BLOCK_SIZE + KERNEL_SIZE - 1][BLOCK_SIZE + KERNEL_SIZE - 1]; // Primul bloc de 5X5 threaduri copiaza matricea shared if(threadIdx.x < 5 && threadIdx.y < 5) Ms[threadIdx.y * KERNEL_SIZE + threadIdx.x] = M.elements[threadIdx.y * KERNEL_SIZE + threadIdx.x]; __syncthreads(); // ns_row, ns_col sunt defapt niste indici care repezinta blocul de threaduri // relativ la coltul stanga sus al lui Ns (matricea N shared) // matricea este centrata in mijloc (adica decalam cu 2) - practic // la inceput se suprapune cu blocul pentru care calculam valori int ns_row = threadIdx.y + ALLIGN_MID; int ns_col = threadIdx.x + ALLIGN_MID; // Explicatii cod in Readme // Aici doar folosim "blocul de threaduri" (sau parti ale lui) pentru a // copia parti din N in Ns if(row - OFFSET >= 0 && col - OFFSET >= 0) Ns[ns_row - OFFSET][ns_col - OFFSET] = GetElement(N, row - OFFSET, col - OFFSET); if(threadIdx.y >= BLOCK_SIZE - 4) { if(row + OFFSET < N.height && col - OFFSET >= 0) Ns[ns_row + OFFSET][ns_col - OFFSET] = GetElement(N, row + OFFSET, col - OFFSET); if(threadIdx.x >= BLOCK_SIZE - 4) { if(row + OFFSET < N.height && col + OFFSET < N.width) Ns[ns_row + OFFSET][ns_col + OFFSET] = GetElement(N, row + OFFSET, col + OFFSET); } } if(threadIdx.x >= BLOCK_SIZE - 4) if(row - OFFSET >= 0 && col + OFFSET < N.width) Ns[ns_row - OFFSET][ns_col + OFFSET] = GetElement(N, row - OFFSET, col + OFFSET); // Aveam nevoie de toate thread-urile pentru partea de mai sus (mai usor de implementat) if(row >= N.height || col >= N.width) { return; } // Asteptam sa se termine copierea in Ns __syncthreads(); // Ne intereseaza doar "mijlocul lui Ns", adica fara margini // => incepem cu un offset de 2 fata de coltul stanga sus // Restul codului este ca la non-shared sau varianta seriala // doar ca accesam matricile shared int NsRow = threadIdx.y + KERNEL_SIZE / 2; int NsCol = threadIdx.x + KERNEL_SIZE / 2; // check the start and end values of m and n to prevent overrunning the // matrix edges unsigned int mbegin = (row < 2)? 2 - row : 0; unsigned int mend = (row > (N.height - 3))? N.height - row + 2 : 5; unsigned int nbegin = (col < 2)? 2 - col : 0; unsigned int nend = (col > (N.width - 3))? (N.width - col) + 2 : 5; // overlay A over B centered at element (i,j). For each // overlapping element, multiply the two and accumulate for(unsigned int m = mbegin; m < mend; m++) { for(unsigned int n = nbegin; n < nend; n++) { Pvalue += Ms[m * 5 + n] * Ns[NsRow + m - 2][NsCol + n - 2]; } } // store the result P.elements[row * N.width + col] = (float)Pvalue; } //////////////////////////////////////////////////////////////////////////////// // Returnează 1 dacă matricele sunt ~ egale //////////////////////////////////////////////////////////////////////////////// int CompareMatrices(Matrix A, Matrix B) { int i; if(A.width != B.width || A.height != B.height || A.pitch != B.pitch) return 0; int size = A.width * A.height; for(i = 0; i < size; i++) if(fabs(A.elements[i] - B.elements[i]) > MAX_ERR) return 0; return 1; } void GenerateRandomMatrix(Matrix m) { int i; int size = m.width * m.height; srand(time(NULL)); for(i = 0; i < size; i++) m.elements[i] = rand() / (float)RAND_MAX; } //////////////////////////////////////////////////////////////////////////////// // main //////////////////////////////////////////////////////////////////////////////// int main(int argc, char** argv) { int width = 0, height = 0; FILE *f, *out; if(argc < 2) { printf("Argumente prea puține, trimiteți id-ul testului care trebuie rulat\n"); return 0; } char name[100]; sprintf(name, "./tests/test_%s.txt", argv[1]); f = fopen(name, "r"); out = fopen("out.txt", "a"); fscanf(f, "%d%d", &width, &height); Matrix M;//kernel de pe host Matrix N;//matrice inițială de pe host Matrix P;//rezultat fără memorie partajată calculat pe GPU Matrix PS;//rezultatul cu memorie partajată calculat pe GPU M = AllocateMatrix(KERNEL_SIZE, KERNEL_SIZE); N = AllocateMatrix(width, height); P = AllocateMatrix(width, height); PS = AllocateMatrix(width, height); GenerateRandomMatrix(M); GenerateRandomMatrix(N); printf("Test for matrix size %dX%d = %d\n", height, width, height * width); // M * N pe device ConvolutionOnDevice(M, N, P); // M * N pe device cu memorie partajată ConvolutionOnDeviceShared(M, N, PS); //pentru măsurarea timpului de execuție pe CPU StopWatchInterface *kernelTime = NULL; sdkCreateTimer(&kernelTime); sdkResetTimer(&kernelTime); // calculează rezultatul pe CPU pentru comparație Matrix reference = AllocateMatrix(P.width, P.height); sdkStartTimer(&kernelTime); computeGold(reference.elements, M.elements, N.elements, N.height, N.width); sdkStopTimer(&kernelTime); printf ("Timp execuție CPU: %f ms\n", sdkGetTimerValue(&kernelTime)); // verifică dacă rezultatul obținut pe device este cel așteptat int res = CompareMatrices(reference, P); printf("Test global %s\n", (1 == res) ? "PASSED" : "FAILED"); fprintf(out, "Test global %s %s\n", argv[1], (1 == res) ? "PASSED" : "FAILED"); // verifică dacă rezultatul obținut pe device cu memorie partajată este cel așteptat // int ress = CompareMatrices(reference, PS); int ress = CompareMatrices(reference, PS); printf("Test shared %s\n", (1 == ress) ? "PASSED" : "FAILED"); fprintf(out, "Test shared %s %s\n", argv[1], (1 == ress) ? "PASSED" : "FAILED"); printf("\n"); // Free matrices FreeMatrix(&M); FreeMatrix(&N); FreeMatrix(&P); FreeMatrix(&PS); fclose(f); fclose(out); return 0; } //////////////////////////////////////////////////////////////////////////////// //! Run a simple test for CUDA //////////////////////////////////////////////////////////////////////////////// void ConvolutionOnDevice(const Matrix M, const Matrix N, Matrix P) { Matrix Md, Nd, Pd; //matricele corespunzătoare de pe device size_t size; //pentru măsurarea timpului de execuție în kernel StopWatchInterface *kernelTime = NULL; sdkCreateTimer(&kernelTime); sdkResetTimer(&kernelTime); Md = AllocateDeviceMatrix(M.width, M.height); Nd = AllocateDeviceMatrix(N.width, N.height); Pd = AllocateDeviceMatrix(P.width, P.height); //matrice kernel size = M.width * M.height * sizeof(float); cudaMemcpy(Md.elements, M.elements, size, cudaMemcpyHostToDevice); //matrice inițială de pe host size = N.width * N.height * sizeof(float); cudaMemcpy( Nd.elements, N.elements, size, cudaMemcpyHostToDevice); // dimGrid: daca nu se imparte perfect o dimensiune, facem ceil() pe rezultat // ca sa acoperim toate cazurile dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE); dim3 dimGrid((N.width + dimBlock.x - 1) / dimBlock.x, (N.height + dimBlock.y - 1) / dimBlock.y); sdkStartTimer(&kernelTime); ConvolutionKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd); cudaThreadSynchronize(); sdkStopTimer(&kernelTime); printf ("Timp execuție kernel: %f ms\n", sdkGetTimerValue(&kernelTime)); size = P.width * P.height * sizeof(float); cudaMemcpy(P.elements, Pd.elements, size, cudaMemcpyDeviceToHost); FreeDeviceMatrix(&Md); FreeDeviceMatrix(&Nd); FreeDeviceMatrix(&Pd); } void ConvolutionOnDeviceShared(const Matrix M, const Matrix N, Matrix P) { Matrix Md, Nd, Pd; //matricele corespunzătoare de pe device size_t size; //pentru măsurarea timpului de execuție în kernel StopWatchInterface *kernelTime = NULL; sdkCreateTimer(&kernelTime); sdkResetTimer(&kernelTime); Md = AllocateDeviceMatrix(M.width, M.height); Nd = AllocateDeviceMatrix(N.width, N.height); Pd = AllocateDeviceMatrix(P.width, P.height); //matrice kernel size = M.width * M.height * sizeof(float); cudaMemcpy(Md.elements, M.elements, size, cudaMemcpyHostToDevice); //matrice inițială de pe host size = N.width * N.height * sizeof(float); cudaMemcpy( Nd.elements, N.elements, size, cudaMemcpyHostToDevice); dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE); dim3 dimGrid((N.width + dimBlock.x - 1) / dimBlock.x, (N.height + dimBlock.y - 1) / dimBlock.y); sdkStartTimer(&kernelTime); ConvolutionKernelShared<<<dimGrid, dimBlock>>>(Md, Nd, Pd); cudaThreadSynchronize(); sdkStopTimer(&kernelTime); printf ("Timp execuție kernel cu memorie partajată: %f ms\n", sdkGetTimerValue(&kernelTime)); size = P.width * P.height * sizeof(float); cudaMemcpy(P.elements, Pd.elements, size, cudaMemcpyDeviceToHost); FreeDeviceMatrix(&Md); FreeDeviceMatrix(&Nd); FreeDeviceMatrix(&Pd); } // Alocă o matrice de dimensiune height*width pe device Matrix AllocateDeviceMatrix(int width, int height) { Matrix m; m.width = width; m.height = height; m.pitch = width; size_t size = m.width * m.height * sizeof(float); cudaMalloc( (void**) &(m.elements), size); return m; } // Alocă matrice pe host de dimensiune height*width Matrix AllocateMatrix(int width, int height) { Matrix M; M.width = M.pitch = width; M.height = height; int size = M.width * M.height; M.elements = (float*) malloc(size*sizeof(float)); return M; } // Eliberează o matrice de pe device void FreeDeviceMatrix(Matrix* M) { cudaFree(M->elements); M->elements = NULL; } // Eliberează o matrice de pe host void FreeMatrix(Matrix* M) { free(M->elements); M->elements = NULL; }
5bd11317328aca4993f169dd0fcc0edc503513d5.hip
// !!! This is a file automatically generated by hipify!!! #include "matrixUtility.h" #include <iostream> EXPORT void testPrintMatrix() { std::cout << " testing matrix operations" << std::endl; } //considers the matrix is in GPU EXPORT LweSample_16* matrixToVector(LweSample_16 ***matrix, int row, int col, int bitSize, const TFheGateBootstrappingCloudKeySet *bk){ std::cout << "testing matrix to vector" << std::endl; const int n = bk->bk->in_out_params->n; int vLength = row * col; int totalBitSize = vLength * bitSize; LweSample_16 *vector = convertBitToNumberZero_GPU(totalBitSize, bk); for (int i = 0; i < row; ++i) { for (int j = 0; j < col; ++j) { int index = i * col + j; int sI = index * bitSize; hipMemcpy(vector->a + sI * n, matrix[i][j]->a, bitSize * n * sizeof(int), hipMemcpyDeviceToDevice); memcpy(vector->b + sI, matrix[i][j]->b, bitSize * sizeof(int)); memcpy(vector->current_variance + sI, matrix[i][j]->current_variance, bitSize * sizeof(double)); } } return vector; } //considers the matrix is in GPU EXPORT LweSample_16*** vectorToMatrix(LweSample_16 *vector, int row, int col, int bitSize, const TFheGateBootstrappingCloudKeySet *bk){ std::cout << "testing vector to matrix" << std::endl; const int n = bk->bk->in_out_params->n; LweSample_16 ***matrix = new LweSample_16**[row]; for (int i = 0; i < row; ++i) { matrix[i] = new LweSample_16*[col]; for (int j = 0; j < col; ++j) { matrix[i][j] = convertBitToNumberZero_GPU(bitSize, bk); int index = i * col + j; int sI = index * bitSize; hipMemcpy(matrix[i][j]->a, vector->a + sI * n, bitSize * n * sizeof(int), hipMemcpyDeviceToDevice); memcpy(matrix[i][j]->b, vector->b + sI, bitSize * sizeof(int)); memcpy(matrix[i][j]->current_variance, vector->current_variance + sI, bitSize * sizeof(double)); } } return matrix; } //port the matrix to GPU EXPORT LweSample_16*** matrixToDevice(LweSample_16 ***h_matrix, int row, int col, int bitSize, const TFheGateBootstrappingCloudKeySet *bk) { std::cout << "taking matrix to device" << std::endl; const int n = bk->bk->in_out_params->n; LweSample_16 ***d_matrix = new LweSample_16**[row]; for (int i = 0; i < row; ++i) { d_matrix[i] = new LweSample_16*[col]; for (int j = 0; j < col; ++j) { d_matrix[i][j] = convertBitToNumberZero_GPU(bitSize, bk); hipMemcpy(d_matrix[i][j]->a, h_matrix[i][j]->a, bitSize * n * sizeof(int), hipMemcpyHostToDevice); memcpy(d_matrix[i][j]->b, h_matrix[i][j]->b, bitSize * sizeof(int)); memcpy(d_matrix[i][j]->current_variance, h_matrix[i][j]->current_variance, bitSize * sizeof(double)); } } return d_matrix; } //prepare left matrix to multiply and create LweSample array (vector) EXPORT LweSample_16** matMul_prepareLeftMat(LweSample_16 ***matrix, int row, int col, int nDuplication, int bitSize, const TFheGateBootstrappingCloudKeySet *bk) { std::cout << "Preparing left matrix to multiply" << std::endl; int vLen = row * col * nDuplication; LweSample_16 **vector = new LweSample_16*[vLen]; for (int i = 0; i < row; ++i) { for (int k = 0; k < nDuplication; ++k) { for (int j = 0; j < col; ++j) { int index = i * nDuplication * col + k * col + j; vector[index] = matrix[i][j]; } } } return vector; } //prepare right matrix to multiply and create LweSample array (vector) EXPORT LweSample_16** matMul_prepareRightMat(LweSample_16 ***matrix, int row, int col, int nDuplication, int bitSize, const TFheGateBootstrappingCloudKeySet *bk) { std::cout << "Preparing right matrix to multiply" << std::endl; int vLen = row * col * nDuplication; LweSample_16 **vector = new LweSample_16*[vLen]; for (int k = 0; k < nDuplication; ++k) { for (int i = 0; i < col; ++i) { for (int j = 0; j < row; ++j) { int index = k * col * row + i * row + j; vector[index] = matrix[j][i]; } } } return vector; }
5bd11317328aca4993f169dd0fcc0edc503513d5.cu
#include "matrixUtility.h" #include <iostream> EXPORT void testPrintMatrix() { std::cout << " testing matrix operations" << std::endl; } //considers the matrix is in GPU EXPORT LweSample_16* matrixToVector(LweSample_16 ***matrix, int row, int col, int bitSize, const TFheGateBootstrappingCloudKeySet *bk){ std::cout << "testing matrix to vector" << std::endl; const int n = bk->bk->in_out_params->n; int vLength = row * col; int totalBitSize = vLength * bitSize; LweSample_16 *vector = convertBitToNumberZero_GPU(totalBitSize, bk); for (int i = 0; i < row; ++i) { for (int j = 0; j < col; ++j) { int index = i * col + j; int sI = index * bitSize; cudaMemcpy(vector->a + sI * n, matrix[i][j]->a, bitSize * n * sizeof(int), cudaMemcpyDeviceToDevice); memcpy(vector->b + sI, matrix[i][j]->b, bitSize * sizeof(int)); memcpy(vector->current_variance + sI, matrix[i][j]->current_variance, bitSize * sizeof(double)); } } return vector; } //considers the matrix is in GPU EXPORT LweSample_16*** vectorToMatrix(LweSample_16 *vector, int row, int col, int bitSize, const TFheGateBootstrappingCloudKeySet *bk){ std::cout << "testing vector to matrix" << std::endl; const int n = bk->bk->in_out_params->n; LweSample_16 ***matrix = new LweSample_16**[row]; for (int i = 0; i < row; ++i) { matrix[i] = new LweSample_16*[col]; for (int j = 0; j < col; ++j) { matrix[i][j] = convertBitToNumberZero_GPU(bitSize, bk); int index = i * col + j; int sI = index * bitSize; cudaMemcpy(matrix[i][j]->a, vector->a + sI * n, bitSize * n * sizeof(int), cudaMemcpyDeviceToDevice); memcpy(matrix[i][j]->b, vector->b + sI, bitSize * sizeof(int)); memcpy(matrix[i][j]->current_variance, vector->current_variance + sI, bitSize * sizeof(double)); } } return matrix; } //port the matrix to GPU EXPORT LweSample_16*** matrixToDevice(LweSample_16 ***h_matrix, int row, int col, int bitSize, const TFheGateBootstrappingCloudKeySet *bk) { std::cout << "taking matrix to device" << std::endl; const int n = bk->bk->in_out_params->n; LweSample_16 ***d_matrix = new LweSample_16**[row]; for (int i = 0; i < row; ++i) { d_matrix[i] = new LweSample_16*[col]; for (int j = 0; j < col; ++j) { d_matrix[i][j] = convertBitToNumberZero_GPU(bitSize, bk); cudaMemcpy(d_matrix[i][j]->a, h_matrix[i][j]->a, bitSize * n * sizeof(int), cudaMemcpyHostToDevice); memcpy(d_matrix[i][j]->b, h_matrix[i][j]->b, bitSize * sizeof(int)); memcpy(d_matrix[i][j]->current_variance, h_matrix[i][j]->current_variance, bitSize * sizeof(double)); } } return d_matrix; } //prepare left matrix to multiply and create LweSample array (vector) EXPORT LweSample_16** matMul_prepareLeftMat(LweSample_16 ***matrix, int row, int col, int nDuplication, int bitSize, const TFheGateBootstrappingCloudKeySet *bk) { std::cout << "Preparing left matrix to multiply" << std::endl; int vLen = row * col * nDuplication; LweSample_16 **vector = new LweSample_16*[vLen]; for (int i = 0; i < row; ++i) { for (int k = 0; k < nDuplication; ++k) { for (int j = 0; j < col; ++j) { int index = i * nDuplication * col + k * col + j; vector[index] = matrix[i][j]; } } } return vector; } //prepare right matrix to multiply and create LweSample array (vector) EXPORT LweSample_16** matMul_prepareRightMat(LweSample_16 ***matrix, int row, int col, int nDuplication, int bitSize, const TFheGateBootstrappingCloudKeySet *bk) { std::cout << "Preparing right matrix to multiply" << std::endl; int vLen = row * col * nDuplication; LweSample_16 **vector = new LweSample_16*[vLen]; for (int k = 0; k < nDuplication; ++k) { for (int i = 0; i < col; ++i) { for (int j = 0; j < row; ++j) { int index = k * col * row + i * row + j; vector[index] = matrix[j][i]; } } } return vector; }
9584be70e9bc560e4cbe901b5473381483087b29.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "includes.h" namespace { } // namespace __global__ void join_add(const int *d1, const int *d2, int *d3) { d3[0] = d1[0] + d2[0]; }
9584be70e9bc560e4cbe901b5473381483087b29.cu
#include "includes.h" namespace { } // namespace __global__ void join_add(const int *d1, const int *d2, int *d3) { d3[0] = d1[0] + d2[0]; }
51c4985b3ac51dcc58e6cbb11af48e2e93e7e8e2.hip
// !!! This is a file automatically generated by hipify!!! #include <hip/hip_runtime.h> #include <iostream> #include <ctime> #include "device_launch_parameters.h" #include <limits.h> #define PRINT_MATRIX true #define CHECK(value) {\ hipError_t _m_cudaStat = value;\ if (_m_cudaStat != hipSuccess) {\ cout<< "Error:" << hipGetErrorString(_m_cudaStat) \ << " at line " << __LINE__ << " in file " << __FILE__ << "\n"; \ exit(1);\ } } #define MAX_MEMORY_VECTOR 104857600 //100 Mb #define COUNT_OF_ELEMENTS_IN_SYSTEM 1024 //Count of elements in system of vectors #define COUNT_OF_VECTORS_IN_SYSTEM 12 //Count of vectors in system #define COUNT_OF_ELEMENTS_IN_VECTOR (COUNT_OF_ELEMENTS_IN_SYSTEM / COUNT_OF_VECTORS_IN_SYSTEM) //Count of elements in one vector #define SIZE_GRAM_MATRIX (COUNT_OF_VECTORS_IN_SYSTEM * COUNT_OF_VECTORS_IN_SYSTEM) using namespace std; inline void Info() { cout << "Size of system: " << COUNT_OF_ELEMENTS_IN_SYSTEM << "\nCount of vectors: " << COUNT_OF_VECTORS_IN_SYSTEM << "\nCount of elements in one vector: " << COUNT_OF_ELEMENTS_IN_VECTOR << endl; } void InfoResult(unsigned char*, unsigned char*); void PrintSystemOfVectors(unsigned char*); void PrintVector(unsigned char*, size_t); unsigned char* GetRandomSystemOfVectors(); unsigned char* GetGramMatrixCPU(unsigned char* systemOfVectors, float& time); unsigned char* GetGramMatrixGPU(unsigned char* systemOfVectors, float& time); bool IsEqual(unsigned char* firstVector, unsigned char* secondVector, size_t size); void Check(unsigned char* matrix_Host, unsigned char* matrix_Device); __global__ void calculate_GramMatrix_GPU(unsigned char* systemOfVectors, unsigned char* gramMatrix) { __shared__ unsigned char cache[1024]; int index = blockIdx.x * blockDim.x + threadIdx.x; if (index >= SIZE_GRAM_MATRIX) return; for (int j = 0; j < COUNT_OF_ELEMENTS_IN_VECTOR; j++) { cache[threadIdx.x] += systemOfVectors[(index / COUNT_OF_VECTORS_IN_SYSTEM) * COUNT_OF_ELEMENTS_IN_VECTOR + j] * systemOfVectors[(index % COUNT_OF_VECTORS_IN_SYSTEM) * COUNT_OF_ELEMENTS_IN_VECTOR + j]; } __syncthreads(); gramMatrix[index] = cache[threadIdx.x]; } int main() { Info(); float timeCPU = 0.0f, timeGPU = 0.0f; unsigned char* systemOfVectors = GetRandomSystemOfVectors(); bool isForPrint = COUNT_OF_ELEMENTS_IN_SYSTEM <= 2048; if (isForPrint) PrintSystemOfVectors(systemOfVectors); cout << "\nSize Gram matrix: " << SIZE_GRAM_MATRIX << "\n\n"; unsigned char* matrixGramCPU = GetGramMatrixCPU(systemOfVectors, timeCPU); unsigned char* matrixGramGPU = GetGramMatrixGPU(systemOfVectors, timeGPU); Check(matrixGramCPU, matrixGramGPU); cout << "\n--------\n"; cout << "Time CPU: " << timeCPU << endl; cout << "Time GPU: " << timeGPU << endl; cout << "\n--------\n"; InfoResult(matrixGramCPU, matrixGramGPU); cin.get(); return 0; } unsigned char* GetGramMatrixGPU(unsigned char* systemOfVectors, float& time_d) { cout << "\n---------\n"; unsigned char* matrixGram = new unsigned char[SIZE_GRAM_MATRIX]; int memoryForGramMatrix = sizeof(unsigned char) * SIZE_GRAM_MATRIX; int memoryForBigVector = sizeof(unsigned char) * COUNT_OF_ELEMENTS_IN_SYSTEM; for (int i = 0; i < SIZE_GRAM_MATRIX; i++) matrixGram[i] = 0; unsigned char* systemOfVectors_GPU; unsigned char* matrixGram_GPU; hipEvent_t startCUDA, stopCUDA; CHECK(hipEventCreate(&startCUDA)); CHECK(hipEventCreate(&stopCUDA)); CHECK(hipMalloc(&systemOfVectors_GPU, memoryForBigVector)); CHECK(hipMalloc(&matrixGram_GPU, memoryForGramMatrix)); CHECK(hipMemcpy(systemOfVectors_GPU, systemOfVectors, memoryForBigVector, hipMemcpyHostToDevice)); CHECK(hipMemcpy(matrixGram_GPU, matrixGram, memoryForGramMatrix, hipMemcpyHostToDevice)); CHECK(hipEventRecord(startCUDA, 0)); cout << "Calculate on DEVICE...\n"; int countOfBlocks = (SIZE_GRAM_MATRIX + 1023) / 1024; hipLaunchKernelGGL(( calculate_GramMatrix_GPU), dim3(countOfBlocks), dim3(1024), 0, 0, systemOfVectors_GPU, matrixGram_GPU); cout << "Count of blocks: " << countOfBlocks << endl; hipEventRecord(stopCUDA, 0); hipEventSynchronize(stopCUDA); hipEventElapsedTime(&time_d, startCUDA, stopCUDA); time_d /= 1000; CHECK(hipMemcpy(matrixGram, matrixGram_GPU, memoryForGramMatrix, hipMemcpyDeviceToHost)); cout << "Done\n"; hipFree(systemOfVectors_GPU); hipFree(matrixGram_GPU); return matrixGram; } unsigned char* GetGramMatrixCPU(unsigned char* systemOfVectors, float& time_h) { unsigned char* matrixGram = new unsigned char[SIZE_GRAM_MATRIX]; for (int i = 0; i < SIZE_GRAM_MATRIX; i++) matrixGram[i] = 0; cout << "Calculate on HOST...\n"; time_h = clock(); for (int i = 0; i < SIZE_GRAM_MATRIX; i++) { int currentRow = (i / COUNT_OF_VECTORS_IN_SYSTEM) * COUNT_OF_VECTORS_IN_SYSTEM; int shiftCol = (i / COUNT_OF_VECTORS_IN_SYSTEM); int currentIndexMainDiag = currentRow + shiftCol; if (i < currentIndexMainDiag) continue; unsigned char temp = 0; for (int j = 0; j < COUNT_OF_ELEMENTS_IN_VECTOR; j++) temp += systemOfVectors[(i / COUNT_OF_VECTORS_IN_SYSTEM) * COUNT_OF_ELEMENTS_IN_VECTOR + j] * systemOfVectors[(i % COUNT_OF_VECTORS_IN_SYSTEM) * COUNT_OF_ELEMENTS_IN_VECTOR + j]; matrixGram[currentIndexMainDiag + (i - currentIndexMainDiag) * COUNT_OF_VECTORS_IN_SYSTEM] = matrixGram[i] = temp; } cout << "Done\n"; time_h /= CLOCKS_PER_SEC; return matrixGram; } void Check(unsigned char* matrix_Host, unsigned char* matrix_Device) { cout << "\nCheck...\n"; if (IsEqual(matrix_Host, matrix_Device, SIZE_GRAM_MATRIX)) cout << "That's right! :)\n"; else cout << "Wrong! :(\n"; } bool IsEqual(unsigned char* firstVector, unsigned char* secondVector, size_t size) { for (int i = 0; i < size; i++) if (firstVector[i] != secondVector[i]) return false; return true; } unsigned char* GetRandomSystemOfVectors() { unsigned char* vector = new unsigned char[COUNT_OF_ELEMENTS_IN_SYSTEM]; for (int i = 0; i < COUNT_OF_ELEMENTS_IN_SYSTEM; i++) vector[i] = rand() % 9 + 1; return vector; } void InfoResult(unsigned char* matrix_Host, unsigned char* matrix_Device) { cout << "\nGram matrix CPU: " << endl; PrintVector(matrix_Host, SIZE_GRAM_MATRIX); cout << "\nGram matrix GPU: " << endl; PrintVector(matrix_Device, SIZE_GRAM_MATRIX); } void PrintSystemOfVectors(unsigned char* systemOfVectors) { bool step = COUNT_OF_ELEMENTS_IN_SYSTEM < 10; cout << "\nBig vector:\n\n"; for (int i = 0, j = 0; i < COUNT_OF_ELEMENTS_IN_SYSTEM; i++, j++) { if (j == COUNT_OF_ELEMENTS_IN_VECTOR && step) { cout << endl; j = 0; } cout << (int)systemOfVectors[i] << " "; } cout << endl; } void PrintVector(unsigned char* vector, size_t size) { if (PRINT_MATRIX) { for (int i = 0; i < COUNT_OF_VECTORS_IN_SYSTEM; i++) { for (int j = 0; j < COUNT_OF_VECTORS_IN_SYSTEM; j++) { cout << (int)vector[i * COUNT_OF_VECTORS_IN_SYSTEM + j] << "\t"; } cout << endl; } } else { for (int i = 0; i < size; i++) cout << (int)vector[i] << " "; cout << endl; } }
51c4985b3ac51dcc58e6cbb11af48e2e93e7e8e2.cu
#include <cuda_runtime.h> #include <iostream> #include <ctime> #include "device_launch_parameters.h" #include <limits.h> #define PRINT_MATRIX true #define CHECK(value) {\ cudaError_t _m_cudaStat = value;\ if (_m_cudaStat != cudaSuccess) {\ cout<< "Error:" << cudaGetErrorString(_m_cudaStat) \ << " at line " << __LINE__ << " in file " << __FILE__ << "\n"; \ exit(1);\ } } #define MAX_MEMORY_VECTOR 104857600 //100 Mb #define COUNT_OF_ELEMENTS_IN_SYSTEM 1024 //Count of elements in system of vectors #define COUNT_OF_VECTORS_IN_SYSTEM 12 //Count of vectors in system #define COUNT_OF_ELEMENTS_IN_VECTOR (COUNT_OF_ELEMENTS_IN_SYSTEM / COUNT_OF_VECTORS_IN_SYSTEM) //Count of elements in one vector #define SIZE_GRAM_MATRIX (COUNT_OF_VECTORS_IN_SYSTEM * COUNT_OF_VECTORS_IN_SYSTEM) using namespace std; inline void Info() { cout << "Size of system: " << COUNT_OF_ELEMENTS_IN_SYSTEM << "\nCount of vectors: " << COUNT_OF_VECTORS_IN_SYSTEM << "\nCount of elements in one vector: " << COUNT_OF_ELEMENTS_IN_VECTOR << endl; } void InfoResult(unsigned char*, unsigned char*); void PrintSystemOfVectors(unsigned char*); void PrintVector(unsigned char*, size_t); unsigned char* GetRandomSystemOfVectors(); unsigned char* GetGramMatrixCPU(unsigned char* systemOfVectors, float& time); unsigned char* GetGramMatrixGPU(unsigned char* systemOfVectors, float& time); bool IsEqual(unsigned char* firstVector, unsigned char* secondVector, size_t size); void Check(unsigned char* matrix_Host, unsigned char* matrix_Device); __global__ void calculate_GramMatrix_GPU(unsigned char* systemOfVectors, unsigned char* gramMatrix) { __shared__ unsigned char cache[1024]; int index = blockIdx.x * blockDim.x + threadIdx.x; if (index >= SIZE_GRAM_MATRIX) return; for (int j = 0; j < COUNT_OF_ELEMENTS_IN_VECTOR; j++) { cache[threadIdx.x] += systemOfVectors[(index / COUNT_OF_VECTORS_IN_SYSTEM) * COUNT_OF_ELEMENTS_IN_VECTOR + j] * systemOfVectors[(index % COUNT_OF_VECTORS_IN_SYSTEM) * COUNT_OF_ELEMENTS_IN_VECTOR + j]; } __syncthreads(); gramMatrix[index] = cache[threadIdx.x]; } int main() { Info(); float timeCPU = 0.0f, timeGPU = 0.0f; unsigned char* systemOfVectors = GetRandomSystemOfVectors(); bool isForPrint = COUNT_OF_ELEMENTS_IN_SYSTEM <= 2048; if (isForPrint) PrintSystemOfVectors(systemOfVectors); cout << "\nSize Gram matrix: " << SIZE_GRAM_MATRIX << "\n\n"; unsigned char* matrixGramCPU = GetGramMatrixCPU(systemOfVectors, timeCPU); unsigned char* matrixGramGPU = GetGramMatrixGPU(systemOfVectors, timeGPU); Check(matrixGramCPU, matrixGramGPU); cout << "\n--------\n"; cout << "Time CPU: " << timeCPU << endl; cout << "Time GPU: " << timeGPU << endl; cout << "\n--------\n"; InfoResult(matrixGramCPU, matrixGramGPU); cin.get(); return 0; } unsigned char* GetGramMatrixGPU(unsigned char* systemOfVectors, float& time_d) { cout << "\n---------\n"; unsigned char* matrixGram = new unsigned char[SIZE_GRAM_MATRIX]; int memoryForGramMatrix = sizeof(unsigned char) * SIZE_GRAM_MATRIX; int memoryForBigVector = sizeof(unsigned char) * COUNT_OF_ELEMENTS_IN_SYSTEM; for (int i = 0; i < SIZE_GRAM_MATRIX; i++) matrixGram[i] = 0; unsigned char* systemOfVectors_GPU; unsigned char* matrixGram_GPU; cudaEvent_t startCUDA, stopCUDA; CHECK(cudaEventCreate(&startCUDA)); CHECK(cudaEventCreate(&stopCUDA)); CHECK(cudaMalloc(&systemOfVectors_GPU, memoryForBigVector)); CHECK(cudaMalloc(&matrixGram_GPU, memoryForGramMatrix)); CHECK(cudaMemcpy(systemOfVectors_GPU, systemOfVectors, memoryForBigVector, cudaMemcpyHostToDevice)); CHECK(cudaMemcpy(matrixGram_GPU, matrixGram, memoryForGramMatrix, cudaMemcpyHostToDevice)); CHECK(cudaEventRecord(startCUDA, 0)); cout << "Calculate on DEVICE...\n"; int countOfBlocks = (SIZE_GRAM_MATRIX + 1023) / 1024; calculate_GramMatrix_GPU<<<countOfBlocks, 1024>>>(systemOfVectors_GPU, matrixGram_GPU); cout << "Count of blocks: " << countOfBlocks << endl; cudaEventRecord(stopCUDA, 0); cudaEventSynchronize(stopCUDA); cudaEventElapsedTime(&time_d, startCUDA, stopCUDA); time_d /= 1000; CHECK(cudaMemcpy(matrixGram, matrixGram_GPU, memoryForGramMatrix, cudaMemcpyDeviceToHost)); cout << "Done\n"; cudaFree(systemOfVectors_GPU); cudaFree(matrixGram_GPU); return matrixGram; } unsigned char* GetGramMatrixCPU(unsigned char* systemOfVectors, float& time_h) { unsigned char* matrixGram = new unsigned char[SIZE_GRAM_MATRIX]; for (int i = 0; i < SIZE_GRAM_MATRIX; i++) matrixGram[i] = 0; cout << "Calculate on HOST...\n"; time_h = clock(); for (int i = 0; i < SIZE_GRAM_MATRIX; i++) { int currentRow = (i / COUNT_OF_VECTORS_IN_SYSTEM) * COUNT_OF_VECTORS_IN_SYSTEM; int shiftCol = (i / COUNT_OF_VECTORS_IN_SYSTEM); int currentIndexMainDiag = currentRow + shiftCol; if (i < currentIndexMainDiag) continue; unsigned char temp = 0; for (int j = 0; j < COUNT_OF_ELEMENTS_IN_VECTOR; j++) temp += systemOfVectors[(i / COUNT_OF_VECTORS_IN_SYSTEM) * COUNT_OF_ELEMENTS_IN_VECTOR + j] * systemOfVectors[(i % COUNT_OF_VECTORS_IN_SYSTEM) * COUNT_OF_ELEMENTS_IN_VECTOR + j]; matrixGram[currentIndexMainDiag + (i - currentIndexMainDiag) * COUNT_OF_VECTORS_IN_SYSTEM] = matrixGram[i] = temp; } cout << "Done\n"; time_h /= CLOCKS_PER_SEC; return matrixGram; } void Check(unsigned char* matrix_Host, unsigned char* matrix_Device) { cout << "\nCheck...\n"; if (IsEqual(matrix_Host, matrix_Device, SIZE_GRAM_MATRIX)) cout << "That's right! :)\n"; else cout << "Wrong! :(\n"; } bool IsEqual(unsigned char* firstVector, unsigned char* secondVector, size_t size) { for (int i = 0; i < size; i++) if (firstVector[i] != secondVector[i]) return false; return true; } unsigned char* GetRandomSystemOfVectors() { unsigned char* vector = new unsigned char[COUNT_OF_ELEMENTS_IN_SYSTEM]; for (int i = 0; i < COUNT_OF_ELEMENTS_IN_SYSTEM; i++) vector[i] = rand() % 9 + 1; return vector; } void InfoResult(unsigned char* matrix_Host, unsigned char* matrix_Device) { cout << "\nGram matrix CPU: " << endl; PrintVector(matrix_Host, SIZE_GRAM_MATRIX); cout << "\nGram matrix GPU: " << endl; PrintVector(matrix_Device, SIZE_GRAM_MATRIX); } void PrintSystemOfVectors(unsigned char* systemOfVectors) { bool step = COUNT_OF_ELEMENTS_IN_SYSTEM < 10; cout << "\nBig vector:\n\n"; for (int i = 0, j = 0; i < COUNT_OF_ELEMENTS_IN_SYSTEM; i++, j++) { if (j == COUNT_OF_ELEMENTS_IN_VECTOR && step) { cout << endl; j = 0; } cout << (int)systemOfVectors[i] << " "; } cout << endl; } void PrintVector(unsigned char* vector, size_t size) { if (PRINT_MATRIX) { for (int i = 0; i < COUNT_OF_VECTORS_IN_SYSTEM; i++) { for (int j = 0; j < COUNT_OF_VECTORS_IN_SYSTEM; j++) { cout << (int)vector[i * COUNT_OF_VECTORS_IN_SYSTEM + j] << "\t"; } cout << endl; } } else { for (int i = 0; i < size; i++) cout << (int)vector[i] << " "; cout << endl; } }
b2c934cfdeb50491e4b22b8f375d3582752964cb.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "saber/funcs/impl/cuda/saber_permute.h" #include "hip/hip_fp16.h" namespace anakin { namespace saber { const int TRANS_BLOCK_SIZE = 16; template <typename Dtype> __global__ void ker_permute_fwd(Dtype * out_data, const int num_axes,\ const int count, const int * permute_order,\ const int * new_steps, const int * old_steps,\ const Dtype* in_data) { CUDA_KERNEL_LOOP(tid, count){ int org_idx = tid; int in_idx = 0; #pragma unroll for (int i = 0; i < num_axes; i++) { int order = permute_order[i]; int new_step = new_steps[i]; int old_step = old_steps[order]; in_idx += (org_idx / new_step) * old_step; org_idx %= new_step; } out_data[tid] = in_data[in_idx]; } } template <typename Dtype> __global__ void ker_permute_fwd(Dtype * out_data, const int num_axes,\ const int count, const int * permute_order,\ const int * new_steps, const int * old_steps,\ const int * new_valid_shape, const Dtype* in_data) { CUDA_KERNEL_LOOP(tid, count){ int in_idx = 0; int out_idx = 0; int new_valid_stride = 1; #pragma unroll for (int i = num_axes - 1; i >= 0; --i) { int order = permute_order[i]; int new_step = new_steps[i]; int old_step = old_steps[order]; int id = (tid / new_valid_stride) % new_valid_shape[i]; in_idx += id * old_step; out_idx += id * new_step; new_valid_stride *= new_valid_shape[i]; } out_data[out_idx] = in_data[in_idx]; } } /*in this kernel, we suppose img with format (1, h, w, c) tranform to (1, c, h, w), and c = 3. out_h = c, out_w = h * w. each thread process one pixel*/ template<typename Dtype> __global__ void ker_permute_fwd_transpose(Dtype * out_data, \ const int out_h, const int out_w, \ const Dtype* in_data) { int tid = threadIdx.x + blockIdx.x * blockDim.x; __shared__ float tile[3][CUDA_NUM_THREADS]; if (tid < out_w) { int offset = tid * out_h; tile[0][threadIdx.x] = in_data[offset]; tile[1][threadIdx.x] = in_data[offset + 1]; tile[2][threadIdx.x] = in_data[offset + 2]; } __syncthreads(); if (tid < out_w) { out_data[0 *out_w + tid] = tile[0][threadIdx.x]; out_data[1 *out_w + tid] = tile[1][threadIdx.x]; out_data[2 *out_w + tid] = tile[2][threadIdx.x]; } } template<typename Dtype> __global__ void ker_permute_fwd_transpose(Dtype * out_data, \ const int n, const int c, const int h, const int w, const int * out_stride, const int * in_stride, const Dtype* in_data) { int tid = threadIdx.x + blockIdx.x * blockDim.x; __shared__ float tile[3][CUDA_NUM_THREADS]; int out_w_id = tid % w; int out_h_id = (tid / w) % h; int out_n_id = tid / (h * w); int out_offset = out_n_id * out_stride[0] + out_h_id * out_stride[2] + out_w_id * out_stride[3]; int in_offset = out_n_id * in_stride[0] + out_h_id * in_stride[1] + out_w_id * in_stride[2]; if (tid < n * h * w) { tile[0][threadIdx.x] = in_data[in_offset]; tile[1][threadIdx.x] = in_data[in_offset + 1]; tile[2][threadIdx.x] = in_data[in_offset + 2]; } __syncthreads(); if (tid < n * h * w ){ out_data[out_offset + out_stride[1] * 0] = tile[0][threadIdx.x]; out_data[out_offset + out_stride[1] * 1] = tile[1][threadIdx.x]; out_data[out_offset + out_stride[1] * 2] = tile[2][threadIdx.x]; } } /*in this kernel, we suppose img with format (1, c, h, w) tranform to (1, h, w, c), and out_h = h*w, out_w = c. each thread process one data. we use share memory*/ template<typename Dtype> __global__ void ker_transpose(Dtype * out_data, \ const int out_h, const int out_w, \ const Dtype* in_data) { __shared__ float tile[TRANS_BLOCK_SIZE][TRANS_BLOCK_SIZE]; int tid_x = threadIdx.x + blockIdx.x * blockDim.x;//in index int tid_y = threadIdx.y + blockIdx.y * blockDim.y;//in index if (tid_x < out_h && tid_y < out_w) { tile[threadIdx.x][threadIdx.y] = in_data[tid_x + tid_y * out_h]; } __syncthreads(); if (tid_x < out_h && tid_y < out_w) { out_data[tid_x * out_w + tid_y] = tile[threadIdx.x][threadIdx.y]; } } template<typename Dtype> __global__ void ker_nchw_to_nhwc(Dtype * out_data, const int n, const int c, const int h, const int w, const int * out_stride, const int * in_stride, const Dtype* in_data) { __shared__ float tile[TRANS_BLOCK_SIZE][TRANS_BLOCK_SIZE]; int tid_x = threadIdx.x + blockIdx.x * blockDim.x;//in index int tid_y = threadIdx.y + blockIdx.y * blockDim.y;//in index int w_id = tid_y % w; int h_id = tid_y / w; int c_id = tid_x % c; int n_id = tid_x / c; int in_offset = n_id * in_stride[0] + c_id * in_stride[1] \ + h_id * in_stride[2] + w_id * in_stride[3]; int out_offset = n_id * out_stride[0] + h_id * out_stride[1] + \ w_id * out_stride[2] + c_id * out_stride[3]; if (tid_x < n*c && tid_y < h*w) { tile[threadIdx.x][threadIdx.y] = in_data[in_offset]; } __syncthreads(); if (tid_x < n*c && tid_y < h*w) { out_data[out_offset] = tile[threadIdx.x][threadIdx.y]; } } template <DataType OpDtype, DataType inDtype, DataType outDtype, typename LayOutType_op, typename LayOutType_in, typename LayOutType_out> SaberStatus SaberPermute<NV, OpDtype, inDtype, outDtype,\ LayOutType_op, LayOutType_in, LayOutType_out>::dispatch(\ const std::vector<DataTensor_in *>& inputs, \ std::vector<DataTensor_out *>& outputs, \ PermuteParam<OpTensor>& param) { hipStream_t cuda_stream = this->_ctx.get_compute_stream(); const InDataType * in_data = inputs[0]->data(); OutDataType * out_data = outputs[0]->mutable_data(); int count = outputs[0]->valid_size(); const int * permute_order = _permute_order.data(); const int * new_steps = _out_steps.data(); const int * old_steps = _in_steps.data(); const int * out_valid_shape = _out_valid_shape.data(); std::vector<int> permute_order_nhwc_to_nchw = {0, 3, 1, 2}; PermuteParam<OpTensor> param_nhwc_to_nchw(permute_order_nhwc_to_nchw); std::vector<int> permute_order_nchw_to_nhwc = {0, 2, 3, 1}; PermuteParam<OpTensor> param_nchw_to_nhwc(permute_order_nchw_to_nhwc); if (inputs[0]->is_continue_mem() && outputs[0]->is_continue_mem()) { if (_need_permute) { if (inputs[0]->num() == 1 && inputs[0]->width() == 3 && param == param_nhwc_to_nchw) { int out_w = outputs[0]->width() * outputs[0]->height(); int out_h = outputs[0]->channel(); hipLaunchKernelGGL(( ker_permute_fwd_transpose<OpDataType>)\ , dim3(CUDA_GET_BLOCKS(out_w)), dim3(CUDA_NUM_THREADS), 0, cuda_stream, \ out_data, out_h, out_w, in_data); } else if (inputs[0]->num() == 1 && param == param_nchw_to_nhwc) { int out_h = inputs[0]->width() * inputs[0]->height(); int out_w = inputs[0]->channel(); dim3 block_size(TRANS_BLOCK_SIZE, TRANS_BLOCK_SIZE); dim3 grid_size((out_h + TRANS_BLOCK_SIZE - 1) / TRANS_BLOCK_SIZE, (out_w + TRANS_BLOCK_SIZE - 1) / TRANS_BLOCK_SIZE); hipLaunchKernelGGL(( ker_transpose<OpDataType>)\ , dim3(grid_size), dim3(block_size), 0, cuda_stream, \ out_data, out_h, out_w, in_data); } else { hipLaunchKernelGGL(( ker_permute_fwd<OpDataType>)\ , dim3(CUDA_GET_BLOCKS(count)), dim3(CUDA_NUM_THREADS), 0, cuda_stream, \ out_data, _num_axes, count, permute_order, \ new_steps, old_steps, in_data); } } else { //outputs[0]->share_from(inputs[0]); } } else { if (_need_permute) { if (inputs[0]->num() == 1 && inputs[0]->width() == 3 && param == param_nhwc_to_nchw) { int out_w = outputs[0]->width() * outputs[0]->height(); int out_h = outputs[0]->channel(); hipLaunchKernelGGL(( ker_permute_fwd_transpose<OpDataType>)\ , dim3(CUDA_GET_BLOCKS(out_w)), dim3(CUDA_NUM_THREADS), 0, cuda_stream, \ out_data, outputs[0]->num(), outputs[0]->channel(), \ outputs[0]->height(), outputs[0]->width(), new_steps, old_steps, in_data); } else if (inputs[0]->num() == 1 && param == param_nchw_to_nhwc) { dim3 block_size(TRANS_BLOCK_SIZE, TRANS_BLOCK_SIZE); dim3 grid_size((inputs[0]->num() * inputs[0]->channel() + TRANS_BLOCK_SIZE - 1) / TRANS_BLOCK_SIZE, (inputs[0]->height() * inputs[0]->width() + TRANS_BLOCK_SIZE - 1) / TRANS_BLOCK_SIZE); hipLaunchKernelGGL(( ker_nchw_to_nhwc<OpDataType>)\ , dim3(grid_size), dim3(block_size), 0, cuda_stream, \ out_data, inputs[0]->num(), inputs[0]->channel(),\ inputs[0]->height(), inputs[0]->width(),\ new_steps, old_steps, in_data); } else { hipLaunchKernelGGL(( ker_permute_fwd<OpDataType>)\ , dim3(CUDA_GET_BLOCKS(count)), dim3(CUDA_NUM_THREADS), 0, cuda_stream, \ out_data, _num_axes, count, permute_order, \ new_steps, old_steps, in_data); } } else { //outputs[0]->share_from(inputs[0]); } } return SaberSuccess; } } }
b2c934cfdeb50491e4b22b8f375d3582752964cb.cu
#include "saber/funcs/impl/cuda/saber_permute.h" #include "cuda_fp16.h" namespace anakin { namespace saber { const int TRANS_BLOCK_SIZE = 16; template <typename Dtype> __global__ void ker_permute_fwd(Dtype * out_data, const int num_axes,\ const int count, const int * permute_order,\ const int * new_steps, const int * old_steps,\ const Dtype* in_data) { CUDA_KERNEL_LOOP(tid, count){ int org_idx = tid; int in_idx = 0; #pragma unroll for (int i = 0; i < num_axes; i++) { int order = permute_order[i]; int new_step = new_steps[i]; int old_step = old_steps[order]; in_idx += (org_idx / new_step) * old_step; org_idx %= new_step; } out_data[tid] = in_data[in_idx]; } } template <typename Dtype> __global__ void ker_permute_fwd(Dtype * out_data, const int num_axes,\ const int count, const int * permute_order,\ const int * new_steps, const int * old_steps,\ const int * new_valid_shape, const Dtype* in_data) { CUDA_KERNEL_LOOP(tid, count){ int in_idx = 0; int out_idx = 0; int new_valid_stride = 1; #pragma unroll for (int i = num_axes - 1; i >= 0; --i) { int order = permute_order[i]; int new_step = new_steps[i]; int old_step = old_steps[order]; int id = (tid / new_valid_stride) % new_valid_shape[i]; in_idx += id * old_step; out_idx += id * new_step; new_valid_stride *= new_valid_shape[i]; } out_data[out_idx] = in_data[in_idx]; } } /*in this kernel, we suppose img with format (1, h, w, c) tranform to (1, c, h, w), and c = 3. out_h = c, out_w = h * w. each thread process one pixel*/ template<typename Dtype> __global__ void ker_permute_fwd_transpose(Dtype * out_data, \ const int out_h, const int out_w, \ const Dtype* in_data) { int tid = threadIdx.x + blockIdx.x * blockDim.x; __shared__ float tile[3][CUDA_NUM_THREADS]; if (tid < out_w) { int offset = tid * out_h; tile[0][threadIdx.x] = in_data[offset]; tile[1][threadIdx.x] = in_data[offset + 1]; tile[2][threadIdx.x] = in_data[offset + 2]; } __syncthreads(); if (tid < out_w) { out_data[0 *out_w + tid] = tile[0][threadIdx.x]; out_data[1 *out_w + tid] = tile[1][threadIdx.x]; out_data[2 *out_w + tid] = tile[2][threadIdx.x]; } } template<typename Dtype> __global__ void ker_permute_fwd_transpose(Dtype * out_data, \ const int n, const int c, const int h, const int w, const int * out_stride, const int * in_stride, const Dtype* in_data) { int tid = threadIdx.x + blockIdx.x * blockDim.x; __shared__ float tile[3][CUDA_NUM_THREADS]; int out_w_id = tid % w; int out_h_id = (tid / w) % h; int out_n_id = tid / (h * w); int out_offset = out_n_id * out_stride[0] + out_h_id * out_stride[2] + out_w_id * out_stride[3]; int in_offset = out_n_id * in_stride[0] + out_h_id * in_stride[1] + out_w_id * in_stride[2]; if (tid < n * h * w) { tile[0][threadIdx.x] = in_data[in_offset]; tile[1][threadIdx.x] = in_data[in_offset + 1]; tile[2][threadIdx.x] = in_data[in_offset + 2]; } __syncthreads(); if (tid < n * h * w ){ out_data[out_offset + out_stride[1] * 0] = tile[0][threadIdx.x]; out_data[out_offset + out_stride[1] * 1] = tile[1][threadIdx.x]; out_data[out_offset + out_stride[1] * 2] = tile[2][threadIdx.x]; } } /*in this kernel, we suppose img with format (1, c, h, w) tranform to (1, h, w, c), and out_h = h*w, out_w = c. each thread process one data. we use share memory*/ template<typename Dtype> __global__ void ker_transpose(Dtype * out_data, \ const int out_h, const int out_w, \ const Dtype* in_data) { __shared__ float tile[TRANS_BLOCK_SIZE][TRANS_BLOCK_SIZE]; int tid_x = threadIdx.x + blockIdx.x * blockDim.x;//in index int tid_y = threadIdx.y + blockIdx.y * blockDim.y;//in index if (tid_x < out_h && tid_y < out_w) { tile[threadIdx.x][threadIdx.y] = in_data[tid_x + tid_y * out_h]; } __syncthreads(); if (tid_x < out_h && tid_y < out_w) { out_data[tid_x * out_w + tid_y] = tile[threadIdx.x][threadIdx.y]; } } template<typename Dtype> __global__ void ker_nchw_to_nhwc(Dtype * out_data, const int n, const int c, const int h, const int w, const int * out_stride, const int * in_stride, const Dtype* in_data) { __shared__ float tile[TRANS_BLOCK_SIZE][TRANS_BLOCK_SIZE]; int tid_x = threadIdx.x + blockIdx.x * blockDim.x;//in index int tid_y = threadIdx.y + blockIdx.y * blockDim.y;//in index int w_id = tid_y % w; int h_id = tid_y / w; int c_id = tid_x % c; int n_id = tid_x / c; int in_offset = n_id * in_stride[0] + c_id * in_stride[1] \ + h_id * in_stride[2] + w_id * in_stride[3]; int out_offset = n_id * out_stride[0] + h_id * out_stride[1] + \ w_id * out_stride[2] + c_id * out_stride[3]; if (tid_x < n*c && tid_y < h*w) { tile[threadIdx.x][threadIdx.y] = in_data[in_offset]; } __syncthreads(); if (tid_x < n*c && tid_y < h*w) { out_data[out_offset] = tile[threadIdx.x][threadIdx.y]; } } template <DataType OpDtype, DataType inDtype, DataType outDtype, typename LayOutType_op, typename LayOutType_in, typename LayOutType_out> SaberStatus SaberPermute<NV, OpDtype, inDtype, outDtype,\ LayOutType_op, LayOutType_in, LayOutType_out>::dispatch(\ const std::vector<DataTensor_in *>& inputs, \ std::vector<DataTensor_out *>& outputs, \ PermuteParam<OpTensor>& param) { cudaStream_t cuda_stream = this->_ctx.get_compute_stream(); const InDataType * in_data = inputs[0]->data(); OutDataType * out_data = outputs[0]->mutable_data(); int count = outputs[0]->valid_size(); const int * permute_order = _permute_order.data(); const int * new_steps = _out_steps.data(); const int * old_steps = _in_steps.data(); const int * out_valid_shape = _out_valid_shape.data(); std::vector<int> permute_order_nhwc_to_nchw = {0, 3, 1, 2}; PermuteParam<OpTensor> param_nhwc_to_nchw(permute_order_nhwc_to_nchw); std::vector<int> permute_order_nchw_to_nhwc = {0, 2, 3, 1}; PermuteParam<OpTensor> param_nchw_to_nhwc(permute_order_nchw_to_nhwc); if (inputs[0]->is_continue_mem() && outputs[0]->is_continue_mem()) { if (_need_permute) { if (inputs[0]->num() == 1 && inputs[0]->width() == 3 && param == param_nhwc_to_nchw) { int out_w = outputs[0]->width() * outputs[0]->height(); int out_h = outputs[0]->channel(); ker_permute_fwd_transpose<OpDataType>\ <<<CUDA_GET_BLOCKS(out_w), CUDA_NUM_THREADS, 0, cuda_stream>>>(\ out_data, out_h, out_w, in_data); } else if (inputs[0]->num() == 1 && param == param_nchw_to_nhwc) { int out_h = inputs[0]->width() * inputs[0]->height(); int out_w = inputs[0]->channel(); dim3 block_size(TRANS_BLOCK_SIZE, TRANS_BLOCK_SIZE); dim3 grid_size((out_h + TRANS_BLOCK_SIZE - 1) / TRANS_BLOCK_SIZE, (out_w + TRANS_BLOCK_SIZE - 1) / TRANS_BLOCK_SIZE); ker_transpose<OpDataType>\ <<<grid_size, block_size, 0, cuda_stream>>>(\ out_data, out_h, out_w, in_data); } else { ker_permute_fwd<OpDataType>\ <<<CUDA_GET_BLOCKS(count), CUDA_NUM_THREADS, 0, cuda_stream>>>(\ out_data, _num_axes, count, permute_order, \ new_steps, old_steps, in_data); } } else { //outputs[0]->share_from(inputs[0]); } } else { if (_need_permute) { if (inputs[0]->num() == 1 && inputs[0]->width() == 3 && param == param_nhwc_to_nchw) { int out_w = outputs[0]->width() * outputs[0]->height(); int out_h = outputs[0]->channel(); ker_permute_fwd_transpose<OpDataType>\ <<<CUDA_GET_BLOCKS(out_w), CUDA_NUM_THREADS, 0, cuda_stream>>>(\ out_data, outputs[0]->num(), outputs[0]->channel(), \ outputs[0]->height(), outputs[0]->width(), new_steps, old_steps, in_data); } else if (inputs[0]->num() == 1 && param == param_nchw_to_nhwc) { dim3 block_size(TRANS_BLOCK_SIZE, TRANS_BLOCK_SIZE); dim3 grid_size((inputs[0]->num() * inputs[0]->channel() + TRANS_BLOCK_SIZE - 1) / TRANS_BLOCK_SIZE, (inputs[0]->height() * inputs[0]->width() + TRANS_BLOCK_SIZE - 1) / TRANS_BLOCK_SIZE); ker_nchw_to_nhwc<OpDataType>\ <<<grid_size, block_size, 0, cuda_stream>>>(\ out_data, inputs[0]->num(), inputs[0]->channel(),\ inputs[0]->height(), inputs[0]->width(),\ new_steps, old_steps, in_data); } else { ker_permute_fwd<OpDataType>\ <<<CUDA_GET_BLOCKS(count), CUDA_NUM_THREADS, 0, cuda_stream>>>(\ out_data, _num_axes, count, permute_order, \ new_steps, old_steps, in_data); } } else { //outputs[0]->share_from(inputs[0]); } } return SaberSuccess; } } }
67f09c9ecd7eaa2acb27afa9b9d59ea295acbaee.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" //##################################################################### //Removed For Anonymity: Copyright Authors of Submission pap173s1 // Distributed under the FreeBSD license (see license.txt) //##################################################################### #include <iostream> #include "Laplace_Helper_CUDA.h" #include <SPGrid_Fluids/Simulation/FLUIDS_SIMULATION_FLAGS.h> using namespace SPGrid; using namespace PhysBAM; #define THREADBLOCK 1024 #define PREFETCH 1024 template <class T, int log2_struct,int xsize,int ysize,int zsize,class T_offset_ptr> __global__ void Laplace_Kernel_3D(const unsigned* masks, T* out,const T* in,const T scale_nonuniform,const T scale_uniform, const T_offset_ptr* offsets, const T_offset_ptr* const b_x_minus, const T_offset_ptr* const b_x_plus, const T_offset_ptr* const b_y_minus, const T_offset_ptr* const b_y_plus, const T_offset_ptr* const b_z_minus, const T_offset_ptr* const b_z_plus, int max_block){ enum { DATABLOCK=xsize*ysize*zsize, span=THREADBLOCK/DATABLOCK, xstride=ysize*zsize, ystride=zsize, zstride=1 }; const unsigned int block = threadIdx.x / DATABLOCK; const unsigned int entry = threadIdx.x % DATABLOCK; const unsigned int z = entry % zsize; const unsigned int y = entry / zsize % ysize; const unsigned int x = entry / zsize / ysize; typedef SPGrid_Mask<log2_struct, NextLogTwo<sizeof(T)>::value,3> T_MASK; __shared__ T_offset_ptr block_index[PREFETCH]; __shared__ T_offset_ptr block_minus_x_index[PREFETCH]; __shared__ T_offset_ptr block_plus_x_index[PREFETCH]; __shared__ T_offset_ptr block_minus_y_index[PREFETCH]; __shared__ T_offset_ptr block_plus_y_index[PREFETCH]; __shared__ T_offset_ptr block_minus_z_index[PREFETCH]; __shared__ T_offset_ptr block_plus_z_index[PREFETCH]; if(threadIdx.x < PREFETCH) if(blockIdx.x * PREFETCH + threadIdx.x < max_block){ block_index[threadIdx.x] = offsets[blockIdx.x * PREFETCH + threadIdx.x]; block_minus_x_index[threadIdx.x]=b_x_minus[blockIdx.x * PREFETCH + threadIdx.x]; block_plus_x_index[threadIdx.x]=b_x_plus[blockIdx.x * PREFETCH + threadIdx.x]; block_minus_y_index[threadIdx.x]=b_y_minus[blockIdx.x * PREFETCH + threadIdx.x]; block_plus_y_index[threadIdx.x]=b_y_plus[blockIdx.x * PREFETCH + threadIdx.x]; block_minus_z_index[threadIdx.x]=b_z_minus[blockIdx.x * PREFETCH + threadIdx.x]; block_plus_z_index[threadIdx.x]=b_z_plus[blockIdx.x * PREFETCH + threadIdx.x]; /*block_minus_x_index[threadIdx.x]=T_MASK::Packed_OffsetXdim_Device<-xsize>(block_index[threadIdx.x]); block_plus_x_index[threadIdx.x]=T_MASK::Packed_OffsetXdim_Device<+xsize>(block_index[threadIdx.x]); block_minus_y_index[threadIdx.x]=T_MASK::Packed_OffsetYdim_Device<-ysize>(block_index[threadIdx.x]); block_plus_y_index[threadIdx.x]=T_MASK::Packed_OffsetYdim_Device<+ysize>(block_index[threadIdx.x]); block_minus_z_index[threadIdx.x]=T_MASK::Packed_OffsetZdim_Device<-zsize>(block_index[threadIdx.x]); block_plus_z_index[threadIdx.x]=T_MASK::Packed_OffsetZdim_Device<+zsize>(block_index[threadIdx.x]);*/ } __syncthreads(); for(int i = 0;i < PREFETCH;i += span){ if (blockIdx.x * PREFETCH + i + block < max_block){ T* out_base = reinterpret_cast<T*>((unsigned long)out + (unsigned long)block_index[i + block]); unsigned mask_value = reinterpret_cast<unsigned*>((unsigned long)masks + (unsigned long)block_index[i + block])[entry]; if(mask_value & (SPGrid_Cell_Type_Active|SPGrid_Cell_Type_Ghost)){ T center_value = reinterpret_cast<T*>((unsigned long)in + (unsigned long)block_index[i + block])[entry]; T& x_minus_value = (x==0) ? reinterpret_cast<T*>((unsigned long)in + (unsigned long)block_minus_x_index[i + block])[entry+(xsize-1)*xstride] : reinterpret_cast<T*>((unsigned long)in + (unsigned long)block_index[i + block])[entry-xstride]; T& x_plus_value = (x==xsize-1) ? reinterpret_cast<T*>((unsigned long)in + (unsigned long)block_plus_x_index[i + block])[entry-(xsize-1)*xstride] : reinterpret_cast<T*>((unsigned long)in + (unsigned long)block_index[i + block])[entry+xstride]; T& y_minus_value = (y==0) ? reinterpret_cast<T*>((unsigned long)in + (unsigned long)block_minus_y_index[i + block])[entry+(ysize-1)*ystride] : reinterpret_cast<T*>((unsigned long)in + (unsigned long)block_index[i + block])[entry-ystride]; T& y_plus_value = (y==ysize-1) ? reinterpret_cast<T*>((unsigned long)in + (unsigned long)block_plus_y_index[i + block])[entry-(ysize-1)*ystride] : reinterpret_cast<T*>((unsigned long)in + (unsigned long)block_index[i + block])[entry+ystride]; T& z_minus_value = (z==0) ? reinterpret_cast<T*>((unsigned long)in + (unsigned long)block_minus_z_index[i + block])[entry+(zsize-1)*zstride] : reinterpret_cast<T*>((unsigned long)in + (unsigned long)block_index[i + block])[entry-zstride]; T& z_plus_value = (z==zsize-1) ? reinterpret_cast<T*>((unsigned long)in + (unsigned long)block_plus_z_index[i + block])[entry-(zsize-1)*zstride] : reinterpret_cast<T*>((unsigned long)in + (unsigned long)block_index[i + block])[entry+zstride]; T result=0; T x_minus = (x_minus_value - center_value); T x_plus = (x_plus_value - center_value); T y_minus = (y_minus_value - center_value); T y_plus = (y_plus_value - center_value); T z_minus = (z_minus_value - center_value); T z_plus = (z_plus_value - center_value); if (mask_value & (SPGrid_Face_Minus_X_Scaled)) result += scale_nonuniform * x_minus; else if (mask_value & (SPGrid_Face_Minus_X_Active)) result += scale_uniform * x_minus; if (mask_value & (SPGrid_Face_Plus_X_Scaled)) result += scale_nonuniform * x_plus; else if (mask_value & (SPGrid_Face_Plus_X_Active)) result += scale_uniform * x_plus; if (mask_value & (SPGrid_Face_Minus_Y_Scaled)) result += scale_nonuniform * y_minus; else if (mask_value & (SPGrid_Face_Minus_Y_Active)) result += scale_uniform * y_minus; if (mask_value & (SPGrid_Face_Plus_Y_Scaled)) result += scale_nonuniform * y_plus; else if (mask_value & (SPGrid_Face_Plus_Y_Active)) result += scale_uniform * y_plus; if (mask_value & (SPGrid_Face_Minus_Z_Scaled)) result += scale_nonuniform * z_minus; else if (mask_value & (SPGrid_Face_Minus_Z_Active)) result += scale_uniform * z_minus; if (mask_value & (SPGrid_Face_Plus_Z_Scaled)) result += scale_nonuniform * z_plus; else if (mask_value & (SPGrid_Face_Plus_Z_Active)) result += scale_uniform * z_plus; out_base[entry] = result; } } } } //##################################################################### // Constructor 3D //##################################################################### template <class T, int log2_struct,class T_offset_ptr> Laplace_Helper_CUDA<T,log2_struct,3,T_offset_ptr>::Laplace_Helper_CUDA(T* const x_input,const T* const y_input,const unsigned* const mask_input, const T_offset_ptr* const b_input, const T_offset_ptr* const b_x_minus_input, const T_offset_ptr* const b_x_plus_input, const T_offset_ptr* const b_y_minus_input, const T_offset_ptr* const b_y_plus_input, const T_offset_ptr* const b_z_minus_input, const T_offset_ptr* const b_z_plus_input, const int size_input,const T scale_uniform_in,const T scale_nonuniform_in) :x(x_input),y(y_input),mask(mask_input), b(b_input), b_x_minus(b_x_minus_input),b_x_plus(b_x_plus_input), b_y_minus(b_y_minus_input),b_y_plus(b_y_plus_input), b_z_minus(b_z_minus_input),b_z_plus(b_z_plus_input), size(size_input),scale_uniform(scale_uniform_in),scale_nonuniform(scale_nonuniform_in) { } //##################################################################### // Function Run_Index_Range //##################################################################### // T_MASK corresponds to the mask for the data (not the mask channel) template <class T,int log2_struct,class T_offset_ptr> void Laplace_Helper_CUDA<T,log2_struct,3,T_offset_ptr>::Run_Index_Range(const unsigned int index_start,const unsigned int index_end) { int number_of_blocks=index_end-index_start+1; hipLaunchKernelGGL(( Laplace_Kernel_3D<T,log2_struct,block_xsize,block_ysize,block_zsize,T_offset_ptr>) , dim3((number_of_blocks%PREFETCH)?(number_of_blocks/PREFETCH+1):(number_of_blocks/PREFETCH)),dim3(THREADBLOCK), 0, 0, // Fix round-up division mask,x,y,scale_nonuniform,scale_uniform, b+index_start, b_x_minus+index_start,b_x_plus+index_start, b_y_minus+index_start,b_y_plus+index_start, b_z_minus+index_start,b_z_plus+index_start, number_of_blocks); hipDeviceSynchronize(); } //template class Laplace_Helper_CUDA<float,5,2>; //template class Laplace_Helper_CUDA<float,6,2>; template class Laplace_Helper_CUDA<float,4,3,unsigned int>; //template class Laplace_Helper_CUDA<float,5,3>; //template class Laplace_Helper_CUDA<float,6,3>;
67f09c9ecd7eaa2acb27afa9b9d59ea295acbaee.cu
//##################################################################### //Removed For Anonymity: Copyright Authors of Submission pap173s1 // Distributed under the FreeBSD license (see license.txt) //##################################################################### #include <iostream> #include "Laplace_Helper_CUDA.h" #include <SPGrid_Fluids/Simulation/FLUIDS_SIMULATION_FLAGS.h> using namespace SPGrid; using namespace PhysBAM; #define THREADBLOCK 1024 #define PREFETCH 1024 template <class T, int log2_struct,int xsize,int ysize,int zsize,class T_offset_ptr> __global__ void Laplace_Kernel_3D(const unsigned* masks, T* out,const T* in,const T scale_nonuniform,const T scale_uniform, const T_offset_ptr* offsets, const T_offset_ptr* const b_x_minus, const T_offset_ptr* const b_x_plus, const T_offset_ptr* const b_y_minus, const T_offset_ptr* const b_y_plus, const T_offset_ptr* const b_z_minus, const T_offset_ptr* const b_z_plus, int max_block){ enum { DATABLOCK=xsize*ysize*zsize, span=THREADBLOCK/DATABLOCK, xstride=ysize*zsize, ystride=zsize, zstride=1 }; const unsigned int block = threadIdx.x / DATABLOCK; const unsigned int entry = threadIdx.x % DATABLOCK; const unsigned int z = entry % zsize; const unsigned int y = entry / zsize % ysize; const unsigned int x = entry / zsize / ysize; typedef SPGrid_Mask<log2_struct, NextLogTwo<sizeof(T)>::value,3> T_MASK; __shared__ T_offset_ptr block_index[PREFETCH]; __shared__ T_offset_ptr block_minus_x_index[PREFETCH]; __shared__ T_offset_ptr block_plus_x_index[PREFETCH]; __shared__ T_offset_ptr block_minus_y_index[PREFETCH]; __shared__ T_offset_ptr block_plus_y_index[PREFETCH]; __shared__ T_offset_ptr block_minus_z_index[PREFETCH]; __shared__ T_offset_ptr block_plus_z_index[PREFETCH]; if(threadIdx.x < PREFETCH) if(blockIdx.x * PREFETCH + threadIdx.x < max_block){ block_index[threadIdx.x] = offsets[blockIdx.x * PREFETCH + threadIdx.x]; block_minus_x_index[threadIdx.x]=b_x_minus[blockIdx.x * PREFETCH + threadIdx.x]; block_plus_x_index[threadIdx.x]=b_x_plus[blockIdx.x * PREFETCH + threadIdx.x]; block_minus_y_index[threadIdx.x]=b_y_minus[blockIdx.x * PREFETCH + threadIdx.x]; block_plus_y_index[threadIdx.x]=b_y_plus[blockIdx.x * PREFETCH + threadIdx.x]; block_minus_z_index[threadIdx.x]=b_z_minus[blockIdx.x * PREFETCH + threadIdx.x]; block_plus_z_index[threadIdx.x]=b_z_plus[blockIdx.x * PREFETCH + threadIdx.x]; /*block_minus_x_index[threadIdx.x]=T_MASK::Packed_OffsetXdim_Device<-xsize>(block_index[threadIdx.x]); block_plus_x_index[threadIdx.x]=T_MASK::Packed_OffsetXdim_Device<+xsize>(block_index[threadIdx.x]); block_minus_y_index[threadIdx.x]=T_MASK::Packed_OffsetYdim_Device<-ysize>(block_index[threadIdx.x]); block_plus_y_index[threadIdx.x]=T_MASK::Packed_OffsetYdim_Device<+ysize>(block_index[threadIdx.x]); block_minus_z_index[threadIdx.x]=T_MASK::Packed_OffsetZdim_Device<-zsize>(block_index[threadIdx.x]); block_plus_z_index[threadIdx.x]=T_MASK::Packed_OffsetZdim_Device<+zsize>(block_index[threadIdx.x]);*/ } __syncthreads(); for(int i = 0;i < PREFETCH;i += span){ if (blockIdx.x * PREFETCH + i + block < max_block){ T* out_base = reinterpret_cast<T*>((unsigned long)out + (unsigned long)block_index[i + block]); unsigned mask_value = reinterpret_cast<unsigned*>((unsigned long)masks + (unsigned long)block_index[i + block])[entry]; if(mask_value & (SPGrid_Cell_Type_Active|SPGrid_Cell_Type_Ghost)){ T center_value = reinterpret_cast<T*>((unsigned long)in + (unsigned long)block_index[i + block])[entry]; T& x_minus_value = (x==0) ? reinterpret_cast<T*>((unsigned long)in + (unsigned long)block_minus_x_index[i + block])[entry+(xsize-1)*xstride] : reinterpret_cast<T*>((unsigned long)in + (unsigned long)block_index[i + block])[entry-xstride]; T& x_plus_value = (x==xsize-1) ? reinterpret_cast<T*>((unsigned long)in + (unsigned long)block_plus_x_index[i + block])[entry-(xsize-1)*xstride] : reinterpret_cast<T*>((unsigned long)in + (unsigned long)block_index[i + block])[entry+xstride]; T& y_minus_value = (y==0) ? reinterpret_cast<T*>((unsigned long)in + (unsigned long)block_minus_y_index[i + block])[entry+(ysize-1)*ystride] : reinterpret_cast<T*>((unsigned long)in + (unsigned long)block_index[i + block])[entry-ystride]; T& y_plus_value = (y==ysize-1) ? reinterpret_cast<T*>((unsigned long)in + (unsigned long)block_plus_y_index[i + block])[entry-(ysize-1)*ystride] : reinterpret_cast<T*>((unsigned long)in + (unsigned long)block_index[i + block])[entry+ystride]; T& z_minus_value = (z==0) ? reinterpret_cast<T*>((unsigned long)in + (unsigned long)block_minus_z_index[i + block])[entry+(zsize-1)*zstride] : reinterpret_cast<T*>((unsigned long)in + (unsigned long)block_index[i + block])[entry-zstride]; T& z_plus_value = (z==zsize-1) ? reinterpret_cast<T*>((unsigned long)in + (unsigned long)block_plus_z_index[i + block])[entry-(zsize-1)*zstride] : reinterpret_cast<T*>((unsigned long)in + (unsigned long)block_index[i + block])[entry+zstride]; T result=0; T x_minus = (x_minus_value - center_value); T x_plus = (x_plus_value - center_value); T y_minus = (y_minus_value - center_value); T y_plus = (y_plus_value - center_value); T z_minus = (z_minus_value - center_value); T z_plus = (z_plus_value - center_value); if (mask_value & (SPGrid_Face_Minus_X_Scaled)) result += scale_nonuniform * x_minus; else if (mask_value & (SPGrid_Face_Minus_X_Active)) result += scale_uniform * x_minus; if (mask_value & (SPGrid_Face_Plus_X_Scaled)) result += scale_nonuniform * x_plus; else if (mask_value & (SPGrid_Face_Plus_X_Active)) result += scale_uniform * x_plus; if (mask_value & (SPGrid_Face_Minus_Y_Scaled)) result += scale_nonuniform * y_minus; else if (mask_value & (SPGrid_Face_Minus_Y_Active)) result += scale_uniform * y_minus; if (mask_value & (SPGrid_Face_Plus_Y_Scaled)) result += scale_nonuniform * y_plus; else if (mask_value & (SPGrid_Face_Plus_Y_Active)) result += scale_uniform * y_plus; if (mask_value & (SPGrid_Face_Minus_Z_Scaled)) result += scale_nonuniform * z_minus; else if (mask_value & (SPGrid_Face_Minus_Z_Active)) result += scale_uniform * z_minus; if (mask_value & (SPGrid_Face_Plus_Z_Scaled)) result += scale_nonuniform * z_plus; else if (mask_value & (SPGrid_Face_Plus_Z_Active)) result += scale_uniform * z_plus; out_base[entry] = result; } } } } //##################################################################### // Constructor 3D //##################################################################### template <class T, int log2_struct,class T_offset_ptr> Laplace_Helper_CUDA<T,log2_struct,3,T_offset_ptr>::Laplace_Helper_CUDA(T* const x_input,const T* const y_input,const unsigned* const mask_input, const T_offset_ptr* const b_input, const T_offset_ptr* const b_x_minus_input, const T_offset_ptr* const b_x_plus_input, const T_offset_ptr* const b_y_minus_input, const T_offset_ptr* const b_y_plus_input, const T_offset_ptr* const b_z_minus_input, const T_offset_ptr* const b_z_plus_input, const int size_input,const T scale_uniform_in,const T scale_nonuniform_in) :x(x_input),y(y_input),mask(mask_input), b(b_input), b_x_minus(b_x_minus_input),b_x_plus(b_x_plus_input), b_y_minus(b_y_minus_input),b_y_plus(b_y_plus_input), b_z_minus(b_z_minus_input),b_z_plus(b_z_plus_input), size(size_input),scale_uniform(scale_uniform_in),scale_nonuniform(scale_nonuniform_in) { } //##################################################################### // Function Run_Index_Range //##################################################################### // T_MASK corresponds to the mask for the data (not the mask channel) template <class T,int log2_struct,class T_offset_ptr> void Laplace_Helper_CUDA<T,log2_struct,3,T_offset_ptr>::Run_Index_Range(const unsigned int index_start,const unsigned int index_end) { int number_of_blocks=index_end-index_start+1; Laplace_Kernel_3D<T,log2_struct,block_xsize,block_ysize,block_zsize,T_offset_ptr> <<<(number_of_blocks%PREFETCH)?(number_of_blocks/PREFETCH+1):(number_of_blocks/PREFETCH),THREADBLOCK>>> // Fix round-up division (mask,x,y,scale_nonuniform,scale_uniform, b+index_start, b_x_minus+index_start,b_x_plus+index_start, b_y_minus+index_start,b_y_plus+index_start, b_z_minus+index_start,b_z_plus+index_start, number_of_blocks); cudaDeviceSynchronize(); } //template class Laplace_Helper_CUDA<float,5,2>; //template class Laplace_Helper_CUDA<float,6,2>; template class Laplace_Helper_CUDA<float,4,3,unsigned int>; //template class Laplace_Helper_CUDA<float,5,3>; //template class Laplace_Helper_CUDA<float,6,3>;
7b5c94858b6108448e90d6187581f6666243a4af.hip
// !!! This is a file automatically generated by hipify!!! #include "GpuProjectionProcessing.cuh" #include "GpuUtmWgsTransform.cuh" #include "GpuTimer_hip.cuh" #include "hip/hip_runtime.h" #include "device_launch_parameters.h" #include <stdio.h> using namespace winGpu; __global__ void applyTransformUtmToWgsCoordsGpu(double xOrigin, double yOrigin, double xPixelSize, double yPixelSize, int height, int width, int zone, bool southhemi, double* lon, double* lat) { int h = blockDim.x * blockIdx.x + threadIdx.x; int w = blockDim.y * blockIdx.y + threadIdx.y; if (height <= h || width <= w) { return; } double x = xOrigin + xPixelSize * w; double y = yOrigin + yPixelSize * h; double newLon = 0.0; double newLat = 0.0; UtmXYToLatLonGpu(x, y, zone, southhemi, newLon, newLat); lon[h * width + w] = newLon; lat[h * width + w] = newLat; } double winGpu::doTransformUtmToWgsCoordsGpu(double xOrigin, double yOrigin, double xPixelSize, double yPixelSize, int height, int width, int zone, bool southhemi, double* lon, double* lat) { const size_t maxAvaliableCoords = 1500000; int countRowsPerIter = maxAvaliableCoords / width; int countIter = height / countRowsPerIter + 1; const size_t size = width * countRowsPerIter; dim3 threadsPerBlock(16, 16); dim3 numBlocks(countRowsPerIter / threadsPerBlock.x + 1, width / threadsPerBlock.y + 1); double* newLon = new double[size]; double* newLat = new double[size]; double* dev_lon = 0; double* dev_lat = 0; float time; hipSetDevice(0); hipMalloc((void**)&dev_lon, size * sizeof(double)); hipMalloc((void**)&dev_lat, size * sizeof(double)); GPU_TIMER_START; for (int i = 0; i < countIter; i++) { double newYOrigin = yOrigin + i * yPixelSize * countRowsPerIter; applyTransformUtmToWgsCoordsGpu << <numBlocks, threadsPerBlock >> > (xOrigin, newYOrigin, xPixelSize, yPixelSize, countRowsPerIter, width, zone, southhemi, dev_lon, dev_lat); hipDeviceSynchronize(); hipMemcpy(newLon, dev_lon, size * sizeof(double), hipMemcpyDeviceToHost); hipMemcpy(newLat, dev_lat, size * sizeof(double), hipMemcpyDeviceToHost); size_t countCoordsForCopy = i != countIter - 1 ? size : width * height - countRowsPerIter * width * i; for (int j = 0; j < countCoordsForCopy; j++) { lon[i * size + j] = newLon[j]; lat[i * size + j] = newLat[j]; } } GPU_TIMER_STOP(time); hipFree(dev_lon); hipFree(dev_lat); delete[] newLon; delete[] newLat; return (double)time; } __global__ void applyTransformWgsToUtmCoordsGpu(double xOrigin, double yOrigin, double xPixelSize, double yPixelSize, int height, int width, int zone, double* x, double* y) { int h = blockDim.x * blockIdx.x + threadIdx.x; int w = blockDim.y * blockIdx.y + threadIdx.y; if (height <= h || width <= w) { return; } double lon = xOrigin + xPixelSize * w; double lat = yOrigin + yPixelSize * h; double newX = 0.0; double newY = 0.0; LatLonToUtmXYGpu(lon, lat, zone, newX, newY); x[h * width + w] = newX; y[h * width + w] = newY; } double winGpu::doTransformWgsToUtmCoordsGpu(double xOrigin, double yOrigin, double xPixelSize, double yPixelSize, int height, int width, int zone, double* x, double* y) { const size_t maxAvaliableCoords = 2000000; int countRowsPerIter = maxAvaliableCoords / width; int countIter = height / countRowsPerIter + 1; const size_t size = width * countRowsPerIter; dim3 threadsPerBlock(16, 16); dim3 numBlocks(countRowsPerIter / threadsPerBlock.x + 1, width / threadsPerBlock.y + 1); double* newX = new double[size]; double* newY = new double[size]; double* dev_x = 0; double* dev_y = 0; float time; hipSetDevice(0); hipMalloc((void**)&dev_x, size * sizeof(double)); hipMalloc((void**)&dev_y, size * sizeof(double)); GPU_TIMER_START; for (int i = 0; i < countIter; i++) { double newYOrigin = yOrigin + i * yPixelSize * countRowsPerIter; applyTransformWgsToUtmCoordsGpu << <numBlocks, threadsPerBlock >> > (xOrigin, newYOrigin, xPixelSize, yPixelSize, countRowsPerIter, width, zone, dev_x, dev_y); hipDeviceSynchronize(); hipMemcpy(newX, dev_x, size * sizeof(double), hipMemcpyDeviceToHost); hipMemcpy(newY, dev_y, size * sizeof(double), hipMemcpyDeviceToHost); size_t countCoordsForCopy = i != countIter - 1 ? size : width * height - countRowsPerIter * width * i; for (int j = 0; j < countCoordsForCopy; j++) { x[i * size + j] = newX[j]; y[i * size + j] = newY[j]; } } GPU_TIMER_STOP(time); hipFree(dev_x); hipFree(dev_y); delete[] newX; delete[] newY; return (double)time; }
7b5c94858b6108448e90d6187581f6666243a4af.cu
#include "GpuProjectionProcessing.cuh" #include "GpuUtmWgsTransform.cuh" #include "GpuTimer.cuh" #include "cuda_runtime.h" #include "device_launch_parameters.h" #include <stdio.h> using namespace winGpu; __global__ void applyTransformUtmToWgsCoordsGpu(double xOrigin, double yOrigin, double xPixelSize, double yPixelSize, int height, int width, int zone, bool southhemi, double* lon, double* lat) { int h = blockDim.x * blockIdx.x + threadIdx.x; int w = blockDim.y * blockIdx.y + threadIdx.y; if (height <= h || width <= w) { return; } double x = xOrigin + xPixelSize * w; double y = yOrigin + yPixelSize * h; double newLon = 0.0; double newLat = 0.0; UtmXYToLatLonGpu(x, y, zone, southhemi, newLon, newLat); lon[h * width + w] = newLon; lat[h * width + w] = newLat; } double winGpu::doTransformUtmToWgsCoordsGpu(double xOrigin, double yOrigin, double xPixelSize, double yPixelSize, int height, int width, int zone, bool southhemi, double* lon, double* lat) { const size_t maxAvaliableCoords = 1500000; int countRowsPerIter = maxAvaliableCoords / width; int countIter = height / countRowsPerIter + 1; const size_t size = width * countRowsPerIter; dim3 threadsPerBlock(16, 16); dim3 numBlocks(countRowsPerIter / threadsPerBlock.x + 1, width / threadsPerBlock.y + 1); double* newLon = new double[size]; double* newLat = new double[size]; double* dev_lon = 0; double* dev_lat = 0; float time; cudaSetDevice(0); cudaMalloc((void**)&dev_lon, size * sizeof(double)); cudaMalloc((void**)&dev_lat, size * sizeof(double)); GPU_TIMER_START; for (int i = 0; i < countIter; i++) { double newYOrigin = yOrigin + i * yPixelSize * countRowsPerIter; applyTransformUtmToWgsCoordsGpu << <numBlocks, threadsPerBlock >> > (xOrigin, newYOrigin, xPixelSize, yPixelSize, countRowsPerIter, width, zone, southhemi, dev_lon, dev_lat); cudaDeviceSynchronize(); cudaMemcpy(newLon, dev_lon, size * sizeof(double), cudaMemcpyDeviceToHost); cudaMemcpy(newLat, dev_lat, size * sizeof(double), cudaMemcpyDeviceToHost); size_t countCoordsForCopy = i != countIter - 1 ? size : width * height - countRowsPerIter * width * i; for (int j = 0; j < countCoordsForCopy; j++) { lon[i * size + j] = newLon[j]; lat[i * size + j] = newLat[j]; } } GPU_TIMER_STOP(time); cudaFree(dev_lon); cudaFree(dev_lat); delete[] newLon; delete[] newLat; return (double)time; } __global__ void applyTransformWgsToUtmCoordsGpu(double xOrigin, double yOrigin, double xPixelSize, double yPixelSize, int height, int width, int zone, double* x, double* y) { int h = blockDim.x * blockIdx.x + threadIdx.x; int w = blockDim.y * blockIdx.y + threadIdx.y; if (height <= h || width <= w) { return; } double lon = xOrigin + xPixelSize * w; double lat = yOrigin + yPixelSize * h; double newX = 0.0; double newY = 0.0; LatLonToUtmXYGpu(lon, lat, zone, newX, newY); x[h * width + w] = newX; y[h * width + w] = newY; } double winGpu::doTransformWgsToUtmCoordsGpu(double xOrigin, double yOrigin, double xPixelSize, double yPixelSize, int height, int width, int zone, double* x, double* y) { const size_t maxAvaliableCoords = 2000000; int countRowsPerIter = maxAvaliableCoords / width; int countIter = height / countRowsPerIter + 1; const size_t size = width * countRowsPerIter; dim3 threadsPerBlock(16, 16); dim3 numBlocks(countRowsPerIter / threadsPerBlock.x + 1, width / threadsPerBlock.y + 1); double* newX = new double[size]; double* newY = new double[size]; double* dev_x = 0; double* dev_y = 0; float time; cudaSetDevice(0); cudaMalloc((void**)&dev_x, size * sizeof(double)); cudaMalloc((void**)&dev_y, size * sizeof(double)); GPU_TIMER_START; for (int i = 0; i < countIter; i++) { double newYOrigin = yOrigin + i * yPixelSize * countRowsPerIter; applyTransformWgsToUtmCoordsGpu << <numBlocks, threadsPerBlock >> > (xOrigin, newYOrigin, xPixelSize, yPixelSize, countRowsPerIter, width, zone, dev_x, dev_y); cudaDeviceSynchronize(); cudaMemcpy(newX, dev_x, size * sizeof(double), cudaMemcpyDeviceToHost); cudaMemcpy(newY, dev_y, size * sizeof(double), cudaMemcpyDeviceToHost); size_t countCoordsForCopy = i != countIter - 1 ? size : width * height - countRowsPerIter * width * i; for (int j = 0; j < countCoordsForCopy; j++) { x[i * size + j] = newX[j]; y[i * size + j] = newY[j]; } } GPU_TIMER_STOP(time); cudaFree(dev_x); cudaFree(dev_y); delete[] newX; delete[] newY; return (double)time; }
908985a5d0a50e7a6e19c4ccb3bc152d9c55c7e1.hip
// !!! This is a file automatically generated by hipify!!! #include <stdio.h> #include <stdlib.h> #include <hip/hip_runtime.h> #include <hip/hip_runtime.h> __global__ void empty() {} int main() { float ms; hipEvent_t start, end; //make event vars hipEventCreate(&start); //create start event hipEventCreate(&end); //create end event hipEventRecord(start, 0); //start recording hipLaunchKernelGGL(( empty), dim3(1),dim3(1) , 0, 0, ); hipEventRecord(end, 0); //end recording hipEventSynchronize(end); //sync, you have to do this! hipEventElapsedTime(&ms, start, end); //get elapsed time, put in timing var printf("GPU = %.20lf\n", ms); //print timing
908985a5d0a50e7a6e19c4ccb3bc152d9c55c7e1.cu
#include <stdio.h> #include <stdlib.h> #include <cuda.h> #include <cuda_runtime.h> __global__ void empty() {} int main() { float ms; cudaEvent_t start, end; //make event vars cudaEventCreate(&start); //create start event cudaEventCreate(&end); //create end event cudaEventRecord(start, 0); //start recording empty<<< 1,1 >>> (); cudaEventRecord(end, 0); //end recording cudaEventSynchronize(end); //sync, you have to do this! cudaEventElapsedTime(&ms, start, end); //get elapsed time, put in timing var printf("GPU = %.20lf\n", ms); //print timing
f570b8571b75d41024566ba5fe852c7d8e65c29a.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "includes.h" //Cuda checks __global__ void matrix_multiply_kernel(unsigned char *temp, unsigned char *matrix, float *kernal, int order, int middle, int windowSizeX, int windowSizeY){ //Find place in the execution int y = blockIdx.y * blockDim.y + threadIdx.y; int x = blockIdx.x * blockDim.x + threadIdx.x; float sum = 0.0; //If out of bounds, do nothing if(y >= windowSizeY || x >= windowSizeX){ return; } //Else do function for(int y2 = 0; y2 < order; y2++){ for(int x2 = 0; x2 < order; x2++){ int tempX = x - middle + x2, tempY = y - middle + y2; if(tempX < 0){ tempX = 0; }else if(tempX >= windowSizeX){ tempX = windowSizeX - 1; } if(tempY < 0){ tempY = 0; }else if(tempY >= windowSizeY){ tempY = windowSizeY - 1; } sum += temp[(windowSizeX * tempY) + tempX] * kernal[(order * x2) + y2]; } } //Clamp the sum value if(sum < 0){ sum = 0; }else if(sum > 255){ sum = 255; } //Add sum value to matrix matrix[(windowSizeX * y) + x] = (unsigned char) sum; }
f570b8571b75d41024566ba5fe852c7d8e65c29a.cu
#include "includes.h" //Cuda checks __global__ void matrix_multiply_kernel(unsigned char *temp, unsigned char *matrix, float *kernal, int order, int middle, int windowSizeX, int windowSizeY){ //Find place in the execution int y = blockIdx.y * blockDim.y + threadIdx.y; int x = blockIdx.x * blockDim.x + threadIdx.x; float sum = 0.0; //If out of bounds, do nothing if(y >= windowSizeY || x >= windowSizeX){ return; } //Else do function for(int y2 = 0; y2 < order; y2++){ for(int x2 = 0; x2 < order; x2++){ int tempX = x - middle + x2, tempY = y - middle + y2; if(tempX < 0){ tempX = 0; }else if(tempX >= windowSizeX){ tempX = windowSizeX - 1; } if(tempY < 0){ tempY = 0; }else if(tempY >= windowSizeY){ tempY = windowSizeY - 1; } sum += temp[(windowSizeX * tempY) + tempX] * kernal[(order * x2) + y2]; } } //Clamp the sum value if(sum < 0){ sum = 0; }else if(sum > 255){ sum = 255; } //Add sum value to matrix matrix[(windowSizeX * y) + x] = (unsigned char) sum; }
7b524292e483cff1b71424f03e4af500f3b09477.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" __global__ void approxmatch(int b,int n,int m,const float * __restrict__ xyz1,const float * __restrict__ xyz2,float * __restrict__ match,float * temp){ float * remainL=temp+blockIdx.x*(n+m)*2, * remainR=temp+blockIdx.x*(n+m)*2+n,*ratioL=temp+blockIdx.x*(n+m)*2+n+m,*ratioR=temp+blockIdx.x*(n+m)*2+n+m+n; float multiL,multiR; if (n>=m){ multiL=1; multiR=n/m; }else{ multiL=m/n; multiR=1; } const int Block=1024; __shared__ float buf[Block*4]; for (int i=blockIdx.x;i<b;i+=gridDim.x){ for (int j=threadIdx.x;j<n*m;j+=blockDim.x) match[i*n*m+j]=0; for (int j=threadIdx.x;j<n;j+=blockDim.x) remainL[j]=multiL; for (int j=threadIdx.x;j<m;j+=blockDim.x) remainR[j]=multiR; __syncthreads(); for (int j=7;j>=-2;j--){ float level=-powf(4.0f,j); if (j==-2){ level=0; } for (int k0=0;k0<n;k0+=blockDim.x){ int k=k0+threadIdx.x; float x1=0,y1=0,z1=0; if (k<n){ x1=xyz1[i*n*3+k*3+0]; y1=xyz1[i*n*3+k*3+1]; z1=xyz1[i*n*3+k*3+2]; } float suml=1e-9f; for (int l0=0;l0<m;l0+=Block){ int lend=min(m,l0+Block)-l0; for (int l=threadIdx.x;l<lend;l+=blockDim.x){ float x2=xyz2[i*m*3+l0*3+l*3+0]; float y2=xyz2[i*m*3+l0*3+l*3+1]; float z2=xyz2[i*m*3+l0*3+l*3+2]; buf[l*4+0]=x2; buf[l*4+1]=y2; buf[l*4+2]=z2; buf[l*4+3]=remainR[l0+l]; } __syncthreads(); for (int l=0;l<lend;l++){ float x2=buf[l*4+0]; float y2=buf[l*4+1]; float z2=buf[l*4+2]; float d=level*((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)+(z2-z1)*(z2-z1)); float w=__expf(d)*buf[l*4+3]; suml+=w; } __syncthreads(); } if (k<n) ratioL[k]=remainL[k]/suml; } /*for (int k=threadIdx.x;k<n;k+=gridDim.x){ float x1=xyz1[i*n*3+k*3+0]; float y1=xyz1[i*n*3+k*3+1]; float z1=xyz1[i*n*3+k*3+2]; float suml=1e-9f; for (int l=0;l<m;l++){ float x2=xyz2[i*m*3+l*3+0]; float y2=xyz2[i*m*3+l*3+1]; float z2=xyz2[i*m*3+l*3+2]; float w=expf(level*((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)+(z2-z1)*(z2-z1)))*remainR[l]; suml+=w; } ratioL[k]=remainL[k]/suml; }*/ __syncthreads(); for (int l0=0;l0<m;l0+=blockDim.x){ int l=l0+threadIdx.x; float x2=0,y2=0,z2=0; if (l<m){ x2=xyz2[i*m*3+l*3+0]; y2=xyz2[i*m*3+l*3+1]; z2=xyz2[i*m*3+l*3+2]; } float sumr=0; for (int k0=0;k0<n;k0+=Block){ int kend=min(n,k0+Block)-k0; for (int k=threadIdx.x;k<kend;k+=blockDim.x){ buf[k*4+0]=xyz1[i*n*3+k0*3+k*3+0]; buf[k*4+1]=xyz1[i*n*3+k0*3+k*3+1]; buf[k*4+2]=xyz1[i*n*3+k0*3+k*3+2]; buf[k*4+3]=ratioL[k0+k]; } __syncthreads(); for (int k=0;k<kend;k++){ float x1=buf[k*4+0]; float y1=buf[k*4+1]; float z1=buf[k*4+2]; float w=__expf(level*((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)+(z2-z1)*(z2-z1)))*buf[k*4+3]; sumr+=w; } __syncthreads(); } if (l<m){ sumr*=remainR[l]; float consumption=fminf(remainR[l]/(sumr+1e-9f),1.0f); ratioR[l]=consumption*remainR[l]; remainR[l]=fmaxf(0.0f,remainR[l]-sumr); } } /*for (int l=threadIdx.x;l<m;l+=blockDim.x){ float x2=xyz2[i*m*3+l*3+0]; float y2=xyz2[i*m*3+l*3+1]; float z2=xyz2[i*m*3+l*3+2]; float sumr=0; for (int k=0;k<n;k++){ float x1=xyz1[i*n*3+k*3+0]; float y1=xyz1[i*n*3+k*3+1]; float z1=xyz1[i*n*3+k*3+2]; float w=expf(level*((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)+(z2-z1)*(z2-z1)))*ratioL[k]; sumr+=w; } sumr*=remainR[l]; float consumption=fminf(remainR[l]/(sumr+1e-9f),1.0f); ratioR[l]=consumption*remainR[l]; remainR[l]=fmaxf(0.0f,remainR[l]-sumr); }*/ __syncthreads(); for (int k0=0;k0<n;k0+=blockDim.x){ int k=k0+threadIdx.x; float x1=0,y1=0,z1=0; if (k<n){ x1=xyz1[i*n*3+k*3+0]; y1=xyz1[i*n*3+k*3+1]; z1=xyz1[i*n*3+k*3+2]; } float suml=0; for (int l0=0;l0<m;l0+=Block){ int lend=min(m,l0+Block)-l0; for (int l=threadIdx.x;l<lend;l+=blockDim.x){ buf[l*4+0]=xyz2[i*m*3+l0*3+l*3+0]; buf[l*4+1]=xyz2[i*m*3+l0*3+l*3+1]; buf[l*4+2]=xyz2[i*m*3+l0*3+l*3+2]; buf[l*4+3]=ratioR[l0+l]; } __syncthreads(); float rl=ratioL[k]; if (k<n){ for (int l=0;l<lend;l++){ float x2=buf[l*4+0]; float y2=buf[l*4+1]; float z2=buf[l*4+2]; float w=__expf(level*((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)+(z2-z1)*(z2-z1)))*rl*buf[l*4+3]; match[i*n*m+(l0+l)*n+k]+=w; suml+=w; } } __syncthreads(); } if (k<n) remainL[k]=fmaxf(0.0f,remainL[k]-suml); } /*for (int k=threadIdx.x;k<n;k+=blockDim.x){ float x1=xyz1[i*n*3+k*3+0]; float y1=xyz1[i*n*3+k*3+1]; float z1=xyz1[i*n*3+k*3+2]; float suml=0; for (int l=0;l<m;l++){ float x2=xyz2[i*m*3+l*3+0]; float y2=xyz2[i*m*3+l*3+1]; float z2=xyz2[i*m*3+l*3+2]; float w=expf(level*((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)+(z2-z1)*(z2-z1)))*ratioL[k]*ratioR[l]; match[i*n*m+l*n+k]+=w; suml+=w; } remainL[k]=fmaxf(0.0f,remainL[k]-suml); }*/ __syncthreads(); } } } void approxmatchLauncher(int b,int n,int m,const float * xyz1,const float * xyz2,float * match,float * temp){ hipLaunchKernelGGL(( approxmatch), dim3(32),dim3(512), 0, 0, b,n,m,xyz1,xyz2,match,temp); } __global__ void matchcost(int b,int n,int m,const float * __restrict__ xyz1,const float * __restrict__ xyz2,const float * __restrict__ match,float * __restrict__ out){ __shared__ float allsum[512]; const int Block=1024; __shared__ float buf[Block*3]; for (int i=blockIdx.x;i<b;i+=gridDim.x){ float subsum=0; for (int k0=0;k0<n;k0+=blockDim.x){ int k=k0+threadIdx.x; float x1=0,y1=0,z1=0; if (k<n){ x1=xyz1[i*n*3+k*3+0]; y1=xyz1[i*n*3+k*3+1]; z1=xyz1[i*n*3+k*3+2]; } for (int l0=0;l0<m;l0+=Block){ int lend=min(m,l0+Block)-l0; for (int l=threadIdx.x;l<lend*3;l+=blockDim.x) buf[l]=xyz2[i*m*3+l0*3+l]; __syncthreads(); if (k<n){ for (int l=0;l<lend;l++){ float x2=buf[l*3+0]; float y2=buf[l*3+1]; float z2=buf[l*3+2]; float d=sqrtf((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)+(z2-z1)*(z2-z1)); subsum+=d*match[i*n*m+(l0+l)*n+k]; } } __syncthreads(); } } allsum[threadIdx.x]=subsum; for (int j=1;j<blockDim.x;j<<=1){ __syncthreads(); if ((threadIdx.x&j)==0 && threadIdx.x+j<blockDim.x){ allsum[threadIdx.x]+=allsum[threadIdx.x+j]; } } if (threadIdx.x==0) out[i]=allsum[0]; __syncthreads(); } } void matchcostLauncher(int b,int n,int m,const float * xyz1,const float * xyz2,const float * match,float * out){ hipLaunchKernelGGL(( matchcost), dim3(32),dim3(512), 0, 0, b,n,m,xyz1,xyz2,match,out); } __global__ void matchcostgrad2(int b,int n,int m,const float * __restrict__ xyz1,const float * __restrict__ xyz2,const float * __restrict__ match,float * __restrict__ grad2){ __shared__ float sum_grad[256*3]; for (int i=blockIdx.x;i<b;i+=gridDim.x){ int kbeg=m*blockIdx.y/gridDim.y; int kend=m*(blockIdx.y+1)/gridDim.y; for (int k=kbeg;k<kend;k++){ float x2=xyz2[(i*m+k)*3+0]; float y2=xyz2[(i*m+k)*3+1]; float z2=xyz2[(i*m+k)*3+2]; float subsumx=0,subsumy=0,subsumz=0; for (int j=threadIdx.x;j<n;j+=blockDim.x){ float x1=x2-xyz1[(i*n+j)*3+0]; float y1=y2-xyz1[(i*n+j)*3+1]; float z1=z2-xyz1[(i*n+j)*3+2]; float d=match[i*n*m+k*n+j]*rsqrtf(fmaxf(x1*x1+y1*y1+z1*z1,1e-20f)); subsumx+=x1*d; subsumy+=y1*d; subsumz+=z1*d; } sum_grad[threadIdx.x*3+0]=subsumx; sum_grad[threadIdx.x*3+1]=subsumy; sum_grad[threadIdx.x*3+2]=subsumz; for (int j=1;j<blockDim.x;j<<=1){ __syncthreads(); int j1=threadIdx.x; int j2=threadIdx.x+j; if ((j1&j)==0 && j2<blockDim.x){ sum_grad[j1*3+0]+=sum_grad[j2*3+0]; sum_grad[j1*3+1]+=sum_grad[j2*3+1]; sum_grad[j1*3+2]+=sum_grad[j2*3+2]; } } if (threadIdx.x==0){ grad2[(i*m+k)*3+0]=sum_grad[0]; grad2[(i*m+k)*3+1]=sum_grad[1]; grad2[(i*m+k)*3+2]=sum_grad[2]; } __syncthreads(); } } } __global__ void matchcostgrad1(int b,int n,int m,const float * __restrict__ xyz1,const float * __restrict__ xyz2,const float * __restrict__ match,float * __restrict__ grad1){ for (int i=blockIdx.x;i<b;i+=gridDim.x){ for (int l=threadIdx.x;l<n;l+=blockDim.x){ float x1=xyz1[i*n*3+l*3+0]; float y1=xyz1[i*n*3+l*3+1]; float z1=xyz1[i*n*3+l*3+2]; float dx=0,dy=0,dz=0; for (int k=0;k<m;k++){ float x2=xyz2[i*m*3+k*3+0]; float y2=xyz2[i*m*3+k*3+1]; float z2=xyz2[i*m*3+k*3+2]; float d=match[i*n*m+k*n+l]*rsqrtf(fmaxf((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)+(z1-z2)*(z1-z2),1e-20f)); dx+=(x1-x2)*d; dy+=(y1-y2)*d; dz+=(z1-z2)*d; } grad1[i*n*3+l*3+0]=dx; grad1[i*n*3+l*3+1]=dy; grad1[i*n*3+l*3+2]=dz; } } } void matchcostgradLauncher(int b,int n,int m,const float * xyz1,const float * xyz2,const float * match,float * grad1,float * grad2){ hipLaunchKernelGGL(( matchcostgrad1), dim3(32),dim3(512), 0, 0, b,n,m,xyz1,xyz2,match,grad1); hipLaunchKernelGGL(( matchcostgrad2), dim3(dim3(32,32)),dim3(256), 0, 0, b,n,m,xyz1,xyz2,match,grad2); }
7b524292e483cff1b71424f03e4af500f3b09477.cu
__global__ void approxmatch(int b,int n,int m,const float * __restrict__ xyz1,const float * __restrict__ xyz2,float * __restrict__ match,float * temp){ float * remainL=temp+blockIdx.x*(n+m)*2, * remainR=temp+blockIdx.x*(n+m)*2+n,*ratioL=temp+blockIdx.x*(n+m)*2+n+m,*ratioR=temp+blockIdx.x*(n+m)*2+n+m+n; float multiL,multiR; if (n>=m){ multiL=1; multiR=n/m; }else{ multiL=m/n; multiR=1; } const int Block=1024; __shared__ float buf[Block*4]; for (int i=blockIdx.x;i<b;i+=gridDim.x){ for (int j=threadIdx.x;j<n*m;j+=blockDim.x) match[i*n*m+j]=0; for (int j=threadIdx.x;j<n;j+=blockDim.x) remainL[j]=multiL; for (int j=threadIdx.x;j<m;j+=blockDim.x) remainR[j]=multiR; __syncthreads(); for (int j=7;j>=-2;j--){ float level=-powf(4.0f,j); if (j==-2){ level=0; } for (int k0=0;k0<n;k0+=blockDim.x){ int k=k0+threadIdx.x; float x1=0,y1=0,z1=0; if (k<n){ x1=xyz1[i*n*3+k*3+0]; y1=xyz1[i*n*3+k*3+1]; z1=xyz1[i*n*3+k*3+2]; } float suml=1e-9f; for (int l0=0;l0<m;l0+=Block){ int lend=min(m,l0+Block)-l0; for (int l=threadIdx.x;l<lend;l+=blockDim.x){ float x2=xyz2[i*m*3+l0*3+l*3+0]; float y2=xyz2[i*m*3+l0*3+l*3+1]; float z2=xyz2[i*m*3+l0*3+l*3+2]; buf[l*4+0]=x2; buf[l*4+1]=y2; buf[l*4+2]=z2; buf[l*4+3]=remainR[l0+l]; } __syncthreads(); for (int l=0;l<lend;l++){ float x2=buf[l*4+0]; float y2=buf[l*4+1]; float z2=buf[l*4+2]; float d=level*((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)+(z2-z1)*(z2-z1)); float w=__expf(d)*buf[l*4+3]; suml+=w; } __syncthreads(); } if (k<n) ratioL[k]=remainL[k]/suml; } /*for (int k=threadIdx.x;k<n;k+=gridDim.x){ float x1=xyz1[i*n*3+k*3+0]; float y1=xyz1[i*n*3+k*3+1]; float z1=xyz1[i*n*3+k*3+2]; float suml=1e-9f; for (int l=0;l<m;l++){ float x2=xyz2[i*m*3+l*3+0]; float y2=xyz2[i*m*3+l*3+1]; float z2=xyz2[i*m*3+l*3+2]; float w=expf(level*((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)+(z2-z1)*(z2-z1)))*remainR[l]; suml+=w; } ratioL[k]=remainL[k]/suml; }*/ __syncthreads(); for (int l0=0;l0<m;l0+=blockDim.x){ int l=l0+threadIdx.x; float x2=0,y2=0,z2=0; if (l<m){ x2=xyz2[i*m*3+l*3+0]; y2=xyz2[i*m*3+l*3+1]; z2=xyz2[i*m*3+l*3+2]; } float sumr=0; for (int k0=0;k0<n;k0+=Block){ int kend=min(n,k0+Block)-k0; for (int k=threadIdx.x;k<kend;k+=blockDim.x){ buf[k*4+0]=xyz1[i*n*3+k0*3+k*3+0]; buf[k*4+1]=xyz1[i*n*3+k0*3+k*3+1]; buf[k*4+2]=xyz1[i*n*3+k0*3+k*3+2]; buf[k*4+3]=ratioL[k0+k]; } __syncthreads(); for (int k=0;k<kend;k++){ float x1=buf[k*4+0]; float y1=buf[k*4+1]; float z1=buf[k*4+2]; float w=__expf(level*((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)+(z2-z1)*(z2-z1)))*buf[k*4+3]; sumr+=w; } __syncthreads(); } if (l<m){ sumr*=remainR[l]; float consumption=fminf(remainR[l]/(sumr+1e-9f),1.0f); ratioR[l]=consumption*remainR[l]; remainR[l]=fmaxf(0.0f,remainR[l]-sumr); } } /*for (int l=threadIdx.x;l<m;l+=blockDim.x){ float x2=xyz2[i*m*3+l*3+0]; float y2=xyz2[i*m*3+l*3+1]; float z2=xyz2[i*m*3+l*3+2]; float sumr=0; for (int k=0;k<n;k++){ float x1=xyz1[i*n*3+k*3+0]; float y1=xyz1[i*n*3+k*3+1]; float z1=xyz1[i*n*3+k*3+2]; float w=expf(level*((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)+(z2-z1)*(z2-z1)))*ratioL[k]; sumr+=w; } sumr*=remainR[l]; float consumption=fminf(remainR[l]/(sumr+1e-9f),1.0f); ratioR[l]=consumption*remainR[l]; remainR[l]=fmaxf(0.0f,remainR[l]-sumr); }*/ __syncthreads(); for (int k0=0;k0<n;k0+=blockDim.x){ int k=k0+threadIdx.x; float x1=0,y1=0,z1=0; if (k<n){ x1=xyz1[i*n*3+k*3+0]; y1=xyz1[i*n*3+k*3+1]; z1=xyz1[i*n*3+k*3+2]; } float suml=0; for (int l0=0;l0<m;l0+=Block){ int lend=min(m,l0+Block)-l0; for (int l=threadIdx.x;l<lend;l+=blockDim.x){ buf[l*4+0]=xyz2[i*m*3+l0*3+l*3+0]; buf[l*4+1]=xyz2[i*m*3+l0*3+l*3+1]; buf[l*4+2]=xyz2[i*m*3+l0*3+l*3+2]; buf[l*4+3]=ratioR[l0+l]; } __syncthreads(); float rl=ratioL[k]; if (k<n){ for (int l=0;l<lend;l++){ float x2=buf[l*4+0]; float y2=buf[l*4+1]; float z2=buf[l*4+2]; float w=__expf(level*((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)+(z2-z1)*(z2-z1)))*rl*buf[l*4+3]; match[i*n*m+(l0+l)*n+k]+=w; suml+=w; } } __syncthreads(); } if (k<n) remainL[k]=fmaxf(0.0f,remainL[k]-suml); } /*for (int k=threadIdx.x;k<n;k+=blockDim.x){ float x1=xyz1[i*n*3+k*3+0]; float y1=xyz1[i*n*3+k*3+1]; float z1=xyz1[i*n*3+k*3+2]; float suml=0; for (int l=0;l<m;l++){ float x2=xyz2[i*m*3+l*3+0]; float y2=xyz2[i*m*3+l*3+1]; float z2=xyz2[i*m*3+l*3+2]; float w=expf(level*((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)+(z2-z1)*(z2-z1)))*ratioL[k]*ratioR[l]; match[i*n*m+l*n+k]+=w; suml+=w; } remainL[k]=fmaxf(0.0f,remainL[k]-suml); }*/ __syncthreads(); } } } void approxmatchLauncher(int b,int n,int m,const float * xyz1,const float * xyz2,float * match,float * temp){ approxmatch<<<32,512>>>(b,n,m,xyz1,xyz2,match,temp); } __global__ void matchcost(int b,int n,int m,const float * __restrict__ xyz1,const float * __restrict__ xyz2,const float * __restrict__ match,float * __restrict__ out){ __shared__ float allsum[512]; const int Block=1024; __shared__ float buf[Block*3]; for (int i=blockIdx.x;i<b;i+=gridDim.x){ float subsum=0; for (int k0=0;k0<n;k0+=blockDim.x){ int k=k0+threadIdx.x; float x1=0,y1=0,z1=0; if (k<n){ x1=xyz1[i*n*3+k*3+0]; y1=xyz1[i*n*3+k*3+1]; z1=xyz1[i*n*3+k*3+2]; } for (int l0=0;l0<m;l0+=Block){ int lend=min(m,l0+Block)-l0; for (int l=threadIdx.x;l<lend*3;l+=blockDim.x) buf[l]=xyz2[i*m*3+l0*3+l]; __syncthreads(); if (k<n){ for (int l=0;l<lend;l++){ float x2=buf[l*3+0]; float y2=buf[l*3+1]; float z2=buf[l*3+2]; float d=sqrtf((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)+(z2-z1)*(z2-z1)); subsum+=d*match[i*n*m+(l0+l)*n+k]; } } __syncthreads(); } } allsum[threadIdx.x]=subsum; for (int j=1;j<blockDim.x;j<<=1){ __syncthreads(); if ((threadIdx.x&j)==0 && threadIdx.x+j<blockDim.x){ allsum[threadIdx.x]+=allsum[threadIdx.x+j]; } } if (threadIdx.x==0) out[i]=allsum[0]; __syncthreads(); } } void matchcostLauncher(int b,int n,int m,const float * xyz1,const float * xyz2,const float * match,float * out){ matchcost<<<32,512>>>(b,n,m,xyz1,xyz2,match,out); } __global__ void matchcostgrad2(int b,int n,int m,const float * __restrict__ xyz1,const float * __restrict__ xyz2,const float * __restrict__ match,float * __restrict__ grad2){ __shared__ float sum_grad[256*3]; for (int i=blockIdx.x;i<b;i+=gridDim.x){ int kbeg=m*blockIdx.y/gridDim.y; int kend=m*(blockIdx.y+1)/gridDim.y; for (int k=kbeg;k<kend;k++){ float x2=xyz2[(i*m+k)*3+0]; float y2=xyz2[(i*m+k)*3+1]; float z2=xyz2[(i*m+k)*3+2]; float subsumx=0,subsumy=0,subsumz=0; for (int j=threadIdx.x;j<n;j+=blockDim.x){ float x1=x2-xyz1[(i*n+j)*3+0]; float y1=y2-xyz1[(i*n+j)*3+1]; float z1=z2-xyz1[(i*n+j)*3+2]; float d=match[i*n*m+k*n+j]*rsqrtf(fmaxf(x1*x1+y1*y1+z1*z1,1e-20f)); subsumx+=x1*d; subsumy+=y1*d; subsumz+=z1*d; } sum_grad[threadIdx.x*3+0]=subsumx; sum_grad[threadIdx.x*3+1]=subsumy; sum_grad[threadIdx.x*3+2]=subsumz; for (int j=1;j<blockDim.x;j<<=1){ __syncthreads(); int j1=threadIdx.x; int j2=threadIdx.x+j; if ((j1&j)==0 && j2<blockDim.x){ sum_grad[j1*3+0]+=sum_grad[j2*3+0]; sum_grad[j1*3+1]+=sum_grad[j2*3+1]; sum_grad[j1*3+2]+=sum_grad[j2*3+2]; } } if (threadIdx.x==0){ grad2[(i*m+k)*3+0]=sum_grad[0]; grad2[(i*m+k)*3+1]=sum_grad[1]; grad2[(i*m+k)*3+2]=sum_grad[2]; } __syncthreads(); } } } __global__ void matchcostgrad1(int b,int n,int m,const float * __restrict__ xyz1,const float * __restrict__ xyz2,const float * __restrict__ match,float * __restrict__ grad1){ for (int i=blockIdx.x;i<b;i+=gridDim.x){ for (int l=threadIdx.x;l<n;l+=blockDim.x){ float x1=xyz1[i*n*3+l*3+0]; float y1=xyz1[i*n*3+l*3+1]; float z1=xyz1[i*n*3+l*3+2]; float dx=0,dy=0,dz=0; for (int k=0;k<m;k++){ float x2=xyz2[i*m*3+k*3+0]; float y2=xyz2[i*m*3+k*3+1]; float z2=xyz2[i*m*3+k*3+2]; float d=match[i*n*m+k*n+l]*rsqrtf(fmaxf((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)+(z1-z2)*(z1-z2),1e-20f)); dx+=(x1-x2)*d; dy+=(y1-y2)*d; dz+=(z1-z2)*d; } grad1[i*n*3+l*3+0]=dx; grad1[i*n*3+l*3+1]=dy; grad1[i*n*3+l*3+2]=dz; } } } void matchcostgradLauncher(int b,int n,int m,const float * xyz1,const float * xyz2,const float * match,float * grad1,float * grad2){ matchcostgrad1<<<32,512>>>(b,n,m,xyz1,xyz2,match,grad1); matchcostgrad2<<<dim3(32,32),256>>>(b,n,m,xyz1,xyz2,match,grad2); }
4e772e1e83bbc0874a13fdac0b1f47839d174f92.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" // Copyright 2020 ETH Zurich. All Rights Reserved. #include "dump_particles.h" #include "utils/simple_serializer.h" #include "utils/time_stamp.h" #include <mirheo/core/pvs/rod_vector.h> #include <mirheo/core/simulation.h> #include <mirheo/core/utils/config.h> #include <mirheo/core/utils/cuda_common.h> #include <mirheo/core/utils/path.h> #include <mirheo/core/utils/kernel_launch.h> #include <mirheo/core/xdmf/type_map.h> namespace mirheo { namespace dump_particles_kernels { template <typename T> __global__ void copyObjectDataToParticles(int objSize, int nObjects, const T *srcObjData, T *dstParticleData) { const int pid = threadIdx.x + blockIdx.x * blockDim.x; const int objId = pid / objSize; if (objId >= nObjects) return; dstParticleData[pid] = srcObjData[objId]; } template <typename T> __global__ void copyRodDataToParticles(int numBiSegmentsPerObject, int objSize, int nObjects, const T *rodData, T *particleData) { constexpr int stride = 5; const int pid = threadIdx.x + blockIdx.x * blockDim.x; const int objId = pid / objSize; const int localPartId = pid % objSize; const int localBisegId = math::min(localPartId / stride, numBiSegmentsPerObject); // min because of last particle const int bid = objId * numBiSegmentsPerObject + localBisegId; if (objId < nObjects) particleData[pid] = rodData[bid]; } } // namespace dump_particles_kernels ParticleSenderPlugin::ParticleSenderPlugin(const MirState *state, std::string name, std::string pvName, int dumpEvery, const std::vector<std::string>& channelNames) : SimulationPlugin(state, name), pvName_(pvName), dumpEvery_(dumpEvery), channelNames_(channelNames) { channelData_.resize(channelNames_.size()); } ParticleSenderPlugin::ParticleSenderPlugin(const MirState *state, Loader& loader, const ConfigObject& config) : ParticleSenderPlugin(state, config["name"], config["pvName"], config["dumpEvery"], loader.load<std::vector<std::string>>(config["channelNames"])) {} ParticleSenderPlugin::~ParticleSenderPlugin() = default; void ParticleSenderPlugin::setup(Simulation *simulation, const MPI_Comm& comm, const MPI_Comm& interComm) { SimulationPlugin::setup(simulation, comm, interComm); pv_ = simulation->getPVbyNameOrDie(pvName_); info("Plugin %s initialized for the following particle vector: %s", getCName(), pvName_.c_str()); } void ParticleSenderPlugin::handshake() { std::vector<XDMF::Channel::DataForm> dataForms; std::vector<XDMF::Channel::NumberType> numberTypes; std::vector<std::string> typeDescriptorsStr; auto pushChannelInfos = [&dataForms, &numberTypes, &typeDescriptorsStr](const DataManager::ChannelDescription& desc) { mpark::visit([&dataForms, &numberTypes, &typeDescriptorsStr](auto pinnedBufferPtr) { using T = typename std::remove_pointer<decltype(pinnedBufferPtr)>::type::value_type; dataForms .push_back(XDMF::getDataForm <T>()); numberTypes .push_back(XDMF::getNumberType<T>()); typeDescriptorsStr.push_back(typeDescriptorToString(DataTypeWrapper<T>{})); }, desc.varDataPtr); }; auto ov = dynamic_cast<ObjectVector*>(pv_); auto rv = dynamic_cast<RodVector*>(pv_); for (const auto& name : channelNames_) { if (pv_->local()->dataPerParticle.checkChannelExists(name)) { const auto& desc = pv_->local()->dataPerParticle.getChannelDescOrDie(name); pushChannelInfos(desc); } else if (ov != nullptr && ov->local()->dataPerObject.checkChannelExists(name)) { const auto& desc = ov->local()->dataPerObject.getChannelDescOrDie(name); pushChannelInfos(desc); } else if (rv != nullptr && rv->local()->dataPerBisegment.checkChannelExists(name)) { const auto& desc = rv->local()->dataPerBisegment.getChannelDescOrDie(name); pushChannelInfos(desc); } else { die("Channel not found: '%s' in particle vector '%s'", getCName(), pv_->getCName()); } } _waitPrevSend(); SimpleSerializer::serialize(sendBuffer_, channelNames_, dataForms, numberTypes, typeDescriptorsStr); _send(sendBuffer_); } static inline void copyData(ParticleVector *pv, const std::string& channelName, HostBuffer<char>& dst, hipStream_t stream) { auto srcContainer = pv->local()->dataPerParticle.getGenericData(channelName); dst.genericCopy(srcContainer, stream); } static inline void copyData(ObjectVector *ov, const std::string& channelName, HostBuffer<char>& dst, DeviceBuffer<char>& workSpace, hipStream_t stream) { auto lov = ov->local(); const auto& srcDesc = lov->dataPerObject.getChannelDescOrDie(channelName); const int objSize = lov->getObjectSize(); const int nObjects = lov->getNumObjects(); mpark::visit([&](auto srcBufferPtr) { using T = typename std::remove_pointer<decltype(srcBufferPtr)>::type::value_type; constexpr int nthreads = 128; const int nParts = objSize * nObjects; const int nblocks = getNblocks(nParts, nthreads); workSpace.resize_anew(nParts * sizeof(T)); SAFE_KERNEL_LAUNCH( dump_particles_kernels::copyObjectDataToParticles, nblocks, nthreads, 0, stream, objSize, nObjects, srcBufferPtr->devPtr(), reinterpret_cast<T*>(workSpace.devPtr())); }, srcDesc.varDataPtr); dst.genericCopy(&workSpace, stream); } static inline void copyData(RodVector *rv, const std::string& channelName, HostBuffer<char>& dst, DeviceBuffer<char>& workSpace, hipStream_t stream) { auto lrv = rv->local(); const auto& srcDesc = lrv->dataPerBisegment.getChannelDescOrDie(channelName); const int objSize = lrv->getObjectSize(); const int nObjects = lrv->getNumObjects(); const int numBiSegmentsPerObject = lrv->getNumSegmentsPerRod() - 1; mpark::visit([&](auto srcBufferPtr) { using T = typename std::remove_pointer<decltype(srcBufferPtr)>::type::value_type; constexpr int nthreads = 128; const int nParts = objSize * nObjects; const int nblocks = getNblocks(nParts, nthreads); workSpace.resize_anew(nParts * sizeof(T)); SAFE_KERNEL_LAUNCH( dump_particles_kernels::copyRodDataToParticles, nblocks, nthreads, 0, stream, numBiSegmentsPerObject, objSize, nObjects, srcBufferPtr->devPtr(), reinterpret_cast<T*>(workSpace.devPtr())); }, srcDesc.varDataPtr); dst.genericCopy(&workSpace, stream); } void ParticleSenderPlugin::beforeForces(hipStream_t stream) { if (!isTimeEvery(getState(), dumpEvery_)) return; positions_ .genericCopy(&pv_->local()->positions() , stream); velocities_.genericCopy(&pv_->local()->velocities(), stream); auto ov = dynamic_cast<ObjectVector*>(pv_); auto rv = dynamic_cast<RodVector*>(pv_); for (size_t i = 0; i < channelNames_.size(); ++i) { auto name = channelNames_[i]; if (pv_->local()->dataPerParticle.checkChannelExists(name)) { copyData(pv_, name, channelData_[i], stream); } else if (ov != nullptr && ov->local()->dataPerObject.checkChannelExists(name)) { copyData(ov, name, channelData_[i], workSpace_, stream); } else if (rv != nullptr && rv->local()->dataPerBisegment.checkChannelExists(name)) { copyData(rv, name, channelData_[i], workSpace_, stream); } else { die("Channel not found: '%s' in particle vector '%s'", getCName(), pv_->getCName()); } } } void ParticleSenderPlugin::serializeAndSend(__UNUSED hipStream_t stream) { if (!isTimeEvery(getState(), dumpEvery_)) return; debug2("Plugin %s is sending now data", getCName()); for (auto& p : positions_) { auto r = getState()->domain.local2global(make_real3(p)); p.x = r.x; p.y = r.y; p.z = r.z; } const MirState::StepType timeStamp = getTimeStamp(getState(), dumpEvery_); debug2("Plugin %s is packing now data consisting of %zu particles", getCName(), positions_.size()); _waitPrevSend(); SimpleSerializer::serialize(sendBuffer_, timeStamp, getState()->currentTime, positions_, velocities_, channelData_); _send(sendBuffer_); } void ParticleSenderPlugin::saveSnapshotAndRegister(Saver& saver) { saver.registerObject(this, _saveSnapshot(saver, "ParticleSenderPlugin")); } ConfigObject ParticleSenderPlugin::_saveSnapshot(Saver& saver, const std::string& typeName) { ConfigObject config = SimulationPlugin::_saveSnapshot(saver, typeName); config.emplace("pvName", saver(pvName_)); config.emplace("dumpEvery", saver(dumpEvery_)); config.emplace("channelNames", saver(channelNames_)); return config; } ParticleDumperPlugin::ParticleDumperPlugin(std::string name, std::string path) : PostprocessPlugin(name), path_(path), positions_(std::make_shared<std::vector<real3>>()) {} ParticleDumperPlugin::ParticleDumperPlugin(Loader&, const ConfigObject& config) : ParticleDumperPlugin(config["name"], config["path"]) {} ParticleDumperPlugin::~ParticleDumperPlugin() = default; void ParticleDumperPlugin::handshake() { auto req = waitData(); MPI_Check( MPI_Wait(&req, MPI_STATUS_IGNORE) ); recv(); std::vector<std::string> names; std::vector<XDMF::Channel::DataForm> dataForms; std::vector<XDMF::Channel::NumberType> numberTypes; std::vector<std::string> typeDescriptorsStr; SimpleSerializer::deserialize(data_, names, dataForms, numberTypes, typeDescriptorsStr); auto initChannel = [] (const std::string& name, XDMF::Channel::DataForm dataForm, XDMF::Channel::NumberType numberType, TypeDescriptor datatype, XDMF::Channel::NeedShift needShift = XDMF::Channel::NeedShift::False) { return XDMF::Channel{name, nullptr, dataForm, numberType, datatype, needShift}; }; // Velocity and id are special channels which are always present std::string allNames = "'velocity', 'id'"; channels_.push_back(initChannel("velocity", XDMF::Channel::DataForm::Vector, XDMF::getNumberType<real>(), DataTypeWrapper<real>())); channels_.push_back(initChannel("id", XDMF::Channel::DataForm::Scalar, XDMF::Channel::NumberType::Int64, DataTypeWrapper<int64_t>())); for (size_t i = 0; i < names.size(); ++i) { const std::string& name = names[i]; const auto dataForm = dataForms[i]; const auto numberType = numberTypes[i]; const auto dataType = stringToTypeDescriptor(typeDescriptorsStr[i]); const auto channel = initChannel(name, dataForm, numberType, dataType); channels_.push_back(channel); allNames += ", '" + name + "'"; } // Create the required folder createFoldersCollective(comm_, getParentPath(path_)); debug2("Plugin '%s' was set up to dump channels %s. Path is %s", getCName(), allNames.c_str(), path_.c_str()); } static void unpackParticles(const std::vector<real4> &pos4, const std::vector<real4> &vel4, std::vector<real3> &pos, std::vector<real3> &vel, std::vector<int64_t> &ids) { const size_t n = pos4.size(); pos.resize(n); vel.resize(n); ids.resize(n); for (size_t i = 0; i < n; ++i) { auto p = Particle(pos4[i], vel4[i]); pos[i] = p.r; vel[i] = p.u; ids[i] = p.getId(); } } void ParticleDumperPlugin::_recvAndUnpack(MirState::TimeType &time, MirState::StepType& timeStamp) { int c = 0; SimpleSerializer::deserialize(data_, timeStamp, time, pos4_, vel4_, channelData_); unpackParticles(pos4_, vel4_, *positions_, velocities_, ids_); channels_[c++].data = velocities_.data(); channels_[c++].data = ids_.data(); for (auto& cd : channelData_) channels_[c++].data = cd.data(); } void ParticleDumperPlugin::deserialize() { debug2("Plugin '%s' will dump right now", getCName()); MirState::TimeType time; MirState::StepType timeStamp; _recvAndUnpack(time, timeStamp); std::string fname = path_ + createStrZeroPadded(timeStamp, zeroPadding_); XDMF::VertexGrid grid(positions_, comm_); XDMF::write(fname, &grid, channels_, time, comm_); } void ParticleDumperPlugin::saveSnapshotAndRegister(Saver& saver) { saver.registerObject(this, _saveSnapshot(saver, "ParticleDumperPlugin")); } ConfigObject ParticleDumperPlugin::_saveSnapshot(Saver& saver, const std::string& typeName) { ConfigObject config = PostprocessPlugin::_saveSnapshot(saver, typeName); config.emplace("path", saver(path_)); return config; } } // namespace mirheo
4e772e1e83bbc0874a13fdac0b1f47839d174f92.cu
// Copyright 2020 ETH Zurich. All Rights Reserved. #include "dump_particles.h" #include "utils/simple_serializer.h" #include "utils/time_stamp.h" #include <mirheo/core/pvs/rod_vector.h> #include <mirheo/core/simulation.h> #include <mirheo/core/utils/config.h> #include <mirheo/core/utils/cuda_common.h> #include <mirheo/core/utils/path.h> #include <mirheo/core/utils/kernel_launch.h> #include <mirheo/core/xdmf/type_map.h> namespace mirheo { namespace dump_particles_kernels { template <typename T> __global__ void copyObjectDataToParticles(int objSize, int nObjects, const T *srcObjData, T *dstParticleData) { const int pid = threadIdx.x + blockIdx.x * blockDim.x; const int objId = pid / objSize; if (objId >= nObjects) return; dstParticleData[pid] = srcObjData[objId]; } template <typename T> __global__ void copyRodDataToParticles(int numBiSegmentsPerObject, int objSize, int nObjects, const T *rodData, T *particleData) { constexpr int stride = 5; const int pid = threadIdx.x + blockIdx.x * blockDim.x; const int objId = pid / objSize; const int localPartId = pid % objSize; const int localBisegId = math::min(localPartId / stride, numBiSegmentsPerObject); // min because of last particle const int bid = objId * numBiSegmentsPerObject + localBisegId; if (objId < nObjects) particleData[pid] = rodData[bid]; } } // namespace dump_particles_kernels ParticleSenderPlugin::ParticleSenderPlugin(const MirState *state, std::string name, std::string pvName, int dumpEvery, const std::vector<std::string>& channelNames) : SimulationPlugin(state, name), pvName_(pvName), dumpEvery_(dumpEvery), channelNames_(channelNames) { channelData_.resize(channelNames_.size()); } ParticleSenderPlugin::ParticleSenderPlugin(const MirState *state, Loader& loader, const ConfigObject& config) : ParticleSenderPlugin(state, config["name"], config["pvName"], config["dumpEvery"], loader.load<std::vector<std::string>>(config["channelNames"])) {} ParticleSenderPlugin::~ParticleSenderPlugin() = default; void ParticleSenderPlugin::setup(Simulation *simulation, const MPI_Comm& comm, const MPI_Comm& interComm) { SimulationPlugin::setup(simulation, comm, interComm); pv_ = simulation->getPVbyNameOrDie(pvName_); info("Plugin %s initialized for the following particle vector: %s", getCName(), pvName_.c_str()); } void ParticleSenderPlugin::handshake() { std::vector<XDMF::Channel::DataForm> dataForms; std::vector<XDMF::Channel::NumberType> numberTypes; std::vector<std::string> typeDescriptorsStr; auto pushChannelInfos = [&dataForms, &numberTypes, &typeDescriptorsStr](const DataManager::ChannelDescription& desc) { mpark::visit([&dataForms, &numberTypes, &typeDescriptorsStr](auto pinnedBufferPtr) { using T = typename std::remove_pointer<decltype(pinnedBufferPtr)>::type::value_type; dataForms .push_back(XDMF::getDataForm <T>()); numberTypes .push_back(XDMF::getNumberType<T>()); typeDescriptorsStr.push_back(typeDescriptorToString(DataTypeWrapper<T>{})); }, desc.varDataPtr); }; auto ov = dynamic_cast<ObjectVector*>(pv_); auto rv = dynamic_cast<RodVector*>(pv_); for (const auto& name : channelNames_) { if (pv_->local()->dataPerParticle.checkChannelExists(name)) { const auto& desc = pv_->local()->dataPerParticle.getChannelDescOrDie(name); pushChannelInfos(desc); } else if (ov != nullptr && ov->local()->dataPerObject.checkChannelExists(name)) { const auto& desc = ov->local()->dataPerObject.getChannelDescOrDie(name); pushChannelInfos(desc); } else if (rv != nullptr && rv->local()->dataPerBisegment.checkChannelExists(name)) { const auto& desc = rv->local()->dataPerBisegment.getChannelDescOrDie(name); pushChannelInfos(desc); } else { die("Channel not found: '%s' in particle vector '%s'", getCName(), pv_->getCName()); } } _waitPrevSend(); SimpleSerializer::serialize(sendBuffer_, channelNames_, dataForms, numberTypes, typeDescriptorsStr); _send(sendBuffer_); } static inline void copyData(ParticleVector *pv, const std::string& channelName, HostBuffer<char>& dst, cudaStream_t stream) { auto srcContainer = pv->local()->dataPerParticle.getGenericData(channelName); dst.genericCopy(srcContainer, stream); } static inline void copyData(ObjectVector *ov, const std::string& channelName, HostBuffer<char>& dst, DeviceBuffer<char>& workSpace, cudaStream_t stream) { auto lov = ov->local(); const auto& srcDesc = lov->dataPerObject.getChannelDescOrDie(channelName); const int objSize = lov->getObjectSize(); const int nObjects = lov->getNumObjects(); mpark::visit([&](auto srcBufferPtr) { using T = typename std::remove_pointer<decltype(srcBufferPtr)>::type::value_type; constexpr int nthreads = 128; const int nParts = objSize * nObjects; const int nblocks = getNblocks(nParts, nthreads); workSpace.resize_anew(nParts * sizeof(T)); SAFE_KERNEL_LAUNCH( dump_particles_kernels::copyObjectDataToParticles, nblocks, nthreads, 0, stream, objSize, nObjects, srcBufferPtr->devPtr(), reinterpret_cast<T*>(workSpace.devPtr())); }, srcDesc.varDataPtr); dst.genericCopy(&workSpace, stream); } static inline void copyData(RodVector *rv, const std::string& channelName, HostBuffer<char>& dst, DeviceBuffer<char>& workSpace, cudaStream_t stream) { auto lrv = rv->local(); const auto& srcDesc = lrv->dataPerBisegment.getChannelDescOrDie(channelName); const int objSize = lrv->getObjectSize(); const int nObjects = lrv->getNumObjects(); const int numBiSegmentsPerObject = lrv->getNumSegmentsPerRod() - 1; mpark::visit([&](auto srcBufferPtr) { using T = typename std::remove_pointer<decltype(srcBufferPtr)>::type::value_type; constexpr int nthreads = 128; const int nParts = objSize * nObjects; const int nblocks = getNblocks(nParts, nthreads); workSpace.resize_anew(nParts * sizeof(T)); SAFE_KERNEL_LAUNCH( dump_particles_kernels::copyRodDataToParticles, nblocks, nthreads, 0, stream, numBiSegmentsPerObject, objSize, nObjects, srcBufferPtr->devPtr(), reinterpret_cast<T*>(workSpace.devPtr())); }, srcDesc.varDataPtr); dst.genericCopy(&workSpace, stream); } void ParticleSenderPlugin::beforeForces(cudaStream_t stream) { if (!isTimeEvery(getState(), dumpEvery_)) return; positions_ .genericCopy(&pv_->local()->positions() , stream); velocities_.genericCopy(&pv_->local()->velocities(), stream); auto ov = dynamic_cast<ObjectVector*>(pv_); auto rv = dynamic_cast<RodVector*>(pv_); for (size_t i = 0; i < channelNames_.size(); ++i) { auto name = channelNames_[i]; if (pv_->local()->dataPerParticle.checkChannelExists(name)) { copyData(pv_, name, channelData_[i], stream); } else if (ov != nullptr && ov->local()->dataPerObject.checkChannelExists(name)) { copyData(ov, name, channelData_[i], workSpace_, stream); } else if (rv != nullptr && rv->local()->dataPerBisegment.checkChannelExists(name)) { copyData(rv, name, channelData_[i], workSpace_, stream); } else { die("Channel not found: '%s' in particle vector '%s'", getCName(), pv_->getCName()); } } } void ParticleSenderPlugin::serializeAndSend(__UNUSED cudaStream_t stream) { if (!isTimeEvery(getState(), dumpEvery_)) return; debug2("Plugin %s is sending now data", getCName()); for (auto& p : positions_) { auto r = getState()->domain.local2global(make_real3(p)); p.x = r.x; p.y = r.y; p.z = r.z; } const MirState::StepType timeStamp = getTimeStamp(getState(), dumpEvery_); debug2("Plugin %s is packing now data consisting of %zu particles", getCName(), positions_.size()); _waitPrevSend(); SimpleSerializer::serialize(sendBuffer_, timeStamp, getState()->currentTime, positions_, velocities_, channelData_); _send(sendBuffer_); } void ParticleSenderPlugin::saveSnapshotAndRegister(Saver& saver) { saver.registerObject(this, _saveSnapshot(saver, "ParticleSenderPlugin")); } ConfigObject ParticleSenderPlugin::_saveSnapshot(Saver& saver, const std::string& typeName) { ConfigObject config = SimulationPlugin::_saveSnapshot(saver, typeName); config.emplace("pvName", saver(pvName_)); config.emplace("dumpEvery", saver(dumpEvery_)); config.emplace("channelNames", saver(channelNames_)); return config; } ParticleDumperPlugin::ParticleDumperPlugin(std::string name, std::string path) : PostprocessPlugin(name), path_(path), positions_(std::make_shared<std::vector<real3>>()) {} ParticleDumperPlugin::ParticleDumperPlugin(Loader&, const ConfigObject& config) : ParticleDumperPlugin(config["name"], config["path"]) {} ParticleDumperPlugin::~ParticleDumperPlugin() = default; void ParticleDumperPlugin::handshake() { auto req = waitData(); MPI_Check( MPI_Wait(&req, MPI_STATUS_IGNORE) ); recv(); std::vector<std::string> names; std::vector<XDMF::Channel::DataForm> dataForms; std::vector<XDMF::Channel::NumberType> numberTypes; std::vector<std::string> typeDescriptorsStr; SimpleSerializer::deserialize(data_, names, dataForms, numberTypes, typeDescriptorsStr); auto initChannel = [] (const std::string& name, XDMF::Channel::DataForm dataForm, XDMF::Channel::NumberType numberType, TypeDescriptor datatype, XDMF::Channel::NeedShift needShift = XDMF::Channel::NeedShift::False) { return XDMF::Channel{name, nullptr, dataForm, numberType, datatype, needShift}; }; // Velocity and id are special channels which are always present std::string allNames = "'velocity', 'id'"; channels_.push_back(initChannel("velocity", XDMF::Channel::DataForm::Vector, XDMF::getNumberType<real>(), DataTypeWrapper<real>())); channels_.push_back(initChannel("id", XDMF::Channel::DataForm::Scalar, XDMF::Channel::NumberType::Int64, DataTypeWrapper<int64_t>())); for (size_t i = 0; i < names.size(); ++i) { const std::string& name = names[i]; const auto dataForm = dataForms[i]; const auto numberType = numberTypes[i]; const auto dataType = stringToTypeDescriptor(typeDescriptorsStr[i]); const auto channel = initChannel(name, dataForm, numberType, dataType); channels_.push_back(channel); allNames += ", '" + name + "'"; } // Create the required folder createFoldersCollective(comm_, getParentPath(path_)); debug2("Plugin '%s' was set up to dump channels %s. Path is %s", getCName(), allNames.c_str(), path_.c_str()); } static void unpackParticles(const std::vector<real4> &pos4, const std::vector<real4> &vel4, std::vector<real3> &pos, std::vector<real3> &vel, std::vector<int64_t> &ids) { const size_t n = pos4.size(); pos.resize(n); vel.resize(n); ids.resize(n); for (size_t i = 0; i < n; ++i) { auto p = Particle(pos4[i], vel4[i]); pos[i] = p.r; vel[i] = p.u; ids[i] = p.getId(); } } void ParticleDumperPlugin::_recvAndUnpack(MirState::TimeType &time, MirState::StepType& timeStamp) { int c = 0; SimpleSerializer::deserialize(data_, timeStamp, time, pos4_, vel4_, channelData_); unpackParticles(pos4_, vel4_, *positions_, velocities_, ids_); channels_[c++].data = velocities_.data(); channels_[c++].data = ids_.data(); for (auto& cd : channelData_) channels_[c++].data = cd.data(); } void ParticleDumperPlugin::deserialize() { debug2("Plugin '%s' will dump right now", getCName()); MirState::TimeType time; MirState::StepType timeStamp; _recvAndUnpack(time, timeStamp); std::string fname = path_ + createStrZeroPadded(timeStamp, zeroPadding_); XDMF::VertexGrid grid(positions_, comm_); XDMF::write(fname, &grid, channels_, time, comm_); } void ParticleDumperPlugin::saveSnapshotAndRegister(Saver& saver) { saver.registerObject(this, _saveSnapshot(saver, "ParticleDumperPlugin")); } ConfigObject ParticleDumperPlugin::_saveSnapshot(Saver& saver, const std::string& typeName) { ConfigObject config = PostprocessPlugin::_saveSnapshot(saver, typeName); config.emplace("path", saver(path_)); return config; } } // namespace mirheo
9fbe8e35c1adc1ed052136fac3d0d385040f4761.hip
// !!! This is a file automatically generated by hipify!!! #include "MWConvLayerImpl.hpp" #include "MWConvLayer.hpp" #include "MWTargetNetworkImpl.hpp" #include "cnn_api.hpp" #include <cassert> #include <stdio.h> MWConvLayerImpl::MWConvLayerImpl(MWCNNLayer* layer, MWTargetNetworkImpl* ntwk_impl, int filt_H, int filt_W, int numGrps, int numChnls, int numFilts, int FpguQZSermqZCMRiUfML, int FrpxvsDMwwgbpqHXWxmN, int CpMjJjtGOeWOzwxpAAQP, int ClEhcJFlvGCgiavziIag, int CufLFODQDXTAPyRqYodN, int DRzwhbNPpftRRIXXfHzd, int ATEikvMQPqBefhJzjzhc, int AuqaQHxmPQSyYRemQvyX, const char* vpXxoeEhdEosLSsYXkNG, const char* MIBnYCbKBdUrlfqlHdoo, int outbufIdx) : MWCNNLayerImpl(layer, ntwk_impl) , yPBlKhIGljihkXaXbYpB(NULL) , vIWQzNvYZSuxmOTVDFhU(NULL) , KHClOltUSuqFVVErSxVb(NULL) , veFyKKHbdqBIvQLYBqfF(NULL) , URgvgDXnZskIYGdtimcU(NULL) , XCLDbxHBtWRStETWIkId(NULL) , aLsOwwcceEmRSYzllBNs(0) , AwZQzUhuWVLGrWgLHRuM(filt_H) , AzTsxYcYjIEJsGQbeYHm (filt_W) , BuyZFXzwOMxcePIbCLfl (numGrps) , BdqURaHPmdnfzvtUvocl (numChnls) , BlRIQPyqJZORKENzSdYf (numFilts) { enPbWLzEmxYCBmzGJutZ = ntwk_impl; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&ONvcEjLBnVNUdjMKOAwF)); CUDNN_CALL(cudnnCreateFilterDescriptor(&SDWKEQTZaTFZByPlzUDR)); CUDNN_CALL(cudnnCreateTensorDescriptor(&MEmIeGILUZNEWEagSzRk)); CUDNN_CALL(cudnnCreateTensorDescriptor(getOutputDescriptor())); createConvLayer(FpguQZSermqZCMRiUfML, FrpxvsDMwwgbpqHXWxmN, CpMjJjtGOeWOzwxpAAQP, ClEhcJFlvGCgiavziIag, CufLFODQDXTAPyRqYodN, DRzwhbNPpftRRIXXfHzd, ATEikvMQPqBefhJzjzhc, AuqaQHxmPQSyYRemQvyX, vpXxoeEhdEosLSsYXkNG, MIBnYCbKBdUrlfqlHdoo, outbufIdx); } float MWConvLayerImpl::getIsGrouped() { return aLsOwwcceEmRSYzllBNs; } void MWConvLayerImpl::setIsGrouped(float ig) { aLsOwwcceEmRSYzllBNs = ig; } void MWConvLayerImpl::setOutput2(float* out2) { yPBlKhIGljihkXaXbYpB = out2; } float* MWConvLayerImpl::getOutput2() { return yPBlKhIGljihkXaXbYpB; } cudnnTensorDescriptor_t* MWConvLayerImpl::getGroupDescriptor() { return &THfVbcZJtANcLKxEriuV; } void MWConvLayerImpl::createConvLayer(int FpguQZSermqZCMRiUfML, int FrpxvsDMwwgbpqHXWxmN, int CpMjJjtGOeWOzwxpAAQP, int ClEhcJFlvGCgiavziIag , int CufLFODQDXTAPyRqYodN, int DRzwhbNPpftRRIXXfHzd, int ATEikvMQPqBefhJzjzhc, int AuqaQHxmPQSyYRemQvyX, const char* vpXxoeEhdEosLSsYXkNG, const char* MIBnYCbKBdUrlfqlHdoo, int outbufIdx) { MWTensor* ipTensor = getLayer()->getInputTensor(0); int OVOphSOolqRQDDoKPwxy = CpMjJjtGOeWOzwxpAAQP; int OiVqrkNdXioJhALWMMvm = CufLFODQDXTAPyRqYodN; if ((CpMjJjtGOeWOzwxpAAQP != ClEhcJFlvGCgiavziIag) || (CufLFODQDXTAPyRqYodN != DRzwhbNPpftRRIXXfHzd)) { float* newInput; int inputH = ipTensor->getHeight() + CpMjJjtGOeWOzwxpAAQP + ClEhcJFlvGCgiavziIag; int inputW = ipTensor->getWidth() + CufLFODQDXTAPyRqYodN + DRzwhbNPpftRRIXXfHzd; CUDA_CALL(hipMalloc((void**)&newInput, sizeof(float)*ipTensor->getBatchSize() * ipTensor->getChannels() * inputH * inputW)); CUDA_CALL(hipMemset(newInput, 0, sizeof(float)*ipTensor->getBatchSize()*ipTensor->getChannels()*inputH*inputW)); URgvgDXnZskIYGdtimcU = new MWTensor(inputH, inputW, ipTensor->getChannels(), ipTensor->getBatchSize(), newInput,getLayer(), 0); CUDNN_CALL(cudnnCreateTensorDescriptor(&YgcpEBUCwCLaPhyntIio)); CUDNN_CALL(cudnnSetTensor4dDescriptor(YgcpEBUCwCLaPhyntIio, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, URgvgDXnZskIYGdtimcU->getBatchSize(), URgvgDXnZskIYGdtimcU->getChannels(), URgvgDXnZskIYGdtimcU->getHeight(), URgvgDXnZskIYGdtimcU->getWidth())); OVOphSOolqRQDDoKPwxy = 0; OiVqrkNdXioJhALWMMvm = 0; } else { URgvgDXnZskIYGdtimcU = ipTensor; YgcpEBUCwCLaPhyntIio = *getCuDNNDescriptor(URgvgDXnZskIYGdtimcU); } bUVPfnrJhLfHzOLUUrKk = CpMjJjtGOeWOzwxpAAQP; cQBKlCKXxecGPJrXBXdk = CufLFODQDXTAPyRqYodN; assert(URgvgDXnZskIYGdtimcU != NULL); MWConvLayer* convLayer = static_cast<MWConvLayer*>(getLayer()); #if (CUDNN_MAJOR <= 5) { if ((ATEikvMQPqBefhJzjzhc != 1) && (AuqaQHxmPQSyYRemQvyX != 1)){ printf("Dilated Convolution only supported for cuDNN 6 or greater "); throw std::runtime_error("Unsupported Dilation Factor"); } CUDNN_CALL(cudnnSetConvolution2dDescriptor(ONvcEjLBnVNUdjMKOAwF, OVOphSOolqRQDDoKPwxy, OiVqrkNdXioJhALWMMvm, FpguQZSermqZCMRiUfML, FrpxvsDMwwgbpqHXWxmN, 1, 1, CUDNN_CROSS_CORRELATION)); } #else { CUDNN_CALL(cudnnSetConvolution2dDescriptor(ONvcEjLBnVNUdjMKOAwF, OVOphSOolqRQDDoKPwxy, OiVqrkNdXioJhALWMMvm, FpguQZSermqZCMRiUfML, FrpxvsDMwwgbpqHXWxmN, ATEikvMQPqBefhJzjzhc, AuqaQHxmPQSyYRemQvyX, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); } #endif #if (FP16_ENABLED == 1 && ( CUDNN_MAJOR > 7 || (CUDNN_MAJOR == 7 && CUDNN_MINOR >= 2) )) CUDNN_CALL(cudnnSetConvolutionMathType(ONvcEjLBnVNUdjMKOAwF, CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION)); #endif int shEncNmxJsMuJKwbrwok, rxMAtVYGgGtZoKBkJcjc; int numInputFeatures = BdqURaHPmdnfzvtUvocl*BuyZFXzwOMxcePIbCLfl; int fxxCPKTclxXPxrdMAkwi,sRECVoNNtDdcBOWgDyar,sxuOMwKXOKfuExclRaSe; MWTensor* opTensor = convLayer->getOutputTensor(0); fxxCPKTclxXPxrdMAkwi = opTensor->getChannels(); sRECVoNNtDdcBOWgDyar = opTensor->getHeight(); sxuOMwKXOKfuExclRaSe = opTensor->getWidth(); size_t twppmWSuyDzoZjSbrMHi = 0; if( BuyZFXzwOMxcePIbCLfl == 1 ) { CUDNN_CALL(cudnnSetFilter4dDescriptor(SDWKEQTZaTFZByPlzUDR, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, fxxCPKTclxXPxrdMAkwi, numInputFeatures, AwZQzUhuWVLGrWgLHRuM, AzTsxYcYjIEJsGQbeYHm)); CUDNN_CALL(cudnnSetTensor4dDescriptor(MEmIeGILUZNEWEagSzRk, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, fxxCPKTclxXPxrdMAkwi, 1, 1)); CUDNN_CALL(cudnnGetConvolution2dForwardOutputDim(ONvcEjLBnVNUdjMKOAwF, YgcpEBUCwCLaPhyntIio, SDWKEQTZaTFZByPlzUDR, &shEncNmxJsMuJKwbrwok, &rxMAtVYGgGtZoKBkJcjc, &sRECVoNNtDdcBOWgDyar, &sxuOMwKXOKfuExclRaSe)); CUDNN_CALL(cudnnSetTensor4dDescriptor(*getOutputDescriptor(), CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, shEncNmxJsMuJKwbrwok, rxMAtVYGgGtZoKBkJcjc, opTensor->getHeight(), opTensor->getWidth())); assert(opTensor->getHeight() == sRECVoNNtDdcBOWgDyar); assert(opTensor->getWidth() == sxuOMwKXOKfuExclRaSe); #if (CUDNN_MAJOR < 7) { CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm(*enPbWLzEmxYCBmzGJutZ->getCudnnHandle(), YgcpEBUCwCLaPhyntIio, SDWKEQTZaTFZByPlzUDR, ONvcEjLBnVNUdjMKOAwF, *getOutputDescriptor(), CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &NtWaRGCHLeTapjWdEHHS)); } #else { cudnnConvolutionFwdAlgoPerf_t perf_results[3]; int returnedAlgoCount; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm_v7(*enPbWLzEmxYCBmzGJutZ->getCudnnHandle(), YgcpEBUCwCLaPhyntIio, SDWKEQTZaTFZByPlzUDR, ONvcEjLBnVNUdjMKOAwF, *getOutputDescriptor(), 3, &returnedAlgoCount, perf_results)); NtWaRGCHLeTapjWdEHHS = perf_results[0].algo; } #endif CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize(*enPbWLzEmxYCBmzGJutZ->getCudnnHandle(), YgcpEBUCwCLaPhyntIio, SDWKEQTZaTFZByPlzUDR, ONvcEjLBnVNUdjMKOAwF, *getOutputDescriptor(), NtWaRGCHLeTapjWdEHHS, &twppmWSuyDzoZjSbrMHi)); } else { setIsGrouped(1); MWTensor* ipTensor = URgvgDXnZskIYGdtimcU; XCLDbxHBtWRStETWIkId = ipTensor->getData() + ipTensor->getChannels()/BuyZFXzwOMxcePIbCLfl * ipTensor->getHeight() * ipTensor->getWidth(); CUDNN_CALL(cudnnCreateTensorDescriptor(&ZCArwzdUdwQuFQUWjnUE)); CUDNN_CALL(cudnnSetTensor4dDescriptorEx(ZCArwzdUdwQuFQUWjnUE, CUDNN_DATA_FLOAT, ipTensor->getBatchSize(), ipTensor->getChannels()/BuyZFXzwOMxcePIbCLfl, ipTensor->getHeight(), ipTensor->getWidth(), ipTensor->getChannels()*ipTensor->getHeight()*ipTensor->getWidth(), ipTensor->getHeight()*ipTensor->getWidth(), ipTensor->getWidth(), 1)); CUDNN_CALL(cudnnCreateTensorDescriptor(getGroupDescriptor())); CUDNN_CALL(cudnnSetFilter4dDescriptor(SDWKEQTZaTFZByPlzUDR, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, BlRIQPyqJZORKENzSdYf, BdqURaHPmdnfzvtUvocl, AwZQzUhuWVLGrWgLHRuM, AzTsxYcYjIEJsGQbeYHm)); CUDNN_CALL(cudnnGetConvolution2dForwardOutputDim(ONvcEjLBnVNUdjMKOAwF, ZCArwzdUdwQuFQUWjnUE, SDWKEQTZaTFZByPlzUDR, &shEncNmxJsMuJKwbrwok, &rxMAtVYGgGtZoKBkJcjc, &sRECVoNNtDdcBOWgDyar, &sxuOMwKXOKfuExclRaSe)); assert(opTensor->getHeight() == sRECVoNNtDdcBOWgDyar); assert(opTensor->getWidth() == sxuOMwKXOKfuExclRaSe); CUDNN_CALL(cudnnSetTensor4dDescriptorEx(*getGroupDescriptor(), CUDNN_DATA_FLOAT, shEncNmxJsMuJKwbrwok, rxMAtVYGgGtZoKBkJcjc, sRECVoNNtDdcBOWgDyar, sxuOMwKXOKfuExclRaSe, rxMAtVYGgGtZoKBkJcjc*BuyZFXzwOMxcePIbCLfl*sRECVoNNtDdcBOWgDyar*sxuOMwKXOKfuExclRaSe, sRECVoNNtDdcBOWgDyar*sxuOMwKXOKfuExclRaSe, sxuOMwKXOKfuExclRaSe, 1)); CUDNN_CALL(cudnnSetTensor4dDescriptor(*getOutputDescriptor(), CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, shEncNmxJsMuJKwbrwok, rxMAtVYGgGtZoKBkJcjc*BuyZFXzwOMxcePIbCLfl, sRECVoNNtDdcBOWgDyar, sxuOMwKXOKfuExclRaSe)); CUDNN_CALL(cudnnSetTensor4dDescriptor(MEmIeGILUZNEWEagSzRk, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, rxMAtVYGgGtZoKBkJcjc*BuyZFXzwOMxcePIbCLfl, 1, 1)); #if (CUDNN_MAJOR < 7) CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm(*enPbWLzEmxYCBmzGJutZ->getCudnnHandle(), ZCArwzdUdwQuFQUWjnUE, SDWKEQTZaTFZByPlzUDR, ONvcEjLBnVNUdjMKOAwF, *getGroupDescriptor(), CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &NtWaRGCHLeTapjWdEHHS)); #else cudnnConvolutionFwdAlgoPerf_t perf_results[3]; int returnedAlgoCount; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm_v7(*enPbWLzEmxYCBmzGJutZ->getCudnnHandle(), ZCArwzdUdwQuFQUWjnUE, SDWKEQTZaTFZByPlzUDR, ONvcEjLBnVNUdjMKOAwF, *getGroupDescriptor(), 3, &returnedAlgoCount,perf_results)); NtWaRGCHLeTapjWdEHHS = perf_results[0].algo; #endif CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize(*enPbWLzEmxYCBmzGJutZ->getCudnnHandle(), ZCArwzdUdwQuFQUWjnUE, SDWKEQTZaTFZByPlzUDR, ONvcEjLBnVNUdjMKOAwF, *getGroupDescriptor(), NtWaRGCHLeTapjWdEHHS, &twppmWSuyDzoZjSbrMHi)); } if( twppmWSuyDzoZjSbrMHi > *enPbWLzEmxYCBmzGJutZ->getWorkSpaceSize() ) { enPbWLzEmxYCBmzGJutZ->setWorkSpaceSize(twppmWSuyDzoZjSbrMHi); } assert(shEncNmxJsMuJKwbrwok == ipTensor->getBatchSize()); assert(fxxCPKTclxXPxrdMAkwi == rxMAtVYGgGtZoKBkJcjc * BuyZFXzwOMxcePIbCLfl); if (outbufIdx < 0) { CUDA_CALL(hipMalloc((void**)&PtkeOkuClHzhOfpmBevf, sizeof(float) * opTensor->getBatchSize() * opTensor->getChannels() * opTensor->getHeight() * opTensor->getWidth())); } else { setData(enPbWLzEmxYCBmzGJutZ->memBuffer[outbufIdx]); getLayer()->getOutputTensor(0)->setopBufIndex(outbufIdx); } CUDA_CALL(hipMalloc((void**)&vIWQzNvYZSuxmOTVDFhU, sizeof(float)*BdqURaHPmdnfzvtUvocl*fxxCPKTclxXPxrdMAkwi*AwZQzUhuWVLGrWgLHRuM*AzTsxYcYjIEJsGQbeYHm)); CUDA_CALL(hipMalloc((void**)&KHClOltUSuqFVVErSxVb, sizeof(float)*fxxCPKTclxXPxrdMAkwi)); #ifdef RANDOM hiprandGenerateNormal(SUleyRyvAggTFnSdxLru, vIWQzNvYZSuxmOTVDFhU, BdqURaHPmdnfzvtUvocl*fxxCPKTclxXPxrdMAkwi*AwZQzUhuWVLGrWgLHRuM*AzTsxYcYjIEJsGQbeYHm, 0, 0.1); hiprandGenerateNormal(SUleyRyvAggTFnSdxLru, KHClOltUSuqFVVErSxVb, fxxCPKTclxXPxrdMAkwi, -0.5, 1); #endif if( BuyZFXzwOMxcePIbCLfl == 2 ) { veFyKKHbdqBIvQLYBqfF = vIWQzNvYZSuxmOTVDFhU + BlRIQPyqJZORKENzSdYf * BdqURaHPmdnfzvtUvocl * AwZQzUhuWVLGrWgLHRuM * AzTsxYcYjIEJsGQbeYHm; setOutput2(getData() + fxxCPKTclxXPxrdMAkwi/ 2 * sRECVoNNtDdcBOWgDyar * sxuOMwKXOKfuExclRaSe); setIsGrouped(1); } loadWeights(vpXxoeEhdEosLSsYXkNG); loadBias(MIBnYCbKBdUrlfqlHdoo); } void MWConvLayerImpl::predict() { MWConvLayer* convLayer = static_cast<MWConvLayer*>(getLayer()); if (URgvgDXnZskIYGdtimcU != convLayer->getInputTensor()) { CUDA_CALL(hipMemset(URgvgDXnZskIYGdtimcU->getData(), 0, sizeof(float)*URgvgDXnZskIYGdtimcU->getBatchSize()*URgvgDXnZskIYGdtimcU->getChannels()*URgvgDXnZskIYGdtimcU->getHeight()*URgvgDXnZskIYGdtimcU->getWidth())); int fhikqqlnUKCjleVKDqiG = convLayer->getInputTensor()->getHeight()*convLayer->getInputTensor()->getWidth()*convLayer->getInputTensor()->getBatchSize()*convLayer->getInputTensor()->getChannels(); MWCNNLayerImpl::padInput(convLayer->getInputTensor()->getData(), convLayer->getInputTensor()->getHeight(), convLayer->getInputTensor()->getWidth(), convLayer->getInputTensor()->getChannels(), URgvgDXnZskIYGdtimcU->getHeight(), URgvgDXnZskIYGdtimcU->getWidth(), bUVPfnrJhLfHzOLUUrKk, cQBKlCKXxecGPJrXBXdk, URgvgDXnZskIYGdtimcU->getData(), fhikqqlnUKCjleVKDqiG); } if(BuyZFXzwOMxcePIbCLfl == 1 ) { assert(getData() != URgvgDXnZskIYGdtimcU->getData()); CUDNN_CALL(cudnnConvolutionForward(*enPbWLzEmxYCBmzGJutZ->getCudnnHandle(),getOnePtr(), YgcpEBUCwCLaPhyntIio, URgvgDXnZskIYGdtimcU->getData(), SDWKEQTZaTFZByPlzUDR, vIWQzNvYZSuxmOTVDFhU, ONvcEjLBnVNUdjMKOAwF, NtWaRGCHLeTapjWdEHHS, enPbWLzEmxYCBmzGJutZ->getWorkSpace(), *enPbWLzEmxYCBmzGJutZ->getWorkSpaceSize(), getZeroPtr(), *getOutputDescriptor(),getData())); CUDNN_CALL(cudnnAddTensor(*enPbWLzEmxYCBmzGJutZ->getCudnnHandle(), getOnePtr(), MEmIeGILUZNEWEagSzRk, KHClOltUSuqFVVErSxVb, getOnePtr(), *getOutputDescriptor(),getData())); } else { assert(getData() != URgvgDXnZskIYGdtimcU->getData()); CUDNN_CALL(cudnnConvolutionForward(*enPbWLzEmxYCBmzGJutZ->getCudnnHandle(), getOnePtr(), ZCArwzdUdwQuFQUWjnUE, URgvgDXnZskIYGdtimcU->getData(), SDWKEQTZaTFZByPlzUDR, vIWQzNvYZSuxmOTVDFhU, ONvcEjLBnVNUdjMKOAwF, NtWaRGCHLeTapjWdEHHS, enPbWLzEmxYCBmzGJutZ->getWorkSpace(), *enPbWLzEmxYCBmzGJutZ->getWorkSpaceSize(), getZeroPtr(), *getGroupDescriptor(), getData())); CUDNN_CALL(cudnnConvolutionForward(*enPbWLzEmxYCBmzGJutZ->getCudnnHandle(), getOnePtr(), ZCArwzdUdwQuFQUWjnUE, XCLDbxHBtWRStETWIkId, SDWKEQTZaTFZByPlzUDR, veFyKKHbdqBIvQLYBqfF, ONvcEjLBnVNUdjMKOAwF, NtWaRGCHLeTapjWdEHHS, enPbWLzEmxYCBmzGJutZ->getWorkSpace(), *enPbWLzEmxYCBmzGJutZ->getWorkSpaceSize(), getZeroPtr(), *getGroupDescriptor(), getOutput2())); CUDNN_CALL(cudnnAddTensor(*enPbWLzEmxYCBmzGJutZ->getCudnnHandle(), getOnePtr(), MEmIeGILUZNEWEagSzRk, KHClOltUSuqFVVErSxVb, getOnePtr(), *getOutputDescriptor(), getData())); } } void MWConvLayerImpl::cleanup() { CUDNN_CALL(cudnnDestroyConvolutionDescriptor(ONvcEjLBnVNUdjMKOAwF)); CUDNN_CALL(cudnnDestroyFilterDescriptor(SDWKEQTZaTFZByPlzUDR)); if (vIWQzNvYZSuxmOTVDFhU) { CUDA_FREE_CALL(vIWQzNvYZSuxmOTVDFhU); } CUDNN_CALL(cudnnDestroyTensorDescriptor(MEmIeGILUZNEWEagSzRk)); if (KHClOltUSuqFVVErSxVb) { CUDA_FREE_CALL(KHClOltUSuqFVVErSxVb); } CUDNN_CALL(cudnnDestroyTensorDescriptor(*getOutputDescriptor())); if (URgvgDXnZskIYGdtimcU != getLayer()->getInputTensor(0)) { CUDNN_CALL(cudnnDestroyTensorDescriptor(YgcpEBUCwCLaPhyntIio)); CUDA_FREE_CALL(URgvgDXnZskIYGdtimcU->getData()); } if (getIsGrouped()) { CUDNN_CALL(cudnnDestroyTensorDescriptor(ZCArwzdUdwQuFQUWjnUE)); CUDNN_CALL(cudnnDestroyTensorDescriptor(*getGroupDescriptor())); } for(int idx = 0; idx < getLayer()->getNumOutputs(); idx++) { float* data = getLayer()->getOutputTensor(idx)->getData(); if (data) { if(getLayer()->getOutputTensor(idx)->getopBufIndex() < 0) CUDA_FREE_CALL(data); } } } void MWConvLayerImpl::loadWeights(const char* RVrPByQXdKmunRZHKWJD) { MWConvLayer* convLayer = static_cast<MWConvLayer*>(getLayer()); FILE* SUjIWYfjMcdzSZaCSVRT = MWCNNLayer::openBinaryFile(RVrPByQXdKmunRZHKWJD); assert(SUjIWYfjMcdzSZaCSVRT); assert(BdqURaHPmdnfzvtUvocl == URgvgDXnZskIYGdtimcU->getChannels()/BuyZFXzwOMxcePIbCLfl); int eqOmMKQRpqBqRQCnJmxt = BdqURaHPmdnfzvtUvocl*convLayer->getOutputTensor()->getChannels()*AwZQzUhuWVLGrWgLHRuM*AzTsxYcYjIEJsGQbeYHm; float* MdSWZSOAjugbWppryHbR = MALLOC_CALL(sizeof(float)*eqOmMKQRpqBqRQCnJmxt); call_fread(MdSWZSOAjugbWppryHbR, sizeof(float), eqOmMKQRpqBqRQCnJmxt, SUjIWYfjMcdzSZaCSVRT, RVrPByQXdKmunRZHKWJD); if( AwZQzUhuWVLGrWgLHRuM != 1 && AzTsxYcYjIEJsGQbeYHm != 1 ) { float* MgAiRWiTutoTMxKXjmHQ = MALLOC_CALL(sizeof(float)*AwZQzUhuWVLGrWgLHRuM*AzTsxYcYjIEJsGQbeYHm); for(int k=0; k<eqOmMKQRpqBqRQCnJmxt/AwZQzUhuWVLGrWgLHRuM/AzTsxYcYjIEJsGQbeYHm; k++) { for(int i=0; i<AwZQzUhuWVLGrWgLHRuM*AzTsxYcYjIEJsGQbeYHm; i++) MgAiRWiTutoTMxKXjmHQ[i]=MdSWZSOAjugbWppryHbR[k*AwZQzUhuWVLGrWgLHRuM*AzTsxYcYjIEJsGQbeYHm+i]; for(int j=0; j<AwZQzUhuWVLGrWgLHRuM; j++) for(int i=0; i<AzTsxYcYjIEJsGQbeYHm; i++) MdSWZSOAjugbWppryHbR[k*AwZQzUhuWVLGrWgLHRuM*AzTsxYcYjIEJsGQbeYHm+j*AzTsxYcYjIEJsGQbeYHm+i]=MgAiRWiTutoTMxKXjmHQ[j+i*AwZQzUhuWVLGrWgLHRuM]; } free(MgAiRWiTutoTMxKXjmHQ); } CUDA_CALL(hipMemcpy(vIWQzNvYZSuxmOTVDFhU, MdSWZSOAjugbWppryHbR, sizeof(float)*eqOmMKQRpqBqRQCnJmxt, hipMemcpyHostToDevice)); #if 0 printf("%s loaded. Size = %d. %f\n", RVrPByQXdKmunRZHKWJD, eqOmMKQRpqBqRQCnJmxt, MdSWZSOAjugbWppryHbR[0]); #endif free(MdSWZSOAjugbWppryHbR); fclose(SUjIWYfjMcdzSZaCSVRT); } void MWConvLayerImpl::loadBias(const char* RVrPByQXdKmunRZHKWJD) { MWConvLayer* convLayer = static_cast<MWConvLayer*>(getLayer()); FILE* SUjIWYfjMcdzSZaCSVRT = MWCNNLayer::openBinaryFile(RVrPByQXdKmunRZHKWJD); assert(SUjIWYfjMcdzSZaCSVRT); int eqOmMKQRpqBqRQCnJmxt = convLayer->getOutputTensor()->getChannels(); float* MdSWZSOAjugbWppryHbR = MALLOC_CALL(sizeof(float)*eqOmMKQRpqBqRQCnJmxt); call_fread(MdSWZSOAjugbWppryHbR, sizeof(float), eqOmMKQRpqBqRQCnJmxt, SUjIWYfjMcdzSZaCSVRT, RVrPByQXdKmunRZHKWJD); CUDA_CALL(hipMemcpy(KHClOltUSuqFVVErSxVb, MdSWZSOAjugbWppryHbR, sizeof(float)*eqOmMKQRpqBqRQCnJmxt, hipMemcpyHostToDevice)); free(MdSWZSOAjugbWppryHbR); fclose(SUjIWYfjMcdzSZaCSVRT); } void MWConvLayerImpl::postSetup() { if(enPbWLzEmxYCBmzGJutZ->getAutoTune()) { getConvAlgoTuned(); } else if(!enPbWLzEmxYCBmzGJutZ->getWorkSpace()) { getConvAlgoNoWorkSpace(); } cudnnTensorDescriptor_t tmpInDesc = getIsGrouped() ? ZCArwzdUdwQuFQUWjnUE : YgcpEBUCwCLaPhyntIio; cudnnTensorDescriptor_t hnewnpwgzKmOdualajhn = getIsGrouped() ? *getGroupDescriptor() : *getOutputDescriptor(); size_t twppmWSuyDzoZjSbrMHi; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize(*enPbWLzEmxYCBmzGJutZ->getCudnnHandle(), tmpInDesc, SDWKEQTZaTFZByPlzUDR, ONvcEjLBnVNUdjMKOAwF, hnewnpwgzKmOdualajhn, NtWaRGCHLeTapjWdEHHS, &twppmWSuyDzoZjSbrMHi)); if( (long int)twppmWSuyDzoZjSbrMHi > *enPbWLzEmxYCBmzGJutZ->getPostSetupWorkSpaceSize() ) { enPbWLzEmxYCBmzGJutZ->setPostSetupWorkSpaceSize((long int)twppmWSuyDzoZjSbrMHi); } } void MWConvLayerImpl::getConvAlgoTuned() { cudnnConvolutionFwdAlgoPerf_t perf_results[3]; cudnnTensorDescriptor_t tempInDesc = getIsGrouped() ? ZCArwzdUdwQuFQUWjnUE : YgcpEBUCwCLaPhyntIio; cudnnTensorDescriptor_t hnewnpwgzKmOdualajhn = getIsGrouped() ? *getGroupDescriptor() : *getOutputDescriptor(); int returnedAlgoCount; CUDNN_CALL(cudnnFindConvolutionForwardAlgorithmEx(*enPbWLzEmxYCBmzGJutZ->getCudnnHandle(), tempInDesc, URgvgDXnZskIYGdtimcU->getData(), SDWKEQTZaTFZByPlzUDR, vIWQzNvYZSuxmOTVDFhU, ONvcEjLBnVNUdjMKOAwF, hnewnpwgzKmOdualajhn, getData(), 3, &returnedAlgoCount, &perf_results[0], enPbWLzEmxYCBmzGJutZ->getWorkSpace(), *enPbWLzEmxYCBmzGJutZ->getWorkSpaceSize())); NtWaRGCHLeTapjWdEHHS = perf_results[0].algo; } void MWConvLayerImpl::getConvAlgoNoWorkSpace() { assert(enPbWLzEmxYCBmzGJutZ->getWorkSpace() == 0); cudnnTensorDescriptor_t tempInDesc = getIsGrouped() ? ZCArwzdUdwQuFQUWjnUE : YgcpEBUCwCLaPhyntIio; cudnnTensorDescriptor_t hnewnpwgzKmOdualajhn = getIsGrouped() ? *getGroupDescriptor() : *getOutputDescriptor(); CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm(*enPbWLzEmxYCBmzGJutZ->getCudnnHandle(), tempInDesc, SDWKEQTZaTFZByPlzUDR, ONvcEjLBnVNUdjMKOAwF, hnewnpwgzKmOdualajhn, CUDNN_CONVOLUTION_FWD_NO_WORKSPACE, 0, &NtWaRGCHLeTapjWdEHHS)); }
9fbe8e35c1adc1ed052136fac3d0d385040f4761.cu
#include "MWConvLayerImpl.hpp" #include "MWConvLayer.hpp" #include "MWTargetNetworkImpl.hpp" #include "cnn_api.hpp" #include <cassert> #include <stdio.h> MWConvLayerImpl::MWConvLayerImpl(MWCNNLayer* layer, MWTargetNetworkImpl* ntwk_impl, int filt_H, int filt_W, int numGrps, int numChnls, int numFilts, int FpguQZSermqZCMRiUfML, int FrpxvsDMwwgbpqHXWxmN, int CpMjJjtGOeWOzwxpAAQP, int ClEhcJFlvGCgiavziIag, int CufLFODQDXTAPyRqYodN, int DRzwhbNPpftRRIXXfHzd, int ATEikvMQPqBefhJzjzhc, int AuqaQHxmPQSyYRemQvyX, const char* vpXxoeEhdEosLSsYXkNG, const char* MIBnYCbKBdUrlfqlHdoo, int outbufIdx) : MWCNNLayerImpl(layer, ntwk_impl) , yPBlKhIGljihkXaXbYpB(NULL) , vIWQzNvYZSuxmOTVDFhU(NULL) , KHClOltUSuqFVVErSxVb(NULL) , veFyKKHbdqBIvQLYBqfF(NULL) , URgvgDXnZskIYGdtimcU(NULL) , XCLDbxHBtWRStETWIkId(NULL) , aLsOwwcceEmRSYzllBNs(0) , AwZQzUhuWVLGrWgLHRuM(filt_H) , AzTsxYcYjIEJsGQbeYHm (filt_W) , BuyZFXzwOMxcePIbCLfl (numGrps) , BdqURaHPmdnfzvtUvocl (numChnls) , BlRIQPyqJZORKENzSdYf (numFilts) { enPbWLzEmxYCBmzGJutZ = ntwk_impl; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&ONvcEjLBnVNUdjMKOAwF)); CUDNN_CALL(cudnnCreateFilterDescriptor(&SDWKEQTZaTFZByPlzUDR)); CUDNN_CALL(cudnnCreateTensorDescriptor(&MEmIeGILUZNEWEagSzRk)); CUDNN_CALL(cudnnCreateTensorDescriptor(getOutputDescriptor())); createConvLayer(FpguQZSermqZCMRiUfML, FrpxvsDMwwgbpqHXWxmN, CpMjJjtGOeWOzwxpAAQP, ClEhcJFlvGCgiavziIag, CufLFODQDXTAPyRqYodN, DRzwhbNPpftRRIXXfHzd, ATEikvMQPqBefhJzjzhc, AuqaQHxmPQSyYRemQvyX, vpXxoeEhdEosLSsYXkNG, MIBnYCbKBdUrlfqlHdoo, outbufIdx); } float MWConvLayerImpl::getIsGrouped() { return aLsOwwcceEmRSYzllBNs; } void MWConvLayerImpl::setIsGrouped(float ig) { aLsOwwcceEmRSYzllBNs = ig; } void MWConvLayerImpl::setOutput2(float* out2) { yPBlKhIGljihkXaXbYpB = out2; } float* MWConvLayerImpl::getOutput2() { return yPBlKhIGljihkXaXbYpB; } cudnnTensorDescriptor_t* MWConvLayerImpl::getGroupDescriptor() { return &THfVbcZJtANcLKxEriuV; } void MWConvLayerImpl::createConvLayer(int FpguQZSermqZCMRiUfML, int FrpxvsDMwwgbpqHXWxmN, int CpMjJjtGOeWOzwxpAAQP, int ClEhcJFlvGCgiavziIag , int CufLFODQDXTAPyRqYodN, int DRzwhbNPpftRRIXXfHzd, int ATEikvMQPqBefhJzjzhc, int AuqaQHxmPQSyYRemQvyX, const char* vpXxoeEhdEosLSsYXkNG, const char* MIBnYCbKBdUrlfqlHdoo, int outbufIdx) { MWTensor* ipTensor = getLayer()->getInputTensor(0); int OVOphSOolqRQDDoKPwxy = CpMjJjtGOeWOzwxpAAQP; int OiVqrkNdXioJhALWMMvm = CufLFODQDXTAPyRqYodN; if ((CpMjJjtGOeWOzwxpAAQP != ClEhcJFlvGCgiavziIag) || (CufLFODQDXTAPyRqYodN != DRzwhbNPpftRRIXXfHzd)) { float* newInput; int inputH = ipTensor->getHeight() + CpMjJjtGOeWOzwxpAAQP + ClEhcJFlvGCgiavziIag; int inputW = ipTensor->getWidth() + CufLFODQDXTAPyRqYodN + DRzwhbNPpftRRIXXfHzd; CUDA_CALL(cudaMalloc((void**)&newInput, sizeof(float)*ipTensor->getBatchSize() * ipTensor->getChannels() * inputH * inputW)); CUDA_CALL(cudaMemset(newInput, 0, sizeof(float)*ipTensor->getBatchSize()*ipTensor->getChannels()*inputH*inputW)); URgvgDXnZskIYGdtimcU = new MWTensor(inputH, inputW, ipTensor->getChannels(), ipTensor->getBatchSize(), newInput,getLayer(), 0); CUDNN_CALL(cudnnCreateTensorDescriptor(&YgcpEBUCwCLaPhyntIio)); CUDNN_CALL(cudnnSetTensor4dDescriptor(YgcpEBUCwCLaPhyntIio, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, URgvgDXnZskIYGdtimcU->getBatchSize(), URgvgDXnZskIYGdtimcU->getChannels(), URgvgDXnZskIYGdtimcU->getHeight(), URgvgDXnZskIYGdtimcU->getWidth())); OVOphSOolqRQDDoKPwxy = 0; OiVqrkNdXioJhALWMMvm = 0; } else { URgvgDXnZskIYGdtimcU = ipTensor; YgcpEBUCwCLaPhyntIio = *getCuDNNDescriptor(URgvgDXnZskIYGdtimcU); } bUVPfnrJhLfHzOLUUrKk = CpMjJjtGOeWOzwxpAAQP; cQBKlCKXxecGPJrXBXdk = CufLFODQDXTAPyRqYodN; assert(URgvgDXnZskIYGdtimcU != NULL); MWConvLayer* convLayer = static_cast<MWConvLayer*>(getLayer()); #if (CUDNN_MAJOR <= 5) { if ((ATEikvMQPqBefhJzjzhc != 1) && (AuqaQHxmPQSyYRemQvyX != 1)){ printf("Dilated Convolution only supported for cuDNN 6 or greater "); throw std::runtime_error("Unsupported Dilation Factor"); } CUDNN_CALL(cudnnSetConvolution2dDescriptor(ONvcEjLBnVNUdjMKOAwF, OVOphSOolqRQDDoKPwxy, OiVqrkNdXioJhALWMMvm, FpguQZSermqZCMRiUfML, FrpxvsDMwwgbpqHXWxmN, 1, 1, CUDNN_CROSS_CORRELATION)); } #else { CUDNN_CALL(cudnnSetConvolution2dDescriptor(ONvcEjLBnVNUdjMKOAwF, OVOphSOolqRQDDoKPwxy, OiVqrkNdXioJhALWMMvm, FpguQZSermqZCMRiUfML, FrpxvsDMwwgbpqHXWxmN, ATEikvMQPqBefhJzjzhc, AuqaQHxmPQSyYRemQvyX, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); } #endif #if (FP16_ENABLED == 1 && ( CUDNN_MAJOR > 7 || (CUDNN_MAJOR == 7 && CUDNN_MINOR >= 2) )) CUDNN_CALL(cudnnSetConvolutionMathType(ONvcEjLBnVNUdjMKOAwF, CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION)); #endif int shEncNmxJsMuJKwbrwok, rxMAtVYGgGtZoKBkJcjc; int numInputFeatures = BdqURaHPmdnfzvtUvocl*BuyZFXzwOMxcePIbCLfl; int fxxCPKTclxXPxrdMAkwi,sRECVoNNtDdcBOWgDyar,sxuOMwKXOKfuExclRaSe; MWTensor* opTensor = convLayer->getOutputTensor(0); fxxCPKTclxXPxrdMAkwi = opTensor->getChannels(); sRECVoNNtDdcBOWgDyar = opTensor->getHeight(); sxuOMwKXOKfuExclRaSe = opTensor->getWidth(); size_t twppmWSuyDzoZjSbrMHi = 0; if( BuyZFXzwOMxcePIbCLfl == 1 ) { CUDNN_CALL(cudnnSetFilter4dDescriptor(SDWKEQTZaTFZByPlzUDR, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, fxxCPKTclxXPxrdMAkwi, numInputFeatures, AwZQzUhuWVLGrWgLHRuM, AzTsxYcYjIEJsGQbeYHm)); CUDNN_CALL(cudnnSetTensor4dDescriptor(MEmIeGILUZNEWEagSzRk, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, fxxCPKTclxXPxrdMAkwi, 1, 1)); CUDNN_CALL(cudnnGetConvolution2dForwardOutputDim(ONvcEjLBnVNUdjMKOAwF, YgcpEBUCwCLaPhyntIio, SDWKEQTZaTFZByPlzUDR, &shEncNmxJsMuJKwbrwok, &rxMAtVYGgGtZoKBkJcjc, &sRECVoNNtDdcBOWgDyar, &sxuOMwKXOKfuExclRaSe)); CUDNN_CALL(cudnnSetTensor4dDescriptor(*getOutputDescriptor(), CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, shEncNmxJsMuJKwbrwok, rxMAtVYGgGtZoKBkJcjc, opTensor->getHeight(), opTensor->getWidth())); assert(opTensor->getHeight() == sRECVoNNtDdcBOWgDyar); assert(opTensor->getWidth() == sxuOMwKXOKfuExclRaSe); #if (CUDNN_MAJOR < 7) { CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm(*enPbWLzEmxYCBmzGJutZ->getCudnnHandle(), YgcpEBUCwCLaPhyntIio, SDWKEQTZaTFZByPlzUDR, ONvcEjLBnVNUdjMKOAwF, *getOutputDescriptor(), CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &NtWaRGCHLeTapjWdEHHS)); } #else { cudnnConvolutionFwdAlgoPerf_t perf_results[3]; int returnedAlgoCount; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm_v7(*enPbWLzEmxYCBmzGJutZ->getCudnnHandle(), YgcpEBUCwCLaPhyntIio, SDWKEQTZaTFZByPlzUDR, ONvcEjLBnVNUdjMKOAwF, *getOutputDescriptor(), 3, &returnedAlgoCount, perf_results)); NtWaRGCHLeTapjWdEHHS = perf_results[0].algo; } #endif CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize(*enPbWLzEmxYCBmzGJutZ->getCudnnHandle(), YgcpEBUCwCLaPhyntIio, SDWKEQTZaTFZByPlzUDR, ONvcEjLBnVNUdjMKOAwF, *getOutputDescriptor(), NtWaRGCHLeTapjWdEHHS, &twppmWSuyDzoZjSbrMHi)); } else { setIsGrouped(1); MWTensor* ipTensor = URgvgDXnZskIYGdtimcU; XCLDbxHBtWRStETWIkId = ipTensor->getData() + ipTensor->getChannels()/BuyZFXzwOMxcePIbCLfl * ipTensor->getHeight() * ipTensor->getWidth(); CUDNN_CALL(cudnnCreateTensorDescriptor(&ZCArwzdUdwQuFQUWjnUE)); CUDNN_CALL(cudnnSetTensor4dDescriptorEx(ZCArwzdUdwQuFQUWjnUE, CUDNN_DATA_FLOAT, ipTensor->getBatchSize(), ipTensor->getChannels()/BuyZFXzwOMxcePIbCLfl, ipTensor->getHeight(), ipTensor->getWidth(), ipTensor->getChannels()*ipTensor->getHeight()*ipTensor->getWidth(), ipTensor->getHeight()*ipTensor->getWidth(), ipTensor->getWidth(), 1)); CUDNN_CALL(cudnnCreateTensorDescriptor(getGroupDescriptor())); CUDNN_CALL(cudnnSetFilter4dDescriptor(SDWKEQTZaTFZByPlzUDR, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, BlRIQPyqJZORKENzSdYf, BdqURaHPmdnfzvtUvocl, AwZQzUhuWVLGrWgLHRuM, AzTsxYcYjIEJsGQbeYHm)); CUDNN_CALL(cudnnGetConvolution2dForwardOutputDim(ONvcEjLBnVNUdjMKOAwF, ZCArwzdUdwQuFQUWjnUE, SDWKEQTZaTFZByPlzUDR, &shEncNmxJsMuJKwbrwok, &rxMAtVYGgGtZoKBkJcjc, &sRECVoNNtDdcBOWgDyar, &sxuOMwKXOKfuExclRaSe)); assert(opTensor->getHeight() == sRECVoNNtDdcBOWgDyar); assert(opTensor->getWidth() == sxuOMwKXOKfuExclRaSe); CUDNN_CALL(cudnnSetTensor4dDescriptorEx(*getGroupDescriptor(), CUDNN_DATA_FLOAT, shEncNmxJsMuJKwbrwok, rxMAtVYGgGtZoKBkJcjc, sRECVoNNtDdcBOWgDyar, sxuOMwKXOKfuExclRaSe, rxMAtVYGgGtZoKBkJcjc*BuyZFXzwOMxcePIbCLfl*sRECVoNNtDdcBOWgDyar*sxuOMwKXOKfuExclRaSe, sRECVoNNtDdcBOWgDyar*sxuOMwKXOKfuExclRaSe, sxuOMwKXOKfuExclRaSe, 1)); CUDNN_CALL(cudnnSetTensor4dDescriptor(*getOutputDescriptor(), CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, shEncNmxJsMuJKwbrwok, rxMAtVYGgGtZoKBkJcjc*BuyZFXzwOMxcePIbCLfl, sRECVoNNtDdcBOWgDyar, sxuOMwKXOKfuExclRaSe)); CUDNN_CALL(cudnnSetTensor4dDescriptor(MEmIeGILUZNEWEagSzRk, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, rxMAtVYGgGtZoKBkJcjc*BuyZFXzwOMxcePIbCLfl, 1, 1)); #if (CUDNN_MAJOR < 7) CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm(*enPbWLzEmxYCBmzGJutZ->getCudnnHandle(), ZCArwzdUdwQuFQUWjnUE, SDWKEQTZaTFZByPlzUDR, ONvcEjLBnVNUdjMKOAwF, *getGroupDescriptor(), CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &NtWaRGCHLeTapjWdEHHS)); #else cudnnConvolutionFwdAlgoPerf_t perf_results[3]; int returnedAlgoCount; CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm_v7(*enPbWLzEmxYCBmzGJutZ->getCudnnHandle(), ZCArwzdUdwQuFQUWjnUE, SDWKEQTZaTFZByPlzUDR, ONvcEjLBnVNUdjMKOAwF, *getGroupDescriptor(), 3, &returnedAlgoCount,perf_results)); NtWaRGCHLeTapjWdEHHS = perf_results[0].algo; #endif CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize(*enPbWLzEmxYCBmzGJutZ->getCudnnHandle(), ZCArwzdUdwQuFQUWjnUE, SDWKEQTZaTFZByPlzUDR, ONvcEjLBnVNUdjMKOAwF, *getGroupDescriptor(), NtWaRGCHLeTapjWdEHHS, &twppmWSuyDzoZjSbrMHi)); } if( twppmWSuyDzoZjSbrMHi > *enPbWLzEmxYCBmzGJutZ->getWorkSpaceSize() ) { enPbWLzEmxYCBmzGJutZ->setWorkSpaceSize(twppmWSuyDzoZjSbrMHi); } assert(shEncNmxJsMuJKwbrwok == ipTensor->getBatchSize()); assert(fxxCPKTclxXPxrdMAkwi == rxMAtVYGgGtZoKBkJcjc * BuyZFXzwOMxcePIbCLfl); if (outbufIdx < 0) { CUDA_CALL(cudaMalloc((void**)&PtkeOkuClHzhOfpmBevf, sizeof(float) * opTensor->getBatchSize() * opTensor->getChannels() * opTensor->getHeight() * opTensor->getWidth())); } else { setData(enPbWLzEmxYCBmzGJutZ->memBuffer[outbufIdx]); getLayer()->getOutputTensor(0)->setopBufIndex(outbufIdx); } CUDA_CALL(cudaMalloc((void**)&vIWQzNvYZSuxmOTVDFhU, sizeof(float)*BdqURaHPmdnfzvtUvocl*fxxCPKTclxXPxrdMAkwi*AwZQzUhuWVLGrWgLHRuM*AzTsxYcYjIEJsGQbeYHm)); CUDA_CALL(cudaMalloc((void**)&KHClOltUSuqFVVErSxVb, sizeof(float)*fxxCPKTclxXPxrdMAkwi)); #ifdef RANDOM curandGenerateNormal(SUleyRyvAggTFnSdxLru, vIWQzNvYZSuxmOTVDFhU, BdqURaHPmdnfzvtUvocl*fxxCPKTclxXPxrdMAkwi*AwZQzUhuWVLGrWgLHRuM*AzTsxYcYjIEJsGQbeYHm, 0, 0.1); curandGenerateNormal(SUleyRyvAggTFnSdxLru, KHClOltUSuqFVVErSxVb, fxxCPKTclxXPxrdMAkwi, -0.5, 1); #endif if( BuyZFXzwOMxcePIbCLfl == 2 ) { veFyKKHbdqBIvQLYBqfF = vIWQzNvYZSuxmOTVDFhU + BlRIQPyqJZORKENzSdYf * BdqURaHPmdnfzvtUvocl * AwZQzUhuWVLGrWgLHRuM * AzTsxYcYjIEJsGQbeYHm; setOutput2(getData() + fxxCPKTclxXPxrdMAkwi/ 2 * sRECVoNNtDdcBOWgDyar * sxuOMwKXOKfuExclRaSe); setIsGrouped(1); } loadWeights(vpXxoeEhdEosLSsYXkNG); loadBias(MIBnYCbKBdUrlfqlHdoo); } void MWConvLayerImpl::predict() { MWConvLayer* convLayer = static_cast<MWConvLayer*>(getLayer()); if (URgvgDXnZskIYGdtimcU != convLayer->getInputTensor()) { CUDA_CALL(cudaMemset(URgvgDXnZskIYGdtimcU->getData(), 0, sizeof(float)*URgvgDXnZskIYGdtimcU->getBatchSize()*URgvgDXnZskIYGdtimcU->getChannels()*URgvgDXnZskIYGdtimcU->getHeight()*URgvgDXnZskIYGdtimcU->getWidth())); int fhikqqlnUKCjleVKDqiG = convLayer->getInputTensor()->getHeight()*convLayer->getInputTensor()->getWidth()*convLayer->getInputTensor()->getBatchSize()*convLayer->getInputTensor()->getChannels(); MWCNNLayerImpl::padInput(convLayer->getInputTensor()->getData(), convLayer->getInputTensor()->getHeight(), convLayer->getInputTensor()->getWidth(), convLayer->getInputTensor()->getChannels(), URgvgDXnZskIYGdtimcU->getHeight(), URgvgDXnZskIYGdtimcU->getWidth(), bUVPfnrJhLfHzOLUUrKk, cQBKlCKXxecGPJrXBXdk, URgvgDXnZskIYGdtimcU->getData(), fhikqqlnUKCjleVKDqiG); } if(BuyZFXzwOMxcePIbCLfl == 1 ) { assert(getData() != URgvgDXnZskIYGdtimcU->getData()); CUDNN_CALL(cudnnConvolutionForward(*enPbWLzEmxYCBmzGJutZ->getCudnnHandle(),getOnePtr(), YgcpEBUCwCLaPhyntIio, URgvgDXnZskIYGdtimcU->getData(), SDWKEQTZaTFZByPlzUDR, vIWQzNvYZSuxmOTVDFhU, ONvcEjLBnVNUdjMKOAwF, NtWaRGCHLeTapjWdEHHS, enPbWLzEmxYCBmzGJutZ->getWorkSpace(), *enPbWLzEmxYCBmzGJutZ->getWorkSpaceSize(), getZeroPtr(), *getOutputDescriptor(),getData())); CUDNN_CALL(cudnnAddTensor(*enPbWLzEmxYCBmzGJutZ->getCudnnHandle(), getOnePtr(), MEmIeGILUZNEWEagSzRk, KHClOltUSuqFVVErSxVb, getOnePtr(), *getOutputDescriptor(),getData())); } else { assert(getData() != URgvgDXnZskIYGdtimcU->getData()); CUDNN_CALL(cudnnConvolutionForward(*enPbWLzEmxYCBmzGJutZ->getCudnnHandle(), getOnePtr(), ZCArwzdUdwQuFQUWjnUE, URgvgDXnZskIYGdtimcU->getData(), SDWKEQTZaTFZByPlzUDR, vIWQzNvYZSuxmOTVDFhU, ONvcEjLBnVNUdjMKOAwF, NtWaRGCHLeTapjWdEHHS, enPbWLzEmxYCBmzGJutZ->getWorkSpace(), *enPbWLzEmxYCBmzGJutZ->getWorkSpaceSize(), getZeroPtr(), *getGroupDescriptor(), getData())); CUDNN_CALL(cudnnConvolutionForward(*enPbWLzEmxYCBmzGJutZ->getCudnnHandle(), getOnePtr(), ZCArwzdUdwQuFQUWjnUE, XCLDbxHBtWRStETWIkId, SDWKEQTZaTFZByPlzUDR, veFyKKHbdqBIvQLYBqfF, ONvcEjLBnVNUdjMKOAwF, NtWaRGCHLeTapjWdEHHS, enPbWLzEmxYCBmzGJutZ->getWorkSpace(), *enPbWLzEmxYCBmzGJutZ->getWorkSpaceSize(), getZeroPtr(), *getGroupDescriptor(), getOutput2())); CUDNN_CALL(cudnnAddTensor(*enPbWLzEmxYCBmzGJutZ->getCudnnHandle(), getOnePtr(), MEmIeGILUZNEWEagSzRk, KHClOltUSuqFVVErSxVb, getOnePtr(), *getOutputDescriptor(), getData())); } } void MWConvLayerImpl::cleanup() { CUDNN_CALL(cudnnDestroyConvolutionDescriptor(ONvcEjLBnVNUdjMKOAwF)); CUDNN_CALL(cudnnDestroyFilterDescriptor(SDWKEQTZaTFZByPlzUDR)); if (vIWQzNvYZSuxmOTVDFhU) { CUDA_FREE_CALL(vIWQzNvYZSuxmOTVDFhU); } CUDNN_CALL(cudnnDestroyTensorDescriptor(MEmIeGILUZNEWEagSzRk)); if (KHClOltUSuqFVVErSxVb) { CUDA_FREE_CALL(KHClOltUSuqFVVErSxVb); } CUDNN_CALL(cudnnDestroyTensorDescriptor(*getOutputDescriptor())); if (URgvgDXnZskIYGdtimcU != getLayer()->getInputTensor(0)) { CUDNN_CALL(cudnnDestroyTensorDescriptor(YgcpEBUCwCLaPhyntIio)); CUDA_FREE_CALL(URgvgDXnZskIYGdtimcU->getData()); } if (getIsGrouped()) { CUDNN_CALL(cudnnDestroyTensorDescriptor(ZCArwzdUdwQuFQUWjnUE)); CUDNN_CALL(cudnnDestroyTensorDescriptor(*getGroupDescriptor())); } for(int idx = 0; idx < getLayer()->getNumOutputs(); idx++) { float* data = getLayer()->getOutputTensor(idx)->getData(); if (data) { if(getLayer()->getOutputTensor(idx)->getopBufIndex() < 0) CUDA_FREE_CALL(data); } } } void MWConvLayerImpl::loadWeights(const char* RVrPByQXdKmunRZHKWJD) { MWConvLayer* convLayer = static_cast<MWConvLayer*>(getLayer()); FILE* SUjIWYfjMcdzSZaCSVRT = MWCNNLayer::openBinaryFile(RVrPByQXdKmunRZHKWJD); assert(SUjIWYfjMcdzSZaCSVRT); assert(BdqURaHPmdnfzvtUvocl == URgvgDXnZskIYGdtimcU->getChannels()/BuyZFXzwOMxcePIbCLfl); int eqOmMKQRpqBqRQCnJmxt = BdqURaHPmdnfzvtUvocl*convLayer->getOutputTensor()->getChannels()*AwZQzUhuWVLGrWgLHRuM*AzTsxYcYjIEJsGQbeYHm; float* MdSWZSOAjugbWppryHbR = MALLOC_CALL(sizeof(float)*eqOmMKQRpqBqRQCnJmxt); call_fread(MdSWZSOAjugbWppryHbR, sizeof(float), eqOmMKQRpqBqRQCnJmxt, SUjIWYfjMcdzSZaCSVRT, RVrPByQXdKmunRZHKWJD); if( AwZQzUhuWVLGrWgLHRuM != 1 && AzTsxYcYjIEJsGQbeYHm != 1 ) { float* MgAiRWiTutoTMxKXjmHQ = MALLOC_CALL(sizeof(float)*AwZQzUhuWVLGrWgLHRuM*AzTsxYcYjIEJsGQbeYHm); for(int k=0; k<eqOmMKQRpqBqRQCnJmxt/AwZQzUhuWVLGrWgLHRuM/AzTsxYcYjIEJsGQbeYHm; k++) { for(int i=0; i<AwZQzUhuWVLGrWgLHRuM*AzTsxYcYjIEJsGQbeYHm; i++) MgAiRWiTutoTMxKXjmHQ[i]=MdSWZSOAjugbWppryHbR[k*AwZQzUhuWVLGrWgLHRuM*AzTsxYcYjIEJsGQbeYHm+i]; for(int j=0; j<AwZQzUhuWVLGrWgLHRuM; j++) for(int i=0; i<AzTsxYcYjIEJsGQbeYHm; i++) MdSWZSOAjugbWppryHbR[k*AwZQzUhuWVLGrWgLHRuM*AzTsxYcYjIEJsGQbeYHm+j*AzTsxYcYjIEJsGQbeYHm+i]=MgAiRWiTutoTMxKXjmHQ[j+i*AwZQzUhuWVLGrWgLHRuM]; } free(MgAiRWiTutoTMxKXjmHQ); } CUDA_CALL(cudaMemcpy(vIWQzNvYZSuxmOTVDFhU, MdSWZSOAjugbWppryHbR, sizeof(float)*eqOmMKQRpqBqRQCnJmxt, cudaMemcpyHostToDevice)); #if 0 printf("%s loaded. Size = %d. %f\n", RVrPByQXdKmunRZHKWJD, eqOmMKQRpqBqRQCnJmxt, MdSWZSOAjugbWppryHbR[0]); #endif free(MdSWZSOAjugbWppryHbR); fclose(SUjIWYfjMcdzSZaCSVRT); } void MWConvLayerImpl::loadBias(const char* RVrPByQXdKmunRZHKWJD) { MWConvLayer* convLayer = static_cast<MWConvLayer*>(getLayer()); FILE* SUjIWYfjMcdzSZaCSVRT = MWCNNLayer::openBinaryFile(RVrPByQXdKmunRZHKWJD); assert(SUjIWYfjMcdzSZaCSVRT); int eqOmMKQRpqBqRQCnJmxt = convLayer->getOutputTensor()->getChannels(); float* MdSWZSOAjugbWppryHbR = MALLOC_CALL(sizeof(float)*eqOmMKQRpqBqRQCnJmxt); call_fread(MdSWZSOAjugbWppryHbR, sizeof(float), eqOmMKQRpqBqRQCnJmxt, SUjIWYfjMcdzSZaCSVRT, RVrPByQXdKmunRZHKWJD); CUDA_CALL(cudaMemcpy(KHClOltUSuqFVVErSxVb, MdSWZSOAjugbWppryHbR, sizeof(float)*eqOmMKQRpqBqRQCnJmxt, cudaMemcpyHostToDevice)); free(MdSWZSOAjugbWppryHbR); fclose(SUjIWYfjMcdzSZaCSVRT); } void MWConvLayerImpl::postSetup() { if(enPbWLzEmxYCBmzGJutZ->getAutoTune()) { getConvAlgoTuned(); } else if(!enPbWLzEmxYCBmzGJutZ->getWorkSpace()) { getConvAlgoNoWorkSpace(); } cudnnTensorDescriptor_t tmpInDesc = getIsGrouped() ? ZCArwzdUdwQuFQUWjnUE : YgcpEBUCwCLaPhyntIio; cudnnTensorDescriptor_t hnewnpwgzKmOdualajhn = getIsGrouped() ? *getGroupDescriptor() : *getOutputDescriptor(); size_t twppmWSuyDzoZjSbrMHi; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize(*enPbWLzEmxYCBmzGJutZ->getCudnnHandle(), tmpInDesc, SDWKEQTZaTFZByPlzUDR, ONvcEjLBnVNUdjMKOAwF, hnewnpwgzKmOdualajhn, NtWaRGCHLeTapjWdEHHS, &twppmWSuyDzoZjSbrMHi)); if( (long int)twppmWSuyDzoZjSbrMHi > *enPbWLzEmxYCBmzGJutZ->getPostSetupWorkSpaceSize() ) { enPbWLzEmxYCBmzGJutZ->setPostSetupWorkSpaceSize((long int)twppmWSuyDzoZjSbrMHi); } } void MWConvLayerImpl::getConvAlgoTuned() { cudnnConvolutionFwdAlgoPerf_t perf_results[3]; cudnnTensorDescriptor_t tempInDesc = getIsGrouped() ? ZCArwzdUdwQuFQUWjnUE : YgcpEBUCwCLaPhyntIio; cudnnTensorDescriptor_t hnewnpwgzKmOdualajhn = getIsGrouped() ? *getGroupDescriptor() : *getOutputDescriptor(); int returnedAlgoCount; CUDNN_CALL(cudnnFindConvolutionForwardAlgorithmEx(*enPbWLzEmxYCBmzGJutZ->getCudnnHandle(), tempInDesc, URgvgDXnZskIYGdtimcU->getData(), SDWKEQTZaTFZByPlzUDR, vIWQzNvYZSuxmOTVDFhU, ONvcEjLBnVNUdjMKOAwF, hnewnpwgzKmOdualajhn, getData(), 3, &returnedAlgoCount, &perf_results[0], enPbWLzEmxYCBmzGJutZ->getWorkSpace(), *enPbWLzEmxYCBmzGJutZ->getWorkSpaceSize())); NtWaRGCHLeTapjWdEHHS = perf_results[0].algo; } void MWConvLayerImpl::getConvAlgoNoWorkSpace() { assert(enPbWLzEmxYCBmzGJutZ->getWorkSpace() == 0); cudnnTensorDescriptor_t tempInDesc = getIsGrouped() ? ZCArwzdUdwQuFQUWjnUE : YgcpEBUCwCLaPhyntIio; cudnnTensorDescriptor_t hnewnpwgzKmOdualajhn = getIsGrouped() ? *getGroupDescriptor() : *getOutputDescriptor(); CUDNN_CALL(cudnnGetConvolutionForwardAlgorithm(*enPbWLzEmxYCBmzGJutZ->getCudnnHandle(), tempInDesc, SDWKEQTZaTFZByPlzUDR, ONvcEjLBnVNUdjMKOAwF, hnewnpwgzKmOdualajhn, CUDNN_CONVOLUTION_FWD_NO_WORKSPACE, 0, &NtWaRGCHLeTapjWdEHHS)); }
1e3d8f29d087f11fa02fbdddd70a1b98c1d93ee1.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "refocus_header.h" #include "refocus_scattering.h" #include "cuMath.cu" //debug // #include<stdio.h> __constant__ constStructre<double> constStr_scat_single; template<typename T, typename T2, typename T3, typename scatteringType> __global__ void singleScattering_kernel(T2* single_scattering_matrix, const T3* x0, const scatteringType* scattering_struct, T k, const ff_direction<T3> *l_dir, const ff_direction<T3> *v_dir, ub32 directions_num) { const constStructre<T>* curr_constStr = (const constStructre<T>*) &constStr_scat_single; ub32 entry_num = blockIdx.x * blockDim.x + threadIdx.x; if(entry_num < (directions_num * directions_num)) { ub32 l_idx = entry_num % directions_num; ub32 v_idx = entry_num / directions_num; const ff_direction<T3> *il_dir = l_dir + l_idx; const ff_direction<T3> *iv_dir = v_dir + v_idx; if(il_dir->is_active && iv_dir->is_active) { T2 e; T bd1, bd2, bd3, dz; bd1 = abs(il_dir->dir_attenuation.x) < 1e-8 ? INFINITY : il_dir->dir_attenuation.x >= 0 ? (x0->x - curr_constStr->box_min[0]) / ( il_dir->dir_attenuation.x) : (x0->x - curr_constStr->box_max[0]) / (il_dir->dir_attenuation.x); bd2 = abs(il_dir->dir_attenuation.y) < 1e-8 ? INFINITY : il_dir->dir_attenuation.y >= 0 ? (x0->y - curr_constStr->box_min[1]) / ( il_dir->dir_attenuation.y) : (x0->y - curr_constStr->box_max[1]) / (il_dir->dir_attenuation.y); bd3 = abs(il_dir->dir_attenuation.z) < 1e-8 ? INFINITY : il_dir->dir_attenuation.z >= 0 ? (x0->z - curr_constStr->box_min[2]) / ( il_dir->dir_attenuation.z) : (x0->z - curr_constStr->box_max[2]) / (il_dir->dir_attenuation.z); dz = fmin(fmin(bd1, bd2), bd3); bd1 = abs(iv_dir->dir_attenuation.x) < 1e-8 ? INFINITY : iv_dir->dir_attenuation.x < 0 ? (curr_constStr->box_min[0] - x0->x) / ( iv_dir->dir_attenuation.x) : (curr_constStr->box_max[0] - x0->x) / (iv_dir->dir_attenuation.x); bd2 = abs(iv_dir->dir_attenuation.y) < 1e-8 ? INFINITY : iv_dir->dir_attenuation.y < 0 ? (curr_constStr->box_min[1] - x0->y) / ( iv_dir->dir_attenuation.y) : (curr_constStr->box_max[1] - x0->y) / (iv_dir->dir_attenuation.y); bd3 = abs(iv_dir->dir_attenuation.z) < 1e-8 ? INFINITY : iv_dir->dir_attenuation.z < 0 ? (curr_constStr->box_min[2] - x0->z) / ( iv_dir->dir_attenuation.z) : (curr_constStr->box_max[2] - x0->z) / (iv_dir->dir_attenuation.z); dz += fmin(fmin(bd1, bd2), bd3); e.x = -curr_constStr->sigt * dz; e.y = k * (x0->x * (il_dir->dir.x - iv_dir->dir.x) + x0->y * (il_dir->dir.y - iv_dir->dir.y) + x0->z * (il_dir->dir.z - iv_dir->dir.z) ); e = complexExponent(e); T s_lv = scattering_contribution<T,T3,3,true>(scattering_struct, &il_dir->dir, &iv_dir->dir); *(single_scattering_matrix + entry_num) = s_lv * e; } else { *(single_scattering_matrix + entry_num) = buildComplex((T) 0.0, (T) 0.0); } } } template<typename T, typename T2, typename T3> void singleScattering(T2 *us, const T3 *x0, ff_refocus_struct<T2,T3>* ff_refocus, const T2* constPath, ub32 is_correlation, ub32 total_elements, T k, ub32 scattering_paramenter, const void* scatteringStruct) { ub32 total_directions = ff_refocus->num_directions; // DEBUG // FILE *fptr; // // fptr = fopen("C:\\Users\\chen.bar\\Documents\\GitHub\\gaussianBeam-field\\mex\\debug_2.txt","w"); // { // double2 A[12] = // { // {0.1,0.1}, {0.2,0.2}, {0.3,0.3}, {0.4,0.4}, // {0.5,0.5}, {0.6,0.6}, {0.7,0.7}, {0.8,0.8}, // {0.9,0.9}, {1.0,1.0}, {1.1,1.1}, {1.2,1.2} // }; // // double2 B[20] = // { // {10.0,5.00}, {10.1,5.05}, {10.2,5.10}, {10.3,5.15}, {10.4,5.20}, // {10.5,5.25}, {10.6,5.30}, {10.7,5.35}, {10.8,5.40}, {10.9,5.45}, // {11.0,5.50}, {11.1,5.55}, {11.2,5.60}, {11.3,5.65}, {11.4,5.70}, // {11.5,5.75}, {11.6,5.80}, {11.7,5.85}, {11.8,5.90}, {11.9,5.95} // }; // // double2 C[15]; // // double2 *gpu_a, *gpu_b, *gpu_c; // // hipMalloc(&gpu_a, sizeof(double2) * 12); // hipMalloc(&gpu_b, sizeof(double2) * 20); // hipMalloc(&gpu_c, sizeof(double2) * 15); // // hipMemcpy(gpu_a , A , sizeof(double2) * 12, hipMemcpyHostToDevice); // hipMemcpy(gpu_b , B , sizeof(double2) * 20, hipMemcpyHostToDevice); // // matrixMult(ff_refocus->cublas_handle, 3, 4, 5, gpu_a, gpu_b, gpu_c); // hipMemcpy(C , gpu_c , sizeof(double2) * 15, hipMemcpyDeviceToHost); // // fprintf(fptr,"C_double = ["); // for(ub32 iter1 = 0; iter1 < 3 ; iter1++) // { // for(ub32 iter2 = 0; iter2 < 5 ; iter2++) // { // fprintf(fptr,"%f + %fi ",C[iter2 + 5 * iter1].x,C[iter2 + 5 * iter1].y); // } // fprintf(fptr,"; \n"); // } // fprintf(fptr,"];\n\n"); // hipFree(gpu_a); // hipFree(gpu_b); // hipFree(gpu_c); // } // // { // float2 A[12] = // { // {0.1f,0.1f}, {0.2f,0.2f}, {0.3f,0.3f}, {0.4f,0.4f}, // {0.5f,0.5f}, {0.6f,0.6f}, {0.7f,0.7f}, {0.8f,0.8f}, // {0.9f,0.9f}, {1.0f,1.0f}, {1.1f,1.1f}, {1.2f,1.2f} // }; // // float2 B[20] = // { // {10.0f,5.00f}, {10.1f,5.05f}, {10.2f,5.10f}, {10.3f,5.15f}, {10.4f,5.20f}, // {10.5f,5.25f}, {10.6f,5.30f}, {10.7f,5.35f}, {10.8f,5.40f}, {10.9f,5.45f}, // {11.0f,5.50f}, {11.1f,5.55f}, {11.2f,5.60f}, {11.3f,5.65f}, {11.4f,5.70f}, // {11.5f,5.75f}, {11.6f,5.80f}, {11.7f,5.85f}, {11.8f,5.90f}, {11.9f,5.95f} // }; // // float2 C[15]; // // float2 *gpu_a, *gpu_b, *gpu_c; // // hipMalloc(&gpu_a, sizeof(float2) * 12); // hipMalloc(&gpu_b, sizeof(float2) * 20); // hipMalloc(&gpu_c, sizeof(float2) * 15); // // hipMemcpy(gpu_a , A , sizeof(float2) * 12, hipMemcpyHostToDevice); // hipMemcpy(gpu_b , B , sizeof(float2) * 20, hipMemcpyHostToDevice); // // matrixMult(ff_refocus->cublas_handle, 3, 4, 5, gpu_a, gpu_b, gpu_c); // hipMemcpy(C , gpu_c , sizeof(float2) * 15, hipMemcpyDeviceToHost); // // fprintf(fptr,"C_single = ["); // for(ub32 iter1 = 0; iter1 < 3 ; iter1++) // { // for(ub32 iter2 = 0; iter2 < 5 ; iter2++) // { // fprintf(fptr,"%f + %fi ",C[iter2 + 5 * iter1].x,C[iter2 + 5 * iter1].y); // } // fprintf(fptr,"; \n"); // } // fprintf(fptr,"];\n\n"); // hipFree(gpu_a); // hipFree(gpu_b); // hipFree(gpu_c); // } // // fclose(fptr); // END DEBUG // DEBUG // FILE *fptr; // // fptr = fopen("C:\\Users\\chen.bar\\Documents\\GitHub\\gaussianBeam-field\\mex\\debug_2.txt","w"); // { // double2 A[6] = // { // {0.1,0.1}, {0.2,0.2}, {0.3,0.3}, {0.4,0.4}, // {0.5,0.5}, {0.6,0.6} // }; // // double2 B[6] = // { // {10.0,5.00}, {10.1,5.05}, {10.2,5.10}, {10.3,5.15}, {10.4,5.20}, // {10.5,5.25} // }; // // double2 *gpu_a, *gpu_b; // // hipMalloc(&gpu_a, sizeof(double2) * 6); // hipMalloc(&gpu_b, sizeof(double2) * 6); // // hipMemcpy(gpu_a , A , sizeof(double2) * 6, hipMemcpyHostToDevice); // hipMemcpy(gpu_b , B , sizeof(double2) * 6, hipMemcpyHostToDevice); // // matrixAdd(ff_refocus->cublas_handle, 6, gpu_a, gpu_b); // hipMemcpy(A , gpu_a , sizeof(double2) * 6, hipMemcpyDeviceToHost); // // fprintf(fptr,"A_double = ["); // for(ub32 iter1 = 0; iter1 < 6 ; iter1++) // { // fprintf(fptr,"%f + %fi ",A[iter1].x,A[iter1].y); // } // fprintf(fptr,"];\n\n"); // hipFree(gpu_a); // hipFree(gpu_b); // } // // { // float2 A[5] = // { // {0.1f,0.1f}, {0.2f,0.2f}, {0.3f,0.3f}, {0.4f,0.4f}, // {0.5f,0.5f} // }; // // float2 B[5] = // { // {10.0f,5.00f}, {10.1f,5.05f}, {10.2f,5.10f}, {10.3f,5.15f}, {10.4f,5.20f} // }; // // float2 *gpu_a, *gpu_b; // // hipMalloc(&gpu_a, sizeof(float2) * 5); // hipMalloc(&gpu_b, sizeof(float2) * 5); // // hipMemcpy(gpu_a , A , sizeof(float2) * 5, hipMemcpyHostToDevice); // hipMemcpy(gpu_b , B , sizeof(float2) * 5, hipMemcpyHostToDevice); // // matrixAdd(ff_refocus->cublas_handle, 5, gpu_a, gpu_b); // hipMemcpy(A , gpu_a , sizeof(float2) * 5, hipMemcpyDeviceToHost); // // fprintf(fptr,"A_single = ["); // for(ub32 iter1 = 0; iter1 < 5 ; iter1++) // { // fprintf(fptr,"%f + %fi ",A[iter1].x,A[iter1].y); // } // fprintf(fptr,"];\n\n"); // hipFree(gpu_a); // hipFree(gpu_b); // } // // fclose(fptr); // END DEBUG // DEBUG // FILE *fptr; // // fptr = fopen("C:\\Users\\chen.bar\\Documents\\GitHub\\gaussianBeam-field\\mex\\debug_2.txt","w"); // T2* wv_cpu, *wl_cpu; // // wv_cpu = (T2*) malloc(sizeof(T2) * total_elements * total_directions); // wl_cpu = (T2*) malloc(sizeof(T2) * total_elements * total_directions); // // hipMemcpy(wv_cpu , ff_refocus->w_v , sizeof(T2) * total_elements * total_directions, hipMemcpyDeviceToHost); // hipMemcpy(wl_cpu , ff_refocus->w_l , sizeof(T2) * total_elements * total_directions, hipMemcpyDeviceToHost); // // fprintf(fptr,"wv = ["); // for(ub32 iter1 = 0; iter1 < total_elements ; iter1++) // { // for(ub32 iter2 = 0; iter2 < total_directions ; iter2++) // { // fprintf(fptr,"%e + %ei ",wv_cpu[iter2 + total_directions * iter1].x,wv_cpu[iter2 + total_directions * iter1].y); // } // fprintf(fptr,"; \n"); // } // fprintf(fptr,"];\n\n"); // // fprintf(fptr,"wl = ["); // for(ub32 iter1 = 0; iter1 < total_elements ; iter1++) // { // for(ub32 iter2 = 0; iter2 < total_directions ; iter2++) // { // fprintf(fptr,"%e + %ei ",wl_cpu[iter2 + total_directions * iter1].x,wl_cpu[iter2 + total_directions * iter1].y); // } // fprintf(fptr,"; \n"); // } // fprintf(fptr,"];\n\n"); // // // free(wv_cpu); // free(wl_cpu); // // fclose(fptr); // END DEBUG ub32 blocks_num = (total_directions * total_directions - 1) / THREADS_NUM + 1; ub32 elementwise_blocks_num = (total_elements * total_directions - 1) / THREADS_NUM + 1; // build the ff matrix if(scattering_paramenter == 1) { hipLaunchKernelGGL(( singleScattering_kernel<T,T2,T3,randomScatter>), dim3(blocks_num), dim3(THREADS_NUM), 0, 0, ff_refocus->single_scattering_ff,x0,(const randomScatter*) scatteringStruct,k, ff_refocus->d_l,ff_refocus->d_v,total_directions); } if(scattering_paramenter == 2) { hipLaunchKernelGGL(( singleScattering_kernel<T,T2,T3,tabulatedScatter<T>>), dim3(blocks_num), dim3(THREADS_NUM), 0, 0, ff_refocus->single_scattering_ff,x0,(tabulatedScatter<T>*) scatteringStruct,k, ff_refocus->d_l,ff_refocus->d_v,total_directions); } if(scattering_paramenter == 3) { hipLaunchKernelGGL(( singleScattering_kernel<T,T2,T3,HGscatter<T>>), dim3(blocks_num), dim3(THREADS_NUM), 0, 0, ff_refocus->single_scattering_ff,x0,(HGscatter<T>*) scatteringStruct,k, ff_refocus->d_l,ff_refocus->d_v,total_directions); } // DEBUG // FILE *fptr; // // fptr = fopen("C:\\Users\\chen.bar\\Documents\\GitHub\\gaussianBeam-field\\mex\\debug_2.txt","w"); // T2* ff_mat_cpu; // // ff_mat_cpu = (T2*) malloc(sizeof(T2) * total_directions * total_directions); // // hipMemcpy(ff_mat_cpu , ff_refocus->single_scattering_ff , sizeof(T2) * total_directions * total_directions, hipMemcpyDeviceToHost); // // fprintf(fptr,"ff_mat = ["); // for(ub32 iter1 = 0; iter1 < total_directions ; iter1++) // { // for(ub32 iter2 = 0; iter2 < total_directions ; iter2++) // { // fprintf(fptr,"%e + %ei ",ff_mat_cpu[iter2 + total_directions * iter1].x,ff_mat_cpu[iter2 + total_directions * iter1].y); // } // fprintf(fptr,"; \n"); // } // fprintf(fptr,"];\n\n"); // // free(ff_mat_cpu); // // fclose(fptr); // END DEBUG // wv * scattering matrix matrixMult(ff_refocus->cublas_handle, total_elements, total_directions, total_directions, ff_refocus->w_v, ff_refocus->single_scattering_ff, ff_refocus->mult_w_v_single_scattering); // (wv * scattering matrix) .* wl hipLaunchKernelGGL(( elementwise_mult<T2>), dim3(elementwise_blocks_num),dim3(THREADS_NUM), 0, 0, ff_refocus->mult_w_v_single_scattering, ff_refocus->w_l, total_elements * total_directions); // sum((wv * scattering matrix) .* wl,2) matrixMult(ff_refocus->cublas_handle, total_elements, total_directions, 1, ff_refocus->mult_w_v_single_scattering, ff_refocus->ones_vector, ff_refocus->mult_res); if(is_correlation) { // build the ff matrix if(scattering_paramenter == 1) { hipLaunchKernelGGL(( singleScattering_kernel<T,T2,T3,randomScatter>), dim3(blocks_num), dim3(THREADS_NUM), 0, 0, ff_refocus->single_scattering_ff,x0,(const randomScatter*) scatteringStruct,k, ff_refocus->d_l_2,ff_refocus->d_v_2,total_directions); } if(scattering_paramenter == 2) { hipLaunchKernelGGL(( singleScattering_kernel<T,T2,T3,tabulatedScatter<T>>), dim3(blocks_num), dim3(THREADS_NUM), 0, 0, ff_refocus->single_scattering_ff,x0,(tabulatedScatter<T>*) scatteringStruct,k, ff_refocus->d_l_2,ff_refocus->d_v_2,total_directions); } if(scattering_paramenter == 3) { hipLaunchKernelGGL(( singleScattering_kernel<T,T2,T3,HGscatter<T>>), dim3(blocks_num), dim3(THREADS_NUM), 0, 0, ff_refocus->single_scattering_ff,x0,(HGscatter<T>*) scatteringStruct,k, ff_refocus->d_l_2,ff_refocus->d_v_2,total_directions); } // wv_2 * scattering matrix matrixMult(ff_refocus->cublas_handle, total_elements, total_directions, total_directions, ff_refocus->w_v_2, ff_refocus->single_scattering_ff, ff_refocus->mult_w_v_single_scattering); // (wv_2 * scattering matrix) .* wl_2 hipLaunchKernelGGL(( elementwise_mult<T2>), dim3(elementwise_blocks_num),dim3(THREADS_NUM), 0, 0, ff_refocus->mult_w_v_single_scattering, ff_refocus->w_l_2, total_elements * total_directions); // sum((wv * scattering matrix) .* wl_2,2) matrixMult(ff_refocus->cublas_handle, total_elements, total_directions, 1, ff_refocus->mult_w_v_single_scattering, ff_refocus->ones_vector, ff_refocus->mult_res_2); ub32 mult_blocks_num = (total_elements - 1) / THREADS_NUM + 1; hipLaunchKernelGGL(( elementwise_conj_mult<T2>), dim3(mult_blocks_num),dim3(THREADS_NUM), 0, 0, ff_refocus->mult_res, ff_refocus->mult_res_2, total_elements); } matrixAdd(ff_refocus->cublas_handle_device_alpha, total_elements, constPath, us, ff_refocus->mult_res); } template<typename T> void singleScattering_setConstMem(constStructre<T> *constMem) { hipMemcpyToSymbol(constStr_scat_single, constMem, sizeof(constStructre<T>)); } template void singleScattering_setConstMem<double>(constStructre<double> *constMem); template void singleScattering_setConstMem<float>(constStructre<float> *constMem); template void singleScattering<double,double2,double3>(double2 *us, const double3 *x0, ff_refocus_struct<double2,double3>* ff_refocus, const double2* constPath, ub32 is_correlation, ub32 total_elements, double k, ub32 scattering_paramenter, const void* scatteringStruct); template void singleScattering<float,float2,float3>(float2 *us, const float3 *x0, ff_refocus_struct<float2,float3>* ff_refocus, const float2* constPath, ub32 is_correlation, ub32 total_elements, float k, ub32 scattering_paramenter, const void* scatteringStruct);
1e3d8f29d087f11fa02fbdddd70a1b98c1d93ee1.cu
#include "refocus_header.h" #include "refocus_scattering.h" #include "cuMath.cu" //debug // #include<stdio.h> __constant__ constStructre<double> constStr_scat_single; template<typename T, typename T2, typename T3, typename scatteringType> __global__ void singleScattering_kernel(T2* single_scattering_matrix, const T3* x0, const scatteringType* scattering_struct, T k, const ff_direction<T3> *l_dir, const ff_direction<T3> *v_dir, ub32 directions_num) { const constStructre<T>* curr_constStr = (const constStructre<T>*) &constStr_scat_single; ub32 entry_num = blockIdx.x * blockDim.x + threadIdx.x; if(entry_num < (directions_num * directions_num)) { ub32 l_idx = entry_num % directions_num; ub32 v_idx = entry_num / directions_num; const ff_direction<T3> *il_dir = l_dir + l_idx; const ff_direction<T3> *iv_dir = v_dir + v_idx; if(il_dir->is_active && iv_dir->is_active) { T2 e; T bd1, bd2, bd3, dz; bd1 = abs(il_dir->dir_attenuation.x) < 1e-8 ? INFINITY : il_dir->dir_attenuation.x >= 0 ? (x0->x - curr_constStr->box_min[0]) / ( il_dir->dir_attenuation.x) : (x0->x - curr_constStr->box_max[0]) / (il_dir->dir_attenuation.x); bd2 = abs(il_dir->dir_attenuation.y) < 1e-8 ? INFINITY : il_dir->dir_attenuation.y >= 0 ? (x0->y - curr_constStr->box_min[1]) / ( il_dir->dir_attenuation.y) : (x0->y - curr_constStr->box_max[1]) / (il_dir->dir_attenuation.y); bd3 = abs(il_dir->dir_attenuation.z) < 1e-8 ? INFINITY : il_dir->dir_attenuation.z >= 0 ? (x0->z - curr_constStr->box_min[2]) / ( il_dir->dir_attenuation.z) : (x0->z - curr_constStr->box_max[2]) / (il_dir->dir_attenuation.z); dz = fmin(fmin(bd1, bd2), bd3); bd1 = abs(iv_dir->dir_attenuation.x) < 1e-8 ? INFINITY : iv_dir->dir_attenuation.x < 0 ? (curr_constStr->box_min[0] - x0->x) / ( iv_dir->dir_attenuation.x) : (curr_constStr->box_max[0] - x0->x) / (iv_dir->dir_attenuation.x); bd2 = abs(iv_dir->dir_attenuation.y) < 1e-8 ? INFINITY : iv_dir->dir_attenuation.y < 0 ? (curr_constStr->box_min[1] - x0->y) / ( iv_dir->dir_attenuation.y) : (curr_constStr->box_max[1] - x0->y) / (iv_dir->dir_attenuation.y); bd3 = abs(iv_dir->dir_attenuation.z) < 1e-8 ? INFINITY : iv_dir->dir_attenuation.z < 0 ? (curr_constStr->box_min[2] - x0->z) / ( iv_dir->dir_attenuation.z) : (curr_constStr->box_max[2] - x0->z) / (iv_dir->dir_attenuation.z); dz += fmin(fmin(bd1, bd2), bd3); e.x = -curr_constStr->sigt * dz; e.y = k * (x0->x * (il_dir->dir.x - iv_dir->dir.x) + x0->y * (il_dir->dir.y - iv_dir->dir.y) + x0->z * (il_dir->dir.z - iv_dir->dir.z) ); e = complexExponent(e); T s_lv = scattering_contribution<T,T3,3,true>(scattering_struct, &il_dir->dir, &iv_dir->dir); *(single_scattering_matrix + entry_num) = s_lv * e; } else { *(single_scattering_matrix + entry_num) = buildComplex((T) 0.0, (T) 0.0); } } } template<typename T, typename T2, typename T3> void singleScattering(T2 *us, const T3 *x0, ff_refocus_struct<T2,T3>* ff_refocus, const T2* constPath, ub32 is_correlation, ub32 total_elements, T k, ub32 scattering_paramenter, const void* scatteringStruct) { ub32 total_directions = ff_refocus->num_directions; // DEBUG // FILE *fptr; // // fptr = fopen("C:\\Users\\chen.bar\\Documents\\GitHub\\gaussianBeam-field\\mex\\debug_2.txt","w"); // { // double2 A[12] = // { // {0.1,0.1}, {0.2,0.2}, {0.3,0.3}, {0.4,0.4}, // {0.5,0.5}, {0.6,0.6}, {0.7,0.7}, {0.8,0.8}, // {0.9,0.9}, {1.0,1.0}, {1.1,1.1}, {1.2,1.2} // }; // // double2 B[20] = // { // {10.0,5.00}, {10.1,5.05}, {10.2,5.10}, {10.3,5.15}, {10.4,5.20}, // {10.5,5.25}, {10.6,5.30}, {10.7,5.35}, {10.8,5.40}, {10.9,5.45}, // {11.0,5.50}, {11.1,5.55}, {11.2,5.60}, {11.3,5.65}, {11.4,5.70}, // {11.5,5.75}, {11.6,5.80}, {11.7,5.85}, {11.8,5.90}, {11.9,5.95} // }; // // double2 C[15]; // // double2 *gpu_a, *gpu_b, *gpu_c; // // cudaMalloc(&gpu_a, sizeof(double2) * 12); // cudaMalloc(&gpu_b, sizeof(double2) * 20); // cudaMalloc(&gpu_c, sizeof(double2) * 15); // // cudaMemcpy(gpu_a , A , sizeof(double2) * 12, cudaMemcpyHostToDevice); // cudaMemcpy(gpu_b , B , sizeof(double2) * 20, cudaMemcpyHostToDevice); // // matrixMult(ff_refocus->cublas_handle, 3, 4, 5, gpu_a, gpu_b, gpu_c); // cudaMemcpy(C , gpu_c , sizeof(double2) * 15, cudaMemcpyDeviceToHost); // // fprintf(fptr,"C_double = ["); // for(ub32 iter1 = 0; iter1 < 3 ; iter1++) // { // for(ub32 iter2 = 0; iter2 < 5 ; iter2++) // { // fprintf(fptr,"%f + %fi ",C[iter2 + 5 * iter1].x,C[iter2 + 5 * iter1].y); // } // fprintf(fptr,"; \n"); // } // fprintf(fptr,"];\n\n"); // cudaFree(gpu_a); // cudaFree(gpu_b); // cudaFree(gpu_c); // } // // { // float2 A[12] = // { // {0.1f,0.1f}, {0.2f,0.2f}, {0.3f,0.3f}, {0.4f,0.4f}, // {0.5f,0.5f}, {0.6f,0.6f}, {0.7f,0.7f}, {0.8f,0.8f}, // {0.9f,0.9f}, {1.0f,1.0f}, {1.1f,1.1f}, {1.2f,1.2f} // }; // // float2 B[20] = // { // {10.0f,5.00f}, {10.1f,5.05f}, {10.2f,5.10f}, {10.3f,5.15f}, {10.4f,5.20f}, // {10.5f,5.25f}, {10.6f,5.30f}, {10.7f,5.35f}, {10.8f,5.40f}, {10.9f,5.45f}, // {11.0f,5.50f}, {11.1f,5.55f}, {11.2f,5.60f}, {11.3f,5.65f}, {11.4f,5.70f}, // {11.5f,5.75f}, {11.6f,5.80f}, {11.7f,5.85f}, {11.8f,5.90f}, {11.9f,5.95f} // }; // // float2 C[15]; // // float2 *gpu_a, *gpu_b, *gpu_c; // // cudaMalloc(&gpu_a, sizeof(float2) * 12); // cudaMalloc(&gpu_b, sizeof(float2) * 20); // cudaMalloc(&gpu_c, sizeof(float2) * 15); // // cudaMemcpy(gpu_a , A , sizeof(float2) * 12, cudaMemcpyHostToDevice); // cudaMemcpy(gpu_b , B , sizeof(float2) * 20, cudaMemcpyHostToDevice); // // matrixMult(ff_refocus->cublas_handle, 3, 4, 5, gpu_a, gpu_b, gpu_c); // cudaMemcpy(C , gpu_c , sizeof(float2) * 15, cudaMemcpyDeviceToHost); // // fprintf(fptr,"C_single = ["); // for(ub32 iter1 = 0; iter1 < 3 ; iter1++) // { // for(ub32 iter2 = 0; iter2 < 5 ; iter2++) // { // fprintf(fptr,"%f + %fi ",C[iter2 + 5 * iter1].x,C[iter2 + 5 * iter1].y); // } // fprintf(fptr,"; \n"); // } // fprintf(fptr,"];\n\n"); // cudaFree(gpu_a); // cudaFree(gpu_b); // cudaFree(gpu_c); // } // // fclose(fptr); // END DEBUG // DEBUG // FILE *fptr; // // fptr = fopen("C:\\Users\\chen.bar\\Documents\\GitHub\\gaussianBeam-field\\mex\\debug_2.txt","w"); // { // double2 A[6] = // { // {0.1,0.1}, {0.2,0.2}, {0.3,0.3}, {0.4,0.4}, // {0.5,0.5}, {0.6,0.6} // }; // // double2 B[6] = // { // {10.0,5.00}, {10.1,5.05}, {10.2,5.10}, {10.3,5.15}, {10.4,5.20}, // {10.5,5.25} // }; // // double2 *gpu_a, *gpu_b; // // cudaMalloc(&gpu_a, sizeof(double2) * 6); // cudaMalloc(&gpu_b, sizeof(double2) * 6); // // cudaMemcpy(gpu_a , A , sizeof(double2) * 6, cudaMemcpyHostToDevice); // cudaMemcpy(gpu_b , B , sizeof(double2) * 6, cudaMemcpyHostToDevice); // // matrixAdd(ff_refocus->cublas_handle, 6, gpu_a, gpu_b); // cudaMemcpy(A , gpu_a , sizeof(double2) * 6, cudaMemcpyDeviceToHost); // // fprintf(fptr,"A_double = ["); // for(ub32 iter1 = 0; iter1 < 6 ; iter1++) // { // fprintf(fptr,"%f + %fi ",A[iter1].x,A[iter1].y); // } // fprintf(fptr,"];\n\n"); // cudaFree(gpu_a); // cudaFree(gpu_b); // } // // { // float2 A[5] = // { // {0.1f,0.1f}, {0.2f,0.2f}, {0.3f,0.3f}, {0.4f,0.4f}, // {0.5f,0.5f} // }; // // float2 B[5] = // { // {10.0f,5.00f}, {10.1f,5.05f}, {10.2f,5.10f}, {10.3f,5.15f}, {10.4f,5.20f} // }; // // float2 *gpu_a, *gpu_b; // // cudaMalloc(&gpu_a, sizeof(float2) * 5); // cudaMalloc(&gpu_b, sizeof(float2) * 5); // // cudaMemcpy(gpu_a , A , sizeof(float2) * 5, cudaMemcpyHostToDevice); // cudaMemcpy(gpu_b , B , sizeof(float2) * 5, cudaMemcpyHostToDevice); // // matrixAdd(ff_refocus->cublas_handle, 5, gpu_a, gpu_b); // cudaMemcpy(A , gpu_a , sizeof(float2) * 5, cudaMemcpyDeviceToHost); // // fprintf(fptr,"A_single = ["); // for(ub32 iter1 = 0; iter1 < 5 ; iter1++) // { // fprintf(fptr,"%f + %fi ",A[iter1].x,A[iter1].y); // } // fprintf(fptr,"];\n\n"); // cudaFree(gpu_a); // cudaFree(gpu_b); // } // // fclose(fptr); // END DEBUG // DEBUG // FILE *fptr; // // fptr = fopen("C:\\Users\\chen.bar\\Documents\\GitHub\\gaussianBeam-field\\mex\\debug_2.txt","w"); // T2* wv_cpu, *wl_cpu; // // wv_cpu = (T2*) malloc(sizeof(T2) * total_elements * total_directions); // wl_cpu = (T2*) malloc(sizeof(T2) * total_elements * total_directions); // // cudaMemcpy(wv_cpu , ff_refocus->w_v , sizeof(T2) * total_elements * total_directions, cudaMemcpyDeviceToHost); // cudaMemcpy(wl_cpu , ff_refocus->w_l , sizeof(T2) * total_elements * total_directions, cudaMemcpyDeviceToHost); // // fprintf(fptr,"wv = ["); // for(ub32 iter1 = 0; iter1 < total_elements ; iter1++) // { // for(ub32 iter2 = 0; iter2 < total_directions ; iter2++) // { // fprintf(fptr,"%e + %ei ",wv_cpu[iter2 + total_directions * iter1].x,wv_cpu[iter2 + total_directions * iter1].y); // } // fprintf(fptr,"; \n"); // } // fprintf(fptr,"];\n\n"); // // fprintf(fptr,"wl = ["); // for(ub32 iter1 = 0; iter1 < total_elements ; iter1++) // { // for(ub32 iter2 = 0; iter2 < total_directions ; iter2++) // { // fprintf(fptr,"%e + %ei ",wl_cpu[iter2 + total_directions * iter1].x,wl_cpu[iter2 + total_directions * iter1].y); // } // fprintf(fptr,"; \n"); // } // fprintf(fptr,"];\n\n"); // // // free(wv_cpu); // free(wl_cpu); // // fclose(fptr); // END DEBUG ub32 blocks_num = (total_directions * total_directions - 1) / THREADS_NUM + 1; ub32 elementwise_blocks_num = (total_elements * total_directions - 1) / THREADS_NUM + 1; // build the ff matrix if(scattering_paramenter == 1) { singleScattering_kernel<T,T2,T3,randomScatter><<<blocks_num, THREADS_NUM>>> (ff_refocus->single_scattering_ff,x0,(const randomScatter*) scatteringStruct,k, ff_refocus->d_l,ff_refocus->d_v,total_directions); } if(scattering_paramenter == 2) { singleScattering_kernel<T,T2,T3,tabulatedScatter<T>><<<blocks_num, THREADS_NUM>>> (ff_refocus->single_scattering_ff,x0,(tabulatedScatter<T>*) scatteringStruct,k, ff_refocus->d_l,ff_refocus->d_v,total_directions); } if(scattering_paramenter == 3) { singleScattering_kernel<T,T2,T3,HGscatter<T>><<<blocks_num, THREADS_NUM>>> (ff_refocus->single_scattering_ff,x0,(HGscatter<T>*) scatteringStruct,k, ff_refocus->d_l,ff_refocus->d_v,total_directions); } // DEBUG // FILE *fptr; // // fptr = fopen("C:\\Users\\chen.bar\\Documents\\GitHub\\gaussianBeam-field\\mex\\debug_2.txt","w"); // T2* ff_mat_cpu; // // ff_mat_cpu = (T2*) malloc(sizeof(T2) * total_directions * total_directions); // // cudaMemcpy(ff_mat_cpu , ff_refocus->single_scattering_ff , sizeof(T2) * total_directions * total_directions, cudaMemcpyDeviceToHost); // // fprintf(fptr,"ff_mat = ["); // for(ub32 iter1 = 0; iter1 < total_directions ; iter1++) // { // for(ub32 iter2 = 0; iter2 < total_directions ; iter2++) // { // fprintf(fptr,"%e + %ei ",ff_mat_cpu[iter2 + total_directions * iter1].x,ff_mat_cpu[iter2 + total_directions * iter1].y); // } // fprintf(fptr,"; \n"); // } // fprintf(fptr,"];\n\n"); // // free(ff_mat_cpu); // // fclose(fptr); // END DEBUG // wv * scattering matrix matrixMult(ff_refocus->cublas_handle, total_elements, total_directions, total_directions, ff_refocus->w_v, ff_refocus->single_scattering_ff, ff_refocus->mult_w_v_single_scattering); // (wv * scattering matrix) .* wl elementwise_mult<T2><<<elementwise_blocks_num,THREADS_NUM>>>(ff_refocus->mult_w_v_single_scattering, ff_refocus->w_l, total_elements * total_directions); // sum((wv * scattering matrix) .* wl,2) matrixMult(ff_refocus->cublas_handle, total_elements, total_directions, 1, ff_refocus->mult_w_v_single_scattering, ff_refocus->ones_vector, ff_refocus->mult_res); if(is_correlation) { // build the ff matrix if(scattering_paramenter == 1) { singleScattering_kernel<T,T2,T3,randomScatter><<<blocks_num, THREADS_NUM>>> (ff_refocus->single_scattering_ff,x0,(const randomScatter*) scatteringStruct,k, ff_refocus->d_l_2,ff_refocus->d_v_2,total_directions); } if(scattering_paramenter == 2) { singleScattering_kernel<T,T2,T3,tabulatedScatter<T>><<<blocks_num, THREADS_NUM>>> (ff_refocus->single_scattering_ff,x0,(tabulatedScatter<T>*) scatteringStruct,k, ff_refocus->d_l_2,ff_refocus->d_v_2,total_directions); } if(scattering_paramenter == 3) { singleScattering_kernel<T,T2,T3,HGscatter<T>><<<blocks_num, THREADS_NUM>>> (ff_refocus->single_scattering_ff,x0,(HGscatter<T>*) scatteringStruct,k, ff_refocus->d_l_2,ff_refocus->d_v_2,total_directions); } // wv_2 * scattering matrix matrixMult(ff_refocus->cublas_handle, total_elements, total_directions, total_directions, ff_refocus->w_v_2, ff_refocus->single_scattering_ff, ff_refocus->mult_w_v_single_scattering); // (wv_2 * scattering matrix) .* wl_2 elementwise_mult<T2><<<elementwise_blocks_num,THREADS_NUM>>>(ff_refocus->mult_w_v_single_scattering, ff_refocus->w_l_2, total_elements * total_directions); // sum((wv * scattering matrix) .* wl_2,2) matrixMult(ff_refocus->cublas_handle, total_elements, total_directions, 1, ff_refocus->mult_w_v_single_scattering, ff_refocus->ones_vector, ff_refocus->mult_res_2); ub32 mult_blocks_num = (total_elements - 1) / THREADS_NUM + 1; elementwise_conj_mult<T2><<<mult_blocks_num,THREADS_NUM>>>(ff_refocus->mult_res, ff_refocus->mult_res_2, total_elements); } matrixAdd(ff_refocus->cublas_handle_device_alpha, total_elements, constPath, us, ff_refocus->mult_res); } template<typename T> void singleScattering_setConstMem(constStructre<T> *constMem) { cudaMemcpyToSymbol(constStr_scat_single, constMem, sizeof(constStructre<T>)); } template void singleScattering_setConstMem<double>(constStructre<double> *constMem); template void singleScattering_setConstMem<float>(constStructre<float> *constMem); template void singleScattering<double,double2,double3>(double2 *us, const double3 *x0, ff_refocus_struct<double2,double3>* ff_refocus, const double2* constPath, ub32 is_correlation, ub32 total_elements, double k, ub32 scattering_paramenter, const void* scatteringStruct); template void singleScattering<float,float2,float3>(float2 *us, const float3 *x0, ff_refocus_struct<float2,float3>* ff_refocus, const float2* constPath, ub32 is_correlation, ub32 total_elements, float k, ub32 scattering_paramenter, const void* scatteringStruct);
gauge_fix_fft.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <quda_internal.h> #include <quda_matrix.h> #include <tune_quda.h> #include <gauge_field.h> #include <gauge_field_order.h> #include <launch_kernel.cuh> #include <unitarization_links.h> #include <atomic.cuh> #include <cub_helper.cuh> #include <index_helper.cuh> #include <hipfft.h> #ifdef GPU_GAUGE_ALG #include <CUFFT_Plans.h> #endif namespace quda { #ifdef GPU_GAUGE_ALG //Comment if you don't want to use textures for Delta(x) and g(x) #define GAUGEFIXING_SITE_MATRIX_LOAD_TEX //UNCOMMENT THIS IF YOU WAN'T TO USE LESS MEMORY #define GAUGEFIXING_DONT_USE_GX //Without using the precalculation of g(x), //we loose some performance, because Delta(x) is written in normal lattice coordinates need for the FFTs //and the gauge array in even/odd format #ifdef GAUGEFIXING_DONT_USE_GX #warning Don't use precalculated g(x) #else #warning Using precalculated g(x) #endif #ifndef FL_UNITARIZE_PI #define FL_UNITARIZE_PI 3.14159265358979323846 #endif texture<float2, 1, hipReadModeElementType> GXTexSingle; texture<int4, 1, hipReadModeElementType> GXTexDouble; //Delta is only stored using 12 real number parameters, // (0,0), (0,1), (0,2), (1,1), (1,2) and (2,2) // (0,0), (1,1) and (0,1) don't have real part, however we need a complex for the FFTs texture<float2, 1, hipReadModeElementType> DELTATexSingle; texture<int4, 1, hipReadModeElementType> DELTATexDouble; template <class T> inline __device__ T TEXTURE_GX(int id){ return 0.0; } template <> inline __device__ typename ComplexTypeId<float>::Type TEXTURE_GX<typename ComplexTypeId<float>::Type>(int id){ return tex1Dfetch(GXTexSingle, id); } template <> inline __device__ typename ComplexTypeId<double>::Type TEXTURE_GX<typename ComplexTypeId<double>::Type>(int id){ int4 u = tex1Dfetch(GXTexDouble, id); return makeComplex(__hiloint2double(u.y, u.x), __hiloint2double(u.w, u.z)); } template <class T> inline __device__ T TEXTURE_DELTA(int id){ return 0.0; } template <> inline __device__ typename ComplexTypeId<float>::Type TEXTURE_DELTA<typename ComplexTypeId<float>::Type>(int id){ return tex1Dfetch(DELTATexSingle, id); } template <> inline __device__ typename ComplexTypeId<double>::Type TEXTURE_DELTA<typename ComplexTypeId<double>::Type>(int id){ int4 u = tex1Dfetch(DELTATexDouble, id); return makeComplex(__hiloint2double(u.y, u.x), __hiloint2double(u.w, u.z)); } static void BindTex(typename ComplexTypeId<float>::Type *delta, typename ComplexTypeId<float>::Type *gx, size_t bytes){ #ifdef GAUGEFIXING_SITE_MATRIX_LOAD_TEX #ifndef GAUGEFIXING_DONT_USE_GX hipBindTexture(0, GXTexSingle, gx, bytes); #endif hipBindTexture(0, DELTATexSingle, delta, bytes); #endif } static void BindTex(typename ComplexTypeId<double>::Type *delta, typename ComplexTypeId<double>::Type *gx, size_t bytes){ #ifdef GAUGEFIXING_SITE_MATRIX_LOAD_TEX #ifndef GAUGEFIXING_DONT_USE_GX hipBindTexture(0, GXTexDouble, gx, bytes); #endif hipBindTexture(0, DELTATexDouble, delta, bytes); #endif } static void UnBindTex(typename ComplexTypeId<float>::Type *delta, typename ComplexTypeId<float>::Type *gx){ #ifdef GAUGEFIXING_SITE_MATRIX_LOAD_TEX #ifndef GAUGEFIXING_DONT_USE_GX hipUnbindTexture(GXTexSingle); #endif hipUnbindTexture(DELTATexSingle); #endif } static void UnBindTex(typename ComplexTypeId<double>::Type *delta, typename ComplexTypeId<double>::Type *gx){ #ifdef GAUGEFIXING_SITE_MATRIX_LOAD_TEX #ifndef GAUGEFIXING_DONT_USE_GX hipUnbindTexture(GXTexDouble); #endif hipUnbindTexture(DELTATexDouble); #endif } template <typename Cmplx> struct GaugeFixFFTRotateArg { int threads; // number of active threads required int X[4]; // grid dimensions Cmplx *tmp0; Cmplx *tmp1; GaugeFixFFTRotateArg(const cudaGaugeField &data){ for ( int dir = 0; dir < 4; ++dir ) X[dir] = data.X()[dir]; threads = X[0] * X[1] * X[2] * X[3]; tmp0 = 0; tmp1 = 0; } }; template <int direction, typename Cmplx> __global__ void fft_rotate_kernel_2D2D(GaugeFixFFTRotateArg<Cmplx> arg){ //Cmplx *data_in, Cmplx *data_out){ int id = blockIdx.x * blockDim.x + threadIdx.x; if ( id >= arg.threads ) return; if ( direction == 0 ) { int x3 = id / (arg.X[0] * arg.X[1] * arg.X[2]); int x2 = (id / (arg.X[0] * arg.X[1])) % arg.X[2]; int x1 = (id / arg.X[0]) % arg.X[1]; int x0 = id % arg.X[0]; int id = x0 + (x1 + (x2 + x3 * arg.X[2]) * arg.X[1]) * arg.X[0]; int id_out = x2 + (x3 + (x0 + x1 * arg.X[0]) * arg.X[3]) * arg.X[2]; arg.tmp1[id_out] = arg.tmp0[id]; //data_out[id_out] = data_in[id]; } if ( direction == 1 ) { int x1 = id / (arg.X[2] * arg.X[3] * arg.X[0]); int x0 = (id / (arg.X[2] * arg.X[3])) % arg.X[0]; int x3 = (id / arg.X[2]) % arg.X[3]; int x2 = id % arg.X[2]; int id = x2 + (x3 + (x0 + x1 * arg.X[0]) * arg.X[3]) * arg.X[2]; int id_out = x0 + (x1 + (x2 + x3 * arg.X[2]) * arg.X[1]) * arg.X[0]; arg.tmp1[id_out] = arg.tmp0[id]; //data_out[id_out] = data_in[id]; } } template<typename Cmplx> class GaugeFixFFTRotate : Tunable { GaugeFixFFTRotateArg<Cmplx> arg; unsigned int direction; mutable char aux_string[128]; // used as a label in the autotuner private: unsigned int sharedBytesPerThread() const { return 0; } unsigned int sharedBytesPerBlock(const TuneParam &param) const { return 0; } //bool tuneSharedBytes() const { return false; } // Don't tune shared memory bool tuneGridDim() const { return false; } // Don't tune the grid dimensions. unsigned int minThreads() const { return arg.threads; } public: GaugeFixFFTRotate(GaugeFixFFTRotateArg<Cmplx> &arg) : arg(arg) { direction = 0; } ~GaugeFixFFTRotate () { } void setDirection(unsigned int dir, Cmplx *data_in, Cmplx *data_out){ direction = dir; arg.tmp0 = data_in; arg.tmp1 = data_out; } void apply(const hipStream_t &stream){ TuneParam tp = tuneLaunch(*this, getTuning(), getVerbosity()); if ( direction == 0 ) fft_rotate_kernel_2D2D<0, Cmplx><< < tp.grid, tp.block, 0, stream >> > (arg); else if ( direction == 1 ) fft_rotate_kernel_2D2D<1, Cmplx><< < tp.grid, tp.block, 0, stream >> > (arg); else errorQuda("Error in GaugeFixFFTRotate option.\n"); } TuneKey tuneKey() const { std::stringstream vol; vol << arg.X[0] << "x"; vol << arg.X[1] << "x"; vol << arg.X[2] << "x"; vol << arg.X[3]; sprintf(aux_string,"threads=%d,prec=%d",arg.threads, sizeof(Cmplx) / 2); return TuneKey(vol.str().c_str(), typeid(*this).name(), aux_string); } std::string paramString(const TuneParam &param) const { std::stringstream ps; ps << "block=(" << param.block.x << "," << param.block.y << "," << param.block.z << ")"; ps << "shared=" << param.shared_bytes; return ps.str(); } long long flops() const { return 0; } long long bytes() const { return 2LL * sizeof(Cmplx) * arg.threads; } }; template <typename Cmplx, typename Gauge> struct GaugeFixQualityArg : public ReduceArg<double2> { int threads; // number of active threads required int X[4]; // grid dimensions Gauge dataOr; Cmplx *delta; GaugeFixQualityArg(const Gauge &dataOr, const cudaGaugeField &data, Cmplx * delta) : ReduceArg<double2>(), dataOr(dataOr), delta(delta) { for ( int dir = 0; dir < 4; ++dir ) X[dir] = data.X()[dir]; threads = data.VolumeCB(); } double getAction(){ return result_h[0].x; } double getTheta(){ return result_h[0].y; } }; template<int blockSize, unsigned int Elems, typename Float, typename Gauge, int gauge_dir> __global__ void computeFix_quality(GaugeFixQualityArg<typename ComplexTypeId<Float>::Type, Gauge> argQ){ int idx = threadIdx.x + blockIdx.x * blockDim.x; int parity = threadIdx.y; double2 data = make_double2(0.0,0.0); if ( idx < argQ.threads ) { typedef typename ComplexTypeId<Float>::Type Cmplx; int x[4]; getCoords(x, idx, argQ.X, parity); Matrix<Cmplx,3> delta; setZero(&delta); //idx = linkIndex(x,X); for ( int mu = 0; mu < gauge_dir; mu++ ) { Matrix<Cmplx,3> U; argQ.dataOr.load((Float*)(U.data),idx, mu, parity); delta -= U; } //18*gauge_dir data.x = -delta(0,0).x - delta(1,1).x - delta(2,2).x; //2 for ( int mu = 0; mu < gauge_dir; mu++ ) { Matrix<Cmplx,3> U; argQ.dataOr.load((Float*)(U.data),linkIndexM1(x,argQ.X,mu), mu, 1 - parity); delta += U; } //18*gauge_dir delta -= conj(delta); //18 //SAVE DELTA!!!!! SubTraceUnit(delta); idx = getIndexFull(idx, argQ.X, parity); //Saving Delta argQ.delta[idx] = delta(0,0); argQ.delta[idx + 2 * argQ.threads] = delta(0,1); argQ.delta[idx + 4 * argQ.threads] = delta(0,2); argQ.delta[idx + 6 * argQ.threads] = delta(1,1); argQ.delta[idx + 8 * argQ.threads] = delta(1,2); argQ.delta[idx + 10 * argQ.threads] = delta(2,2); //12 data.y = getRealTraceUVdagger(delta, delta); //35 //T=36*gauge_dir+65 } reduce2d<blockSize,2>(argQ, data); } template<unsigned int Elems, typename Float, typename Gauge, int gauge_dir> class GaugeFixQuality : TunableLocalParity { GaugeFixQualityArg<typename ComplexTypeId<Float>::Type, Gauge> argQ; mutable char aux_string[128]; // used as a label in the autotuner private: unsigned int minThreads() const { return argQ.threads; } public: GaugeFixQuality(GaugeFixQualityArg<typename ComplexTypeId<Float>::Type, Gauge> &argQ) : argQ(argQ) { } ~GaugeFixQuality () { } void apply(const hipStream_t &stream){ TuneParam tp = tuneLaunch(*this, getTuning(), getVerbosity()); argQ.result_h[0] = make_double2(0.0,0.0); LAUNCH_KERNEL_LOCAL_PARITY(computeFix_quality, tp, stream, argQ, Elems, Float, Gauge, gauge_dir); hipDeviceSynchronize(); argQ.result_h[0].x /= (double)(3 * gauge_dir * 2 * argQ.threads); argQ.result_h[0].y /= (double)(3 * 2 * argQ.threads); } TuneKey tuneKey() const { std::stringstream vol; vol << argQ.X[0] << "x" << argQ.X[1] << "x" << argQ.X[2] << "x" << argQ.X[3]; sprintf(aux_string,"threads=%d,prec=%d,gaugedir=%d",argQ.threads, sizeof(Float),gauge_dir); return TuneKey(vol.str().c_str(), typeid(*this).name(), aux_string); } std::string paramString(const TuneParam &param) const { std::stringstream ps; ps << "block=(" << param.block.x << "," << param.block.y << "," << param.block.z << ")"; ps << "shared=" << param.shared_bytes; return ps.str(); } long long flops() const { return (36LL * gauge_dir + 65LL) * 2 * argQ.threads; } // Only correct if there is no link reconstruction, no cub reduction accounted also long long bytes() const { return (2LL * gauge_dir + 2LL) * Elems * 2 * argQ.threads * sizeof(Float); } //Not accounting the reduction!!! }; template <typename Float> struct GaugeFixArg { int threads; // number of active threads required int X[4]; // grid dimensions cudaGaugeField &data; Float *invpsq; typename ComplexTypeId<Float>::Type *delta; typename ComplexTypeId<Float>::Type *gx; GaugeFixArg( cudaGaugeField & data, const unsigned int Elems) : data(data){ for ( int dir = 0; dir < 4; ++dir ) X[dir] = data.X()[dir]; threads = X[0] * X[1] * X[2] * X[3]; invpsq = (Float*)device_malloc(sizeof(Float) * threads); delta = (typename ComplexTypeId<Float>::Type *)device_malloc(sizeof(typename ComplexTypeId<Float>::Type) * threads * 6); #ifdef GAUGEFIXING_DONT_USE_GX gx = (typename ComplexTypeId<Float>::Type *)device_malloc(sizeof(typename ComplexTypeId<Float>::Type) * threads); #else gx = (typename ComplexTypeId<Float>::Type *)device_malloc(sizeof(typename ComplexTypeId<Float>::Type) * threads * Elems); #endif BindTex(delta, gx, sizeof(typename ComplexTypeId<Float>::Type) * threads * Elems); } void free(){ UnBindTex(delta, gx); device_free(invpsq); device_free(delta); device_free(gx); } }; template <typename Float> __global__ void kernel_gauge_set_invpsq(GaugeFixArg<Float> arg){ int id = blockIdx.x * blockDim.x + threadIdx.x; if ( id >= arg.threads ) return; int x1 = id / (arg.X[2] * arg.X[3] * arg.X[0]); int x0 = (id / (arg.X[2] * arg.X[3])) % arg.X[0]; int x3 = (id / arg.X[2]) % arg.X[3]; int x2 = id % arg.X[2]; //id = x2 + (x3 + (x0 + x1 * arg.X[0]) * arg.X[3]) * arg.X[2]; Float sx = sin( (Float)x0 * FL_UNITARIZE_PI / (Float)arg.X[0]); Float sy = sin( (Float)x1 * FL_UNITARIZE_PI / (Float)arg.X[1]); Float sz = sin( (Float)x2 * FL_UNITARIZE_PI / (Float)arg.X[2]); Float st = sin( (Float)x3 * FL_UNITARIZE_PI / (Float)arg.X[3]); Float sinsq = sx * sx + sy * sy + sz * sz + st * st; Float prcfact = 0.0; //The FFT normalization is done here if ( sinsq > 0.00001 ) prcfact = 4.0 / (sinsq * (Float)arg.threads); arg.invpsq[id] = prcfact; } template<typename Float> class GaugeFixSETINVPSP : Tunable { GaugeFixArg<Float> arg; mutable char aux_string[128]; // used as a label in the autotuner private: unsigned int sharedBytesPerThread() const { return 0; } unsigned int sharedBytesPerBlock(const TuneParam &param) const { return 0; } bool tuneSharedBytes() const { return false; } // Don't tune shared memory bool tuneGridDim() const { return false; } // Don't tune the grid dimensions. unsigned int minThreads() const { return arg.threads; } public: GaugeFixSETINVPSP(GaugeFixArg<Float> &arg) : arg(arg) { } ~GaugeFixSETINVPSP () { } void apply(const hipStream_t &stream){ TuneParam tp = tuneLaunch(*this, getTuning(), getVerbosity()); kernel_gauge_set_invpsq<Float><< < tp.grid, tp.block, 0, stream >> > (arg); } TuneKey tuneKey() const { std::stringstream vol; vol << arg.X[0] << "x"; vol << arg.X[1] << "x"; vol << arg.X[2] << "x"; vol << arg.X[3]; sprintf(aux_string,"threads=%d,prec=%d",arg.threads, sizeof(Float)); return TuneKey(vol.str().c_str(), typeid(*this).name(), aux_string); } std::string paramString(const TuneParam &param) const { std::stringstream ps; ps << "block=(" << param.block.x << "," << param.block.y << "," << param.block.z << ")"; ps << "shared=" << param.shared_bytes; return ps.str(); } long long flops() const { return 21 * arg.threads; } long long bytes() const { return sizeof(Float) * arg.threads; } }; template<typename Float> __global__ void kernel_gauge_mult_norm_2D(GaugeFixArg<Float> arg){ int id = blockIdx.x * blockDim.x + threadIdx.x; if ( id < arg.threads ) arg.gx[id] = arg.gx[id] * arg.invpsq[id]; } template<typename Float> class GaugeFixINVPSP : Tunable { GaugeFixArg<Float> arg; mutable char aux_string[128]; // used as a label in the autotuner private: unsigned int sharedBytesPerThread() const { return 0; } unsigned int sharedBytesPerBlock(const TuneParam &param) const { return 0; } //bool tuneSharedBytes() const { return false; } // Don't tune shared memory bool tuneGridDim() const { return false; } // Don't tune the grid dimensions. unsigned int minThreads() const { return arg.threads; } public: GaugeFixINVPSP(GaugeFixArg<Float> &arg) : arg(arg){ hipFuncSetCacheConfig( kernel_gauge_mult_norm_2D<Float>, hipFuncCachePreferL1); } ~GaugeFixINVPSP () { } void apply(const hipStream_t &stream){ TuneParam tp = tuneLaunch(*this, getTuning(), getVerbosity()); kernel_gauge_mult_norm_2D<Float><< < tp.grid, tp.block, 0, stream >> > (arg); } TuneKey tuneKey() const { std::stringstream vol; vol << arg.X[0] << "x"; vol << arg.X[1] << "x"; vol << arg.X[2] << "x"; vol << arg.X[3]; sprintf(aux_string,"threads=%d,prec=%d",arg.threads, sizeof(Float)); return TuneKey(vol.str().c_str(), typeid(*this).name(), aux_string); } std::string paramString(const TuneParam &param) const { std::stringstream ps; ps << "block=(" << param.block.x << "," << param.block.y << "," << param.block.z << ")"; ps << "shared=" << param.shared_bytes; return ps.str(); } void preTune(){ //since delta contents are irrelevant at this point, we can swap gx with delta typename ComplexTypeId<Float>::Type *tmp = arg.gx; arg.gx = arg.delta; arg.delta = tmp; } void postTune(){ arg.gx = arg.delta; } long long flops() const { return 2LL * arg.threads; } long long bytes() const { return 5LL * sizeof(Float) * arg.threads; } }; template<typename Cmplx> __device__ __host__ inline typename RealTypeId<Cmplx>::Type Abs2(const Cmplx & a){ return a.x * a.x + a.y * a.y; } template <typename Float> __host__ __device__ inline void reunit_link( Matrix<typename ComplexTypeId<Float>::Type,3> &U ){ typedef typename ComplexTypeId<Float>::Type Cmplx; Cmplx t2 = makeComplex((Float)0.0, (Float)0.0); Float t1 = 0.0; //first normalize first row //sum of squares of row #pragma unroll for ( int c = 0; c < 3; c++ ) t1 += Abs2(U(0, c)); t1 = (Float)1.0 / sqrt(t1); //14 //used to normalize row #pragma unroll for ( int c = 0; c < 3; c++ ) U(0,c) *= t1; //6 #pragma unroll for ( int c = 0; c < 3; c++ ) t2 += Conj(U(0,c)) * U(1,c); //24 #pragma unroll for ( int c = 0; c < 3; c++ ) U(1,c) -= t2 * U(0,c); //24 //normalize second row //sum of squares of row t1 = 0.0; #pragma unroll for ( int c = 0; c < 3; c++ ) t1 += Abs2(U(1,c)); t1 = (Float)1.0 / sqrt(t1); //14 //used to normalize row #pragma unroll for ( int c = 0; c < 3; c++ ) U(1, c) *= t1; //6 //Reconstruct lat row U(2,0) = Conj(U(0,1) * U(1,2) - U(0,2) * U(1,1)); U(2,1) = Conj(U(0,2) * U(1,0) - U(0,0) * U(1,2)); U(2,2) = Conj(U(0,0) * U(1,1) - U(0,1) * U(1,0)); //42 //T=130 } #ifdef GAUGEFIXING_DONT_USE_GX template <typename Float, typename Gauge> __global__ void kernel_gauge_fix_U_EO_NEW( GaugeFixArg<Float> arg, Gauge dataOr, Float half_alpha){ int id = threadIdx.x + blockIdx.x * blockDim.x; int parity = threadIdx.y; if ( id >= arg.threads/2 ) return; typedef typename ComplexTypeId<Float>::Type Cmplx; int x[4]; getCoords(x, id, arg.X, parity); int idx = ((x[3] * arg.X[2] + x[2]) * arg.X[1] + x[1]) * arg.X[0] + x[0]; Matrix<Cmplx,3> de; //Read Delta #ifdef GAUGEFIXING_SITE_MATRIX_LOAD_TEX de(0,0) = TEXTURE_DELTA<Cmplx>(idx + 0 * arg.threads); de(0,1) = TEXTURE_DELTA<Cmplx>(idx + 1 * arg.threads); de(0,2) = TEXTURE_DELTA<Cmplx>(idx + 2 * arg.threads); de(1,1) = TEXTURE_DELTA<Cmplx>(idx + 3 * arg.threads); de(1,2) = TEXTURE_DELTA<Cmplx>(idx + 4 * arg.threads); de(2,2) = TEXTURE_DELTA<Cmplx>(idx + 5 * arg.threads); #else de(0,0) = arg.delta[idx + 0 * arg.threads]; de(0,1) = arg.delta[idx + 1 * arg.threads]; de(0,2) = arg.delta[idx + 2 * arg.threads]; de(1,1) = arg.delta[idx + 3 * arg.threads]; de(1,2) = arg.delta[idx + 4 * arg.threads]; de(2,2) = arg.delta[idx + 5 * arg.threads]; #endif de(1,0) = makeComplex(-de(0,1).x, de(0,1).y); de(2,0) = makeComplex(-de(0,2).x, de(0,2).y); de(2,1) = makeComplex(-de(1,2).x, de(1,2).y); Matrix<Cmplx,3> g; setIdentity(&g); g += de * half_alpha; //36 reunit_link<Float>( g ); //130 for ( int mu = 0; mu < 4; mu++ ) { Matrix<Cmplx,3> U; Matrix<Cmplx,3> g0; dataOr.load((Float*)(U.data),id, mu, parity); U = g * U; //198 idx = linkNormalIndexP1(x,arg.X,mu); //Read Delta #ifdef GAUGEFIXING_SITE_MATRIX_LOAD_TEX de(0,0) = TEXTURE_DELTA<Cmplx>(idx + 0 * arg.threads); de(0,1) = TEXTURE_DELTA<Cmplx>(idx + 1 * arg.threads); de(0,2) = TEXTURE_DELTA<Cmplx>(idx + 2 * arg.threads); de(1,1) = TEXTURE_DELTA<Cmplx>(idx + 3 * arg.threads); de(1,2) = TEXTURE_DELTA<Cmplx>(idx + 4 * arg.threads); de(2,2) = TEXTURE_DELTA<Cmplx>(idx + 5 * arg.threads); #else de(0,0) = arg.delta[idx + 0 * arg.threads]; de(0,1) = arg.delta[idx + 1 * arg.threads]; de(0,2) = arg.delta[idx + 2 * arg.threads]; de(1,1) = arg.delta[idx + 3 * arg.threads]; de(1,2) = arg.delta[idx + 4 * arg.threads]; de(2,2) = arg.delta[idx + 5 * arg.threads]; #endif de(1,0) = makeComplex(-de(0,1).x, de(0,1).y); de(2,0) = makeComplex(-de(0,2).x, de(0,2).y); de(2,1) = makeComplex(-de(1,2).x, de(1,2).y); setIdentity(&g0); g0 += de * half_alpha; //36 reunit_link<Float>( g0 ); //130 U = U * conj(g0); //198 dataOr.save((Float*)(U.data),id, mu, parity); } } template<typename Float, typename Gauge> class GaugeFixNEW : TunableLocalParity { GaugeFixArg<Float> arg; Float half_alpha; Gauge dataOr; mutable char aux_string[128]; // used as a label in the autotuner private: // since GaugeFixArg is used by other kernels that don't use // tunableLocalParity, arg.threads stores Volume and not VolumeCB // so we need to divide by two unsigned int minThreads() const { return arg.threads/2; } public: GaugeFixNEW(Gauge & dataOr, GaugeFixArg<Float> &arg, Float alpha) : dataOr(dataOr), arg(arg) { half_alpha = alpha * 0.5; hipFuncSetCacheConfig( kernel_gauge_fix_U_EO_NEW<Float, Gauge>, hipFuncCachePreferL1); } ~GaugeFixNEW () { } void setAlpha(Float alpha){ half_alpha = alpha * 0.5; } void apply(const hipStream_t &stream){ TuneParam tp = tuneLaunch(*this, getTuning(), getVerbosity()); kernel_gauge_fix_U_EO_NEW<Float, Gauge><< < tp.grid, tp.block, 0, stream >> > (arg, dataOr, half_alpha); } TuneKey tuneKey() const { std::stringstream vol; vol << arg.X[0] << "x" << arg.X[1] << "x" << arg.X[2] << "x" << arg.X[3]; sprintf(aux_string,"threads=%d,prec=%d",arg.threads, sizeof(Float)); return TuneKey(vol.str().c_str(), typeid(*this).name(), aux_string); } std::string paramString(const TuneParam &param) const { std::stringstream ps; ps << "block=(" << param.block.x << "," << param.block.y << "," << param.block.z << ")"; ps << "shared=" << param.shared_bytes; return ps.str(); } //need this void preTune() { arg.data.backup(); } void postTune() { arg.data.restore(); } long long flops() const { return 2414LL * arg.threads; //Not accounting here the reconstruction of the gauge if 12 or 8!!!!!! } long long bytes() const { return ( dataOr.Bytes() * 4LL + 5 * 12LL * sizeof(Float)) * arg.threads; } }; #else template <unsigned int Elems, typename Float> __global__ void kernel_gauge_GX(GaugeFixArg<Float> arg, Float half_alpha){ int id = blockIdx.x * blockDim.x + threadIdx.x; if ( id >= arg.threads ) return; typedef typename ComplexTypeId<Float>::Type Cmplx; Matrix<Cmplx,3> de; //Read Delta #ifdef GAUGEFIXING_SITE_MATRIX_LOAD_TEX de(0,0) = TEXTURE_DELTA<Cmplx>(id); de(0,1) = TEXTURE_DELTA<Cmplx>(id + arg.threads); de(0,2) = TEXTURE_DELTA<Cmplx>(id + 2 * arg.threads); de(1,1) = TEXTURE_DELTA<Cmplx>(id + 3 * arg.threads); de(1,2) = TEXTURE_DELTA<Cmplx>(id + 4 * arg.threads); de(2,2) = TEXTURE_DELTA<Cmplx>(id + 5 * arg.threads); #else de(0,0) = arg.delta[id]; de(0,1) = arg.delta[id + arg.threads]; de(0,2) = arg.delta[id + 2 * arg.threads]; de(1,1) = arg.delta[id + 3 * arg.threads]; de(1,2) = arg.delta[id + 4 * arg.threads]; de(2,2) = arg.delta[id + 5 * arg.threads]; #endif de(1,0) = makeComplex(-de(0,1).x, de(0,1).y); de(2,0) = makeComplex(-de(0,2).x, de(0,2).y); de(2,1) = makeComplex(-de(1,2).x, de(1,2).y); Matrix<Cmplx,3> g; setIdentity(&g); g += de * half_alpha; //36 reunit_link<Float>( g ); //130 //gx is represented in even/odd order //normal lattice index to even/odd index int x3 = id / (arg.X[0] * arg.X[1] * arg.X[2]); int x2 = (id / (arg.X[0] * arg.X[1])) % arg.X[2]; int x1 = (id / arg.X[0]) % arg.X[1]; int x0 = id % arg.X[0]; id = (x0 + (x1 + (x2 + x3 * arg.X[2]) * arg.X[1]) * arg.X[0]) >> 1; id += ((x0 + x1 + x2 + x3) & 1 ) * arg.threads / 2; for ( int i = 0; i < Elems; i++ ) arg.gx[id + i * arg.threads] = g.data[i]; //T=166 for Elems 9 //T=208 for Elems 6 } template<unsigned int Elems, typename Float> class GaugeFix_GX : Tunable { GaugeFixArg<Float> arg; Float half_alpha; mutable char aux_string[128]; // used as a label in the autotuner private: unsigned int sharedBytesPerThread() const { return 0; } unsigned int sharedBytesPerBlock(const TuneParam &param) const { return 0; } //bool tuneSharedBytes() const { return false; } // Don't tune shared memory bool tuneGridDim() const { return false; } // Don't tune the grid dimensions. unsigned int minThreads() const { return arg.threads; } public: GaugeFix_GX(GaugeFixArg<Float> &arg, Float alpha) : arg(arg) { half_alpha = alpha * 0.5; hipFuncSetCacheConfig( kernel_gauge_GX<Elems, Float>, hipFuncCachePreferL1); } ~GaugeFix_GX () { } void setAlpha(Float alpha){ half_alpha = alpha * 0.5; } void apply(const hipStream_t &stream){ TuneParam tp = tuneLaunch(*this, getTuning(), getVerbosity()); kernel_gauge_GX<Elems, Float><< < tp.grid, tp.block, 0, stream >> > (arg, half_alpha); } TuneKey tuneKey() const { std::stringstream vol; vol << arg.X[0] << "x"; vol << arg.X[1] << "x"; vol << arg.X[2] << "x"; vol << arg.X[3]; sprintf(aux_string,"threads=%d,prec=%d",arg.threads, sizeof(Float)); return TuneKey(vol.str().c_str(), typeid(*this).name(), aux_string); } std::string paramString(const TuneParam &param) const { std::stringstream ps; ps << "block=(" << param.block.x << "," << param.block.y << "," << param.block.z << ")"; ps << "shared=" << param.shared_bytes; return ps.str(); } long long flops() const { if ( Elems == 6 ) return 208LL * arg.threads; else return 166LL * arg.threads; } long long bytes() const { return 4LL * Elems * sizeof(Float) * arg.threads; } }; template <unsigned int Elems, typename Float, typename Gauge> __global__ void kernel_gauge_fix_U_EO( GaugeFixArg<Float> arg, Gauge dataOr){ int idd = threadIdx.x + blockIdx.x * blockDim.x; if ( idd >= arg.threads ) return; int parity = 0; int id = idd; if ( idd >= arg.threads / 2 ) { parity = 1; id -= arg.threads / 2; } typedef typename ComplexTypeId<Float>::Type Cmplx; Matrix<Cmplx,3> g; //for(int i = 0; i < Elems; i++) g.data[i] = arg.gx[idd + i * arg.threads]; for ( int i = 0; i < Elems; i++ ) { #ifdef GAUGEFIXING_SITE_MATRIX_LOAD_TEX g.data[i] = TEXTURE_GX<Cmplx>(idd + i * arg.threads); #else g.data[i] = arg.gx[idd + i * arg.threads]; #endif } if ( Elems == 6 ) { g(2,0) = Conj(g(0,1) * g(1,2) - g(0,2) * g(1,1)); g(2,1) = Conj(g(0,2) * g(1,0) - g(0,0) * g(1,2)); g(2,2) = Conj(g(0,0) * g(1,1) - g(0,1) * g(1,0)); //42 } int x[4]; getCoords(x, id, arg.X, parity); for ( int mu = 0; mu < 4; mu++ ) { Matrix<Cmplx,3> U; Matrix<Cmplx,3> g0; dataOr.load((Float*)(U.data),id, mu, parity); U = g * U; //198 int idm1 = linkIndexP1(x,arg.X,mu); idm1 += (1 - parity) * arg.threads / 2; //for(int i = 0; i < Elems; i++) g0.data[i] = arg.gx[idm1 + i * arg.threads]; for ( int i = 0; i < Elems; i++ ) { #ifdef GAUGEFIXING_SITE_MATRIX_LOAD_TEX g0.data[i] = TEXTURE_GX<Cmplx>(idm1 + i * arg.threads); #else g0.data[i] = arg.gx[idm1 + i * arg.threads]; #endif } if ( Elems == 6 ) { g0(2,0) = Conj(g0(0,1) * g0(1,2) - g0(0,2) * g0(1,1)); g0(2,1) = Conj(g0(0,2) * g0(1,0) - g0(0,0) * g0(1,2)); g0(2,2) = Conj(g0(0,0) * g0(1,1) - g0(0,1) * g0(1,0)); //42 } U = U * conj(g0); //198 dataOr.save((Float*)(U.data),id, mu, parity); } //T=42+4*(198*2+42) Elems=6 //T=4*(198*2) Elems=9 //Not accounting here the reconstruction of the gauge if 12 or 8!!!!!! } template<unsigned int Elems, typename Float, typename Gauge> class GaugeFix : Tunable { GaugeFixArg<Float> arg; Gauge dataOr; mutable char aux_string[128]; // used as a label in the autotuner private: unsigned int sharedBytesPerThread() const { return 0; } unsigned int sharedBytesPerBlock(const TuneParam &param) const { return 0; } //bool tuneSharedBytes() const { return false; } // Don't tune shared memory bool tuneGridDim() const { return false; } // Don't tune the grid dimensions. unsigned int minThreads() const { return arg.threads; } public: GaugeFix(Gauge & dataOr, GaugeFixArg<Float> &arg) : dataOr(dataOr), arg(arg) { hipFuncSetCacheConfig( kernel_gauge_fix_U_EO<Elems, Float, Gauge>, hipFuncCachePreferL1); } ~GaugeFix () { } void apply(const hipStream_t &stream){ TuneParam tp = tuneLaunch(*this, getTuning(), getVerbosity()); kernel_gauge_fix_U_EO<Elems, Float, Gauge><< < tp.grid, tp.block, 0, stream >> > (arg, dataOr); } TuneKey tuneKey() const { std::stringstream vol; vol << arg.X[0] << "x"; vol << arg.X[1] << "x"; vol << arg.X[2] << "x"; vol << arg.X[3]; sprintf(aux_string,"threads=%d,prec=%d",arg.threads, sizeof(Float)); return TuneKey(vol.str().c_str(), typeid(*this).name(), aux_string); } std::string paramString(const TuneParam &param) const { std::stringstream ps; ps << "block=(" << param.block.x << "," << param.block.y << "," << param.block.z << ")"; ps << "shared=" << param.shared_bytes; return ps.str(); } //need this void preTune() { arg.data.backup(); } void postTune() { arg.data.restore(); } long long flops() const { if ( Elems == 6 ) return 1794LL * arg.threads; else return 1536LL * arg.threads; //Not accounting here the reconstruction of the gauge if 12 or 8!!!!!! } long long bytes() const { return 26LL * Elems * sizeof(Float) * arg.threads; } }; #endif //GAUGEFIXING_DONT_USE_GX template<unsigned int Elems, typename Float, typename Gauge, int gauge_dir> void gaugefixingFFT( Gauge dataOr, cudaGaugeField& data, \ const unsigned int Nsteps, const unsigned int verbose_interval, \ const Float alpha0, const unsigned int autotune, const double tolerance, \ const unsigned int stopWtheta) { TimeProfile profileInternalGaugeFixFFT("InternalGaugeFixQudaFFT", false); profileInternalGaugeFixFFT.TPSTART(QUDA_PROFILE_COMPUTE); Float alpha = alpha0; std::cout << "\tAlpha parameter of the Steepest Descent Method: " << alpha << std::endl; if ( autotune ) std::cout << "\tAuto tune active: yes" << std::endl; else std::cout << "\tAuto tune active: no" << std::endl; std::cout << "\tStop criterium: " << tolerance << std::endl; if ( stopWtheta ) std::cout << "\tStop criterium method: theta" << std::endl; else std::cout << "\tStop criterium method: Delta" << std::endl; std::cout << "\tMaximum number of iterations: " << Nsteps << std::endl; std::cout << "\tPrint convergence results at every " << verbose_interval << " steps" << std::endl; typedef typename ComplexTypeId<Float>::Type Cmplx; unsigned int delta_pad = data.X()[0] * data.X()[1] * data.X()[2] * data.X()[3]; int4 size = make_int4( data.X()[0], data.X()[1], data.X()[2], data.X()[3] ); hipfftHandle plan_xy; hipfftHandle plan_zt; GaugeFixArg<Float> arg(data, Elems); SetPlanFFT2DMany( plan_zt, size, 0, arg.delta); //for space and time ZT SetPlanFFT2DMany( plan_xy, size, 1, arg.delta); //with space only XY GaugeFixFFTRotateArg<Cmplx> arg_rotate(data); GaugeFixFFTRotate<Cmplx> GFRotate(arg_rotate); GaugeFixSETINVPSP<Float> setinvpsp(arg); setinvpsp.apply(0); GaugeFixINVPSP<Float> invpsp(arg); #ifdef GAUGEFIXING_DONT_USE_GX //without using GX, gx will be created only for plane rotation but with less size GaugeFixNEW<Float, Gauge> gfixNew(dataOr, arg, alpha); #else //using GX GaugeFix_GX<Elems, Float> calcGX(arg, alpha); GaugeFix<Elems, Float, Gauge> gfix(dataOr, arg); #endif GaugeFixQualityArg<Cmplx, Gauge> argQ(dataOr, data, arg.delta); GaugeFixQuality<Elems, Float, Gauge, gauge_dir> gfixquality(argQ); gfixquality.apply(0); double action0 = argQ.getAction(); printf("Step: %d\tAction: %.16e\ttheta: %.16e\n", 0, argQ.getAction(), argQ.getTheta()); double diff = 0.0; int iter = 0; for ( iter = 0; iter < Nsteps; iter++ ) { for ( int k = 0; k < 6; k++ ) { //------------------------------------------------------------------------ // Set a pointer do the element k in lattice volume // each element is stored with stride lattice volume // it uses gx as temporary array!!!!!! //------------------------------------------------------------------------ Cmplx *_array = arg.delta + k * delta_pad; ////// 2D FFT + 2D FFT //------------------------------------------------------------------------ // Perform FFT on xy plane //------------------------------------------------------------------------ ApplyFFT(plan_xy, _array, arg.gx, HIPFFT_FORWARD); //------------------------------------------------------------------------ // Rotate hypercube, xyzt -> ztxy //------------------------------------------------------------------------ GFRotate.setDirection(0, arg.gx, _array); GFRotate.apply(0); //------------------------------------------------------------------------ // Perform FFT on zt plane //------------------------------------------------------------------------ ApplyFFT(plan_zt, _array, arg.gx, HIPFFT_FORWARD); //------------------------------------------------------------------------ // Normalize FFT and apply pmax^2/p^2 //------------------------------------------------------------------------ invpsp.apply(0); //------------------------------------------------------------------------ // Perform IFFT on zt plane //------------------------------------------------------------------------ ApplyFFT(plan_zt, arg.gx, _array, HIPFFT_BACKWARD); //------------------------------------------------------------------------ // Rotate hypercube, ztxy -> xyzt //------------------------------------------------------------------------ GFRotate.setDirection(1, _array, arg.gx); GFRotate.apply(0); //------------------------------------------------------------------------ // Perform IFFT on xy plane //------------------------------------------------------------------------ ApplyFFT(plan_xy, arg.gx, _array, HIPFFT_BACKWARD); } #ifdef GAUGEFIXING_DONT_USE_GX //------------------------------------------------------------------------ // Apply gauge fix to current gauge field //------------------------------------------------------------------------ gfixNew.apply(0); #else //------------------------------------------------------------------------ // Calculate g(x) //------------------------------------------------------------------------ calcGX.apply(0); //------------------------------------------------------------------------ // Apply gauge fix to current gauge field //------------------------------------------------------------------------ gfix.apply(0); #endif //------------------------------------------------------------------------ // Measure gauge quality and recalculate new Delta(x) //------------------------------------------------------------------------ gfixquality.apply(0); double action = argQ.getAction(); diff = abs(action0 - action); if ((iter % verbose_interval) == (verbose_interval - 1)) printf("Step: %d\tAction: %.16e\ttheta: %.16e\tDelta: %.16e\n", iter + 1, argQ.getAction(), argQ.getTheta(), diff); if ( autotune && ((action - action0) < -1e-14) ) { if ( alpha > 0.01 ) { alpha = 0.95 * alpha; #ifdef GAUGEFIXING_DONT_USE_GX gfixNew.setAlpha(alpha); #else calcGX.setAlpha(alpha); #endif printf(">>>>>>>>>>>>>> Warning: changing alpha down -> %.4e\n", alpha ); } } //------------------------------------------------------------------------ // Check gauge fix quality criterium //------------------------------------------------------------------------ if ( stopWtheta ) { if ( argQ.getTheta() < tolerance ) break; } else { if ( diff < tolerance ) break; } action0 = action; } if ((iter % verbose_interval) != 0 ) printf("Step: %d\tAction: %.16e\ttheta: %.16e\tDelta: %.16e\n", iter, argQ.getAction(), argQ.getTheta(), diff); // Reunitarize at end const double unitarize_eps = 1e-14; const double max_error = 1e-10; const int reunit_allow_svd = 1; const int reunit_svd_only = 0; const double svd_rel_error = 1e-6; const double svd_abs_error = 1e-6; setUnitarizeLinksConstants(unitarize_eps, max_error, reunit_allow_svd, reunit_svd_only, svd_rel_error, svd_abs_error); int num_failures = 0; int* num_failures_dev; hipMalloc((void**)&num_failures_dev, sizeof(int)); hipMemset(num_failures_dev, 0, sizeof(int)); if ( num_failures_dev == NULL ) errorQuda("hipMalloc failed for dev_pointer\n"); unitarizeLinksQuda(data, data, num_failures_dev); hipMemcpy(&num_failures, num_failures_dev, sizeof(int), hipMemcpyDeviceToHost); if ( num_failures > 0 ) { hipFree(num_failures_dev); errorQuda("Error in the unitarization\n"); exit(1); } hipFree(num_failures_dev); // end reunitarize arg.free(); CUFFT_SAFE_CALL(hipfftDestroy(plan_zt)); CUFFT_SAFE_CALL(hipfftDestroy(plan_xy)); checkCudaError(); hipDeviceSynchronize(); profileInternalGaugeFixFFT.TPSTOP(QUDA_PROFILE_COMPUTE); if (getVerbosity() > QUDA_SUMMARIZE){ double secs = profileInternalGaugeFixFFT.Last(QUDA_PROFILE_COMPUTE); double fftflop = 5.0 * (log2((double)( data.X()[0] * data.X()[1]) ) + log2( (double)(data.X()[2] * data.X()[3] ))); fftflop *= (double)( data.X()[0] * data.X()[1] * data.X()[2] * data.X()[3] ); double gflops = setinvpsp.flops() + gfixquality.flops(); double gbytes = setinvpsp.bytes() + gfixquality.bytes(); double flop = invpsp.flops() * Elems; double byte = invpsp.bytes() * Elems; flop += (GFRotate.flops() + fftflop) * Elems * 2; byte += GFRotate.bytes() * Elems * 4; //includes FFT reads, assuming 1 read and 1 write per site #ifdef GAUGEFIXING_DONT_USE_GX flop += gfixNew.flops(); byte += gfixNew.bytes(); #else flop += calcGX.flops(); byte += calcGX.bytes(); flop += gfix.flops(); byte += gfix.bytes(); #endif flop += gfixquality.flops(); byte += gfixquality.bytes(); gflops += flop * iter; gbytes += byte * iter; gflops += 4588.0 * data.X()[0]*data.X()[1]*data.X()[2]*data.X()[3]; //Reunitarize at end gbytes += 8.0 * data.X()[0]*data.X()[1]*data.X()[2]*data.X()[3] * dataOr.Bytes() ; //Reunitarize at end gflops = (gflops * 1e-9) / (secs); gbytes = gbytes / (secs * 1e9); printfQuda("Time: %6.6f s, Gflop/s = %6.1f, GB/s = %6.1f\n", secs, gflops, gbytes); } } template<unsigned int Elems, typename Float, typename Gauge> void gaugefixingFFT( Gauge dataOr, cudaGaugeField& data, const unsigned int gauge_dir, \ const unsigned int Nsteps, const unsigned int verbose_interval, const Float alpha, const unsigned int autotune, \ const double tolerance, const unsigned int stopWtheta) { if ( gauge_dir != 3 ) { printf("Starting Landau gauge fixing with FFTs...\n"); gaugefixingFFT<Elems, Float, Gauge, 4>(dataOr, data, Nsteps, verbose_interval, alpha, autotune, tolerance, stopWtheta); } else { printf("Starting Coulomb gauge fixing with FFTs...\n"); gaugefixingFFT<Elems, Float, Gauge, 3>(dataOr, data, Nsteps, verbose_interval, alpha, autotune, tolerance, stopWtheta); } } template<typename Float> void gaugefixingFFT( cudaGaugeField& data, const unsigned int gauge_dir, \ const unsigned int Nsteps, const unsigned int verbose_interval, const Float alpha, const unsigned int autotune, \ const double tolerance, const unsigned int stopWtheta) { // Switching to FloatNOrder for the gauge field in order to support RECONSTRUCT_12 // Need to fix this!! //9 and 6 means the number of complex elements used to store g(x) and Delta(x) if ( data.isNative() ) { if ( data.Reconstruct() == QUDA_RECONSTRUCT_NO ) { //printfQuda("QUDA_RECONSTRUCT_NO\n"); typedef typename gauge_mapper<Float,QUDA_RECONSTRUCT_NO>::type Gauge; gaugefixingFFT<9, Float>(Gauge(data), data, gauge_dir, Nsteps, verbose_interval, alpha, autotune, tolerance, stopWtheta); } else if ( data.Reconstruct() == QUDA_RECONSTRUCT_12 ) { //printfQuda("QUDA_RECONSTRUCT_12\n"); typedef typename gauge_mapper<Float,QUDA_RECONSTRUCT_12>::type Gauge; gaugefixingFFT<6, Float>(Gauge(data), data, gauge_dir, Nsteps, verbose_interval, alpha, autotune, tolerance, stopWtheta); } else if ( data.Reconstruct() == QUDA_RECONSTRUCT_8 ) { //printfQuda("QUDA_RECONSTRUCT_8\n"); typedef typename gauge_mapper<Float,QUDA_RECONSTRUCT_8>::type Gauge; gaugefixingFFT<6, Float>(Gauge(data), data, gauge_dir, Nsteps, verbose_interval, alpha, autotune, tolerance, stopWtheta); } else { errorQuda("Reconstruction type %d of gauge field not supported", data.Reconstruct()); } } else { errorQuda("Invalid Gauge Order\n"); } } #endif // GPU_GAUGE_ALG /** * @brief Gauge fixing with Steepest descent method with FFTs with support for single GPU only. * @param[in,out] data, quda gauge field * @param[in] gauge_dir, 3 for Coulomb gauge fixing, other for Landau gauge fixing * @param[in] Nsteps, maximum number of steps to perform gauge fixing * @param[in] verbose_interval, print gauge fixing info when iteration count is a multiple of this * @param[in] alpha, gauge fixing parameter of the method, most common value is 0.08 * @param[in] autotune, 1 to autotune the method, i.e., if the Fg inverts its tendency we decrease the alpha value * @param[in] tolerance, torelance value to stop the method, if this value is zero then the method stops when iteration reachs the maximum number of steps defined by Nsteps * @param[in] stopWtheta, 0 for MILC criterium and 1 to use the theta value */ void gaugefixingFFT( cudaGaugeField& data, const unsigned int gauge_dir, \ const unsigned int Nsteps, const unsigned int verbose_interval, const double alpha, const unsigned int autotune, \ const double tolerance, const unsigned int stopWtheta) { #ifdef GPU_GAUGE_ALG #ifdef MULTI_GPU if(comm_dim_partitioned(0) || comm_dim_partitioned(1) || comm_dim_partitioned(2) || comm_dim_partitioned(3)) errorQuda("Gauge Fixing with FFTs in multi-GPU support NOT implemented yet!\n"); #endif if ( data.Precision() == QUDA_HALF_PRECISION ) { errorQuda("Half precision not supported\n"); } if ( data.Precision() == QUDA_SINGLE_PRECISION ) { gaugefixingFFT<float> (data, gauge_dir, Nsteps, verbose_interval, (float)alpha, autotune, tolerance, stopWtheta); } else if ( data.Precision() == QUDA_DOUBLE_PRECISION ) { gaugefixingFFT<double>(data, gauge_dir, Nsteps, verbose_interval, alpha, autotune, tolerance, stopWtheta); } else { errorQuda("Precision %d not supported", data.Precision()); } #else errorQuda("Gauge fixing has bot been built"); #endif } }
gauge_fix_fft.cu
#include <quda_internal.h> #include <quda_matrix.h> #include <tune_quda.h> #include <gauge_field.h> #include <gauge_field_order.h> #include <launch_kernel.cuh> #include <unitarization_links.h> #include <atomic.cuh> #include <cub_helper.cuh> #include <index_helper.cuh> #include <cufft.h> #ifdef GPU_GAUGE_ALG #include <CUFFT_Plans.h> #endif namespace quda { #ifdef GPU_GAUGE_ALG //Comment if you don't want to use textures for Delta(x) and g(x) #define GAUGEFIXING_SITE_MATRIX_LOAD_TEX //UNCOMMENT THIS IF YOU WAN'T TO USE LESS MEMORY #define GAUGEFIXING_DONT_USE_GX //Without using the precalculation of g(x), //we loose some performance, because Delta(x) is written in normal lattice coordinates need for the FFTs //and the gauge array in even/odd format #ifdef GAUGEFIXING_DONT_USE_GX #warning Don't use precalculated g(x) #else #warning Using precalculated g(x) #endif #ifndef FL_UNITARIZE_PI #define FL_UNITARIZE_PI 3.14159265358979323846 #endif texture<float2, 1, cudaReadModeElementType> GXTexSingle; texture<int4, 1, cudaReadModeElementType> GXTexDouble; //Delta is only stored using 12 real number parameters, // (0,0), (0,1), (0,2), (1,1), (1,2) and (2,2) // (0,0), (1,1) and (0,1) don't have real part, however we need a complex for the FFTs texture<float2, 1, cudaReadModeElementType> DELTATexSingle; texture<int4, 1, cudaReadModeElementType> DELTATexDouble; template <class T> inline __device__ T TEXTURE_GX(int id){ return 0.0; } template <> inline __device__ typename ComplexTypeId<float>::Type TEXTURE_GX<typename ComplexTypeId<float>::Type>(int id){ return tex1Dfetch(GXTexSingle, id); } template <> inline __device__ typename ComplexTypeId<double>::Type TEXTURE_GX<typename ComplexTypeId<double>::Type>(int id){ int4 u = tex1Dfetch(GXTexDouble, id); return makeComplex(__hiloint2double(u.y, u.x), __hiloint2double(u.w, u.z)); } template <class T> inline __device__ T TEXTURE_DELTA(int id){ return 0.0; } template <> inline __device__ typename ComplexTypeId<float>::Type TEXTURE_DELTA<typename ComplexTypeId<float>::Type>(int id){ return tex1Dfetch(DELTATexSingle, id); } template <> inline __device__ typename ComplexTypeId<double>::Type TEXTURE_DELTA<typename ComplexTypeId<double>::Type>(int id){ int4 u = tex1Dfetch(DELTATexDouble, id); return makeComplex(__hiloint2double(u.y, u.x), __hiloint2double(u.w, u.z)); } static void BindTex(typename ComplexTypeId<float>::Type *delta, typename ComplexTypeId<float>::Type *gx, size_t bytes){ #ifdef GAUGEFIXING_SITE_MATRIX_LOAD_TEX #ifndef GAUGEFIXING_DONT_USE_GX cudaBindTexture(0, GXTexSingle, gx, bytes); #endif cudaBindTexture(0, DELTATexSingle, delta, bytes); #endif } static void BindTex(typename ComplexTypeId<double>::Type *delta, typename ComplexTypeId<double>::Type *gx, size_t bytes){ #ifdef GAUGEFIXING_SITE_MATRIX_LOAD_TEX #ifndef GAUGEFIXING_DONT_USE_GX cudaBindTexture(0, GXTexDouble, gx, bytes); #endif cudaBindTexture(0, DELTATexDouble, delta, bytes); #endif } static void UnBindTex(typename ComplexTypeId<float>::Type *delta, typename ComplexTypeId<float>::Type *gx){ #ifdef GAUGEFIXING_SITE_MATRIX_LOAD_TEX #ifndef GAUGEFIXING_DONT_USE_GX cudaUnbindTexture(GXTexSingle); #endif cudaUnbindTexture(DELTATexSingle); #endif } static void UnBindTex(typename ComplexTypeId<double>::Type *delta, typename ComplexTypeId<double>::Type *gx){ #ifdef GAUGEFIXING_SITE_MATRIX_LOAD_TEX #ifndef GAUGEFIXING_DONT_USE_GX cudaUnbindTexture(GXTexDouble); #endif cudaUnbindTexture(DELTATexDouble); #endif } template <typename Cmplx> struct GaugeFixFFTRotateArg { int threads; // number of active threads required int X[4]; // grid dimensions Cmplx *tmp0; Cmplx *tmp1; GaugeFixFFTRotateArg(const cudaGaugeField &data){ for ( int dir = 0; dir < 4; ++dir ) X[dir] = data.X()[dir]; threads = X[0] * X[1] * X[2] * X[3]; tmp0 = 0; tmp1 = 0; } }; template <int direction, typename Cmplx> __global__ void fft_rotate_kernel_2D2D(GaugeFixFFTRotateArg<Cmplx> arg){ //Cmplx *data_in, Cmplx *data_out){ int id = blockIdx.x * blockDim.x + threadIdx.x; if ( id >= arg.threads ) return; if ( direction == 0 ) { int x3 = id / (arg.X[0] * arg.X[1] * arg.X[2]); int x2 = (id / (arg.X[0] * arg.X[1])) % arg.X[2]; int x1 = (id / arg.X[0]) % arg.X[1]; int x0 = id % arg.X[0]; int id = x0 + (x1 + (x2 + x3 * arg.X[2]) * arg.X[1]) * arg.X[0]; int id_out = x2 + (x3 + (x0 + x1 * arg.X[0]) * arg.X[3]) * arg.X[2]; arg.tmp1[id_out] = arg.tmp0[id]; //data_out[id_out] = data_in[id]; } if ( direction == 1 ) { int x1 = id / (arg.X[2] * arg.X[3] * arg.X[0]); int x0 = (id / (arg.X[2] * arg.X[3])) % arg.X[0]; int x3 = (id / arg.X[2]) % arg.X[3]; int x2 = id % arg.X[2]; int id = x2 + (x3 + (x0 + x1 * arg.X[0]) * arg.X[3]) * arg.X[2]; int id_out = x0 + (x1 + (x2 + x3 * arg.X[2]) * arg.X[1]) * arg.X[0]; arg.tmp1[id_out] = arg.tmp0[id]; //data_out[id_out] = data_in[id]; } } template<typename Cmplx> class GaugeFixFFTRotate : Tunable { GaugeFixFFTRotateArg<Cmplx> arg; unsigned int direction; mutable char aux_string[128]; // used as a label in the autotuner private: unsigned int sharedBytesPerThread() const { return 0; } unsigned int sharedBytesPerBlock(const TuneParam &param) const { return 0; } //bool tuneSharedBytes() const { return false; } // Don't tune shared memory bool tuneGridDim() const { return false; } // Don't tune the grid dimensions. unsigned int minThreads() const { return arg.threads; } public: GaugeFixFFTRotate(GaugeFixFFTRotateArg<Cmplx> &arg) : arg(arg) { direction = 0; } ~GaugeFixFFTRotate () { } void setDirection(unsigned int dir, Cmplx *data_in, Cmplx *data_out){ direction = dir; arg.tmp0 = data_in; arg.tmp1 = data_out; } void apply(const cudaStream_t &stream){ TuneParam tp = tuneLaunch(*this, getTuning(), getVerbosity()); if ( direction == 0 ) fft_rotate_kernel_2D2D<0, Cmplx><< < tp.grid, tp.block, 0, stream >> > (arg); else if ( direction == 1 ) fft_rotate_kernel_2D2D<1, Cmplx><< < tp.grid, tp.block, 0, stream >> > (arg); else errorQuda("Error in GaugeFixFFTRotate option.\n"); } TuneKey tuneKey() const { std::stringstream vol; vol << arg.X[0] << "x"; vol << arg.X[1] << "x"; vol << arg.X[2] << "x"; vol << arg.X[3]; sprintf(aux_string,"threads=%d,prec=%d",arg.threads, sizeof(Cmplx) / 2); return TuneKey(vol.str().c_str(), typeid(*this).name(), aux_string); } std::string paramString(const TuneParam &param) const { std::stringstream ps; ps << "block=(" << param.block.x << "," << param.block.y << "," << param.block.z << ")"; ps << "shared=" << param.shared_bytes; return ps.str(); } long long flops() const { return 0; } long long bytes() const { return 2LL * sizeof(Cmplx) * arg.threads; } }; template <typename Cmplx, typename Gauge> struct GaugeFixQualityArg : public ReduceArg<double2> { int threads; // number of active threads required int X[4]; // grid dimensions Gauge dataOr; Cmplx *delta; GaugeFixQualityArg(const Gauge &dataOr, const cudaGaugeField &data, Cmplx * delta) : ReduceArg<double2>(), dataOr(dataOr), delta(delta) { for ( int dir = 0; dir < 4; ++dir ) X[dir] = data.X()[dir]; threads = data.VolumeCB(); } double getAction(){ return result_h[0].x; } double getTheta(){ return result_h[0].y; } }; template<int blockSize, unsigned int Elems, typename Float, typename Gauge, int gauge_dir> __global__ void computeFix_quality(GaugeFixQualityArg<typename ComplexTypeId<Float>::Type, Gauge> argQ){ int idx = threadIdx.x + blockIdx.x * blockDim.x; int parity = threadIdx.y; double2 data = make_double2(0.0,0.0); if ( idx < argQ.threads ) { typedef typename ComplexTypeId<Float>::Type Cmplx; int x[4]; getCoords(x, idx, argQ.X, parity); Matrix<Cmplx,3> delta; setZero(&delta); //idx = linkIndex(x,X); for ( int mu = 0; mu < gauge_dir; mu++ ) { Matrix<Cmplx,3> U; argQ.dataOr.load((Float*)(U.data),idx, mu, parity); delta -= U; } //18*gauge_dir data.x = -delta(0,0).x - delta(1,1).x - delta(2,2).x; //2 for ( int mu = 0; mu < gauge_dir; mu++ ) { Matrix<Cmplx,3> U; argQ.dataOr.load((Float*)(U.data),linkIndexM1(x,argQ.X,mu), mu, 1 - parity); delta += U; } //18*gauge_dir delta -= conj(delta); //18 //SAVE DELTA!!!!! SubTraceUnit(delta); idx = getIndexFull(idx, argQ.X, parity); //Saving Delta argQ.delta[idx] = delta(0,0); argQ.delta[idx + 2 * argQ.threads] = delta(0,1); argQ.delta[idx + 4 * argQ.threads] = delta(0,2); argQ.delta[idx + 6 * argQ.threads] = delta(1,1); argQ.delta[idx + 8 * argQ.threads] = delta(1,2); argQ.delta[idx + 10 * argQ.threads] = delta(2,2); //12 data.y = getRealTraceUVdagger(delta, delta); //35 //T=36*gauge_dir+65 } reduce2d<blockSize,2>(argQ, data); } template<unsigned int Elems, typename Float, typename Gauge, int gauge_dir> class GaugeFixQuality : TunableLocalParity { GaugeFixQualityArg<typename ComplexTypeId<Float>::Type, Gauge> argQ; mutable char aux_string[128]; // used as a label in the autotuner private: unsigned int minThreads() const { return argQ.threads; } public: GaugeFixQuality(GaugeFixQualityArg<typename ComplexTypeId<Float>::Type, Gauge> &argQ) : argQ(argQ) { } ~GaugeFixQuality () { } void apply(const cudaStream_t &stream){ TuneParam tp = tuneLaunch(*this, getTuning(), getVerbosity()); argQ.result_h[0] = make_double2(0.0,0.0); LAUNCH_KERNEL_LOCAL_PARITY(computeFix_quality, tp, stream, argQ, Elems, Float, Gauge, gauge_dir); cudaDeviceSynchronize(); argQ.result_h[0].x /= (double)(3 * gauge_dir * 2 * argQ.threads); argQ.result_h[0].y /= (double)(3 * 2 * argQ.threads); } TuneKey tuneKey() const { std::stringstream vol; vol << argQ.X[0] << "x" << argQ.X[1] << "x" << argQ.X[2] << "x" << argQ.X[3]; sprintf(aux_string,"threads=%d,prec=%d,gaugedir=%d",argQ.threads, sizeof(Float),gauge_dir); return TuneKey(vol.str().c_str(), typeid(*this).name(), aux_string); } std::string paramString(const TuneParam &param) const { std::stringstream ps; ps << "block=(" << param.block.x << "," << param.block.y << "," << param.block.z << ")"; ps << "shared=" << param.shared_bytes; return ps.str(); } long long flops() const { return (36LL * gauge_dir + 65LL) * 2 * argQ.threads; } // Only correct if there is no link reconstruction, no cub reduction accounted also long long bytes() const { return (2LL * gauge_dir + 2LL) * Elems * 2 * argQ.threads * sizeof(Float); } //Not accounting the reduction!!! }; template <typename Float> struct GaugeFixArg { int threads; // number of active threads required int X[4]; // grid dimensions cudaGaugeField &data; Float *invpsq; typename ComplexTypeId<Float>::Type *delta; typename ComplexTypeId<Float>::Type *gx; GaugeFixArg( cudaGaugeField & data, const unsigned int Elems) : data(data){ for ( int dir = 0; dir < 4; ++dir ) X[dir] = data.X()[dir]; threads = X[0] * X[1] * X[2] * X[3]; invpsq = (Float*)device_malloc(sizeof(Float) * threads); delta = (typename ComplexTypeId<Float>::Type *)device_malloc(sizeof(typename ComplexTypeId<Float>::Type) * threads * 6); #ifdef GAUGEFIXING_DONT_USE_GX gx = (typename ComplexTypeId<Float>::Type *)device_malloc(sizeof(typename ComplexTypeId<Float>::Type) * threads); #else gx = (typename ComplexTypeId<Float>::Type *)device_malloc(sizeof(typename ComplexTypeId<Float>::Type) * threads * Elems); #endif BindTex(delta, gx, sizeof(typename ComplexTypeId<Float>::Type) * threads * Elems); } void free(){ UnBindTex(delta, gx); device_free(invpsq); device_free(delta); device_free(gx); } }; template <typename Float> __global__ void kernel_gauge_set_invpsq(GaugeFixArg<Float> arg){ int id = blockIdx.x * blockDim.x + threadIdx.x; if ( id >= arg.threads ) return; int x1 = id / (arg.X[2] * arg.X[3] * arg.X[0]); int x0 = (id / (arg.X[2] * arg.X[3])) % arg.X[0]; int x3 = (id / arg.X[2]) % arg.X[3]; int x2 = id % arg.X[2]; //id = x2 + (x3 + (x0 + x1 * arg.X[0]) * arg.X[3]) * arg.X[2]; Float sx = sin( (Float)x0 * FL_UNITARIZE_PI / (Float)arg.X[0]); Float sy = sin( (Float)x1 * FL_UNITARIZE_PI / (Float)arg.X[1]); Float sz = sin( (Float)x2 * FL_UNITARIZE_PI / (Float)arg.X[2]); Float st = sin( (Float)x3 * FL_UNITARIZE_PI / (Float)arg.X[3]); Float sinsq = sx * sx + sy * sy + sz * sz + st * st; Float prcfact = 0.0; //The FFT normalization is done here if ( sinsq > 0.00001 ) prcfact = 4.0 / (sinsq * (Float)arg.threads); arg.invpsq[id] = prcfact; } template<typename Float> class GaugeFixSETINVPSP : Tunable { GaugeFixArg<Float> arg; mutable char aux_string[128]; // used as a label in the autotuner private: unsigned int sharedBytesPerThread() const { return 0; } unsigned int sharedBytesPerBlock(const TuneParam &param) const { return 0; } bool tuneSharedBytes() const { return false; } // Don't tune shared memory bool tuneGridDim() const { return false; } // Don't tune the grid dimensions. unsigned int minThreads() const { return arg.threads; } public: GaugeFixSETINVPSP(GaugeFixArg<Float> &arg) : arg(arg) { } ~GaugeFixSETINVPSP () { } void apply(const cudaStream_t &stream){ TuneParam tp = tuneLaunch(*this, getTuning(), getVerbosity()); kernel_gauge_set_invpsq<Float><< < tp.grid, tp.block, 0, stream >> > (arg); } TuneKey tuneKey() const { std::stringstream vol; vol << arg.X[0] << "x"; vol << arg.X[1] << "x"; vol << arg.X[2] << "x"; vol << arg.X[3]; sprintf(aux_string,"threads=%d,prec=%d",arg.threads, sizeof(Float)); return TuneKey(vol.str().c_str(), typeid(*this).name(), aux_string); } std::string paramString(const TuneParam &param) const { std::stringstream ps; ps << "block=(" << param.block.x << "," << param.block.y << "," << param.block.z << ")"; ps << "shared=" << param.shared_bytes; return ps.str(); } long long flops() const { return 21 * arg.threads; } long long bytes() const { return sizeof(Float) * arg.threads; } }; template<typename Float> __global__ void kernel_gauge_mult_norm_2D(GaugeFixArg<Float> arg){ int id = blockIdx.x * blockDim.x + threadIdx.x; if ( id < arg.threads ) arg.gx[id] = arg.gx[id] * arg.invpsq[id]; } template<typename Float> class GaugeFixINVPSP : Tunable { GaugeFixArg<Float> arg; mutable char aux_string[128]; // used as a label in the autotuner private: unsigned int sharedBytesPerThread() const { return 0; } unsigned int sharedBytesPerBlock(const TuneParam &param) const { return 0; } //bool tuneSharedBytes() const { return false; } // Don't tune shared memory bool tuneGridDim() const { return false; } // Don't tune the grid dimensions. unsigned int minThreads() const { return arg.threads; } public: GaugeFixINVPSP(GaugeFixArg<Float> &arg) : arg(arg){ cudaFuncSetCacheConfig( kernel_gauge_mult_norm_2D<Float>, cudaFuncCachePreferL1); } ~GaugeFixINVPSP () { } void apply(const cudaStream_t &stream){ TuneParam tp = tuneLaunch(*this, getTuning(), getVerbosity()); kernel_gauge_mult_norm_2D<Float><< < tp.grid, tp.block, 0, stream >> > (arg); } TuneKey tuneKey() const { std::stringstream vol; vol << arg.X[0] << "x"; vol << arg.X[1] << "x"; vol << arg.X[2] << "x"; vol << arg.X[3]; sprintf(aux_string,"threads=%d,prec=%d",arg.threads, sizeof(Float)); return TuneKey(vol.str().c_str(), typeid(*this).name(), aux_string); } std::string paramString(const TuneParam &param) const { std::stringstream ps; ps << "block=(" << param.block.x << "," << param.block.y << "," << param.block.z << ")"; ps << "shared=" << param.shared_bytes; return ps.str(); } void preTune(){ //since delta contents are irrelevant at this point, we can swap gx with delta typename ComplexTypeId<Float>::Type *tmp = arg.gx; arg.gx = arg.delta; arg.delta = tmp; } void postTune(){ arg.gx = arg.delta; } long long flops() const { return 2LL * arg.threads; } long long bytes() const { return 5LL * sizeof(Float) * arg.threads; } }; template<typename Cmplx> __device__ __host__ inline typename RealTypeId<Cmplx>::Type Abs2(const Cmplx & a){ return a.x * a.x + a.y * a.y; } template <typename Float> __host__ __device__ inline void reunit_link( Matrix<typename ComplexTypeId<Float>::Type,3> &U ){ typedef typename ComplexTypeId<Float>::Type Cmplx; Cmplx t2 = makeComplex((Float)0.0, (Float)0.0); Float t1 = 0.0; //first normalize first row //sum of squares of row #pragma unroll for ( int c = 0; c < 3; c++ ) t1 += Abs2(U(0, c)); t1 = (Float)1.0 / sqrt(t1); //14 //used to normalize row #pragma unroll for ( int c = 0; c < 3; c++ ) U(0,c) *= t1; //6 #pragma unroll for ( int c = 0; c < 3; c++ ) t2 += Conj(U(0,c)) * U(1,c); //24 #pragma unroll for ( int c = 0; c < 3; c++ ) U(1,c) -= t2 * U(0,c); //24 //normalize second row //sum of squares of row t1 = 0.0; #pragma unroll for ( int c = 0; c < 3; c++ ) t1 += Abs2(U(1,c)); t1 = (Float)1.0 / sqrt(t1); //14 //used to normalize row #pragma unroll for ( int c = 0; c < 3; c++ ) U(1, c) *= t1; //6 //Reconstruct lat row U(2,0) = Conj(U(0,1) * U(1,2) - U(0,2) * U(1,1)); U(2,1) = Conj(U(0,2) * U(1,0) - U(0,0) * U(1,2)); U(2,2) = Conj(U(0,0) * U(1,1) - U(0,1) * U(1,0)); //42 //T=130 } #ifdef GAUGEFIXING_DONT_USE_GX template <typename Float, typename Gauge> __global__ void kernel_gauge_fix_U_EO_NEW( GaugeFixArg<Float> arg, Gauge dataOr, Float half_alpha){ int id = threadIdx.x + blockIdx.x * blockDim.x; int parity = threadIdx.y; if ( id >= arg.threads/2 ) return; typedef typename ComplexTypeId<Float>::Type Cmplx; int x[4]; getCoords(x, id, arg.X, parity); int idx = ((x[3] * arg.X[2] + x[2]) * arg.X[1] + x[1]) * arg.X[0] + x[0]; Matrix<Cmplx,3> de; //Read Delta #ifdef GAUGEFIXING_SITE_MATRIX_LOAD_TEX de(0,0) = TEXTURE_DELTA<Cmplx>(idx + 0 * arg.threads); de(0,1) = TEXTURE_DELTA<Cmplx>(idx + 1 * arg.threads); de(0,2) = TEXTURE_DELTA<Cmplx>(idx + 2 * arg.threads); de(1,1) = TEXTURE_DELTA<Cmplx>(idx + 3 * arg.threads); de(1,2) = TEXTURE_DELTA<Cmplx>(idx + 4 * arg.threads); de(2,2) = TEXTURE_DELTA<Cmplx>(idx + 5 * arg.threads); #else de(0,0) = arg.delta[idx + 0 * arg.threads]; de(0,1) = arg.delta[idx + 1 * arg.threads]; de(0,2) = arg.delta[idx + 2 * arg.threads]; de(1,1) = arg.delta[idx + 3 * arg.threads]; de(1,2) = arg.delta[idx + 4 * arg.threads]; de(2,2) = arg.delta[idx + 5 * arg.threads]; #endif de(1,0) = makeComplex(-de(0,1).x, de(0,1).y); de(2,0) = makeComplex(-de(0,2).x, de(0,2).y); de(2,1) = makeComplex(-de(1,2).x, de(1,2).y); Matrix<Cmplx,3> g; setIdentity(&g); g += de * half_alpha; //36 reunit_link<Float>( g ); //130 for ( int mu = 0; mu < 4; mu++ ) { Matrix<Cmplx,3> U; Matrix<Cmplx,3> g0; dataOr.load((Float*)(U.data),id, mu, parity); U = g * U; //198 idx = linkNormalIndexP1(x,arg.X,mu); //Read Delta #ifdef GAUGEFIXING_SITE_MATRIX_LOAD_TEX de(0,0) = TEXTURE_DELTA<Cmplx>(idx + 0 * arg.threads); de(0,1) = TEXTURE_DELTA<Cmplx>(idx + 1 * arg.threads); de(0,2) = TEXTURE_DELTA<Cmplx>(idx + 2 * arg.threads); de(1,1) = TEXTURE_DELTA<Cmplx>(idx + 3 * arg.threads); de(1,2) = TEXTURE_DELTA<Cmplx>(idx + 4 * arg.threads); de(2,2) = TEXTURE_DELTA<Cmplx>(idx + 5 * arg.threads); #else de(0,0) = arg.delta[idx + 0 * arg.threads]; de(0,1) = arg.delta[idx + 1 * arg.threads]; de(0,2) = arg.delta[idx + 2 * arg.threads]; de(1,1) = arg.delta[idx + 3 * arg.threads]; de(1,2) = arg.delta[idx + 4 * arg.threads]; de(2,2) = arg.delta[idx + 5 * arg.threads]; #endif de(1,0) = makeComplex(-de(0,1).x, de(0,1).y); de(2,0) = makeComplex(-de(0,2).x, de(0,2).y); de(2,1) = makeComplex(-de(1,2).x, de(1,2).y); setIdentity(&g0); g0 += de * half_alpha; //36 reunit_link<Float>( g0 ); //130 U = U * conj(g0); //198 dataOr.save((Float*)(U.data),id, mu, parity); } } template<typename Float, typename Gauge> class GaugeFixNEW : TunableLocalParity { GaugeFixArg<Float> arg; Float half_alpha; Gauge dataOr; mutable char aux_string[128]; // used as a label in the autotuner private: // since GaugeFixArg is used by other kernels that don't use // tunableLocalParity, arg.threads stores Volume and not VolumeCB // so we need to divide by two unsigned int minThreads() const { return arg.threads/2; } public: GaugeFixNEW(Gauge & dataOr, GaugeFixArg<Float> &arg, Float alpha) : dataOr(dataOr), arg(arg) { half_alpha = alpha * 0.5; cudaFuncSetCacheConfig( kernel_gauge_fix_U_EO_NEW<Float, Gauge>, cudaFuncCachePreferL1); } ~GaugeFixNEW () { } void setAlpha(Float alpha){ half_alpha = alpha * 0.5; } void apply(const cudaStream_t &stream){ TuneParam tp = tuneLaunch(*this, getTuning(), getVerbosity()); kernel_gauge_fix_U_EO_NEW<Float, Gauge><< < tp.grid, tp.block, 0, stream >> > (arg, dataOr, half_alpha); } TuneKey tuneKey() const { std::stringstream vol; vol << arg.X[0] << "x" << arg.X[1] << "x" << arg.X[2] << "x" << arg.X[3]; sprintf(aux_string,"threads=%d,prec=%d",arg.threads, sizeof(Float)); return TuneKey(vol.str().c_str(), typeid(*this).name(), aux_string); } std::string paramString(const TuneParam &param) const { std::stringstream ps; ps << "block=(" << param.block.x << "," << param.block.y << "," << param.block.z << ")"; ps << "shared=" << param.shared_bytes; return ps.str(); } //need this void preTune() { arg.data.backup(); } void postTune() { arg.data.restore(); } long long flops() const { return 2414LL * arg.threads; //Not accounting here the reconstruction of the gauge if 12 or 8!!!!!! } long long bytes() const { return ( dataOr.Bytes() * 4LL + 5 * 12LL * sizeof(Float)) * arg.threads; } }; #else template <unsigned int Elems, typename Float> __global__ void kernel_gauge_GX(GaugeFixArg<Float> arg, Float half_alpha){ int id = blockIdx.x * blockDim.x + threadIdx.x; if ( id >= arg.threads ) return; typedef typename ComplexTypeId<Float>::Type Cmplx; Matrix<Cmplx,3> de; //Read Delta #ifdef GAUGEFIXING_SITE_MATRIX_LOAD_TEX de(0,0) = TEXTURE_DELTA<Cmplx>(id); de(0,1) = TEXTURE_DELTA<Cmplx>(id + arg.threads); de(0,2) = TEXTURE_DELTA<Cmplx>(id + 2 * arg.threads); de(1,1) = TEXTURE_DELTA<Cmplx>(id + 3 * arg.threads); de(1,2) = TEXTURE_DELTA<Cmplx>(id + 4 * arg.threads); de(2,2) = TEXTURE_DELTA<Cmplx>(id + 5 * arg.threads); #else de(0,0) = arg.delta[id]; de(0,1) = arg.delta[id + arg.threads]; de(0,2) = arg.delta[id + 2 * arg.threads]; de(1,1) = arg.delta[id + 3 * arg.threads]; de(1,2) = arg.delta[id + 4 * arg.threads]; de(2,2) = arg.delta[id + 5 * arg.threads]; #endif de(1,0) = makeComplex(-de(0,1).x, de(0,1).y); de(2,0) = makeComplex(-de(0,2).x, de(0,2).y); de(2,1) = makeComplex(-de(1,2).x, de(1,2).y); Matrix<Cmplx,3> g; setIdentity(&g); g += de * half_alpha; //36 reunit_link<Float>( g ); //130 //gx is represented in even/odd order //normal lattice index to even/odd index int x3 = id / (arg.X[0] * arg.X[1] * arg.X[2]); int x2 = (id / (arg.X[0] * arg.X[1])) % arg.X[2]; int x1 = (id / arg.X[0]) % arg.X[1]; int x0 = id % arg.X[0]; id = (x0 + (x1 + (x2 + x3 * arg.X[2]) * arg.X[1]) * arg.X[0]) >> 1; id += ((x0 + x1 + x2 + x3) & 1 ) * arg.threads / 2; for ( int i = 0; i < Elems; i++ ) arg.gx[id + i * arg.threads] = g.data[i]; //T=166 for Elems 9 //T=208 for Elems 6 } template<unsigned int Elems, typename Float> class GaugeFix_GX : Tunable { GaugeFixArg<Float> arg; Float half_alpha; mutable char aux_string[128]; // used as a label in the autotuner private: unsigned int sharedBytesPerThread() const { return 0; } unsigned int sharedBytesPerBlock(const TuneParam &param) const { return 0; } //bool tuneSharedBytes() const { return false; } // Don't tune shared memory bool tuneGridDim() const { return false; } // Don't tune the grid dimensions. unsigned int minThreads() const { return arg.threads; } public: GaugeFix_GX(GaugeFixArg<Float> &arg, Float alpha) : arg(arg) { half_alpha = alpha * 0.5; cudaFuncSetCacheConfig( kernel_gauge_GX<Elems, Float>, cudaFuncCachePreferL1); } ~GaugeFix_GX () { } void setAlpha(Float alpha){ half_alpha = alpha * 0.5; } void apply(const cudaStream_t &stream){ TuneParam tp = tuneLaunch(*this, getTuning(), getVerbosity()); kernel_gauge_GX<Elems, Float><< < tp.grid, tp.block, 0, stream >> > (arg, half_alpha); } TuneKey tuneKey() const { std::stringstream vol; vol << arg.X[0] << "x"; vol << arg.X[1] << "x"; vol << arg.X[2] << "x"; vol << arg.X[3]; sprintf(aux_string,"threads=%d,prec=%d",arg.threads, sizeof(Float)); return TuneKey(vol.str().c_str(), typeid(*this).name(), aux_string); } std::string paramString(const TuneParam &param) const { std::stringstream ps; ps << "block=(" << param.block.x << "," << param.block.y << "," << param.block.z << ")"; ps << "shared=" << param.shared_bytes; return ps.str(); } long long flops() const { if ( Elems == 6 ) return 208LL * arg.threads; else return 166LL * arg.threads; } long long bytes() const { return 4LL * Elems * sizeof(Float) * arg.threads; } }; template <unsigned int Elems, typename Float, typename Gauge> __global__ void kernel_gauge_fix_U_EO( GaugeFixArg<Float> arg, Gauge dataOr){ int idd = threadIdx.x + blockIdx.x * blockDim.x; if ( idd >= arg.threads ) return; int parity = 0; int id = idd; if ( idd >= arg.threads / 2 ) { parity = 1; id -= arg.threads / 2; } typedef typename ComplexTypeId<Float>::Type Cmplx; Matrix<Cmplx,3> g; //for(int i = 0; i < Elems; i++) g.data[i] = arg.gx[idd + i * arg.threads]; for ( int i = 0; i < Elems; i++ ) { #ifdef GAUGEFIXING_SITE_MATRIX_LOAD_TEX g.data[i] = TEXTURE_GX<Cmplx>(idd + i * arg.threads); #else g.data[i] = arg.gx[idd + i * arg.threads]; #endif } if ( Elems == 6 ) { g(2,0) = Conj(g(0,1) * g(1,2) - g(0,2) * g(1,1)); g(2,1) = Conj(g(0,2) * g(1,0) - g(0,0) * g(1,2)); g(2,2) = Conj(g(0,0) * g(1,1) - g(0,1) * g(1,0)); //42 } int x[4]; getCoords(x, id, arg.X, parity); for ( int mu = 0; mu < 4; mu++ ) { Matrix<Cmplx,3> U; Matrix<Cmplx,3> g0; dataOr.load((Float*)(U.data),id, mu, parity); U = g * U; //198 int idm1 = linkIndexP1(x,arg.X,mu); idm1 += (1 - parity) * arg.threads / 2; //for(int i = 0; i < Elems; i++) g0.data[i] = arg.gx[idm1 + i * arg.threads]; for ( int i = 0; i < Elems; i++ ) { #ifdef GAUGEFIXING_SITE_MATRIX_LOAD_TEX g0.data[i] = TEXTURE_GX<Cmplx>(idm1 + i * arg.threads); #else g0.data[i] = arg.gx[idm1 + i * arg.threads]; #endif } if ( Elems == 6 ) { g0(2,0) = Conj(g0(0,1) * g0(1,2) - g0(0,2) * g0(1,1)); g0(2,1) = Conj(g0(0,2) * g0(1,0) - g0(0,0) * g0(1,2)); g0(2,2) = Conj(g0(0,0) * g0(1,1) - g0(0,1) * g0(1,0)); //42 } U = U * conj(g0); //198 dataOr.save((Float*)(U.data),id, mu, parity); } //T=42+4*(198*2+42) Elems=6 //T=4*(198*2) Elems=9 //Not accounting here the reconstruction of the gauge if 12 or 8!!!!!! } template<unsigned int Elems, typename Float, typename Gauge> class GaugeFix : Tunable { GaugeFixArg<Float> arg; Gauge dataOr; mutable char aux_string[128]; // used as a label in the autotuner private: unsigned int sharedBytesPerThread() const { return 0; } unsigned int sharedBytesPerBlock(const TuneParam &param) const { return 0; } //bool tuneSharedBytes() const { return false; } // Don't tune shared memory bool tuneGridDim() const { return false; } // Don't tune the grid dimensions. unsigned int minThreads() const { return arg.threads; } public: GaugeFix(Gauge & dataOr, GaugeFixArg<Float> &arg) : dataOr(dataOr), arg(arg) { cudaFuncSetCacheConfig( kernel_gauge_fix_U_EO<Elems, Float, Gauge>, cudaFuncCachePreferL1); } ~GaugeFix () { } void apply(const cudaStream_t &stream){ TuneParam tp = tuneLaunch(*this, getTuning(), getVerbosity()); kernel_gauge_fix_U_EO<Elems, Float, Gauge><< < tp.grid, tp.block, 0, stream >> > (arg, dataOr); } TuneKey tuneKey() const { std::stringstream vol; vol << arg.X[0] << "x"; vol << arg.X[1] << "x"; vol << arg.X[2] << "x"; vol << arg.X[3]; sprintf(aux_string,"threads=%d,prec=%d",arg.threads, sizeof(Float)); return TuneKey(vol.str().c_str(), typeid(*this).name(), aux_string); } std::string paramString(const TuneParam &param) const { std::stringstream ps; ps << "block=(" << param.block.x << "," << param.block.y << "," << param.block.z << ")"; ps << "shared=" << param.shared_bytes; return ps.str(); } //need this void preTune() { arg.data.backup(); } void postTune() { arg.data.restore(); } long long flops() const { if ( Elems == 6 ) return 1794LL * arg.threads; else return 1536LL * arg.threads; //Not accounting here the reconstruction of the gauge if 12 or 8!!!!!! } long long bytes() const { return 26LL * Elems * sizeof(Float) * arg.threads; } }; #endif //GAUGEFIXING_DONT_USE_GX template<unsigned int Elems, typename Float, typename Gauge, int gauge_dir> void gaugefixingFFT( Gauge dataOr, cudaGaugeField& data, \ const unsigned int Nsteps, const unsigned int verbose_interval, \ const Float alpha0, const unsigned int autotune, const double tolerance, \ const unsigned int stopWtheta) { TimeProfile profileInternalGaugeFixFFT("InternalGaugeFixQudaFFT", false); profileInternalGaugeFixFFT.TPSTART(QUDA_PROFILE_COMPUTE); Float alpha = alpha0; std::cout << "\tAlpha parameter of the Steepest Descent Method: " << alpha << std::endl; if ( autotune ) std::cout << "\tAuto tune active: yes" << std::endl; else std::cout << "\tAuto tune active: no" << std::endl; std::cout << "\tStop criterium: " << tolerance << std::endl; if ( stopWtheta ) std::cout << "\tStop criterium method: theta" << std::endl; else std::cout << "\tStop criterium method: Delta" << std::endl; std::cout << "\tMaximum number of iterations: " << Nsteps << std::endl; std::cout << "\tPrint convergence results at every " << verbose_interval << " steps" << std::endl; typedef typename ComplexTypeId<Float>::Type Cmplx; unsigned int delta_pad = data.X()[0] * data.X()[1] * data.X()[2] * data.X()[3]; int4 size = make_int4( data.X()[0], data.X()[1], data.X()[2], data.X()[3] ); cufftHandle plan_xy; cufftHandle plan_zt; GaugeFixArg<Float> arg(data, Elems); SetPlanFFT2DMany( plan_zt, size, 0, arg.delta); //for space and time ZT SetPlanFFT2DMany( plan_xy, size, 1, arg.delta); //with space only XY GaugeFixFFTRotateArg<Cmplx> arg_rotate(data); GaugeFixFFTRotate<Cmplx> GFRotate(arg_rotate); GaugeFixSETINVPSP<Float> setinvpsp(arg); setinvpsp.apply(0); GaugeFixINVPSP<Float> invpsp(arg); #ifdef GAUGEFIXING_DONT_USE_GX //without using GX, gx will be created only for plane rotation but with less size GaugeFixNEW<Float, Gauge> gfixNew(dataOr, arg, alpha); #else //using GX GaugeFix_GX<Elems, Float> calcGX(arg, alpha); GaugeFix<Elems, Float, Gauge> gfix(dataOr, arg); #endif GaugeFixQualityArg<Cmplx, Gauge> argQ(dataOr, data, arg.delta); GaugeFixQuality<Elems, Float, Gauge, gauge_dir> gfixquality(argQ); gfixquality.apply(0); double action0 = argQ.getAction(); printf("Step: %d\tAction: %.16e\ttheta: %.16e\n", 0, argQ.getAction(), argQ.getTheta()); double diff = 0.0; int iter = 0; for ( iter = 0; iter < Nsteps; iter++ ) { for ( int k = 0; k < 6; k++ ) { //------------------------------------------------------------------------ // Set a pointer do the element k in lattice volume // each element is stored with stride lattice volume // it uses gx as temporary array!!!!!! //------------------------------------------------------------------------ Cmplx *_array = arg.delta + k * delta_pad; ////// 2D FFT + 2D FFT //------------------------------------------------------------------------ // Perform FFT on xy plane //------------------------------------------------------------------------ ApplyFFT(plan_xy, _array, arg.gx, CUFFT_FORWARD); //------------------------------------------------------------------------ // Rotate hypercube, xyzt -> ztxy //------------------------------------------------------------------------ GFRotate.setDirection(0, arg.gx, _array); GFRotate.apply(0); //------------------------------------------------------------------------ // Perform FFT on zt plane //------------------------------------------------------------------------ ApplyFFT(plan_zt, _array, arg.gx, CUFFT_FORWARD); //------------------------------------------------------------------------ // Normalize FFT and apply pmax^2/p^2 //------------------------------------------------------------------------ invpsp.apply(0); //------------------------------------------------------------------------ // Perform IFFT on zt plane //------------------------------------------------------------------------ ApplyFFT(plan_zt, arg.gx, _array, CUFFT_INVERSE); //------------------------------------------------------------------------ // Rotate hypercube, ztxy -> xyzt //------------------------------------------------------------------------ GFRotate.setDirection(1, _array, arg.gx); GFRotate.apply(0); //------------------------------------------------------------------------ // Perform IFFT on xy plane //------------------------------------------------------------------------ ApplyFFT(plan_xy, arg.gx, _array, CUFFT_INVERSE); } #ifdef GAUGEFIXING_DONT_USE_GX //------------------------------------------------------------------------ // Apply gauge fix to current gauge field //------------------------------------------------------------------------ gfixNew.apply(0); #else //------------------------------------------------------------------------ // Calculate g(x) //------------------------------------------------------------------------ calcGX.apply(0); //------------------------------------------------------------------------ // Apply gauge fix to current gauge field //------------------------------------------------------------------------ gfix.apply(0); #endif //------------------------------------------------------------------------ // Measure gauge quality and recalculate new Delta(x) //------------------------------------------------------------------------ gfixquality.apply(0); double action = argQ.getAction(); diff = abs(action0 - action); if ((iter % verbose_interval) == (verbose_interval - 1)) printf("Step: %d\tAction: %.16e\ttheta: %.16e\tDelta: %.16e\n", iter + 1, argQ.getAction(), argQ.getTheta(), diff); if ( autotune && ((action - action0) < -1e-14) ) { if ( alpha > 0.01 ) { alpha = 0.95 * alpha; #ifdef GAUGEFIXING_DONT_USE_GX gfixNew.setAlpha(alpha); #else calcGX.setAlpha(alpha); #endif printf(">>>>>>>>>>>>>> Warning: changing alpha down -> %.4e\n", alpha ); } } //------------------------------------------------------------------------ // Check gauge fix quality criterium //------------------------------------------------------------------------ if ( stopWtheta ) { if ( argQ.getTheta() < tolerance ) break; } else { if ( diff < tolerance ) break; } action0 = action; } if ((iter % verbose_interval) != 0 ) printf("Step: %d\tAction: %.16e\ttheta: %.16e\tDelta: %.16e\n", iter, argQ.getAction(), argQ.getTheta(), diff); // Reunitarize at end const double unitarize_eps = 1e-14; const double max_error = 1e-10; const int reunit_allow_svd = 1; const int reunit_svd_only = 0; const double svd_rel_error = 1e-6; const double svd_abs_error = 1e-6; setUnitarizeLinksConstants(unitarize_eps, max_error, reunit_allow_svd, reunit_svd_only, svd_rel_error, svd_abs_error); int num_failures = 0; int* num_failures_dev; cudaMalloc((void**)&num_failures_dev, sizeof(int)); cudaMemset(num_failures_dev, 0, sizeof(int)); if ( num_failures_dev == NULL ) errorQuda("cudaMalloc failed for dev_pointer\n"); unitarizeLinksQuda(data, data, num_failures_dev); cudaMemcpy(&num_failures, num_failures_dev, sizeof(int), cudaMemcpyDeviceToHost); if ( num_failures > 0 ) { cudaFree(num_failures_dev); errorQuda("Error in the unitarization\n"); exit(1); } cudaFree(num_failures_dev); // end reunitarize arg.free(); CUFFT_SAFE_CALL(cufftDestroy(plan_zt)); CUFFT_SAFE_CALL(cufftDestroy(plan_xy)); checkCudaError(); cudaDeviceSynchronize(); profileInternalGaugeFixFFT.TPSTOP(QUDA_PROFILE_COMPUTE); if (getVerbosity() > QUDA_SUMMARIZE){ double secs = profileInternalGaugeFixFFT.Last(QUDA_PROFILE_COMPUTE); double fftflop = 5.0 * (log2((double)( data.X()[0] * data.X()[1]) ) + log2( (double)(data.X()[2] * data.X()[3] ))); fftflop *= (double)( data.X()[0] * data.X()[1] * data.X()[2] * data.X()[3] ); double gflops = setinvpsp.flops() + gfixquality.flops(); double gbytes = setinvpsp.bytes() + gfixquality.bytes(); double flop = invpsp.flops() * Elems; double byte = invpsp.bytes() * Elems; flop += (GFRotate.flops() + fftflop) * Elems * 2; byte += GFRotate.bytes() * Elems * 4; //includes FFT reads, assuming 1 read and 1 write per site #ifdef GAUGEFIXING_DONT_USE_GX flop += gfixNew.flops(); byte += gfixNew.bytes(); #else flop += calcGX.flops(); byte += calcGX.bytes(); flop += gfix.flops(); byte += gfix.bytes(); #endif flop += gfixquality.flops(); byte += gfixquality.bytes(); gflops += flop * iter; gbytes += byte * iter; gflops += 4588.0 * data.X()[0]*data.X()[1]*data.X()[2]*data.X()[3]; //Reunitarize at end gbytes += 8.0 * data.X()[0]*data.X()[1]*data.X()[2]*data.X()[3] * dataOr.Bytes() ; //Reunitarize at end gflops = (gflops * 1e-9) / (secs); gbytes = gbytes / (secs * 1e9); printfQuda("Time: %6.6f s, Gflop/s = %6.1f, GB/s = %6.1f\n", secs, gflops, gbytes); } } template<unsigned int Elems, typename Float, typename Gauge> void gaugefixingFFT( Gauge dataOr, cudaGaugeField& data, const unsigned int gauge_dir, \ const unsigned int Nsteps, const unsigned int verbose_interval, const Float alpha, const unsigned int autotune, \ const double tolerance, const unsigned int stopWtheta) { if ( gauge_dir != 3 ) { printf("Starting Landau gauge fixing with FFTs...\n"); gaugefixingFFT<Elems, Float, Gauge, 4>(dataOr, data, Nsteps, verbose_interval, alpha, autotune, tolerance, stopWtheta); } else { printf("Starting Coulomb gauge fixing with FFTs...\n"); gaugefixingFFT<Elems, Float, Gauge, 3>(dataOr, data, Nsteps, verbose_interval, alpha, autotune, tolerance, stopWtheta); } } template<typename Float> void gaugefixingFFT( cudaGaugeField& data, const unsigned int gauge_dir, \ const unsigned int Nsteps, const unsigned int verbose_interval, const Float alpha, const unsigned int autotune, \ const double tolerance, const unsigned int stopWtheta) { // Switching to FloatNOrder for the gauge field in order to support RECONSTRUCT_12 // Need to fix this!! //9 and 6 means the number of complex elements used to store g(x) and Delta(x) if ( data.isNative() ) { if ( data.Reconstruct() == QUDA_RECONSTRUCT_NO ) { //printfQuda("QUDA_RECONSTRUCT_NO\n"); typedef typename gauge_mapper<Float,QUDA_RECONSTRUCT_NO>::type Gauge; gaugefixingFFT<9, Float>(Gauge(data), data, gauge_dir, Nsteps, verbose_interval, alpha, autotune, tolerance, stopWtheta); } else if ( data.Reconstruct() == QUDA_RECONSTRUCT_12 ) { //printfQuda("QUDA_RECONSTRUCT_12\n"); typedef typename gauge_mapper<Float,QUDA_RECONSTRUCT_12>::type Gauge; gaugefixingFFT<6, Float>(Gauge(data), data, gauge_dir, Nsteps, verbose_interval, alpha, autotune, tolerance, stopWtheta); } else if ( data.Reconstruct() == QUDA_RECONSTRUCT_8 ) { //printfQuda("QUDA_RECONSTRUCT_8\n"); typedef typename gauge_mapper<Float,QUDA_RECONSTRUCT_8>::type Gauge; gaugefixingFFT<6, Float>(Gauge(data), data, gauge_dir, Nsteps, verbose_interval, alpha, autotune, tolerance, stopWtheta); } else { errorQuda("Reconstruction type %d of gauge field not supported", data.Reconstruct()); } } else { errorQuda("Invalid Gauge Order\n"); } } #endif // GPU_GAUGE_ALG /** * @brief Gauge fixing with Steepest descent method with FFTs with support for single GPU only. * @param[in,out] data, quda gauge field * @param[in] gauge_dir, 3 for Coulomb gauge fixing, other for Landau gauge fixing * @param[in] Nsteps, maximum number of steps to perform gauge fixing * @param[in] verbose_interval, print gauge fixing info when iteration count is a multiple of this * @param[in] alpha, gauge fixing parameter of the method, most common value is 0.08 * @param[in] autotune, 1 to autotune the method, i.e., if the Fg inverts its tendency we decrease the alpha value * @param[in] tolerance, torelance value to stop the method, if this value is zero then the method stops when iteration reachs the maximum number of steps defined by Nsteps * @param[in] stopWtheta, 0 for MILC criterium and 1 to use the theta value */ void gaugefixingFFT( cudaGaugeField& data, const unsigned int gauge_dir, \ const unsigned int Nsteps, const unsigned int verbose_interval, const double alpha, const unsigned int autotune, \ const double tolerance, const unsigned int stopWtheta) { #ifdef GPU_GAUGE_ALG #ifdef MULTI_GPU if(comm_dim_partitioned(0) || comm_dim_partitioned(1) || comm_dim_partitioned(2) || comm_dim_partitioned(3)) errorQuda("Gauge Fixing with FFTs in multi-GPU support NOT implemented yet!\n"); #endif if ( data.Precision() == QUDA_HALF_PRECISION ) { errorQuda("Half precision not supported\n"); } if ( data.Precision() == QUDA_SINGLE_PRECISION ) { gaugefixingFFT<float> (data, gauge_dir, Nsteps, verbose_interval, (float)alpha, autotune, tolerance, stopWtheta); } else if ( data.Precision() == QUDA_DOUBLE_PRECISION ) { gaugefixingFFT<double>(data, gauge_dir, Nsteps, verbose_interval, alpha, autotune, tolerance, stopWtheta); } else { errorQuda("Precision %d not supported", data.Precision()); } #else errorQuda("Gauge fixing has bot been built"); #endif } }
0bcc2736ba64abc1d95560f2fbfe18b38769941c.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "wb.hpp" #include <stdlib.h> __global__ void vecAdd(float *in1, float *in2, float *out, int len) { int i = blockIdx.x * blockDim.x + threadIdx.x; if (i < len) { out[i] = in1[i] + in2[i]; } } int main(int argc, char **argv) { // read arguments wbArg_t args = wbArg_read(argc, argv); // read input data wbTime_start(Generic, "Importing data and creating memory on host"); int inputLength; float *hostInput1 = wbImport(wbArg_getInputFile(args, 0), &inputLength); float *hostInput2 = wbImport(wbArg_getInputFile(args, 1), &inputLength); float *hostOutput = (float *)malloc(inputLength * sizeof(float)); wbTime_stop(Generic, "Importing data and creating memory on host"); wbLog(TRACE, "The input length is ", inputLength); // allocate GPU memory wbTime_start(GPU, "Allocating GPU memory"); float *deviceInput1; float *deviceInput2; float *deviceOutput; hipMalloc(&deviceInput1, inputLength * sizeof(float)); hipMalloc(&deviceInput2, inputLength * sizeof(float)); hipMalloc(&deviceOutput, inputLength * sizeof(float)); wbTime_stop(GPU, "Allocating GPU memory"); // copy memory to the GPU wbTime_start(GPU, "Copying input memory to the GPU"); hipMemcpy(deviceInput1, hostInput1, inputLength * sizeof(float), hipMemcpyHostToDevice); hipMemcpy(deviceInput2, hostInput2, inputLength * sizeof(float), hipMemcpyHostToDevice); wbTime_stop(GPU, "Copying input memory to the GPU"); // initialize grid and block dimensions // hard to decide which execution configuration should be chosen // as long as vector size is less than 1024, we can use a single block int numBlocks = 1; int threadsPerBlock = inputLength; // launch GPU kernel wbTime_start(Compute, "Performing CUDA computation"); hipLaunchKernelGGL(( vecAdd), dim3(numBlocks), dim3(threadsPerBlock), 0, 0, deviceInput1, deviceInput2, deviceOutput, inputLength); hipDeviceSynchronize(); wbTime_stop(Compute, "Performing CUDA computation"); // copy GPU memory back to the CPU wbTime_start(Copy, "Copying output memory to the CPU"); hipMemcpy(hostOutput, deviceOutput, inputLength * sizeof(float), hipMemcpyDeviceToHost); wbTime_stop(Copy, "Copying output memory to the CPU"); // free GPU memory wbTime_start(GPU, "Freeing GPU Memory"); hipFree(deviceInput1); hipFree(deviceInput2); hipFree(deviceOutput); wbTime_stop(GPU, "Freeing GPU Memory"); // check solution wbSolution(args, hostOutput, inputLength); // free host memory free(hostInput1); free(hostInput2); free(hostOutput); return EXIT_SUCCESS; }
0bcc2736ba64abc1d95560f2fbfe18b38769941c.cu
#include "wb.hpp" #include <stdlib.h> __global__ void vecAdd(float *in1, float *in2, float *out, int len) { int i = blockIdx.x * blockDim.x + threadIdx.x; if (i < len) { out[i] = in1[i] + in2[i]; } } int main(int argc, char **argv) { // read arguments wbArg_t args = wbArg_read(argc, argv); // read input data wbTime_start(Generic, "Importing data and creating memory on host"); int inputLength; float *hostInput1 = wbImport(wbArg_getInputFile(args, 0), &inputLength); float *hostInput2 = wbImport(wbArg_getInputFile(args, 1), &inputLength); float *hostOutput = (float *)malloc(inputLength * sizeof(float)); wbTime_stop(Generic, "Importing data and creating memory on host"); wbLog(TRACE, "The input length is ", inputLength); // allocate GPU memory wbTime_start(GPU, "Allocating GPU memory"); float *deviceInput1; float *deviceInput2; float *deviceOutput; cudaMalloc(&deviceInput1, inputLength * sizeof(float)); cudaMalloc(&deviceInput2, inputLength * sizeof(float)); cudaMalloc(&deviceOutput, inputLength * sizeof(float)); wbTime_stop(GPU, "Allocating GPU memory"); // copy memory to the GPU wbTime_start(GPU, "Copying input memory to the GPU"); cudaMemcpy(deviceInput1, hostInput1, inputLength * sizeof(float), cudaMemcpyHostToDevice); cudaMemcpy(deviceInput2, hostInput2, inputLength * sizeof(float), cudaMemcpyHostToDevice); wbTime_stop(GPU, "Copying input memory to the GPU"); // initialize grid and block dimensions // hard to decide which execution configuration should be chosen // as long as vector size is less than 1024, we can use a single block int numBlocks = 1; int threadsPerBlock = inputLength; // launch GPU kernel wbTime_start(Compute, "Performing CUDA computation"); vecAdd<<<numBlocks, threadsPerBlock>>>(deviceInput1, deviceInput2, deviceOutput, inputLength); cudaDeviceSynchronize(); wbTime_stop(Compute, "Performing CUDA computation"); // copy GPU memory back to the CPU wbTime_start(Copy, "Copying output memory to the CPU"); cudaMemcpy(hostOutput, deviceOutput, inputLength * sizeof(float), cudaMemcpyDeviceToHost); wbTime_stop(Copy, "Copying output memory to the CPU"); // free GPU memory wbTime_start(GPU, "Freeing GPU Memory"); cudaFree(deviceInput1); cudaFree(deviceInput2); cudaFree(deviceOutput); wbTime_stop(GPU, "Freeing GPU Memory"); // check solution wbSolution(args, hostOutput, inputLength); // free host memory free(hostInput1); free(hostInput2); free(hostOutput); return EXIT_SUCCESS; }
796928181f36a3b13e8f36a34813e755f363ac56.hip
// !!! This is a file automatically generated by hipify!!! #include <stdbool.h> #include <stdio.h> #include <string.h> #include <getopt.h> #include <hiprand/hiprand_kernel.h> #include <stdlib.h> #include <hip/hip_runtime.h> #include <sys/time.h> #include "vectFill.cu" #include<chrono> #include<iostream> using namespace std; using namespace std::chrono; int blocks_[20][2] = {{8,8},{16,16},{24,24},{32,32},{1,64},{1,128},{1,192},{1,256},{1,320},{1,384},{1,448},{1,512},{1,576},{1,640},{1,704},{1,768},{1,832},{1,896},{1,960},{1,1024}}; int matrices_[7][2] = {{240,240},{496,496},{784,784},{1016,1016},{1232,1232},{1680,1680},{2024,2024}}; int main(int argc, char **argv) { hipSetDevice(0); char* p;int matrix_len=strtol(argv[1], &p, 10); for(int matrix_looper=0;matrix_looper<matrix_len;matrix_looper++){ for(int block_looper=0;block_looper<20;block_looper++){ int XSIZE=matrices_[matrix_looper][0],YSIZE=matrices_[matrix_looper][1],BLOCKX=blocks_[block_looper][0],BLOCKY=blocks_[block_looper][1]; int *data1 = NULL; hipMalloc(&data1, XSIZE*YSIZE); int *data2 = NULL; hipMalloc(&data2, XSIZE*YSIZE); int *restult = NULL; hipMalloc(&restult, XSIZE*YSIZE); unsigned long sizeOfArray = 1; int iXSIZE= XSIZE; int iYSIZE= YSIZE; while(iXSIZE%BLOCKX!=0) { iXSIZE++; } while(iYSIZE%BLOCKY!=0) { iYSIZE++; } dim3 gridBlock(iXSIZE/BLOCKX, iYSIZE/BLOCKY); dim3 threadBlock(BLOCKX, BLOCKY); hipFree(0);hipLaunchKernelGGL(( vectFill), dim3(gridBlock),dim3(threadBlock), 0, 0, data1,data2,restult,sizeOfArray); hipDeviceSynchronize(); for (int loop_counter = 0; loop_counter < 10; ++loop_counter) {hipLaunchKernelGGL(( vectFill), dim3(gridBlock),dim3(threadBlock), 0, 0, data1,data2,restult,sizeOfArray); } auto start = steady_clock::now(); for (int loop_counter = 0; loop_counter < 1000; loop_counter++) {hipLaunchKernelGGL(( vectFill), dim3(gridBlock),dim3(threadBlock), 0, 0, data1,data2,restult,sizeOfArray); } auto end = steady_clock::now(); auto usecs = duration_cast<duration<float, microseconds::period> >(end - start); cout <<'['<<usecs.count()<<','<<'('<<BLOCKX<<','<<BLOCKY<<')' << ','<<'('<<XSIZE<<','<<YSIZE<<')'<<']' << endl; } }}
796928181f36a3b13e8f36a34813e755f363ac56.cu
#include <stdbool.h> #include <stdio.h> #include <string.h> #include <getopt.h> #include <curand_kernel.h> #include <stdlib.h> #include <cuda.h> #include <sys/time.h> #include "vectFill.cu" #include<chrono> #include<iostream> using namespace std; using namespace std::chrono; int blocks_[20][2] = {{8,8},{16,16},{24,24},{32,32},{1,64},{1,128},{1,192},{1,256},{1,320},{1,384},{1,448},{1,512},{1,576},{1,640},{1,704},{1,768},{1,832},{1,896},{1,960},{1,1024}}; int matrices_[7][2] = {{240,240},{496,496},{784,784},{1016,1016},{1232,1232},{1680,1680},{2024,2024}}; int main(int argc, char **argv) { cudaSetDevice(0); char* p;int matrix_len=strtol(argv[1], &p, 10); for(int matrix_looper=0;matrix_looper<matrix_len;matrix_looper++){ for(int block_looper=0;block_looper<20;block_looper++){ int XSIZE=matrices_[matrix_looper][0],YSIZE=matrices_[matrix_looper][1],BLOCKX=blocks_[block_looper][0],BLOCKY=blocks_[block_looper][1]; int *data1 = NULL; cudaMalloc(&data1, XSIZE*YSIZE); int *data2 = NULL; cudaMalloc(&data2, XSIZE*YSIZE); int *restult = NULL; cudaMalloc(&restult, XSIZE*YSIZE); unsigned long sizeOfArray = 1; int iXSIZE= XSIZE; int iYSIZE= YSIZE; while(iXSIZE%BLOCKX!=0) { iXSIZE++; } while(iYSIZE%BLOCKY!=0) { iYSIZE++; } dim3 gridBlock(iXSIZE/BLOCKX, iYSIZE/BLOCKY); dim3 threadBlock(BLOCKX, BLOCKY); cudaFree(0); vectFill<<<gridBlock,threadBlock>>>(data1,data2,restult,sizeOfArray); cudaDeviceSynchronize(); for (int loop_counter = 0; loop_counter < 10; ++loop_counter) { vectFill<<<gridBlock,threadBlock>>>(data1,data2,restult,sizeOfArray); } auto start = steady_clock::now(); for (int loop_counter = 0; loop_counter < 1000; loop_counter++) { vectFill<<<gridBlock,threadBlock>>>(data1,data2,restult,sizeOfArray); } auto end = steady_clock::now(); auto usecs = duration_cast<duration<float, microseconds::period> >(end - start); cout <<'['<<usecs.count()<<','<<'('<<BLOCKX<<','<<BLOCKY<<')' << ','<<'('<<XSIZE<<','<<YSIZE<<')'<<']' << endl; } }}
762285486f44c1bb3e7bdb6b2a6a8ec92c1575f4.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "moderngpu.cuh" using namespace mgpu; template<int NT, typename InputIt1, typename InputIt2, typename OutputIt, typename Comp> __global__ void ParallelMergeA(InputIt1 a_global, int aCount, InputIt2 b_global, int bCount, OutputIt dest_global, Comp comp) { typedef typename std::iterator_traits<InputIt1>::value_type T; int gid = threadIdx.x + NT * blockIdx.x; if(gid < aCount) { T aKey = a_global[gid]; int lb = BinarySearch<MgpuBoundsLower>(b_global, bCount, aKey, comp); dest_global[gid + lb] = aKey; } } template<int NT, typename InputIt1, typename InputIt2, typename OutputIt, typename Comp> __global__ void ParallelMergeB(InputIt1 a_global, int aCount, InputIt2 b_global, int bCount, OutputIt dest_global, Comp comp) { typedef typename std::iterator_traits<InputIt2>::value_type T; int gid = threadIdx.x + NT * blockIdx.x; if(gid < bCount) { T bKey = b_global[gid]; int ub = BinarySearch<MgpuBoundsUpper>(a_global, aCount, bKey, comp); dest_global[gid + ub] = bKey; } } int main(int argc, char** argv) { ContextPtr context = CreateCudaDevice(argc, argv, true); int ACount = 100; int BCount = 100; int Count = ACount + BCount; MGPU_MEM(int) aData = context->SortRandom<int>(ACount, 0, Count - 1); MGPU_MEM(int) bData = context->SortRandom<int>(BCount, 0, Count - 1); MGPU_MEM(int) destData = context->Malloc<int>(Count); const int NT = 256; int aBlocks = MGPU_DIV_UP(ACount, NT); int bBlocks = MGPU_DIV_UP(BCount, NT); hipLaunchKernelGGL(( ParallelMergeA<NT>), dim3(aBlocks), dim3(NT), 0, 0, aData->get(), ACount, bData->get(), BCount, destData->get(), mgpu::less<int>()); hipLaunchKernelGGL(( ParallelMergeB<NT>), dim3(bBlocks), dim3(NT), 0, 0, aData->get(), ACount, bData->get(), BCount, destData->get(), mgpu::less<int>()); printf("A data:\n"); PrintArray(*aData, "%4d", 10); printf("\nB data:\n"); PrintArray(*bData, "%4d", 10); printf("\nMerged data:\n"); PrintArray(*destData, "%4d", 10); return 0; }
762285486f44c1bb3e7bdb6b2a6a8ec92c1575f4.cu
#include "moderngpu.cuh" using namespace mgpu; template<int NT, typename InputIt1, typename InputIt2, typename OutputIt, typename Comp> __global__ void ParallelMergeA(InputIt1 a_global, int aCount, InputIt2 b_global, int bCount, OutputIt dest_global, Comp comp) { typedef typename std::iterator_traits<InputIt1>::value_type T; int gid = threadIdx.x + NT * blockIdx.x; if(gid < aCount) { T aKey = a_global[gid]; int lb = BinarySearch<MgpuBoundsLower>(b_global, bCount, aKey, comp); dest_global[gid + lb] = aKey; } } template<int NT, typename InputIt1, typename InputIt2, typename OutputIt, typename Comp> __global__ void ParallelMergeB(InputIt1 a_global, int aCount, InputIt2 b_global, int bCount, OutputIt dest_global, Comp comp) { typedef typename std::iterator_traits<InputIt2>::value_type T; int gid = threadIdx.x + NT * blockIdx.x; if(gid < bCount) { T bKey = b_global[gid]; int ub = BinarySearch<MgpuBoundsUpper>(a_global, aCount, bKey, comp); dest_global[gid + ub] = bKey; } } int main(int argc, char** argv) { ContextPtr context = CreateCudaDevice(argc, argv, true); int ACount = 100; int BCount = 100; int Count = ACount + BCount; MGPU_MEM(int) aData = context->SortRandom<int>(ACount, 0, Count - 1); MGPU_MEM(int) bData = context->SortRandom<int>(BCount, 0, Count - 1); MGPU_MEM(int) destData = context->Malloc<int>(Count); const int NT = 256; int aBlocks = MGPU_DIV_UP(ACount, NT); int bBlocks = MGPU_DIV_UP(BCount, NT); ParallelMergeA<NT><<<aBlocks, NT>>>(aData->get(), ACount, bData->get(), BCount, destData->get(), mgpu::less<int>()); ParallelMergeB<NT><<<bBlocks, NT>>>(aData->get(), ACount, bData->get(), BCount, destData->get(), mgpu::less<int>()); printf("A data:\n"); PrintArray(*aData, "%4d", 10); printf("\nB data:\n"); PrintArray(*bData, "%4d", 10); printf("\nMerged data:\n"); PrintArray(*destData, "%4d", 10); return 0; }
f27c79a92d0f6fa092fa746ba93230e5f9e86708.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" // A block can be split into parallel threads // use parallel threads instead of parallel blocks __global__ void add(int *a, int *b, int *c) { c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x]; } void random_ints(int* a, int N) { int i; for (i = 0; i < N; ++i) a[i] = rand(); } #define N 512 int main(void) { int *a, *b, *c; int *d_a, *d_b, *d_c; int size = N * sizeof(int); // Alloc space for device copies of a, b, c hipMalloc((void **) &d_a, size); hipMalloc((void **) &d_b, size); hipMalloc((void **) &d_c, size); // Alloc space for host copies of a, b, c and setup input values a = (int *)malloc(size); random_ints(a, N); b = (int *)malloc(size); random_ints(b, N); c = (int *)malloc(size); // Copy inputs to device hipMemcpy(d_a, a, size, hipMemcpyHostToDevice); hipMemcpy(d_b, b, size, hipMemcpyHostToDevice); // Launch add() kernel on GPU with Nthreads hipLaunchKernelGGL(( add), dim3(1),dim3(N), 0, 0, d_a, d_b, d_c); printf(a) printf(b) printf(c) // Copy results back to host hipMemcpy(c, d_c, size, hipMemcpyDeviceToHost); // Cleanup free(a); free(b); free(c); hipFree(d_a); hipFree(d_b); hipFree(d_c); return 0; }
f27c79a92d0f6fa092fa746ba93230e5f9e86708.cu
// A block can be split into parallel threads // use parallel threads instead of parallel blocks __global__ void add(int *a, int *b, int *c) { c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x]; } void random_ints(int* a, int N) { int i; for (i = 0; i < N; ++i) a[i] = rand(); } #define N 512 int main(void) { int *a, *b, *c; int *d_a, *d_b, *d_c; int size = N * sizeof(int); // Alloc space for device copies of a, b, c cudaMalloc((void **) &d_a, size); cudaMalloc((void **) &d_b, size); cudaMalloc((void **) &d_c, size); // Alloc space for host copies of a, b, c and setup input values a = (int *)malloc(size); random_ints(a, N); b = (int *)malloc(size); random_ints(b, N); c = (int *)malloc(size); // Copy inputs to device cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice); cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice); // Launch add() kernel on GPU with Nthreads add<<<1,N>>>(d_a, d_b, d_c); printf(a) printf(b) printf(c) // Copy results back to host cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost); // Cleanup free(a); free(b); free(c); cudaFree(d_a); cudaFree(d_b); cudaFree(d_c); return 0; }
273dd8feb31f8fc117f2b9906caba0b83905debe.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" //pass //--blockDim=[32,4] --gridDim=[4,25] #define BLOCK_X 32 #define BLOCK_Y 4 // // Notes: // // 1) strategy: one thread per node in the 2D block; // after initialisation it marches in the k-direction // working with 3 planes of data at a time // // 2) each thread also loads in data for at most one halo node; // assumes the number of halo nodes is not more than the // number of interior nodes // // 3) corner halo nodes are included because they are needed // for more general applications with cross-derivatives // // 4) could try double-buffering in the future fairly easily // // definition to use efficient __mul24 intrinsic #define INDEX(i,j,j_off) (i +__mul24(j,j_off)) // device code __global__ void GPU_laplace3d(int NX, int NY, int NZ, int pitch, float *d_u1, float *d_u2) { __requires(NX == 100); __requires(NY == 100); __requires(NZ == 100); __requires(pitch == 128); int indg, indg_h, indg0; int i, j, k, ind, ind_h, halo, active; float u2, sixth=1.0f/6.0f; int NXM1 = NX-1; int NYM1 = NY-1; int NZM1 = NZ-1; // // define local array offsets // #define IOFF 1 #define JOFF (BLOCK_X+2) #define KOFF (BLOCK_X+2)*(BLOCK_Y+2) __shared__ float u1[3*KOFF]; // // first set up indices for halos // k = threadIdx.x + threadIdx.y*BLOCK_X; halo = k < 2*(BLOCK_X+BLOCK_Y+2); if (halo) { if (threadIdx.y<2) { // y-halos (coalesced) i = threadIdx.x; j = threadIdx.y*(BLOCK_Y+1) - 1; } else { // x-halos (not coalesced) i = (k%2)*(BLOCK_X+1) - 1; j = k/2 - BLOCK_X - 1; } ind_h = INDEX(i+1,j+1,JOFF) + KOFF; i = INDEX(i,blockIdx.x,BLOCK_X); // global indices j = INDEX(j,blockIdx.y,BLOCK_Y); indg_h = INDEX(i,j,pitch); halo = (i>=0) && (i<NX) && (j>=0) && (j<NY); } // // then set up indices for main block // i = threadIdx.x; j = threadIdx.y; ind = INDEX(i+1,j+1,JOFF) + KOFF; i = INDEX(i,blockIdx.x,BLOCK_X); // global indices j = INDEX(j,blockIdx.y,BLOCK_Y); indg = INDEX(i,j,pitch); active = (i<NX) && (j<NY); // // read initial plane of u1 array // if (active) u1[ind+KOFF] = d_u1[indg]; if (halo) u1[ind_h+KOFF] = d_u1[indg_h]; // // loop over k-planes // for (k=0; __invariant(__implies(active, indg == i + j * pitch + k * NY * pitch)), __global_invariant(__write_implies(d_u2, (__write_offset_bytes(d_u2)/sizeof(float) - (i + j * pitch))%(NY * pitch) == 0)), __global_invariant(__write_implies(d_u2, (__write_offset_bytes(d_u2)/sizeof(float) - (i + j * pitch))/(NY * pitch) < NZ)), __global_invariant(__write_implies(u1, __implies(active & !halo, __write_offset_bytes(u1)/sizeof(float) == ind + KOFF) & __implies(!active & halo, __write_offset_bytes(u1)/sizeof(float) == ind_h + KOFF) & __implies(active & halo, (__write_offset_bytes(u1)/sizeof(float) == ind + KOFF) | (__write_offset_bytes(u1)/sizeof(float) == ind_h + KOFF)))), __global_invariant(__implies(!active & !halo, !__write(u1))), k<NZ; k++) { // move two planes down and read in new plane k+1 if (active) { indg0 = indg; indg = INDEX(indg,NY,pitch); u1[ind-KOFF] = u1[ind]; u1[ind] = u1[ind+KOFF]; if (k<NZM1) u1[ind+KOFF] = d_u1[indg]; } if (halo) { indg_h = INDEX(indg_h,NY,pitch); u1[ind_h-KOFF] = u1[ind_h]; u1[ind_h] = u1[ind_h+KOFF]; if (k<NZM1) u1[ind_h+KOFF] = d_u1[indg_h]; } __syncthreads(); // // perform Jacobi iteration to set values in u2 // if (active) { if (i==0 || i==NXM1 || j==0 || j==NYM1 || k==0 || k==NZM1) { u2 = u1[ind]; // Dirichlet b.c.'s } else { u2 = ( u1[ind-IOFF] + u1[ind+IOFF] + u1[ind-JOFF] + u1[ind+JOFF] + u1[ind-KOFF] + u1[ind+KOFF] ) * sixth; } d_u2[indg0] = u2; } __syncthreads(); } }
273dd8feb31f8fc117f2b9906caba0b83905debe.cu
//pass //--blockDim=[32,4] --gridDim=[4,25] #define BLOCK_X 32 #define BLOCK_Y 4 // // Notes: // // 1) strategy: one thread per node in the 2D block; // after initialisation it marches in the k-direction // working with 3 planes of data at a time // // 2) each thread also loads in data for at most one halo node; // assumes the number of halo nodes is not more than the // number of interior nodes // // 3) corner halo nodes are included because they are needed // for more general applications with cross-derivatives // // 4) could try double-buffering in the future fairly easily // // definition to use efficient __mul24 intrinsic #define INDEX(i,j,j_off) (i +__mul24(j,j_off)) // device code __global__ void GPU_laplace3d(int NX, int NY, int NZ, int pitch, float *d_u1, float *d_u2) { __requires(NX == 100); __requires(NY == 100); __requires(NZ == 100); __requires(pitch == 128); int indg, indg_h, indg0; int i, j, k, ind, ind_h, halo, active; float u2, sixth=1.0f/6.0f; int NXM1 = NX-1; int NYM1 = NY-1; int NZM1 = NZ-1; // // define local array offsets // #define IOFF 1 #define JOFF (BLOCK_X+2) #define KOFF (BLOCK_X+2)*(BLOCK_Y+2) __shared__ float u1[3*KOFF]; // // first set up indices for halos // k = threadIdx.x + threadIdx.y*BLOCK_X; halo = k < 2*(BLOCK_X+BLOCK_Y+2); if (halo) { if (threadIdx.y<2) { // y-halos (coalesced) i = threadIdx.x; j = threadIdx.y*(BLOCK_Y+1) - 1; } else { // x-halos (not coalesced) i = (k%2)*(BLOCK_X+1) - 1; j = k/2 - BLOCK_X - 1; } ind_h = INDEX(i+1,j+1,JOFF) + KOFF; i = INDEX(i,blockIdx.x,BLOCK_X); // global indices j = INDEX(j,blockIdx.y,BLOCK_Y); indg_h = INDEX(i,j,pitch); halo = (i>=0) && (i<NX) && (j>=0) && (j<NY); } // // then set up indices for main block // i = threadIdx.x; j = threadIdx.y; ind = INDEX(i+1,j+1,JOFF) + KOFF; i = INDEX(i,blockIdx.x,BLOCK_X); // global indices j = INDEX(j,blockIdx.y,BLOCK_Y); indg = INDEX(i,j,pitch); active = (i<NX) && (j<NY); // // read initial plane of u1 array // if (active) u1[ind+KOFF] = d_u1[indg]; if (halo) u1[ind_h+KOFF] = d_u1[indg_h]; // // loop over k-planes // for (k=0; __invariant(__implies(active, indg == i + j * pitch + k * NY * pitch)), __global_invariant(__write_implies(d_u2, (__write_offset_bytes(d_u2)/sizeof(float) - (i + j * pitch))%(NY * pitch) == 0)), __global_invariant(__write_implies(d_u2, (__write_offset_bytes(d_u2)/sizeof(float) - (i + j * pitch))/(NY * pitch) < NZ)), __global_invariant(__write_implies(u1, __implies(active & !halo, __write_offset_bytes(u1)/sizeof(float) == ind + KOFF) & __implies(!active & halo, __write_offset_bytes(u1)/sizeof(float) == ind_h + KOFF) & __implies(active & halo, (__write_offset_bytes(u1)/sizeof(float) == ind + KOFF) | (__write_offset_bytes(u1)/sizeof(float) == ind_h + KOFF)))), __global_invariant(__implies(!active & !halo, !__write(u1))), k<NZ; k++) { // move two planes down and read in new plane k+1 if (active) { indg0 = indg; indg = INDEX(indg,NY,pitch); u1[ind-KOFF] = u1[ind]; u1[ind] = u1[ind+KOFF]; if (k<NZM1) u1[ind+KOFF] = d_u1[indg]; } if (halo) { indg_h = INDEX(indg_h,NY,pitch); u1[ind_h-KOFF] = u1[ind_h]; u1[ind_h] = u1[ind_h+KOFF]; if (k<NZM1) u1[ind_h+KOFF] = d_u1[indg_h]; } __syncthreads(); // // perform Jacobi iteration to set values in u2 // if (active) { if (i==0 || i==NXM1 || j==0 || j==NYM1 || k==0 || k==NZM1) { u2 = u1[ind]; // Dirichlet b.c.'s } else { u2 = ( u1[ind-IOFF] + u1[ind+IOFF] + u1[ind-JOFF] + u1[ind+JOFF] + u1[ind-KOFF] + u1[ind+KOFF] ) * sixth; } d_u2[indg0] = u2; } __syncthreads(); } }
6cef234ea36a9ac3e0967cc313f4a98856d7da2e.hip
// !!! This is a file automatically generated by hipify!!! #include <iostream> #include <SDL2/SDL.h> #include <string> #include <stdexcept> #include <cstdio> #include <hip/hip_runtime.h> #include <hiprand/hiprand.h> #include "cuda_common.h" #include <hip/hip_runtime_api.h> #include "complex.h" #include "cuda_common.h" #include "constants.h" //https://nvlabs.github.io/cub/ #include <hipcub/hipcub.hpp> #include <hipcub/hipcub.hpp> #include <typeinfo> #include "textures.h" #include "functions.h" #define CURAND_CALL(x) x //do { if((x) != HIPRAND_STATUS_SUCCESS) { \ printf("Error at %s:%d\n",__FILE__,__LINE__); \ return EXIT_FAILURE;}} while(0) template<class Real> __global__ void initializeRI(complex *in, Real *d_sum){ uint id = threadIdx.x + blockIdx.x * blockDim.x; uint i = id % nx; uint j = id / nx; Real val = 0.0; if(i < nx && j < ny){ if(i>0 && j>0 && i<nx-1 && j<ny-1) val = in[i+j*nx].abs2(); else in[i+j*nx] = complex::zero(); } Real *smem = SharedMemory<Real>(); smem[threadIdx.x] = val; __syncthreads(); //Only one active warp do the reduction //Bocks are always multiple of the warp size! if(blockDim.x > WARP_SIZE && threadIdx.x < WARP_SIZE){ for(uint s = 1; s < blockDim.x / WARP_SIZE; s++) smem[threadIdx.x] += smem[threadIdx.x + WARP_SIZE * s]; } //__syncthreads(); //No need to synchronize inside warp!!!! //One thread do the warp reduction if(threadIdx.x == 0 ) { Real sum = smem[0]; for(uint s = 1; s < WARP_SIZE; s++) sum += smem[s]; CudaAtomicAdd(d_sum, sum); } } template<class Real> __global__ void initialize(complex *in, Real *d_sum){ uint id = threadIdx.x + blockIdx.x * blockDim.x; uint i = id % nx; uint j = id / nx; Real val = 0.0; if(i>0 && j>0 && i<nx-1 && j<ny-1){ complex value = complex::one(); in[i+j*nx]= value; val = value.abs2(); } Real *smem = SharedMemory<Real>(); smem[threadIdx.x] = val; __syncthreads(); //Only one active warp do the reduction //Bocks are always multiple of the warp size! if(blockDim.x > WARP_SIZE && threadIdx.x < WARP_SIZE){ for(uint s = 1; s < blockDim.x / WARP_SIZE; s++) smem[threadIdx.x] += smem[threadIdx.x + WARP_SIZE * s]; } //__syncthreads(); //No need to synchronize inside warp!!!! //One thread do the warp reduction if(threadIdx.x == 0 ) { Real sum = smem[0]; for(uint s = 1; s < WARP_SIZE; s++) sum += smem[s]; CudaAtomicAdd(d_sum, sum); } } template<class Real> void cGenerateUniform(hiprandGenerator_t gen, Real* a0, uint size){}; template<> void cGenerateUniform<float>(hiprandGenerator_t gen, float* a0, uint size){ CURAND_CALL(hiprandGenerateUniform(gen, a0, size)); } template<> void cGenerateUniform<double>(hiprandGenerator_t gen, double* a0, uint size){ CURAND_CALL(hiprandGenerateUniformDouble(gen, a0, size)); } template<class Real> void Init(complex *a0_d, Real* d_sum, int nx, int ny, bool randomInit){ CUDA_SAFE_CALL(hipMemset(d_sum, 0, sizeof(Real))); dim3 threadsperblock(128); dim3 nblocks((nx*ny+threadsperblock.x-1)/threadsperblock.x, 1, 1); size_t shared_bytes = threadsperblock.x * sizeof(Real); if(randomInit){ hiprandGenerator_t gen; CURAND_CALL(hiprandCreateGenerator(&gen, HIPRAND_RNG_PSEUDO_DEFAULT)); CURAND_CALL(hiprandSetPseudoRandomGeneratorSeed(gen, 1234ULL)); cGenerateUniform(gen, (Real*)a0_d, nx*ny*2); CURAND_CALL(hiprandDestroyGenerator(gen)); hipLaunchKernelGGL(( initializeRI<Real>), dim3(nblocks),dim3(threadsperblock), shared_bytes, 0, a0_d, d_sum); } else hipLaunchKernelGGL(( initialize<Real>), dim3(nblocks),dim3(threadsperblock), shared_bytes, 0, a0_d, d_sum); CUT_CHECK_ERROR("kernel launch failure"); CUDA_SAFE_THREAD_SYNC(); } template void Init<float>(complexs *a0_d, float* d_sum, int nx, int ny, bool randomInit); template void Init<double>(complexd *a0_d, double* d_sum, int nx, int ny, bool randomInit);
6cef234ea36a9ac3e0967cc313f4a98856d7da2e.cu
#include <iostream> #include <SDL2/SDL.h> #include <string> #include <stdexcept> #include <cstdio> #include <cuda.h> #include <curand.h> #include "cuda_common.h" #include <cuda_runtime_api.h> #include "complex.h" #include "cuda_common.h" #include "constants.h" //https://nvlabs.github.io/cub/ #include <cub/cub.cuh> #include <cub/block/block_reduce.cuh> #include <typeinfo> #include "textures.h" #include "functions.h" #define CURAND_CALL(x) x //do { if((x) != CURAND_STATUS_SUCCESS) { \ printf("Error at %s:%d\n",__FILE__,__LINE__); \ return EXIT_FAILURE;}} while(0) template<class Real> __global__ void initializeRI(complex *in, Real *d_sum){ uint id = threadIdx.x + blockIdx.x * blockDim.x; uint i = id % nx; uint j = id / nx; Real val = 0.0; if(i < nx && j < ny){ if(i>0 && j>0 && i<nx-1 && j<ny-1) val = in[i+j*nx].abs2(); else in[i+j*nx] = complex::zero(); } Real *smem = SharedMemory<Real>(); smem[threadIdx.x] = val; __syncthreads(); //Only one active warp do the reduction //Bocks are always multiple of the warp size! if(blockDim.x > WARP_SIZE && threadIdx.x < WARP_SIZE){ for(uint s = 1; s < blockDim.x / WARP_SIZE; s++) smem[threadIdx.x] += smem[threadIdx.x + WARP_SIZE * s]; } //__syncthreads(); //No need to synchronize inside warp!!!! //One thread do the warp reduction if(threadIdx.x == 0 ) { Real sum = smem[0]; for(uint s = 1; s < WARP_SIZE; s++) sum += smem[s]; CudaAtomicAdd(d_sum, sum); } } template<class Real> __global__ void initialize(complex *in, Real *d_sum){ uint id = threadIdx.x + blockIdx.x * blockDim.x; uint i = id % nx; uint j = id / nx; Real val = 0.0; if(i>0 && j>0 && i<nx-1 && j<ny-1){ complex value = complex::one(); in[i+j*nx]= value; val = value.abs2(); } Real *smem = SharedMemory<Real>(); smem[threadIdx.x] = val; __syncthreads(); //Only one active warp do the reduction //Bocks are always multiple of the warp size! if(blockDim.x > WARP_SIZE && threadIdx.x < WARP_SIZE){ for(uint s = 1; s < blockDim.x / WARP_SIZE; s++) smem[threadIdx.x] += smem[threadIdx.x + WARP_SIZE * s]; } //__syncthreads(); //No need to synchronize inside warp!!!! //One thread do the warp reduction if(threadIdx.x == 0 ) { Real sum = smem[0]; for(uint s = 1; s < WARP_SIZE; s++) sum += smem[s]; CudaAtomicAdd(d_sum, sum); } } template<class Real> void cGenerateUniform(curandGenerator_t gen, Real* a0, uint size){}; template<> void cGenerateUniform<float>(curandGenerator_t gen, float* a0, uint size){ CURAND_CALL(curandGenerateUniform(gen, a0, size)); } template<> void cGenerateUniform<double>(curandGenerator_t gen, double* a0, uint size){ CURAND_CALL(curandGenerateUniformDouble(gen, a0, size)); } template<class Real> void Init(complex *a0_d, Real* d_sum, int nx, int ny, bool randomInit){ CUDA_SAFE_CALL(cudaMemset(d_sum, 0, sizeof(Real))); dim3 threadsperblock(128); dim3 nblocks((nx*ny+threadsperblock.x-1)/threadsperblock.x, 1, 1); size_t shared_bytes = threadsperblock.x * sizeof(Real); if(randomInit){ curandGenerator_t gen; CURAND_CALL(curandCreateGenerator(&gen, CURAND_RNG_PSEUDO_DEFAULT)); CURAND_CALL(curandSetPseudoRandomGeneratorSeed(gen, 1234ULL)); cGenerateUniform(gen, (Real*)a0_d, nx*ny*2); CURAND_CALL(curandDestroyGenerator(gen)); initializeRI<Real><<<nblocks,threadsperblock, shared_bytes, 0>>>(a0_d, d_sum); } else initialize<Real><<<nblocks,threadsperblock, shared_bytes, 0>>>(a0_d, d_sum); CUT_CHECK_ERROR("kernel launch failure"); CUDA_SAFE_THREAD_SYNC(); } template void Init<float>(complexs *a0_d, float* d_sum, int nx, int ny, bool randomInit); template void Init<double>(complexd *a0_d, double* d_sum, int nx, int ny, bool randomInit);
6809eb2eaef60e4bf03146e22163ea1bb41645f6.hip
// !!! This is a file automatically generated by hipify!!! #include "utilidades.h" #include <jacobi.h> #include <iostream> #include "matrices_test.h" #include <readers.h> #include <SRJ_CUDA.h> #include <SRJ.h> #include <SRJ_OMP.h> #include "tests.h" #include "jacobiOmp.h" #include "jacobiCuda.h" using namespace std; const double tolerance = 1.e-8; void printResult(int k, const double *_x, const double *_y, const double *_b, int n) { if (n > 1000) n = 100; cout << "Vector x: "; for (auto i = 0; i < n; i++) cout << _x[i] << " "; cout << endl; if (_y != nullptr) { cout << "Vector y: "; for (auto i = 0; i < n; i++) cout << _y[i] << " "; cout << endl; } cout << "Vector b: "; for (auto i = 0; i < n; i++) cout << _b[i] << " "; cout << endl; cout << "Iteraciones K: " << k << endl << endl; } double test_jacobi_CUDA(CSR matriz, double *_b, string _x0) { int BLOCKSIZE = 256; cout << "Test Jacobi CUDA *****///\n" << "BLOCKSIZE: " << BLOCKSIZE << endl; double *_x_k = rhsVector_reader<double>(_x0, matriz.getFilas()); jacobi_CUDA test(matriz, vector<double>(_x_k, _x_k + matriz.getFilas()), BLOCKSIZE); int iter = 0; double residual = 1e36; double t1 = utilidades::cpuSecond(); while (residual > tolerance) { test.multiplicacionMV(); test.calculaResiduo(_b); test.obtenerNuevaX(); residual = test.norma(); test.actualizaX(); // if (iter % 1000 == 0) cout << "residual: " << residual << endl; iter++; } double t2 = utilidades::cpuSecond() - t1; cout << "iter: " << iter << endl; // printResult(iter, test.getX().data(), test.getY(), _b, matriz.getFilas()); return t2; } //} double test_jacobi_OMP(CSR matriz, double *_b, string _x0) { cout << "Test Jacobi OMP *****///\n"; double *_x_k = rhsVector_reader<double>(_x0, matriz.getFilas()); jacobi_OMP test(matriz, vector<double>(_x_k, _x_k + matriz.getFilas())); int iter = 0; double residual = 1e36; double t1 = utilidades::cpuSecond(); while (residual > tolerance) { test.multiplicacionMV(); test.calculaResiduo(_b); test.obtenerNuevaX(); residual = test.norma(); test.actualizaX(); iter++; } double t2 = utilidades::cpuSecond() - t1; cout << "iter: " << iter << endl; // printResult(iter, test.getX().data(), test.getY(), _b, matriz.getFilas()); return t2; } double jacobi_secuencial(CSR matriz, double *_b, string _x0) { cout << "Jacobi secuencial*****//" << endl; double *_x_k = rhsVector_reader<double>(_x0, matriz.getFilas()); jacobi test(matriz, vector<double>(_x_k, _x_k + matriz.getFilas())); double residual = 1.e36; int iter = 0; double t1 = utilidades::cpuSecond(); while (residual > tolerance) { test.multiplicacionMV(); test.calculaResiduo(_b); test.obtenerNuevaX(); residual = test.norma(); test.actualizaX(); iter++; } double t2 = utilidades::cpuSecond() - t1; cout << "iter: " << iter << endl; // printResult(iter, test.getX().data(), test.getY(), _b, matriz.getFilas()); return t2; } double srj_CUDA(CSR matriz, double *_b, string _x0, string _srjSch) { cout << "SRJ CUDA*****//" << endl; double *_x_k = rhsVector_reader<double>(_x0, matriz.getFilas()); auto srjSch = srjSch_reader<double>(_srjSch); SRJ_CUDA test(matriz, srjSch, vector<double>(_x_k, _x_k + matriz.getFilas())); double residual = 1.e36; int iter = 0; double t1 = utilidades::cpuSecond(); while (residual > tolerance) { test.multiplicacionMV(); test.calculaResiduo(_b); test.obtenerNuevaX(); residual = test.norma(); test.actualizaX(); iter++; } double t2 = utilidades::cpuSecond() - t1; cout << "iter: " << iter << endl; // printResult(iter, test.getX().data(), test.getY(), _b, matriz.getFilas()); return t2; } double srj_OMP(CSR matriz, double *_b, string _x0, string _srjSch) { cout << "SRJ OMP*****//" << endl; double *_x_k = rhsVector_reader<double>(_x0, matriz.getFilas()); auto srjSch = srjSch_reader<double>(_srjSch); SRJ_OMP test(matriz, srjSch, vector<double>(_x_k, _x_k + matriz.getFilas())); double residual = 1.e36; int iter = 0; double t1 = utilidades::cpuSecond(); while (residual > tolerance) { test.multiplicacionMV(); test.calculaResiduo(_b); test.obtenerNuevaX(); residual = test.norma(); test.actualizaX(); iter++; } double t2 = utilidades::cpuSecond() - t1; cout << "iter: " << iter << endl; // printResult(iter, test.getX().data(), test.getY(), _b, matriz.getFilas()); return t2; } double srj_secuencial(CSR matriz, double *_b, string _x0, string _srjSch) { cout << "SRJ SECUENCIAL*****//" << endl; double *_x_k = rhsVector_reader<double>(_x0, matriz.getFilas()); auto srjSch = srjSch_reader<double>(_srjSch); SRJ test(matriz, srjSch, vector<double>(_x_k, _x_k + matriz.getFilas())); double residual = 1.e36; int iter = 0; double t1 = utilidades::cpuSecond(); while (residual > tolerance) { test.multiplicacionMV(); test.calculaResiduo(_b); test.obtenerNuevaX(); residual = test.norma(); test.actualizaX(); iter++; } double t2 = utilidades::cpuSecond() - t1; cout << "iter: " << iter << endl; // printResult(iter, test.getX().data(), test.getY(), _b, matriz.getFilas()); return t2; } double SOR_OMP(CSR matriz, double *_b, string _x0, double omega) { cout << "SOR OMP *****///" << endl; cout << "omega: " << omega << endl; double *_x_k = rhsVector_reader<double>(_x0, matriz.getFilas()); // Vector de entrada iteracin double *_residual_vec = new double[matriz.getFilas()]; // Vector de residuo double residual = 1.e36; int iter; double t1 = utilidades::cpuSecond(); for (iter = 0; (residual > tolerance); ++iter) { // Matrix-Vector Product Matrix_2d *x_k and compute residual vector vector<double> x_km1(_x_k, _x_k + matriz.getFilas()); for (int line = 0; line < matriz.getFilas(); ++line) { double sum = 0; const unsigned int row_start = matriz.getRowPtr()[line]; const unsigned int row_end = matriz.getRowPtr()[line + 1]; for (unsigned int element = row_start; element < row_end; element++) { if (line != matriz.getColInd()[element]) sum += matriz.getVal()[element] * _x_k[matriz.getColInd()[element]]; } _x_k[line] = (1 - omega) * _x_k[line] + (omega * (_b[line] - sum) / matriz.getDiagonal()[line]); } for (int line = 0; line < matriz.getFilas(); ++line) { _residual_vec[line] = _x_k[line] - x_km1[line]; } residual = utilidades::reduce_max_OMP(_residual_vec, matriz.getFilas()); } double t2 = utilidades::cpuSecond() - t1; cout << "iter: " << iter << endl; // printResult(iter, _x_k, nullptr, _b, matriz.getFilas()); return t2; } double SOR_CUDA(CSR matriz, double *_b, string _x0, double omega) { cout << "SOR CUDA *****///" << endl; cout << "omega: " << omega << endl; double *_x_k = rhsVector_reader<double>(_x0, matriz.getFilas()); // Vector de entrada iteracin double *_residual_vec = new double[matriz.getFilas()]; // Vector de residuo double *_residual_vec_d; hipMalloc(&_residual_vec_d, matriz.getFilas() * sizeof(double)); double residual = 1.e36; int iter; double t1 = utilidades::cpuSecond(); for (iter = 0; (residual > tolerance); ++iter) { // Matrix-Vector Product Matrix_2d *x_k and compute residual vector vector<double> x_km1(_x_k, _x_k + matriz.getFilas()); for (int line = 0; line < matriz.getFilas(); ++line) { double sum = 0; const unsigned int row_start = matriz.getRowPtr()[line]; const unsigned int row_end = matriz.getRowPtr()[line + 1]; for (unsigned int element = row_start; element < row_end; element++) { if (line != matriz.getColInd()[element]) sum += matriz.getVal()[element] * _x_k[matriz.getColInd()[element]]; } _x_k[line] = (1 - omega) * _x_k[line] + (omega * (_b[line] - sum) / matriz.getDiagonal()[line]); } for (int line = 0; line < matriz.getFilas(); ++line) { _residual_vec[line] = _x_k[line] - x_km1[line]; } hipMemcpy(_residual_vec_d, _residual_vec, matriz.getFilas() * sizeof(double), hipMemcpyHostToDevice); residual = utilidades::reduce_max_CUDA(_residual_vec_d, matriz.getFilas(), 256); } double t2 = utilidades::cpuSecond() - t1; cout << "iter: " << iter << endl; // printResult(iter, _x_k, nullptr, _b, matriz.getFilas()); return t2; } double SOR(CSR matriz, double *_b, string _x0, double omega) { cout << "SOR secuencial *****///" << endl; cout << "omega: " << omega << endl; double *_x_k = rhsVector_reader<double>(_x0, matriz.getFilas()); // Vector de entrada iteracin double *_residual_vec = new double[matriz.getFilas()]; // Vector de residuo double residual = 1.e36; int iter; double t1 = utilidades::cpuSecond(); for (iter = 0; (residual > tolerance); ++iter) { // Matrix-Vector Product Matrix_2d *x_k and compute residual vector vector<double> x_km1(_x_k, _x_k + matriz.getFilas()); for (int line = 0; line < matriz.getFilas(); ++line) { double sum = 0; const unsigned int row_start = matriz.getRowPtr()[line]; const unsigned int row_end = matriz.getRowPtr()[line + 1]; for (unsigned int element = row_start; element < row_end; element++) { if (line != matriz.getColInd()[element]) sum += matriz.getVal()[element] * _x_k[matriz.getColInd()[element]]; } _x_k[line] = (1 - omega) * _x_k[line] + (omega * (_b[line] - sum) / matriz.getDiagonal()[line]); } for (int line = 0; line < matriz.getFilas(); ++line) { _residual_vec[line] = _x_k[line] - x_km1[line]; } residual = utilidades::reduce_max_OMP(_residual_vec, matriz.getFilas()); } double t2 = utilidades::cpuSecond() - t1; cout << "iter: " << iter << endl; // printResult(iter, _x_k, nullptr, _b, matriz.getFilas()); return t2; } void SOR_clasico() { cout << "SOR *****///" << endl; const int filas = 4; auto matriz = m.m2; double *_b = b._2; double *_x_k = new double[filas]; // Vector de entrada iteracin double *_residual_vec = new double[filas]; // Vector de residuo const double omega = 0.55; double residual = 1.e36; const double tolerance = 1.e-8; for (int i = 0; i < filas; i++) _x_k[i] = 0; int iter; for (iter = 0; (residual > tolerance); ++iter) { // Matrix-Vector Product Matrix_2d *x_k and compute residual vector for (int i = 0; i < filas; ++i) { double sigma = 0; for (int j = 0; j < filas; j++) { if (i != j) sigma += matriz[i][j] * _x_k[j]; } _x_k[i] = (1 - omega) * _x_k[i] + (omega * 1.0 / matriz[i][i]) * (_b[i] - sigma); } // Calculo residuo for (int i = 0; i < filas; ++i) { double sum = 0; for (unsigned int j = 0; j < filas; j++) { sum += matriz[i][j] * _x_k[j]; } _residual_vec[i] = sum - _b[i]; } double sum_cuadrados = 0; for (size_t i = 0; i < filas; i++) { sum_cuadrados += pow(_residual_vec[i], 2); } residual = sqrt(sum_cuadrados); } printResult(iter, _x_k, nullptr, _b, filas); } void jacobi_clasico() { cout << "Jacobi clasico *****///" << endl; const int filas = 8; auto matriz = m.m4; double *_b = b._4; double *_x_k = new double[filas]; // Vector de entrada iteracin double *_x_kp1 = new double[filas]; // Vector de entrada iteracin double *_residual_vec = new double[filas]; // Vector de residuo double residual = 1.e36; const double tolerance = 1.e-8; for (int i = 0; i < filas; i++) _x_k[i] = 1; int iter; for (iter = 0; residual > tolerance; iter++) { // Matrix-Vector Product Matrix_2d *x_k and compute residual vector for (int i = 0; i < filas; ++i) { double sigma = 0; for (int j = 0; j < filas; j++) { if (i != j) sigma += matriz[i][j] * _x_k[j]; } _x_kp1[i] = (_b[i] - sigma) / matriz[i][i]; } // Calculo residuo for (int i = 0; i < filas; ++i) { double sum = 0; for (unsigned int j = 0; j < filas; j++) { sum += matriz[i][j] * _x_kp1[j]; } _residual_vec[i] = sum - _b[i]; } double sum_cuadrados = 0; for (size_t i = 0; i < filas; i++) { sum_cuadrados += pow(_residual_vec[i], 2); } residual = sqrt(sum_cuadrados); if (residual < tolerance) break; double *tmp = _x_k; _x_k = _x_kp1; _x_kp1 = tmp; } printResult(iter, _x_k, nullptr, _b, filas); } void jacobi_secuencial_funcion(CSR matriz, double *_b, string _x0) { cout << "Jacobi secuencial*****//" << endl; double *_x_k = rhsVector_reader<double>(_x0, matriz.getFilas()); // if (matriz.isPrecondicionada()) // for (int i = 0; i < matriz.getFilas(); i++) _b[i] = _b[i] / matriz.getDiagonal()[i]; double *_x_kp1 = new double[matriz.getFilas()]; // Vector de salida iteracin double *_residual_vec = new double[matriz.getFilas()]; // Vector de residuo double residual = 1.e36; const double tolerance = 1.e-8; // initial seed // double *_b = new double[matriz.getFilas()]; // for (int i = 0; i < matriz.getFilas(); i++) _b[i] = 1; // double *_x_k = new double[matriz.getFilas()]; // for (int i = 0; i < matriz.getFilas(); i++) _x_k[i] = 0; int iter; for (iter = 0; residual > tolerance; ++iter) { // Matrix-Vector Product Matrix_2d *x_k and compute residual vector for (int line = 0; line < matriz.getFilas(); ++line) { double sum = 0; const unsigned int row_start = matriz.getRowPtr()[line]; const unsigned int row_end = matriz.getRowPtr()[line + 1]; for (unsigned int element = row_start; element < row_end; element++) { sum += matriz.getVal()[element] * _x_k[matriz.getColInd()[element]]; } _residual_vec[line] = (_b[line] - sum) / matriz.getDiagonal()[line]; // vector for residual _x_kp1[line] = _x_k[line] + _residual_vec[line]; } // compute residual residual = 0; double max_x_k = 0; for (int line = 0; line < matriz.getFilas(); ++line) { residual = (fabs(_residual_vec[line]) > residual ? fabs(_residual_vec[line]) : residual); max_x_k = (fabs(_x_kp1[line]) > max_x_k ? fabs(_x_kp1[line]) : max_x_k); } residual = residual / max_x_k; // transfer _x_kp1 into _x_k double *tmp; tmp = _x_k; _x_k = _x_kp1; _x_kp1 = tmp; } printResult(iter, _x_k, nullptr, _b, matriz.getFilas()); } double srj_secuencial_funcion(CSR matriz, double *_b, string _x0, string _srjSch) { cout << "SRJ secuencial*****//" << endl; double *_x_k = rhsVector_reader<double>(_x0, matriz.getFilas()); // Vector de entrada iteracin double *_x_kp1 = new double[matriz.getFilas()]; // Vector de salida iteracin double *_residual_vec = new double[matriz.getFilas()]; // Vector de residuo auto srjSch = srjSch_reader<double>(_srjSch); double residual = 1.e36; const double tolerance = 1.e-8; int iter; double t1 = utilidades::cpuSecond(); for (iter = 0; residual > tolerance; ++iter) { // Matrix-Vector Product Matrix_2d *x_k and compute residual vector for (int line = 0; line < matriz.getFilas(); ++line) { double sum = 0; const unsigned int row_start = matriz.getRowPtr()[line]; const unsigned int row_end = matriz.getRowPtr()[line + 1]; for (unsigned int element = row_start; element < row_end; element++) { sum += matriz.getVal()[element] * _x_k[matriz.getColInd()[element]]; } _residual_vec[line] = (_b[line] - sum) / matriz.getDiagonal()[line]; // vector for residual _x_kp1[line] = _x_k[line] + _residual_vec[line] * srjSch[iter % srjSch.size()]; } // compute residual residual = 0; double max_x_k = 0; for (int line = 0; line < matriz.getFilas(); ++line) { residual = (fabs(_residual_vec[line]) > residual ? fabs(_residual_vec[line]) : residual); max_x_k = (fabs(_x_kp1[line]) > max_x_k ? fabs(_x_kp1[line]) : max_x_k); } residual = residual / max_x_k; // transfer _x_kp1 into _x_k double *tmp; tmp = _x_k; _x_k = _x_kp1; _x_kp1 = tmp; } double t2 = utilidades::cpuSecond() - t1; // printResult(iter, _x_k, nullptr, _b, matriz.getFilas()); return t2; }
6809eb2eaef60e4bf03146e22163ea1bb41645f6.cu
#include "utilidades.h" #include <jacobi.h> #include <iostream> #include "matrices_test.h" #include <readers.h> #include <SRJ_CUDA.h> #include <SRJ.h> #include <SRJ_OMP.h> #include "tests.h" #include "jacobiOmp.h" #include "jacobiCuda.h" using namespace std; const double tolerance = 1.e-8; void printResult(int k, const double *_x, const double *_y, const double *_b, int n) { if (n > 1000) n = 100; cout << "Vector x: "; for (auto i = 0; i < n; i++) cout << _x[i] << " "; cout << endl; if (_y != nullptr) { cout << "Vector y: "; for (auto i = 0; i < n; i++) cout << _y[i] << " "; cout << endl; } cout << "Vector b: "; for (auto i = 0; i < n; i++) cout << _b[i] << " "; cout << endl; cout << "Iteraciones K: " << k << endl << endl; } double test_jacobi_CUDA(CSR matriz, double *_b, string _x0) { int BLOCKSIZE = 256; cout << "Test Jacobi CUDA *****///\n" << "BLOCKSIZE: " << BLOCKSIZE << endl; double *_x_k = rhsVector_reader<double>(_x0, matriz.getFilas()); jacobi_CUDA test(matriz, vector<double>(_x_k, _x_k + matriz.getFilas()), BLOCKSIZE); int iter = 0; double residual = 1e36; double t1 = utilidades::cpuSecond(); while (residual > tolerance) { test.multiplicacionMV(); test.calculaResiduo(_b); test.obtenerNuevaX(); residual = test.norma(); test.actualizaX(); // if (iter % 1000 == 0) cout << "residual: " << residual << endl; iter++; } double t2 = utilidades::cpuSecond() - t1; cout << "iter: " << iter << endl; // printResult(iter, test.getX().data(), test.getY(), _b, matriz.getFilas()); return t2; } //} double test_jacobi_OMP(CSR matriz, double *_b, string _x0) { cout << "Test Jacobi OMP *****///\n"; double *_x_k = rhsVector_reader<double>(_x0, matriz.getFilas()); jacobi_OMP test(matriz, vector<double>(_x_k, _x_k + matriz.getFilas())); int iter = 0; double residual = 1e36; double t1 = utilidades::cpuSecond(); while (residual > tolerance) { test.multiplicacionMV(); test.calculaResiduo(_b); test.obtenerNuevaX(); residual = test.norma(); test.actualizaX(); iter++; } double t2 = utilidades::cpuSecond() - t1; cout << "iter: " << iter << endl; // printResult(iter, test.getX().data(), test.getY(), _b, matriz.getFilas()); return t2; } double jacobi_secuencial(CSR matriz, double *_b, string _x0) { cout << "Jacobi secuencial*****//" << endl; double *_x_k = rhsVector_reader<double>(_x0, matriz.getFilas()); jacobi test(matriz, vector<double>(_x_k, _x_k + matriz.getFilas())); double residual = 1.e36; int iter = 0; double t1 = utilidades::cpuSecond(); while (residual > tolerance) { test.multiplicacionMV(); test.calculaResiduo(_b); test.obtenerNuevaX(); residual = test.norma(); test.actualizaX(); iter++; } double t2 = utilidades::cpuSecond() - t1; cout << "iter: " << iter << endl; // printResult(iter, test.getX().data(), test.getY(), _b, matriz.getFilas()); return t2; } double srj_CUDA(CSR matriz, double *_b, string _x0, string _srjSch) { cout << "SRJ CUDA*****//" << endl; double *_x_k = rhsVector_reader<double>(_x0, matriz.getFilas()); auto srjSch = srjSch_reader<double>(_srjSch); SRJ_CUDA test(matriz, srjSch, vector<double>(_x_k, _x_k + matriz.getFilas())); double residual = 1.e36; int iter = 0; double t1 = utilidades::cpuSecond(); while (residual > tolerance) { test.multiplicacionMV(); test.calculaResiduo(_b); test.obtenerNuevaX(); residual = test.norma(); test.actualizaX(); iter++; } double t2 = utilidades::cpuSecond() - t1; cout << "iter: " << iter << endl; // printResult(iter, test.getX().data(), test.getY(), _b, matriz.getFilas()); return t2; } double srj_OMP(CSR matriz, double *_b, string _x0, string _srjSch) { cout << "SRJ OMP*****//" << endl; double *_x_k = rhsVector_reader<double>(_x0, matriz.getFilas()); auto srjSch = srjSch_reader<double>(_srjSch); SRJ_OMP test(matriz, srjSch, vector<double>(_x_k, _x_k + matriz.getFilas())); double residual = 1.e36; int iter = 0; double t1 = utilidades::cpuSecond(); while (residual > tolerance) { test.multiplicacionMV(); test.calculaResiduo(_b); test.obtenerNuevaX(); residual = test.norma(); test.actualizaX(); iter++; } double t2 = utilidades::cpuSecond() - t1; cout << "iter: " << iter << endl; // printResult(iter, test.getX().data(), test.getY(), _b, matriz.getFilas()); return t2; } double srj_secuencial(CSR matriz, double *_b, string _x0, string _srjSch) { cout << "SRJ SECUENCIAL*****//" << endl; double *_x_k = rhsVector_reader<double>(_x0, matriz.getFilas()); auto srjSch = srjSch_reader<double>(_srjSch); SRJ test(matriz, srjSch, vector<double>(_x_k, _x_k + matriz.getFilas())); double residual = 1.e36; int iter = 0; double t1 = utilidades::cpuSecond(); while (residual > tolerance) { test.multiplicacionMV(); test.calculaResiduo(_b); test.obtenerNuevaX(); residual = test.norma(); test.actualizaX(); iter++; } double t2 = utilidades::cpuSecond() - t1; cout << "iter: " << iter << endl; // printResult(iter, test.getX().data(), test.getY(), _b, matriz.getFilas()); return t2; } double SOR_OMP(CSR matriz, double *_b, string _x0, double omega) { cout << "SOR OMP *****///" << endl; cout << "omega: " << omega << endl; double *_x_k = rhsVector_reader<double>(_x0, matriz.getFilas()); // Vector de entrada iteración double *_residual_vec = new double[matriz.getFilas()]; // Vector de residuo double residual = 1.e36; int iter; double t1 = utilidades::cpuSecond(); for (iter = 0; (residual > tolerance); ++iter) { // Matrix-Vector Product Matrix_2d *x_k and compute residual vector vector<double> x_km1(_x_k, _x_k + matriz.getFilas()); for (int line = 0; line < matriz.getFilas(); ++line) { double sum = 0; const unsigned int row_start = matriz.getRowPtr()[line]; const unsigned int row_end = matriz.getRowPtr()[line + 1]; for (unsigned int element = row_start; element < row_end; element++) { if (line != matriz.getColInd()[element]) sum += matriz.getVal()[element] * _x_k[matriz.getColInd()[element]]; } _x_k[line] = (1 - omega) * _x_k[line] + (omega * (_b[line] - sum) / matriz.getDiagonal()[line]); } for (int line = 0; line < matriz.getFilas(); ++line) { _residual_vec[line] = _x_k[line] - x_km1[line]; } residual = utilidades::reduce_max_OMP(_residual_vec, matriz.getFilas()); } double t2 = utilidades::cpuSecond() - t1; cout << "iter: " << iter << endl; // printResult(iter, _x_k, nullptr, _b, matriz.getFilas()); return t2; } double SOR_CUDA(CSR matriz, double *_b, string _x0, double omega) { cout << "SOR CUDA *****///" << endl; cout << "omega: " << omega << endl; double *_x_k = rhsVector_reader<double>(_x0, matriz.getFilas()); // Vector de entrada iteración double *_residual_vec = new double[matriz.getFilas()]; // Vector de residuo double *_residual_vec_d; cudaMalloc(&_residual_vec_d, matriz.getFilas() * sizeof(double)); double residual = 1.e36; int iter; double t1 = utilidades::cpuSecond(); for (iter = 0; (residual > tolerance); ++iter) { // Matrix-Vector Product Matrix_2d *x_k and compute residual vector vector<double> x_km1(_x_k, _x_k + matriz.getFilas()); for (int line = 0; line < matriz.getFilas(); ++line) { double sum = 0; const unsigned int row_start = matriz.getRowPtr()[line]; const unsigned int row_end = matriz.getRowPtr()[line + 1]; for (unsigned int element = row_start; element < row_end; element++) { if (line != matriz.getColInd()[element]) sum += matriz.getVal()[element] * _x_k[matriz.getColInd()[element]]; } _x_k[line] = (1 - omega) * _x_k[line] + (omega * (_b[line] - sum) / matriz.getDiagonal()[line]); } for (int line = 0; line < matriz.getFilas(); ++line) { _residual_vec[line] = _x_k[line] - x_km1[line]; } cudaMemcpy(_residual_vec_d, _residual_vec, matriz.getFilas() * sizeof(double), cudaMemcpyHostToDevice); residual = utilidades::reduce_max_CUDA(_residual_vec_d, matriz.getFilas(), 256); } double t2 = utilidades::cpuSecond() - t1; cout << "iter: " << iter << endl; // printResult(iter, _x_k, nullptr, _b, matriz.getFilas()); return t2; } double SOR(CSR matriz, double *_b, string _x0, double omega) { cout << "SOR secuencial *****///" << endl; cout << "omega: " << omega << endl; double *_x_k = rhsVector_reader<double>(_x0, matriz.getFilas()); // Vector de entrada iteración double *_residual_vec = new double[matriz.getFilas()]; // Vector de residuo double residual = 1.e36; int iter; double t1 = utilidades::cpuSecond(); for (iter = 0; (residual > tolerance); ++iter) { // Matrix-Vector Product Matrix_2d *x_k and compute residual vector vector<double> x_km1(_x_k, _x_k + matriz.getFilas()); for (int line = 0; line < matriz.getFilas(); ++line) { double sum = 0; const unsigned int row_start = matriz.getRowPtr()[line]; const unsigned int row_end = matriz.getRowPtr()[line + 1]; for (unsigned int element = row_start; element < row_end; element++) { if (line != matriz.getColInd()[element]) sum += matriz.getVal()[element] * _x_k[matriz.getColInd()[element]]; } _x_k[line] = (1 - omega) * _x_k[line] + (omega * (_b[line] - sum) / matriz.getDiagonal()[line]); } for (int line = 0; line < matriz.getFilas(); ++line) { _residual_vec[line] = _x_k[line] - x_km1[line]; } residual = utilidades::reduce_max_OMP(_residual_vec, matriz.getFilas()); } double t2 = utilidades::cpuSecond() - t1; cout << "iter: " << iter << endl; // printResult(iter, _x_k, nullptr, _b, matriz.getFilas()); return t2; } void SOR_clasico() { cout << "SOR *****///" << endl; const int filas = 4; auto matriz = m.m2; double *_b = b._2; double *_x_k = new double[filas]; // Vector de entrada iteración double *_residual_vec = new double[filas]; // Vector de residuo const double omega = 0.55; double residual = 1.e36; const double tolerance = 1.e-8; for (int i = 0; i < filas; i++) _x_k[i] = 0; int iter; for (iter = 0; (residual > tolerance); ++iter) { // Matrix-Vector Product Matrix_2d *x_k and compute residual vector for (int i = 0; i < filas; ++i) { double sigma = 0; for (int j = 0; j < filas; j++) { if (i != j) sigma += matriz[i][j] * _x_k[j]; } _x_k[i] = (1 - omega) * _x_k[i] + (omega * 1.0 / matriz[i][i]) * (_b[i] - sigma); } // Calculo residuo for (int i = 0; i < filas; ++i) { double sum = 0; for (unsigned int j = 0; j < filas; j++) { sum += matriz[i][j] * _x_k[j]; } _residual_vec[i] = sum - _b[i]; } double sum_cuadrados = 0; for (size_t i = 0; i < filas; i++) { sum_cuadrados += pow(_residual_vec[i], 2); } residual = sqrt(sum_cuadrados); } printResult(iter, _x_k, nullptr, _b, filas); } void jacobi_clasico() { cout << "Jacobi clasico *****///" << endl; const int filas = 8; auto matriz = m.m4; double *_b = b._4; double *_x_k = new double[filas]; // Vector de entrada iteración double *_x_kp1 = new double[filas]; // Vector de entrada iteración double *_residual_vec = new double[filas]; // Vector de residuo double residual = 1.e36; const double tolerance = 1.e-8; for (int i = 0; i < filas; i++) _x_k[i] = 1; int iter; for (iter = 0; residual > tolerance; iter++) { // Matrix-Vector Product Matrix_2d *x_k and compute residual vector for (int i = 0; i < filas; ++i) { double sigma = 0; for (int j = 0; j < filas; j++) { if (i != j) sigma += matriz[i][j] * _x_k[j]; } _x_kp1[i] = (_b[i] - sigma) / matriz[i][i]; } // Calculo residuo for (int i = 0; i < filas; ++i) { double sum = 0; for (unsigned int j = 0; j < filas; j++) { sum += matriz[i][j] * _x_kp1[j]; } _residual_vec[i] = sum - _b[i]; } double sum_cuadrados = 0; for (size_t i = 0; i < filas; i++) { sum_cuadrados += pow(_residual_vec[i], 2); } residual = sqrt(sum_cuadrados); if (residual < tolerance) break; double *tmp = _x_k; _x_k = _x_kp1; _x_kp1 = tmp; } printResult(iter, _x_k, nullptr, _b, filas); } void jacobi_secuencial_funcion(CSR matriz, double *_b, string _x0) { cout << "Jacobi secuencial*****//" << endl; double *_x_k = rhsVector_reader<double>(_x0, matriz.getFilas()); // if (matriz.isPrecondicionada()) // for (int i = 0; i < matriz.getFilas(); i++) _b[i] = _b[i] / matriz.getDiagonal()[i]; double *_x_kp1 = new double[matriz.getFilas()]; // Vector de salida iteración double *_residual_vec = new double[matriz.getFilas()]; // Vector de residuo double residual = 1.e36; const double tolerance = 1.e-8; // initial seed // double *_b = new double[matriz.getFilas()]; // for (int i = 0; i < matriz.getFilas(); i++) _b[i] = 1; // double *_x_k = new double[matriz.getFilas()]; // for (int i = 0; i < matriz.getFilas(); i++) _x_k[i] = 0; int iter; for (iter = 0; residual > tolerance; ++iter) { // Matrix-Vector Product Matrix_2d *x_k and compute residual vector for (int line = 0; line < matriz.getFilas(); ++line) { double sum = 0; const unsigned int row_start = matriz.getRowPtr()[line]; const unsigned int row_end = matriz.getRowPtr()[line + 1]; for (unsigned int element = row_start; element < row_end; element++) { sum += matriz.getVal()[element] * _x_k[matriz.getColInd()[element]]; } _residual_vec[line] = (_b[line] - sum) / matriz.getDiagonal()[line]; // vector for residual _x_kp1[line] = _x_k[line] + _residual_vec[line]; } // compute residual residual = 0; double max_x_k = 0; for (int line = 0; line < matriz.getFilas(); ++line) { residual = (fabs(_residual_vec[line]) > residual ? fabs(_residual_vec[line]) : residual); max_x_k = (fabs(_x_kp1[line]) > max_x_k ? fabs(_x_kp1[line]) : max_x_k); } residual = residual / max_x_k; // transfer _x_kp1 into _x_k double *tmp; tmp = _x_k; _x_k = _x_kp1; _x_kp1 = tmp; } printResult(iter, _x_k, nullptr, _b, matriz.getFilas()); } double srj_secuencial_funcion(CSR matriz, double *_b, string _x0, string _srjSch) { cout << "SRJ secuencial*****//" << endl; double *_x_k = rhsVector_reader<double>(_x0, matriz.getFilas()); // Vector de entrada iteración double *_x_kp1 = new double[matriz.getFilas()]; // Vector de salida iteración double *_residual_vec = new double[matriz.getFilas()]; // Vector de residuo auto srjSch = srjSch_reader<double>(_srjSch); double residual = 1.e36; const double tolerance = 1.e-8; int iter; double t1 = utilidades::cpuSecond(); for (iter = 0; residual > tolerance; ++iter) { // Matrix-Vector Product Matrix_2d *x_k and compute residual vector for (int line = 0; line < matriz.getFilas(); ++line) { double sum = 0; const unsigned int row_start = matriz.getRowPtr()[line]; const unsigned int row_end = matriz.getRowPtr()[line + 1]; for (unsigned int element = row_start; element < row_end; element++) { sum += matriz.getVal()[element] * _x_k[matriz.getColInd()[element]]; } _residual_vec[line] = (_b[line] - sum) / matriz.getDiagonal()[line]; // vector for residual _x_kp1[line] = _x_k[line] + _residual_vec[line] * srjSch[iter % srjSch.size()]; } // compute residual residual = 0; double max_x_k = 0; for (int line = 0; line < matriz.getFilas(); ++line) { residual = (fabs(_residual_vec[line]) > residual ? fabs(_residual_vec[line]) : residual); max_x_k = (fabs(_x_kp1[line]) > max_x_k ? fabs(_x_kp1[line]) : max_x_k); } residual = residual / max_x_k; // transfer _x_kp1 into _x_k double *tmp; tmp = _x_k; _x_k = _x_kp1; _x_kp1 = tmp; } double t2 = utilidades::cpuSecond() - t1; // printResult(iter, _x_k, nullptr, _b, matriz.getFilas()); return t2; }
ee52c583a4d4b3f73cc328676275fa2ee7446112.hip
// !!! This is a file automatically generated by hipify!!! #include <hip/hip_runtime.h> #include <helper_cuda.h> #include <stdio.h> #include <stdlib.h> #include <string> #include <iostream> #include <fstream> #define ASIZE 256 #define PRIME 1000009 __global__ void processPattern(char* x ,int m, int shifts[]) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if ( idx >= m ) return; char c = x[idx]; for( int i = m - 1; i >= idx; --i ) { if ( x[i] == c ) { shifts[c] = m - i; return; } } } __global__ void compare(int idx,char *x, char *y, int m, int* results) { int id = blockIdx.x * blockDim.x + threadIdx.x; // printf("%d\t%d\n",idx,id); if(x[id]!=y[idx+id]) { results[idx]=0; return; } else { return; } } __global__ void search(char *x, int m, char* y, int n, int shifts[], int indx[], int results[]) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if ( idx > (n - m) ) { results[idx] = 0; return; } if ( indx[idx] != idx ) { results[idx] = 0; return; } if(x[0]==y[idx] && x[m-1]==y[idx+m-1]) { /* if(idx>1000 && idx<1100) { hipLaunchKernelGGL(( compare), dim3(1),dim3(m), 0, 0, idx); } */ if(m>2) hipLaunchKernelGGL(( compare), dim3(1),dim3(m), 0, 0, idx,x,y,m,results); /* for( int i = 0; i < m; ++i ) { if ( x[i] != y[idx + i] ) { results[idx] = 0; return; } } */ } else { results[idx] = 0; } } char* readfile(const char* filename) { FILE* f; char* data; f= fopen(filename, "r"); if ( f != NULL ) { fseek(f,0,SEEK_END); int size=ftell(f); fseek(f,0,SEEK_SET); data = (char*)malloc((size) * sizeof(char)); fread(data, size,1,f); } fclose(f); return data; } void precomputeShiftIndx(char* y, int n, int m, int shifts[], int indx[]) { int j = 0; int limit = n - m; while (j <= limit ) { j += shifts[ y[j + m] ]; indx[j] = j; } } void display_results(int n, int res[]) { int j=0; for( int i =0; i < n; ++i ) if ( res[i] == 1 ) { j++; // printf("%d\n",i); } printf("%d\n",j); } int main(int argc, char* argv[]) { int cuda_device = 0; size_t n = 0; size_t m = 0; if ( argc < 4 ) { // printf("Usage: ./a.out <device number> <pattern> <data file>\n"); return -1; } if( argc > 1 ) cuda_device = atoi( argv[1] ); char* mainString = readfile(argv[3]); char* subString = (char*) malloc( (strlen(argv[2])) * sizeof(char) ); strcpy(subString, argv[2]); n = strlen(mainString); m = strlen(subString); int* results=(int*)malloc(n * sizeof(int)); int* l_shifts = (int*)malloc( ASIZE * sizeof(int) ); for( int i = 0; i < ASIZE; ++i ) l_shifts[i] = m + 1; int* l_indx = (int*) malloc( n * sizeof(int) ); for( int i = 0; i < n; ++i ) { l_indx[i] = -1; results[i]=1; } l_indx[0]=0; // hipError_t error; hipEvent_t start_event, stop_event; float time1, time2; checkCudaErrors( hipEventCreate(&start_event) ); checkCudaErrors( hipEventCreate(&stop_event) ); int num_devices=0; checkCudaErrors( hipGetDeviceCount(&num_devices) ); if(0==num_devices) { // printf("Your system does not have a CUDA capable device\n"); return 1; } /* if( cuda_device >= num_devices ) { if(num_devices==0) // printf("You have only 1 device and it's id is 0\n"); else // printf("choose device ID between 0 and %d\n", num_devices-1); return 1; } */ hipDeviceProp_t deviceProp; checkCudaErrors( hipGetDeviceProperties(&deviceProp, cuda_device) ); // if( (1 == deviceProp.major) && (deviceProp.minor < 1)) // printf("%s does not have compute capability 1.1 or later\n", deviceProp.name); // printf("Device name : %s\n", deviceProp.name ); // printf("CUDA Capable SM %d.%d hardware with %d multi-processors\n", deviceProp.major, deviceProp.minor, deviceProp.multiProcessorCount); // printf("array_size = %zd\n", n); char* d_substr = 0; int* d_shifts = 0; int* d_indx = 0; char* d_text = 0; int* d_results = 0; checkCudaErrors( hipMalloc((void**)&d_shifts, sizeof(int)*ASIZE)); checkCudaErrors( hipMalloc((void**)&d_indx, n * sizeof(int)) ); checkCudaErrors( hipMalloc((void**)&d_results, n * sizeof(int)) ); checkCudaErrors( hipMalloc((void**)&d_substr, (m)*sizeof(char)) ); checkCudaErrors( hipMalloc((void**)&d_text, (strlen(mainString))*sizeof(char)) ); checkCudaErrors( hipMemcpy(d_shifts, l_shifts, sizeof(int) * ASIZE, hipMemcpyHostToDevice ) ); checkCudaErrors( hipMemcpy(d_results, results, sizeof(int) * n, hipMemcpyHostToDevice ) ); checkCudaErrors( hipMemcpy(d_text, mainString, sizeof(char)*(strlen(mainString)), hipMemcpyHostToDevice ) ); checkCudaErrors( hipMemcpy(d_substr, subString, sizeof(char)*(m), hipMemcpyHostToDevice) ); // error = hipGetLastError(); // printf("%s\n", hipGetErrorString(error)); dim3 threadsPerBlocks(ASIZE, 1); int t = m / threadsPerBlocks.x; int t1 = m % threadsPerBlocks.x; if ( t1 != 0 ) t += 1; dim3 numBlocks(t,1); // printf("Launching kernel with blocks=%d, threadsperblock=%d\n", numBlocks.x, threadsPerBlocks.x); hipEventRecord(start_event, 0); hipLaunchKernelGGL(( processPattern), dim3(numBlocks),dim3(threadsPerBlocks), 0, 0, d_substr, m, d_shifts); hipDeviceSynchronize(); hipEventRecord(stop_event, 0); hipEventSynchronize( stop_event ); hipEventElapsedTime( &time1, start_event, stop_event ); checkCudaErrors( hipMemcpy(l_shifts, d_shifts, sizeof(int) * ASIZE, hipMemcpyDeviceToHost ) ); precomputeShiftIndx(mainString , n, m, l_shifts, l_indx); checkCudaErrors( hipMemcpy(d_indx, l_indx, n * sizeof(int), hipMemcpyHostToDevice) ); /* // For debugging for( int i = 0; i < ASIZE; ++i ) printf("%d\t",l_shifts[i]); printf("\n\n"); for( int i = 0; i < n; ++i ) printf("%d\t",l_indx[i]); printf("\n\n"); printf("%zd\t%zd",n,m); printf("\n\n"); */ t = n / threadsPerBlocks.x; t1 = n % threadsPerBlocks.x; if ( t1 != 0 ) t += 1; dim3 numBlocks2(t, 1); // printf("Launching kernel with blocks=%d, threadsperblock=%d\n", numBlocks2.x, threadsPerBlocks.x); hipEventRecord(start_event, 0); hipLaunchKernelGGL(( search), dim3(numBlocks2),dim3(threadsPerBlocks), 0, 0, d_substr, m, d_text, n, d_shifts, d_indx, d_results); hipDeviceSynchronize(); hipEventRecord(stop_event, 0); hipEventSynchronize( stop_event ); hipEventElapsedTime( &time2, start_event, stop_event ); hipEventDestroy( start_event ); hipEventDestroy( stop_event ); // printf("%f+%f=%f milliseconds\t",time1, time2, time1+time2); printf("%f\t",time1+time2); checkCudaErrors( hipMemcpy(results, d_results, n * sizeof(int), hipMemcpyDeviceToHost) ); display_results(n, results); hipFree(d_substr); hipFree(d_shifts); hipFree(d_indx); hipFree(d_text); hipFree(d_results); // free(mainString); free(subString); free(l_indx); free(l_shifts); free(results); hipDeviceReset(); }
ee52c583a4d4b3f73cc328676275fa2ee7446112.cu
#include <cuda.h> #include <helper_cuda.h> #include <stdio.h> #include <stdlib.h> #include <string> #include <iostream> #include <fstream> #define ASIZE 256 #define PRIME 1000009 __global__ void processPattern(char* x ,int m, int shifts[]) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if ( idx >= m ) return; char c = x[idx]; for( int i = m - 1; i >= idx; --i ) { if ( x[i] == c ) { shifts[c] = m - i; return; } } } __global__ void compare(int idx,char *x, char *y, int m, int* results) { int id = blockIdx.x * blockDim.x + threadIdx.x; // printf("%d\t%d\n",idx,id); if(x[id]!=y[idx+id]) { results[idx]=0; return; } else { return; } } __global__ void search(char *x, int m, char* y, int n, int shifts[], int indx[], int results[]) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if ( idx > (n - m) ) { results[idx] = 0; return; } if ( indx[idx] != idx ) { results[idx] = 0; return; } if(x[0]==y[idx] && x[m-1]==y[idx+m-1]) { /* if(idx>1000 && idx<1100) { compare<<<1,m>>>(idx); } */ if(m>2) compare<<<1,m>>>(idx,x,y,m,results); /* for( int i = 0; i < m; ++i ) { if ( x[i] != y[idx + i] ) { results[idx] = 0; return; } } */ } else { results[idx] = 0; } } char* readfile(const char* filename) { FILE* f; char* data; f= fopen(filename, "r"); if ( f != NULL ) { fseek(f,0,SEEK_END); int size=ftell(f); fseek(f,0,SEEK_SET); data = (char*)malloc((size) * sizeof(char)); fread(data, size,1,f); } fclose(f); return data; } void precomputeShiftIndx(char* y, int n, int m, int shifts[], int indx[]) { int j = 0; int limit = n - m; while (j <= limit ) { j += shifts[ y[j + m] ]; indx[j] = j; } } void display_results(int n, int res[]) { int j=0; for( int i =0; i < n; ++i ) if ( res[i] == 1 ) { j++; // printf("%d\n",i); } printf("%d\n",j); } int main(int argc, char* argv[]) { int cuda_device = 0; size_t n = 0; size_t m = 0; if ( argc < 4 ) { // printf("Usage: ./a.out <device number> <pattern> <data file>\n"); return -1; } if( argc > 1 ) cuda_device = atoi( argv[1] ); char* mainString = readfile(argv[3]); char* subString = (char*) malloc( (strlen(argv[2])) * sizeof(char) ); strcpy(subString, argv[2]); n = strlen(mainString); m = strlen(subString); int* results=(int*)malloc(n * sizeof(int)); int* l_shifts = (int*)malloc( ASIZE * sizeof(int) ); for( int i = 0; i < ASIZE; ++i ) l_shifts[i] = m + 1; int* l_indx = (int*) malloc( n * sizeof(int) ); for( int i = 0; i < n; ++i ) { l_indx[i] = -1; results[i]=1; } l_indx[0]=0; // cudaError_t error; cudaEvent_t start_event, stop_event; float time1, time2; checkCudaErrors( cudaEventCreate(&start_event) ); checkCudaErrors( cudaEventCreate(&stop_event) ); int num_devices=0; checkCudaErrors( cudaGetDeviceCount(&num_devices) ); if(0==num_devices) { // printf("Your system does not have a CUDA capable device\n"); return 1; } /* if( cuda_device >= num_devices ) { if(num_devices==0) // printf("You have only 1 device and it's id is 0\n"); else // printf("choose device ID between 0 and %d\n", num_devices-1); return 1; } */ cudaDeviceProp deviceProp; checkCudaErrors( cudaGetDeviceProperties(&deviceProp, cuda_device) ); // if( (1 == deviceProp.major) && (deviceProp.minor < 1)) // printf("%s does not have compute capability 1.1 or later\n", deviceProp.name); // printf("Device name : %s\n", deviceProp.name ); // printf("CUDA Capable SM %d.%d hardware with %d multi-processors\n", deviceProp.major, deviceProp.minor, deviceProp.multiProcessorCount); // printf("array_size = %zd\n", n); char* d_substr = 0; int* d_shifts = 0; int* d_indx = 0; char* d_text = 0; int* d_results = 0; checkCudaErrors( cudaMalloc((void**)&d_shifts, sizeof(int)*ASIZE)); checkCudaErrors( cudaMalloc((void**)&d_indx, n * sizeof(int)) ); checkCudaErrors( cudaMalloc((void**)&d_results, n * sizeof(int)) ); checkCudaErrors( cudaMalloc((void**)&d_substr, (m)*sizeof(char)) ); checkCudaErrors( cudaMalloc((void**)&d_text, (strlen(mainString))*sizeof(char)) ); checkCudaErrors( cudaMemcpy(d_shifts, l_shifts, sizeof(int) * ASIZE, cudaMemcpyHostToDevice ) ); checkCudaErrors( cudaMemcpy(d_results, results, sizeof(int) * n, cudaMemcpyHostToDevice ) ); checkCudaErrors( cudaMemcpy(d_text, mainString, sizeof(char)*(strlen(mainString)), cudaMemcpyHostToDevice ) ); checkCudaErrors( cudaMemcpy(d_substr, subString, sizeof(char)*(m), cudaMemcpyHostToDevice) ); // error = cudaGetLastError(); // printf("%s\n", cudaGetErrorString(error)); dim3 threadsPerBlocks(ASIZE, 1); int t = m / threadsPerBlocks.x; int t1 = m % threadsPerBlocks.x; if ( t1 != 0 ) t += 1; dim3 numBlocks(t,1); // printf("Launching kernel with blocks=%d, threadsperblock=%d\n", numBlocks.x, threadsPerBlocks.x); cudaEventRecord(start_event, 0); processPattern<<<numBlocks,threadsPerBlocks>>>(d_substr, m, d_shifts); cudaThreadSynchronize(); cudaEventRecord(stop_event, 0); cudaEventSynchronize( stop_event ); cudaEventElapsedTime( &time1, start_event, stop_event ); checkCudaErrors( cudaMemcpy(l_shifts, d_shifts, sizeof(int) * ASIZE, cudaMemcpyDeviceToHost ) ); precomputeShiftIndx(mainString , n, m, l_shifts, l_indx); checkCudaErrors( cudaMemcpy(d_indx, l_indx, n * sizeof(int), cudaMemcpyHostToDevice) ); /* // For debugging for( int i = 0; i < ASIZE; ++i ) printf("%d\t",l_shifts[i]); printf("\n\n"); for( int i = 0; i < n; ++i ) printf("%d\t",l_indx[i]); printf("\n\n"); printf("%zd\t%zd",n,m); printf("\n\n"); */ t = n / threadsPerBlocks.x; t1 = n % threadsPerBlocks.x; if ( t1 != 0 ) t += 1; dim3 numBlocks2(t, 1); // printf("Launching kernel with blocks=%d, threadsperblock=%d\n", numBlocks2.x, threadsPerBlocks.x); cudaEventRecord(start_event, 0); search<<<numBlocks2,threadsPerBlocks>>>(d_substr, m, d_text, n, d_shifts, d_indx, d_results); cudaThreadSynchronize(); cudaEventRecord(stop_event, 0); cudaEventSynchronize( stop_event ); cudaEventElapsedTime( &time2, start_event, stop_event ); cudaEventDestroy( start_event ); cudaEventDestroy( stop_event ); // printf("%f+%f=%f milliseconds\t",time1, time2, time1+time2); printf("%f\t",time1+time2); checkCudaErrors( cudaMemcpy(results, d_results, n * sizeof(int), cudaMemcpyDeviceToHost) ); display_results(n, results); cudaFree(d_substr); cudaFree(d_shifts); cudaFree(d_indx); cudaFree(d_text); cudaFree(d_results); // free(mainString); free(subString); free(l_indx); free(l_shifts); free(results); cudaThreadExit(); }
e6dd5cb069837ef1059eeb0f422200ddd50c7e5c.hip
// !!! This is a file automatically generated by hipify!!! #include <iostream> //CUDA V 10.2 #include <math.h> #include <algorithm> #include "hip/hip_runtime.h" #include "hip/device_functions.h" #include "device_launch_parameters.h" #include "rocblas.h" extern "C" int testCUDACPP(int a,int b) { int c = a + b; return c; } __global__ void EUGPU_square(float *desGPU1MinusDesGPU2, float *desGPU1MinusDesGPU2Square) { int i = blockDim.x * blockIdx.x + threadIdx.x; desGPU1MinusDesGPU2Square[i] = desGPU1MinusDesGPU2[i] * desGPU1MinusDesGPU2[i]; } __global__ void EUGPU_minus(float *desGPU1, float *desGPU2, float *desGPU1MinusDesGPU2) { int i = blockDim.x * blockIdx.x + threadIdx.x; desGPU1MinusDesGPU2[i] = desGPU1[i] - desGPU2[i]; } extern "C" float computeEuclideanDistance ( const unsigned char * descriptionData2, const unsigned char * descriptionData1, size_t size ) { float * descriptionDataFloat1 = (float *)malloc(sizeof(float) * size); float * descriptionDataFloat2 = (float *)malloc(sizeof(float) * size); for (int i = 0; i < size; i++) { descriptionDataFloat1[i] = static_cast<float>(descriptionData1[i]); descriptionDataFloat2[i] = static_cast<float>(descriptionData2[i]); } float *desGPU1; float *desGPU2; hipMalloc((void**)&desGPU1, sizeof(float) * size); hipMalloc((void**)&desGPU2, sizeof(float) * size); hipMemcpy(desGPU1, descriptionDataFloat1, sizeof(float) * size, hipMemcpyHostToDevice); hipMemcpy(desGPU2, descriptionDataFloat2, sizeof(float) * size, hipMemcpyHostToDevice); /*dim3 dimBlock(size); dim3 dimGrid(1);*/ dim3 dimBlock(1024); dim3 dimGrid(256); float *resultGPU; hipMalloc((void**)&resultGPU, sizeof(float)); float *desGPU1MinusDesGPU2; hipMalloc((void **)&desGPU1MinusDesGPU2, sizeof(float) * size); float *desGPU1MinusDesGPU2Square; hipMalloc((void **)&desGPU1MinusDesGPU2Square, sizeof(float) * size); //kernel hipDeviceSynchronize(); EUGPU_minus << <dimGrid, dimBlock >> > (desGPU1, desGPU2, desGPU1MinusDesGPU2); hipDeviceSynchronize(); EUGPU_square << <dimGrid, dimBlock >> > (desGPU1MinusDesGPU2, desGPU1MinusDesGPU2Square); float *desGPU1MinusDesGPU2SquareCPU = (float *)malloc(sizeof(float) * size); hipMemcpy(desGPU1MinusDesGPU2SquareCPU, desGPU1MinusDesGPU2Square, sizeof(float) * size, hipMemcpyDeviceToHost); float result = 0.0; for (int i = 0; i < size; i++) { result += desGPU1MinusDesGPU2SquareCPU[i]; } free(desGPU1MinusDesGPU2SquareCPU); hipFree(resultGPU); hipFree(desGPU1MinusDesGPU2); hipFree(desGPU1MinusDesGPU2Square); hipFree(desGPU1); hipFree(desGPU2); free(descriptionDataFloat1); free(descriptionDataFloat2); return result; }
e6dd5cb069837ef1059eeb0f422200ddd50c7e5c.cu
#include <iostream> //CUDA V 10.2 #include <math.h> #include <algorithm> #include "cuda_runtime.h" #include "device_functions.h" #include "device_launch_parameters.h" #include "cublas_v2.h" extern "C" int testCUDACPP(int a,int b) { int c = a + b; return c; } __global__ void EUGPU_square(float *desGPU1MinusDesGPU2, float *desGPU1MinusDesGPU2Square) { int i = blockDim.x * blockIdx.x + threadIdx.x; desGPU1MinusDesGPU2Square[i] = desGPU1MinusDesGPU2[i] * desGPU1MinusDesGPU2[i]; } __global__ void EUGPU_minus(float *desGPU1, float *desGPU2, float *desGPU1MinusDesGPU2) { int i = blockDim.x * blockIdx.x + threadIdx.x; desGPU1MinusDesGPU2[i] = desGPU1[i] - desGPU2[i]; } extern "C" float computeEuclideanDistance ( const unsigned char * descriptionData2, const unsigned char * descriptionData1, size_t size ) { float * descriptionDataFloat1 = (float *)malloc(sizeof(float) * size); float * descriptionDataFloat2 = (float *)malloc(sizeof(float) * size); for (int i = 0; i < size; i++) { descriptionDataFloat1[i] = static_cast<float>(descriptionData1[i]); descriptionDataFloat2[i] = static_cast<float>(descriptionData2[i]); } float *desGPU1; float *desGPU2; cudaMalloc((void**)&desGPU1, sizeof(float) * size); cudaMalloc((void**)&desGPU2, sizeof(float) * size); cudaMemcpy(desGPU1, descriptionDataFloat1, sizeof(float) * size, cudaMemcpyHostToDevice); cudaMemcpy(desGPU2, descriptionDataFloat2, sizeof(float) * size, cudaMemcpyHostToDevice); /*dim3 dimBlock(size); dim3 dimGrid(1);*/ dim3 dimBlock(1024); dim3 dimGrid(256); float *resultGPU; cudaMalloc((void**)&resultGPU, sizeof(float)); float *desGPU1MinusDesGPU2; cudaMalloc((void **)&desGPU1MinusDesGPU2, sizeof(float) * size); float *desGPU1MinusDesGPU2Square; cudaMalloc((void **)&desGPU1MinusDesGPU2Square, sizeof(float) * size); //÷ī––kernel cudaThreadSynchronize(); EUGPU_minus << <dimGrid, dimBlock >> > (desGPU1, desGPU2, desGPU1MinusDesGPU2); cudaThreadSynchronize(); EUGPU_square << <dimGrid, dimBlock >> > (desGPU1MinusDesGPU2, desGPU1MinusDesGPU2Square); float *desGPU1MinusDesGPU2SquareCPU = (float *)malloc(sizeof(float) * size); cudaMemcpy(desGPU1MinusDesGPU2SquareCPU, desGPU1MinusDesGPU2Square, sizeof(float) * size, cudaMemcpyDeviceToHost); float result = 0.0; for (int i = 0; i < size; i++) { result += desGPU1MinusDesGPU2SquareCPU[i]; } free(desGPU1MinusDesGPU2SquareCPU); cudaFree(resultGPU); cudaFree(desGPU1MinusDesGPU2); cudaFree(desGPU1MinusDesGPU2Square); cudaFree(desGPU1); cudaFree(desGPU2); free(descriptionDataFloat1); free(descriptionDataFloat2); return result; }
0b6001f553fe1b1d760b1b83aef9a0f8e94bec24.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "caffe2/core/context_gpu.h" #include "caffe2/operators/bucketize_op.h" #include <thrust/binary_search.h> #include <thrust/device_vector.h> namespace caffe2 { __global__ void BucketizeOpKernel( const int N, const int M, const float* bounds, const float* X, int32_t* out) { CUDA_1D_KERNEL_LOOP(i, N) { int32_t low = -1, high = M; while (high - low > 1) { const int32_t median = low + (high - low) / 2; if (bounds[median] < X[i]) { low = median; } else { high = median; } } out[i] = high; } } template <> bool BucketizeOp<CUDAContext>::RunOnDevice() { auto& input = Input(X); CAFFE_ENFORCE_GE(input.dim(), 1); auto N = input.numel(); auto* output = Output(INDICES, input.sizes(), at::dtype<int32_t>()); const auto* input_data = input.template data<float>(); auto* output_data = output->template mutable_data<int32_t>(); hipLaunchKernelGGL(( BucketizeOpKernel), dim3(CAFFE_GET_BLOCKS(N)), dim3(CAFFE_CUDA_NUM_THREADS), 0, context_.cuda_stream(), N, boundaries_device_.numel(), boundaries_device_.data<float>(), input_data, output_data); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; }; REGISTER_CUDA_OPERATOR(Bucketize, BucketizeOp<CUDAContext>); } // namespace caffe2 using BucketizeCUDA = caffe2::BucketizeOp<caffe2::CUDAContext>; C10_EXPORT_CAFFE2_OP_TO_C10_CUDA( Bucketize, BucketizeCUDA);
0b6001f553fe1b1d760b1b83aef9a0f8e94bec24.cu
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/bucketize_op.h" #include <thrust/binary_search.h> #include <thrust/device_vector.h> namespace caffe2 { __global__ void BucketizeOpKernel( const int N, const int M, const float* bounds, const float* X, int32_t* out) { CUDA_1D_KERNEL_LOOP(i, N) { int32_t low = -1, high = M; while (high - low > 1) { const int32_t median = low + (high - low) / 2; if (bounds[median] < X[i]) { low = median; } else { high = median; } } out[i] = high; } } template <> bool BucketizeOp<CUDAContext>::RunOnDevice() { auto& input = Input(X); CAFFE_ENFORCE_GE(input.dim(), 1); auto N = input.numel(); auto* output = Output(INDICES, input.sizes(), at::dtype<int32_t>()); const auto* input_data = input.template data<float>(); auto* output_data = output->template mutable_data<int32_t>(); BucketizeOpKernel<<< CAFFE_GET_BLOCKS(N), CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>( N, boundaries_device_.numel(), boundaries_device_.data<float>(), input_data, output_data); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; }; REGISTER_CUDA_OPERATOR(Bucketize, BucketizeOp<CUDAContext>); } // namespace caffe2 using BucketizeCUDA = caffe2::BucketizeOp<caffe2::CUDAContext>; C10_EXPORT_CAFFE2_OP_TO_C10_CUDA( Bucketize, BucketizeCUDA);
5d1ba834ce50b1ae6120d342f5c09bf24788ec04.hip
// !!! This is a file automatically generated by hipify!!! #include <stdbool.h> #include <stdio.h> #include <string.h> #include <getopt.h> #include <hiprand/hiprand_kernel.h> #include <stdlib.h> #include <hip/hip_runtime.h> #include <sys/time.h> #include "SHelloWorld.cu" #include<chrono> #include<iostream> using namespace std; using namespace std::chrono; int blocks_[20][2] = {{8,8},{16,16},{24,24},{32,32},{1,64},{1,128},{1,192},{1,256},{1,320},{1,384},{1,448},{1,512},{1,576},{1,640},{1,704},{1,768},{1,832},{1,896},{1,960},{1,1024}}; int matrices_[7][2] = {{240,240},{496,496},{784,784},{1016,1016},{1232,1232},{1680,1680},{2024,2024}}; int main(int argc, char **argv) { hipSetDevice(0); char* p;int matrix_len=strtol(argv[1], &p, 10); for(int matrix_looper=0;matrix_looper<matrix_len;matrix_looper++){ for(int block_looper=0;block_looper<20;block_looper++){ int XSIZE=matrices_[matrix_looper][0],YSIZE=matrices_[matrix_looper][1],BLOCKX=blocks_[block_looper][0],BLOCKY=blocks_[block_looper][1]; int iXSIZE= XSIZE; int iYSIZE= YSIZE; while(iXSIZE%BLOCKX!=0) { iXSIZE++; } while(iYSIZE%BLOCKY!=0) { iYSIZE++; } dim3 gridBlock(iXSIZE/BLOCKX, iYSIZE/BLOCKY); dim3 threadBlock(BLOCKX, BLOCKY); hipFree(0);hipLaunchKernelGGL(( SHelloWorld), dim3(gridBlock),dim3(threadBlock), 0, 0, ); hipDeviceSynchronize(); for (int loop_counter = 0; loop_counter < 10; ++loop_counter) {hipLaunchKernelGGL(( SHelloWorld), dim3(gridBlock),dim3(threadBlock), 0, 0, ); } auto start = steady_clock::now(); for (int loop_counter = 0; loop_counter < 1000; loop_counter++) {hipLaunchKernelGGL(( SHelloWorld), dim3(gridBlock),dim3(threadBlock), 0, 0, ); } auto end = steady_clock::now(); auto usecs = duration_cast<duration<float, microseconds::period> >(end - start); cout <<'['<<usecs.count()<<','<<'('<<BLOCKX<<','<<BLOCKY<<')' << ','<<'('<<XSIZE<<','<<YSIZE<<')'<<']' << endl; } }}
5d1ba834ce50b1ae6120d342f5c09bf24788ec04.cu
#include <stdbool.h> #include <stdio.h> #include <string.h> #include <getopt.h> #include <curand_kernel.h> #include <stdlib.h> #include <cuda.h> #include <sys/time.h> #include "SHelloWorld.cu" #include<chrono> #include<iostream> using namespace std; using namespace std::chrono; int blocks_[20][2] = {{8,8},{16,16},{24,24},{32,32},{1,64},{1,128},{1,192},{1,256},{1,320},{1,384},{1,448},{1,512},{1,576},{1,640},{1,704},{1,768},{1,832},{1,896},{1,960},{1,1024}}; int matrices_[7][2] = {{240,240},{496,496},{784,784},{1016,1016},{1232,1232},{1680,1680},{2024,2024}}; int main(int argc, char **argv) { cudaSetDevice(0); char* p;int matrix_len=strtol(argv[1], &p, 10); for(int matrix_looper=0;matrix_looper<matrix_len;matrix_looper++){ for(int block_looper=0;block_looper<20;block_looper++){ int XSIZE=matrices_[matrix_looper][0],YSIZE=matrices_[matrix_looper][1],BLOCKX=blocks_[block_looper][0],BLOCKY=blocks_[block_looper][1]; int iXSIZE= XSIZE; int iYSIZE= YSIZE; while(iXSIZE%BLOCKX!=0) { iXSIZE++; } while(iYSIZE%BLOCKY!=0) { iYSIZE++; } dim3 gridBlock(iXSIZE/BLOCKX, iYSIZE/BLOCKY); dim3 threadBlock(BLOCKX, BLOCKY); cudaFree(0); SHelloWorld<<<gridBlock,threadBlock>>>(); cudaDeviceSynchronize(); for (int loop_counter = 0; loop_counter < 10; ++loop_counter) { SHelloWorld<<<gridBlock,threadBlock>>>(); } auto start = steady_clock::now(); for (int loop_counter = 0; loop_counter < 1000; loop_counter++) { SHelloWorld<<<gridBlock,threadBlock>>>(); } auto end = steady_clock::now(); auto usecs = duration_cast<duration<float, microseconds::period> >(end - start); cout <<'['<<usecs.count()<<','<<'('<<BLOCKX<<','<<BLOCKY<<')' << ','<<'('<<XSIZE<<','<<YSIZE<<')'<<']' << endl; } }}
466cf72515232d12a30f758df4bf8ca564550a89.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "device_launch_parameters.h" #include <stdio.h> #include <thrust\device_vector.h> #include <thrust/extrema.h> #include <thrust/system/hip/execution_policy.h> struct subject { float fitness; int index; }; extern "C" { __declspec(dllexport) int Sum(void* p, int size) { int* toSum = (int*)p; thrust::device_ptr<int> d(toSum); return thrust::reduce(d, d + size); } __declspec(dllexport) float Avragei(int* p, int size) { thrust::device_ptr<int> devicePtr(p); return thrust::reduce(devicePtr, devicePtr + size)/(float)size; } __declspec(dllexport) float Avragef(float* p, int size) { thrust::device_ptr<float> devicePtr(p); return thrust::reduce(devicePtr, devicePtr + size) / (float)size; } __declspec(dllexport) float Maxf(float* p, int size) { thrust::device_ptr<float> devicePtr(p); return *thrust::max_element(devicePtr, devicePtr + size); } __declspec(dllexport) int Maxi(int* p, int size) { thrust::device_ptr<int> devicePtr(p); return *thrust::max_element(devicePtr, devicePtr + size); } __declspec(dllexport) int Minf(float* p, int size) { thrust::device_ptr<float> devicePtr(p); return *thrust::min_element(devicePtr, devicePtr + size); } __declspec(dllexport) int Mini(int* p, int size) { thrust::device_ptr<int> devicePtr(p); return *thrust::min_element(devicePtr, devicePtr + size); } __declspec(dllexport) void sort_by_key(float* keys,int* values,int size) { thrust::device_ptr<float> deviceKeys(keys); thrust::device_ptr<int> deviceValues(values); thrust::sort_by_key(deviceKeys, deviceKeys + size, deviceValues,thrust::less<float>()); } __declspec(dllexport) void sort_by_keyDesc(float* keys, int* values, int size) { thrust::device_ptr<float> deviceKeys(keys); thrust::device_ptr<int> deviceValues(values); thrust::sort_by_key(deviceKeys, deviceKeys + size, deviceValues, thrust::greater<float>()); } __declspec(dllexport) void sequence(int* values,int size) { thrust::device_ptr<int> deviceValues(values); thrust::sequence(deviceValues, deviceValues + size); } __declspec(dllexport) void sort_by_key_multiple(float* keys, int* values,int col,int row) { thrust::device_ptr<float> deviceKeys(keys); thrust::device_ptr<int> deviceValues(values); std::vector<hipStream_t> streams; streams.resize(row); for (int i = 0; i < row; i++) { hipStreamCreate(&streams[i]); } for (int i = 0; i < row; i++) { const auto currentKeys = deviceKeys + i*col; const auto currentValues = deviceValues+ i*col; thrust::sort_by_key(thrust::hip::par.on(streams[i]), currentKeys, currentKeys + col, currentValues); } for (auto& stream : streams) { hipStreamSynchronize(stream); } for (auto& stream : streams) { hipStreamDestroy(stream); } } __declspec(dllexport) subject FindFitest( float* fitnesses, int* sortedIndeces, int size ) { subject s; hipMemcpy(&s.index, sortedIndeces+size-1, sizeof(int), hipMemcpyDeviceToHost); hipMemcpy(&s.fitness, fitnesses+size-1, sizeof(float), hipMemcpyDeviceToHost); return s; } }
466cf72515232d12a30f758df4bf8ca564550a89.cu
#include "cuda_runtime.h" #include "device_launch_parameters.h" #include <stdio.h> #include <thrust\device_vector.h> #include <thrust/extrema.h> #include <thrust/system/cuda/execution_policy.h> struct subject { float fitness; int index; }; extern "C" { __declspec(dllexport) int Sum(void* p, int size) { int* toSum = (int*)p; thrust::device_ptr<int> d(toSum); return thrust::reduce(d, d + size); } __declspec(dllexport) float Avragei(int* p, int size) { thrust::device_ptr<int> devicePtr(p); return thrust::reduce(devicePtr, devicePtr + size)/(float)size; } __declspec(dllexport) float Avragef(float* p, int size) { thrust::device_ptr<float> devicePtr(p); return thrust::reduce(devicePtr, devicePtr + size) / (float)size; } __declspec(dllexport) float Maxf(float* p, int size) { thrust::device_ptr<float> devicePtr(p); return *thrust::max_element(devicePtr, devicePtr + size); } __declspec(dllexport) int Maxi(int* p, int size) { thrust::device_ptr<int> devicePtr(p); return *thrust::max_element(devicePtr, devicePtr + size); } __declspec(dllexport) int Minf(float* p, int size) { thrust::device_ptr<float> devicePtr(p); return *thrust::min_element(devicePtr, devicePtr + size); } __declspec(dllexport) int Mini(int* p, int size) { thrust::device_ptr<int> devicePtr(p); return *thrust::min_element(devicePtr, devicePtr + size); } __declspec(dllexport) void sort_by_key(float* keys,int* values,int size) { thrust::device_ptr<float> deviceKeys(keys); thrust::device_ptr<int> deviceValues(values); thrust::sort_by_key(deviceKeys, deviceKeys + size, deviceValues,thrust::less<float>()); } __declspec(dllexport) void sort_by_keyDesc(float* keys, int* values, int size) { thrust::device_ptr<float> deviceKeys(keys); thrust::device_ptr<int> deviceValues(values); thrust::sort_by_key(deviceKeys, deviceKeys + size, deviceValues, thrust::greater<float>()); } __declspec(dllexport) void sequence(int* values,int size) { thrust::device_ptr<int> deviceValues(values); thrust::sequence(deviceValues, deviceValues + size); } __declspec(dllexport) void sort_by_key_multiple(float* keys, int* values,int col,int row) { thrust::device_ptr<float> deviceKeys(keys); thrust::device_ptr<int> deviceValues(values); std::vector<cudaStream_t> streams; streams.resize(row); for (int i = 0; i < row; i++) { cudaStreamCreate(&streams[i]); } for (int i = 0; i < row; i++) { const auto currentKeys = deviceKeys + i*col; const auto currentValues = deviceValues+ i*col; thrust::sort_by_key(thrust::cuda::par.on(streams[i]), currentKeys, currentKeys + col, currentValues); } for (auto& stream : streams) { cudaStreamSynchronize(stream); } for (auto& stream : streams) { cudaStreamDestroy(stream); } } __declspec(dllexport) subject FindFitest( float* fitnesses, int* sortedIndeces, int size ) { subject s; cudaMemcpy(&s.index, sortedIndeces+size-1, sizeof(int), cudaMemcpyDeviceToHost); cudaMemcpy(&s.fitness, fitnesses+size-1, sizeof(float), cudaMemcpyDeviceToHost); return s; } }
47cd49327384465252d8790bf41f17cce8edb490.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" __device__ int _logarithm_2(int m) { int count = 0; while (m != 1) { m = m/2; count++; } return count; } __global__ void kernel_compute_gpu(int n, int nb_iters, int *T) { int iter; int id = blockIdx.x * blockDim.x + threadIdx.x; if (id < n) for(iter=0; iter<nb_iters; iter++) T[id] = _logarithm_2(T[id]*T[id]+T[id]+iter); }
47cd49327384465252d8790bf41f17cce8edb490.cu
__device__ int _logarithm_2(int m) { int count = 0; while (m != 1) { m = m/2; count++; } return count; } __global__ void kernel_compute_gpu(int n, int nb_iters, int *T) { int iter; int id = blockIdx.x * blockDim.x + threadIdx.x; if (id < n) for(iter=0; iter<nb_iters; iter++) T[id] = _logarithm_2(T[id]*T[id]+T[id]+iter); }
accab4736bca13927aff6623155b6ce7ebcfd7de.hip
// !!! This is a file automatically generated by hipify!!! #if __CUDACC_VER_MAJOR__ > 9 || (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ >= 2) // generated by gen_cutlass_matrix_mul_kern_impls.py // ignore warning of cutlass #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #pragma GCC diagnostic ignored "-Wstrict-aliasing" #pragma GCC diagnostic ignored "-Wuninitialized" #pragma GCC diagnostic ignored "-Wmaybe-uninitialized" #include "src/cuda/matrix_mul/fp32_simt/matrix_mul_float_simt_cutlass_wrapper.cuinl" using LayoutA = cutlass::layout::RowMajor; using LayoutB = cutlass::layout::ColumnMajor; using ThreadBlockShape = cutlass::gemm::GemmShape<32, 128, 8>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 8>; using InstructionShape = cutlass::gemm::GemmShape<1, 1, 1>; using EpilogueOp = cutlass::epilogue::thread::LinearCombination<float, 1, float, float>; using Gemm = cutlass::gemm::device::GemmSplitKParallel< float, LayoutA, float, LayoutB, float, cutlass::layout::RowMajor, float, cutlass::arch::OpClassSimt, cutlass::arch::Sm50, ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp>; template void megdnn::cuda::cutlass_wrapper::cutlass_matrix_mul_wrapper<Gemm>( const typename Gemm::ElementA* d_A, size_t lda, const typename Gemm::ElementB* d_B, size_t ldb, typename Gemm::ElementC* d_C, size_t ldc, int* workspace, cutlass::gemm::GemmCoord const& problem_size, typename Gemm::EpilogueOutputOp::Params const& epilogue, hipStream_t stream, int split_k_slices); #pragma GCC diagnostic pop #endif
accab4736bca13927aff6623155b6ce7ebcfd7de.cu
#if __CUDACC_VER_MAJOR__ > 9 || (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ >= 2) // generated by gen_cutlass_matrix_mul_kern_impls.py // ignore warning of cutlass #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #pragma GCC diagnostic ignored "-Wstrict-aliasing" #pragma GCC diagnostic ignored "-Wuninitialized" #pragma GCC diagnostic ignored "-Wmaybe-uninitialized" #include "src/cuda/matrix_mul/fp32_simt/matrix_mul_float_simt_cutlass_wrapper.cuinl" using LayoutA = cutlass::layout::RowMajor; using LayoutB = cutlass::layout::ColumnMajor; using ThreadBlockShape = cutlass::gemm::GemmShape<32, 128, 8>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 8>; using InstructionShape = cutlass::gemm::GemmShape<1, 1, 1>; using EpilogueOp = cutlass::epilogue::thread::LinearCombination<float, 1, float, float>; using Gemm = cutlass::gemm::device::GemmSplitKParallel< float, LayoutA, float, LayoutB, float, cutlass::layout::RowMajor, float, cutlass::arch::OpClassSimt, cutlass::arch::Sm50, ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp>; template void megdnn::cuda::cutlass_wrapper::cutlass_matrix_mul_wrapper<Gemm>( const typename Gemm::ElementA* d_A, size_t lda, const typename Gemm::ElementB* d_B, size_t ldb, typename Gemm::ElementC* d_C, size_t ldc, int* workspace, cutlass::gemm::GemmCoord const& problem_size, typename Gemm::EpilogueOutputOp::Params const& epilogue, cudaStream_t stream, int split_k_slices); #pragma GCC diagnostic pop #endif
476d82f48040603fe8bf8ea6ad8d939b97687238.hip
// !!! This is a file automatically generated by hipify!!! /* ** Code to implement a d2q9-bgk lattice boltzmann scheme. ** 'd2' inidates a 2-dimensional grid, and ** 'q9' indicates 9 velocities per grid cell. ** 'bgk' refers to the Bhatnagar-Gross-Krook collision step. ** ** The 'speeds' in each cell are numbered as follows: ** ** 6 2 5 ** \|/ ** 3-0-1 ** /|\ ** 7 4 8 ** ** A 2D grid: ** ** cols ** --- --- --- ** | D | E | F | ** rows --- --- --- ** | A | B | C | ** --- --- --- ** ** 'unwrapped' in row major order to give a 1D array: ** ** --- --- --- --- --- --- ** | A | B | C | D | E | F | ** --- --- --- --- --- --- ** ** Grid indicies are: ** ** ny ** ^ cols(ii) ** | ----- ----- ----- ** | | ... | ... | etc | ** | ----- ----- ----- ** rows(jj) | | 1,0 | 1,1 | 1,2 | ** | ----- ----- ----- ** | | 0,0 | 0,1 | 0,2 | ** | ----- ----- ----- ** ----------------------> nx ** ** Note the names of the input parameter and obstacle files ** are passed on the command line, e.g.: ** ** ./d2q9-bgk input.params obstacles.dat ** ** Be sure to adjust the grid dimensions in the parameter file ** if you choose a different obstacle file. */ #include <stdio.h> #include <stdlib.h> #include <math.h> #include <time.h> #include <string.h> #include <sys/time.h> #include <hip/hip_runtime.h> #define WARMUPS 1000 #define NSPEEDS 9 #define LOCALSIZEX 128 #define LOCALSIZEY 1 /* dump output files for verification */ #define FINALSTATEFILE "final_state.dat" #define AVVELSFILE "av_vels.dat" /* struct to hold the parameter values */ typedef struct { int nx; /* no. of cells in x-direction */ int ny; /* no. of cells in y-direction */ int maxIters; /* no. of iterations */ int reynolds_dim; /* dimension for Reynolds number */ float density; /* density per link */ float accel; /* density redistribution */ float omega; /* relaxation parameter */ } t_param; /* struct to hold the 'speed' values */ typedef struct { float speeds[NSPEEDS]; } t_speed; /* ** function prototypes */ /* load params, allocate memory, load obstacles & initialise fluid particle densities */ int initialise(const char* paramfile, const char* obstaclefile, t_param* params, t_speed** cells_ptr, t_speed** tmp_cells_ptr, int** obstacles_ptr, float** av_vels_ptr); /* ** The main calculation methods. ** timestep calls, in order, the functions: ** accelerate_flow(), propagate(), rebound() & collision() */ int write_values(const t_param params, t_speed* cells, int* obstacles, float* av_vels); /* finalise, including freeing up allocated memory */ int finalise(t_speed* cells_ptr, t_speed* tmp_cells_ptr, int* obstacles_ptr, float* av_vels_ptr); /* Sum all the densities in the grid. ** The total should remain constant from one timestep to the next. */ float total_density(const t_param params, t_speed* cells); /* compute average velocity */ float av_velocity(const t_param params, t_speed* cells, int* obstacles); /* calculate Reynolds number */ float calc_reynolds(const t_param params, t_speed* cells, int* obstacles); /* utility functions */ void die(const char* message, const int line, const char* file); void usage(const char* exe); __device__ bool isGreater(const float x, const float y) { return x > y ? 1 : 0; } __global__ void d2q9_bgk( const float* __restrict__ Speed0A, const float* __restrict__ Speed1A, const float* __restrict__ Speed2A, const float* __restrict__ Speed3A, const float* __restrict__ Speed4A, const float* __restrict__ Speed5A, const float* __restrict__ Speed6A, const float* __restrict__ Speed7A, const float* __restrict__ Speed8A, float* __restrict__ Tmp0A, float* __restrict__ Tmp1A, float* __restrict__ Tmp2A, float* __restrict__ Tmp3A, float* __restrict__ Tmp4A, float* __restrict__ Tmp5A, float* __restrict__ Tmp6A, float* __restrict__ Tmp7A, float* __restrict__ Tmp8A, const int* __restrict__ ObstaclesA, float* __restrict__ Partial_Sum, int* __restrict__ Partial_Sum2, const float densityaccel, const float omega, const int nx, const int ny, const int tt) { //setup local memory __shared__ int local_sum2[LOCALSIZEX*LOCALSIZEY]; __shared__ float local_sum[LOCALSIZEX*LOCALSIZEY]; /* get column and row indices */ const int ii = blockIdx.x * blockDim.x + threadIdx.x; const int jj = blockIdx.y * blockDim.y + threadIdx.y; const float c_sq_inv = 3.f; const float c_sq = 1.f/c_sq_inv; /* square of speed of sound */ const float temp1 = 4.5f; const float w1 = 1.f/9.f; const float w0 = 4.f * w1; /* weighting factor */ const float w2 = 1.f/36.f; /* weighting factor */ const float w11 = densityaccel * w1; const float w21 = densityaccel * w2; /* determine indices of axis-direction neighbours ** respecting periodic boundary conditions (wrap around) */ const int y_n = (jj + 1) % ny; const int x_e = (ii + 1) % nx; const int y_s = (jj == 0) ? (jj + ny - 1) : (jj - 1); const int x_w = (ii == 0) ? (ii + nx - 1) : (ii - 1); /* propagate densities from neighbouring cells, following ** appropriate directions of travel and writing into ** scratch space grid */ float tmp_s0 = Speed0A[ii + jj*nx]; float tmp_s1 = (jj == ny-2 && (!ObstaclesA[x_w + jj*nx] && isGreater((Speed3A[x_w + jj*nx] - w11) , 0.f) && isGreater((Speed6A[x_w + jj*nx] - w21) , 0.f) && isGreater((Speed7A[x_w + jj*nx] - w21) , 0.f))) ? Speed1A[x_w + jj*nx]+w11 : Speed1A[x_w + jj*nx]; float tmp_s2 = Speed2A[ii + y_s*nx]; float tmp_s3 = (jj == ny-2 && (!ObstaclesA[x_e + jj*nx] && isGreater((Speed3A[x_e + jj*nx] - w11) , 0.f) && isGreater((Speed6A[x_e + jj*nx] - w21) , 0.f) && isGreater((Speed7A[x_e + jj*nx] - w21) , 0.f))) ? Speed3A[x_e + jj*nx]-w11 : Speed3A[x_e + jj*nx]; float tmp_s4 = Speed4A[ii + y_n*nx]; float tmp_s5 = (y_s == ny-2 && (!ObstaclesA[x_w + y_s*nx] && isGreater((Speed3A[x_w + y_s*nx] - w11) , 0.f) && isGreater((Speed6A[x_w + y_s*nx] - w21) , 0.f) && isGreater((Speed7A[x_w + y_s*nx] - w21) , 0.f))) ? Speed5A[x_w + y_s*nx]+w21 : Speed5A[x_w + y_s*nx]; float tmp_s6 = (y_s == ny-2 && (!ObstaclesA[x_e + y_s*nx] && isGreater((Speed3A[x_e + y_s*nx] - w11) , 0.f) && isGreater((Speed6A[x_e + y_s*nx] - w21) , 0.f) && isGreater((Speed7A[x_e + y_s*nx] - w21) , 0.f))) ? Speed6A[x_e + y_s*nx]-w21 : Speed6A[x_e + y_s*nx]; float tmp_s7 = (y_n == ny-2 && (!ObstaclesA[x_e + y_n*nx] && isGreater((Speed3A[x_e + y_n*nx] - w11) , 0.f) && isGreater((Speed6A[x_e + y_n*nx] - w21) , 0.f) && isGreater((Speed7A[x_e + y_n*nx] - w21) , 0.f))) ? Speed7A[x_e + y_n*nx]-w21 : Speed7A[x_e + y_n*nx]; float tmp_s8 = (y_n == ny-2 && (!ObstaclesA[x_w + y_n*nx] && isGreater((Speed3A[x_w + y_n*nx] - w11) , 0.f) && isGreater((Speed6A[x_w + y_n*nx] - w21) , 0.f) && isGreater((Speed7A[x_w + y_n*nx] - w21) , 0.f))) ? Speed8A[x_w + y_n*nx]+w21 : Speed8A[x_w + y_n*nx]; /* compute local density total */ float local_density = tmp_s0 + tmp_s1 + tmp_s2 + tmp_s3 + tmp_s4 + tmp_s5 + tmp_s6 + tmp_s7 + tmp_s8; const float local_density_recip = 1.f/(local_density); /* compute x velocity component */ float u_x = (tmp_s1 + tmp_s5 + tmp_s8 - tmp_s3 - tmp_s6 - tmp_s7) * local_density_recip; /* compute y velocity component */ float u_y = (tmp_s2 + tmp_s5 + tmp_s6 - tmp_s4 - tmp_s8 - tmp_s7) * local_density_recip; /* velocity squared */ const float temp2 = - (u_x * u_x + u_y * u_y)/(2.f * c_sq); /* equilibrium densities */ float d_equ[NSPEEDS]; /* zero velocity density: weight w0 */ d_equ[0] = w0 * local_density * (1.f + temp2); /* axis speeds: weight w1 */ d_equ[1] = w1 * local_density * (1.f + u_x * c_sq_inv + (u_x * u_x) * temp1 + temp2); d_equ[2] = w1 * local_density * (1.f + u_y * c_sq_inv + (u_y * u_y) * temp1 + temp2); d_equ[3] = w1 * local_density * (1.f - u_x * c_sq_inv + (u_x * u_x) * temp1 + temp2); d_equ[4] = w1 * local_density * (1.f - u_y * c_sq_inv + (u_y * u_y) * temp1 + temp2); /* diagonal speeds: weight w2 */ d_equ[5] = w2 * local_density * (1.f + (u_x + u_y) * c_sq_inv + ((u_x + u_y) * (u_x + u_y)) * temp1 + temp2); d_equ[6] = w2 * local_density * (1.f + (-u_x + u_y) * c_sq_inv + ((-u_x + u_y) * (-u_x + u_y)) * temp1 + temp2); d_equ[7] = w2 * local_density * (1.f + (-u_x - u_y) * c_sq_inv + ((-u_x - u_y) * (-u_x - u_y)) * temp1 + temp2); d_equ[8] = w2 * local_density * (1.f + (u_x - u_y) * c_sq_inv + ((u_x - u_y) * (u_x - u_y)) * temp1 + temp2); float tmp; int expression = ObstaclesA[ii + jj*nx]; tmp_s0 = expression ? tmp_s0 : (tmp_s0 + omega * (d_equ[0] - tmp_s0)); tmp = tmp_s1; tmp_s1 = expression ? tmp_s3 : (tmp_s1 + omega * (d_equ[1] - tmp_s1)); tmp_s3 = expression ? tmp : (tmp_s3 + omega * (d_equ[3] - tmp_s3)); tmp = tmp_s2; tmp_s2 = expression ? tmp_s4 : (tmp_s2 + omega * (d_equ[2] - tmp_s2)); tmp_s4 = expression ? tmp : (tmp_s4 + omega * (d_equ[4] - tmp_s4)); tmp = tmp_s5; tmp_s5 = expression ? tmp_s7 : (tmp_s5 + omega * (d_equ[5] - tmp_s5)); tmp_s7 = expression ? tmp : (tmp_s7 + omega * (d_equ[7] - tmp_s7)); tmp = tmp_s6; tmp_s6 = expression ? tmp_s8 : (tmp_s6 + omega * (d_equ[6] - tmp_s6)); tmp_s8 = expression ? tmp : (tmp_s8 + omega * (d_equ[8] - tmp_s8)); /* local density total */ local_density = 1.f/(tmp_s0 + tmp_s1 + tmp_s2 + tmp_s3 + tmp_s4 + tmp_s5 + tmp_s6 + tmp_s7 + tmp_s8); /* x-component of velocity */ u_x = (tmp_s1 + tmp_s5 + tmp_s8 - tmp_s3 - tmp_s6 - tmp_s7) * local_density; /* compute y velocity component */ u_y = (tmp_s2 + tmp_s5 + tmp_s6 - tmp_s4 - tmp_s7 - tmp_s8) * local_density; Tmp0A[ii + jj*nx] = tmp_s0; Tmp1A[ii + jj*nx] = tmp_s1; Tmp2A[ii + jj*nx] = tmp_s2; Tmp3A[ii + jj*nx] = tmp_s3; Tmp4A[ii + jj*nx] = tmp_s4; Tmp5A[ii + jj*nx] = tmp_s5; Tmp6A[ii + jj*nx] = tmp_s6; Tmp7A[ii + jj*nx] = tmp_s7; Tmp8A[ii + jj*nx] = tmp_s8; int local_idi = threadIdx.x; int local_idj = threadIdx.y; int local_sizei = blockDim.x; int local_sizej = blockDim.y; /* accumulate the norm of x- and y- velocity components */ local_sum[local_idi + local_idj*local_sizei] = (ObstaclesA[ii + jj*nx]) ? 0 : hypotf(u_x,u_y); /* increase counter of inspected cells */ local_sum2[local_idi + local_idj*local_sizei] = (ObstaclesA[ii + jj*nx]) ? 0 : 1 ; __syncthreads(); int group_id = blockIdx.x; int group_id2 = blockIdx.y; int group_size = gridDim.x; int group_size2 = gridDim.y; if(local_idi == 0 && local_idj == 0){ float sum = 0.0f; int sum2 = 0; for(int i = 0; i<local_sizei*local_sizej; i++){ sum += local_sum[i]; sum2 += local_sum2[i]; } Partial_Sum[group_id+group_id2*group_size+tt*group_size*group_size2] = sum; Partial_Sum2[group_id+group_id2*group_size+tt*group_size*group_size2] = sum2; } } int main(int argc, char* argv[]) { char* paramfile = NULL; /* input parameter file */ char* obstaclefile = NULL; /* input obstacle file */ t_param params; /* struct to hold parameter values */ t_speed* cells = NULL; /* grid containing fluid densities */ t_speed* tmp_cells = NULL; /* scratch space */ int* obstaclesHost = NULL;/* grid indicating which cells are blocked */ float* av_vels = NULL; /* a record of the av. velocity computed for each timestep */ struct timeval timstr; /* structure to hold elapsed time */ double tic, toc; /* floating point numbers to calculate elapsed wallclock time */ /* parse the command line */ if (argc != 3) { usage(argv[0]); } else { paramfile = argv[1]; obstaclefile = argv[2]; } /* initialise our data structures and load values from file */ initialise(paramfile, obstaclefile, &params, &cells, &tmp_cells, &obstaclesHost, &av_vels); // declare host arrays int Ny = params.ny; int Nx = params.nx; int MaxIters = params.maxIters; float *speedsHostS0 = (float*) malloc (sizeof(float)*Ny*Nx); float *speedsHostS1 = (float*) malloc (sizeof(float)*Ny*Nx); float *speedsHostS2 = (float*) malloc (sizeof(float)*Ny*Nx); float *speedsHostS3 = (float*) malloc (sizeof(float)*Ny*Nx); float *speedsHostS4 = (float*) malloc (sizeof(float)*Ny*Nx); float *speedsHostS5 = (float*) malloc (sizeof(float)*Ny*Nx); float *speedsHostS6 = (float*) malloc (sizeof(float)*Ny*Nx); float *speedsHostS7 = (float*) malloc (sizeof(float)*Ny*Nx); float *speedsHostS8 = (float*) malloc (sizeof(float)*Ny*Nx); float *tot_up = (float*) malloc (sizeof(float) * (Ny/LOCALSIZEY) * (Nx/LOCALSIZEX) * MaxIters); int *tot_cellsp = (int*) malloc (sizeof(int) * (Ny/LOCALSIZEY) * (Nx/LOCALSIZEX) * MaxIters); // Init arrays /* loop over _all_ cells */ for (int jj = 0; jj < Ny; jj++) { for (int ii = 0; ii < Nx; ii++) { speedsHostS0[ii + jj*Nx] = cells[ii + jj*Nx].speeds[0]; speedsHostS1[ii + jj*Nx] = cells[ii + jj*Nx].speeds[1]; speedsHostS2[ii + jj*Nx] = cells[ii + jj*Nx].speeds[2]; speedsHostS3[ii + jj*Nx] = cells[ii + jj*Nx].speeds[3]; speedsHostS4[ii + jj*Nx] = cells[ii + jj*Nx].speeds[4]; speedsHostS5[ii + jj*Nx] = cells[ii + jj*Nx].speeds[5]; speedsHostS6[ii + jj*Nx] = cells[ii + jj*Nx].speeds[6]; speedsHostS7[ii + jj*Nx] = cells[ii + jj*Nx].speeds[7]; speedsHostS8[ii + jj*Nx] = cells[ii + jj*Nx].speeds[8]; } } // Creating buffers which are bound to host arrays float *speeds0, *speeds1, *speeds2, *speeds3, *speeds4, *speeds5, *speeds6, *speeds7, *speeds8; float *tmp_speeds0, *tmp_speeds1, *tmp_speeds2, *tmp_speeds3, *tmp_speeds4, *tmp_speeds5, *tmp_speeds6, *tmp_speeds7, *tmp_speeds8; hipMalloc((void**)&speeds0, sizeof(float)*Ny*Nx); hipMemcpy(speeds0, speedsHostS0, sizeof(float)*Ny*Nx, hipMemcpyHostToDevice); hipMalloc((void**)&speeds1, sizeof(float)*Ny*Nx); hipMemcpy(speeds1, speedsHostS1, sizeof(float)*Ny*Nx, hipMemcpyHostToDevice); hipMalloc((void**)&speeds2, sizeof(float)*Ny*Nx); hipMemcpy(speeds2, speedsHostS2, sizeof(float)*Ny*Nx, hipMemcpyHostToDevice); hipMalloc((void**)&speeds3, sizeof(float)*Ny*Nx); hipMemcpy(speeds3, speedsHostS3, sizeof(float)*Ny*Nx, hipMemcpyHostToDevice); hipMalloc((void**)&speeds4, sizeof(float)*Ny*Nx); hipMemcpy(speeds4, speedsHostS4, sizeof(float)*Ny*Nx, hipMemcpyHostToDevice); hipMalloc((void**)&speeds5, sizeof(float)*Ny*Nx); hipMemcpy(speeds5, speedsHostS5, sizeof(float)*Ny*Nx, hipMemcpyHostToDevice); hipMalloc((void**)&speeds6, sizeof(float)*Ny*Nx); hipMemcpy(speeds6, speedsHostS6, sizeof(float)*Ny*Nx, hipMemcpyHostToDevice); hipMalloc((void**)&speeds7, sizeof(float)*Ny*Nx); hipMemcpy(speeds7, speedsHostS7, sizeof(float)*Ny*Nx, hipMemcpyHostToDevice); hipMalloc((void**)&speeds8, sizeof(float)*Ny*Nx); hipMemcpy(speeds8, speedsHostS8, sizeof(float)*Ny*Nx, hipMemcpyHostToDevice); hipMalloc((void**)&tmp_speeds0, sizeof(float)*Ny*Nx); hipMalloc((void**)&tmp_speeds1, sizeof(float)*Ny*Nx); hipMalloc((void**)&tmp_speeds2, sizeof(float)*Ny*Nx); hipMalloc((void**)&tmp_speeds3, sizeof(float)*Ny*Nx); hipMalloc((void**)&tmp_speeds4, sizeof(float)*Ny*Nx); hipMalloc((void**)&tmp_speeds5, sizeof(float)*Ny*Nx); hipMalloc((void**)&tmp_speeds6, sizeof(float)*Ny*Nx); hipMalloc((void**)&tmp_speeds7, sizeof(float)*Ny*Nx); hipMalloc((void**)&tmp_speeds8, sizeof(float)*Ny*Nx); int *obstacles, *partial_sum2; float *partial_sum; hipMalloc((void**)&obstacles, sizeof(int)*Ny*Nx); hipMalloc((void**)&partial_sum, sizeof(float)*(Ny/LOCALSIZEY)*(Nx/LOCALSIZEX)*MaxIters); hipMalloc((void**)&partial_sum2, sizeof(int)*(Ny/LOCALSIZEY)*(Nx/LOCALSIZEX)*MaxIters); hipMemcpy(obstacles, obstaclesHost, sizeof(int)*Ny*Nx, hipMemcpyHostToDevice); // parameters for kernel float omega = params.omega; float densityaccel = params.density*params.accel; dim3 grids(Nx/LOCALSIZEX, Ny/LOCALSIZEY); dim3 threads(LOCALSIZEX, LOCALSIZEY); for (int tt = 0; tt < MaxIters; tt++){ if (tt == WARMUPS - 1) { //start timer after warmup hipDeviceSynchronize(); gettimeofday(&timstr, NULL); tic = timstr.tv_sec * 1e6 + timstr.tv_usec; } hipLaunchKernelGGL(( d2q9_bgk), dim3(grids), dim3(threads), 0, 0, speeds0, speeds1, speeds2, speeds3, speeds4, speeds5, speeds6, speeds7, speeds8, tmp_speeds0, tmp_speeds1, tmp_speeds2, tmp_speeds3, tmp_speeds4, tmp_speeds5, tmp_speeds6, tmp_speeds7, tmp_speeds8, obstacles, partial_sum, partial_sum2, densityaccel, omega, Nx, Ny, tt ); // swap the buffers float* speed_tmp = speeds0; speeds0 = tmp_speeds0; tmp_speeds0 = speed_tmp; speed_tmp = speeds1; speeds1 = tmp_speeds1; tmp_speeds1 = speed_tmp; speed_tmp = speeds2; speeds2 = tmp_speeds2; tmp_speeds2 = speed_tmp; speed_tmp = speeds3; speeds3 = tmp_speeds3; tmp_speeds3 = speed_tmp; speed_tmp = speeds4; speeds4 = tmp_speeds4; tmp_speeds4 = speed_tmp; speed_tmp = speeds5; speeds5 = tmp_speeds5; tmp_speeds5 = speed_tmp; speed_tmp = speeds6; speeds6 = tmp_speeds6; tmp_speeds6 = speed_tmp; speed_tmp = speeds7; speeds7 = tmp_speeds7; tmp_speeds7 = speed_tmp; speed_tmp = speeds8; speeds8 = tmp_speeds8; tmp_speeds8 = speed_tmp; } //end timer hipDeviceSynchronize(); gettimeofday(&timstr, NULL); toc = timstr.tv_sec * 1e6 + timstr.tv_usec; printf("After warmup for %d iterations, ", WARMUPS); printf("average kernel execution time over %d iterations:\t\t\t%.6lf (us)\n", MaxIters - WARMUPS, (toc - tic) / (MaxIters - WARMUPS)); hipMemcpy(tot_up, partial_sum, sizeof(float)*(Ny/LOCALSIZEY)*(Nx/LOCALSIZEX)*MaxIters, hipMemcpyDeviceToHost); hipMemcpy(tot_cellsp, partial_sum2, sizeof(int)*(Ny/LOCALSIZEY)*(Nx/LOCALSIZEX)*MaxIters, hipMemcpyDeviceToHost); hipMemcpy(speedsHostS0, speeds0, sizeof(float)*Ny*Nx, hipMemcpyDeviceToHost); hipMemcpy(speedsHostS1, speeds1, sizeof(float)*Ny*Nx, hipMemcpyDeviceToHost); hipMemcpy(speedsHostS2, speeds2, sizeof(float)*Ny*Nx, hipMemcpyDeviceToHost); hipMemcpy(speedsHostS3, speeds3, sizeof(float)*Ny*Nx, hipMemcpyDeviceToHost); hipMemcpy(speedsHostS4, speeds4, sizeof(float)*Ny*Nx, hipMemcpyDeviceToHost); hipMemcpy(speedsHostS5, speeds5, sizeof(float)*Ny*Nx, hipMemcpyDeviceToHost); hipMemcpy(speedsHostS6, speeds6, sizeof(float)*Ny*Nx, hipMemcpyDeviceToHost); hipMemcpy(speedsHostS7, speeds7, sizeof(float)*Ny*Nx, hipMemcpyDeviceToHost); hipMemcpy(speedsHostS8, speeds8, sizeof(float)*Ny*Nx, hipMemcpyDeviceToHost); hipFree(speeds0); hipFree(speeds1); hipFree(speeds2); hipFree(speeds3); hipFree(speeds4); hipFree(speeds5); hipFree(speeds6); hipFree(speeds7); hipFree(speeds8); hipFree(tmp_speeds0); hipFree(tmp_speeds1); hipFree(tmp_speeds2); hipFree(tmp_speeds3); hipFree(tmp_speeds4); hipFree(tmp_speeds5); hipFree(tmp_speeds6); hipFree(tmp_speeds7); hipFree(tmp_speeds8); hipFree(obstacles); hipFree(partial_sum2); hipFree(partial_sum); float tot_u = 0; int tot_cells = 0; for (int tt = 0; tt < params.maxIters; tt++){ tot_u = 0; tot_cells = 0; for(int i = 0; i < params.nx/LOCALSIZEX*params.ny/LOCALSIZEY; i++){ tot_u += tot_up[i+tt*params.nx/LOCALSIZEX*params.ny/LOCALSIZEY]; tot_cells += tot_cellsp[i+tt*params.nx/LOCALSIZEX*params.ny/LOCALSIZEY]; //printf("%d %f %d\n", i, tot_u, tot_cells); } av_vels[tt] = tot_u/tot_cells; } // put answers back into cells for (int jj = 0; jj < params.ny; jj++) { for (int ii = 0; ii < params.nx; ii++) { cells[ii + jj*params.nx].speeds[0] = speedsHostS0[ii + jj*params.nx]; cells[ii + jj*params.nx].speeds[1] = speedsHostS1[ii + jj*params.nx]; cells[ii + jj*params.nx].speeds[2] = speedsHostS2[ii + jj*params.nx]; cells[ii + jj*params.nx].speeds[3] = speedsHostS3[ii + jj*params.nx]; cells[ii + jj*params.nx].speeds[4] = speedsHostS4[ii + jj*params.nx]; cells[ii + jj*params.nx].speeds[5] = speedsHostS5[ii + jj*params.nx]; cells[ii + jj*params.nx].speeds[6] = speedsHostS6[ii + jj*params.nx]; cells[ii + jj*params.nx].speeds[7] = speedsHostS7[ii + jj*params.nx]; cells[ii + jj*params.nx].speeds[8] = speedsHostS8[ii + jj*params.nx]; } } /* write final values and free memory */ printf("==done==\n"); printf("Reynolds number:\t\t%.12E\n", calc_reynolds(params, cells, obstaclesHost)); write_values(params, cells, obstaclesHost, av_vels); finalise(cells, tmp_cells, obstaclesHost, av_vels); free(speedsHostS0); free(speedsHostS1); free(speedsHostS2); free(speedsHostS3); free(speedsHostS4); free(speedsHostS5); free(speedsHostS6); free(speedsHostS7); free(speedsHostS8); free(tot_up); free(tot_cellsp); return EXIT_SUCCESS; } float av_velocity(const t_param params, t_speed* cells, int* obstacles) { int tot_cells = 0; /* no. of cells used in calculation */ float tot_u; /* accumulated magnitudes of velocity for each cell */ /* initialise */ tot_u = 0.f; /* loop over all non-blocked cells */ for (int jj = 0; jj < params.ny; jj++) { for (int ii = 0; ii < params.nx; ii++) { /* ignore occupied cells */ if (!obstacles[ii + jj*params.nx]) { /* local density total */ float local_density = 0.f; for (int kk = 0; kk < NSPEEDS; kk++) { local_density += cells[ii + jj*params.nx].speeds[kk]; } /* x-component of velocity */ float u_x = (cells[ii + jj*params.nx].speeds[1] + cells[ii + jj*params.nx].speeds[5] + cells[ii + jj*params.nx].speeds[8] - (cells[ii + jj*params.nx].speeds[3] + cells[ii + jj*params.nx].speeds[6] + cells[ii + jj*params.nx].speeds[7])) / local_density; /* compute y velocity component */ float u_y = (cells[ii + jj*params.nx].speeds[2] + cells[ii + jj*params.nx].speeds[5] + cells[ii + jj*params.nx].speeds[6] - (cells[ii + jj*params.nx].speeds[4] + cells[ii + jj*params.nx].speeds[7] + cells[ii + jj*params.nx].speeds[8])) / local_density; /* accumulate the norm of x- and y- velocity components */ tot_u += sqrtf((u_x * u_x) + (u_y * u_y)); /* increase counter of inspected cells */ ++tot_cells; } } } return tot_u / (float)tot_cells; } int initialise(const char* paramfile, const char* obstaclefile, t_param* params, t_speed** cells_ptr, t_speed** tmp_cells_ptr, int** obstacles_ptr, float** av_vels_ptr){ char message[1024]; /* message buffer */ FILE* fp; /* file pointer */ int xx, yy; /* generic array indices */ int blocked; /* indicates whether a cell is blocked by an obstacle */ int retval; /* to hold return value for checking */ /* open the parameter file */ fp = fopen(paramfile, "r"); if (fp == NULL) { sprintf(message, "could not open input parameter file: %s", paramfile); die(message, __LINE__, __FILE__); } /* read in the parameter values */ retval = fscanf(fp, "%d\n", &(params->nx)); if (retval != 1) die("could not read param file: nx", __LINE__, __FILE__); retval = fscanf(fp, "%d\n", &(params->ny)); if (retval != 1) die("could not read param file: ny", __LINE__, __FILE__); retval = fscanf(fp, "%d\n", &(params->maxIters)); if (retval != 1) die("could not read param file: maxIters", __LINE__, __FILE__); retval = fscanf(fp, "%d\n", &(params->reynolds_dim)); if (retval != 1) die("could not read param file: reynolds_dim", __LINE__, __FILE__); retval = fscanf(fp, "%f\n", &(params->density)); if (retval != 1) die("could not read param file: density", __LINE__, __FILE__); retval = fscanf(fp, "%f\n", &(params->accel)); if (retval != 1) die("could not read param file: accel", __LINE__, __FILE__); retval = fscanf(fp, "%f\n", &(params->omega)); if (retval != 1) die("could not read param file: omega", __LINE__, __FILE__); /* and close up the file */ fclose(fp); /* ** allocate memory. ** ** remember C is pass-by-value, so we need to ** pass pointers into the initialise function. ** ** nb we are allocating a 1D array, so that the ** memory will be contiguous. We still want to ** index this memory as if it were a (row major ** ordered) 2D array, however. We will perform ** some arithmetic using the row and column ** coordinates, inside the square brackets, when ** we want to access elements of this array. ** ** note also that we are using a structure to ** hold an array of 'speeds'. We will allocate ** a 1D array of these structs. */ /* main grid */ *cells_ptr = (t_speed*)malloc(sizeof(t_speed) * (params->ny * params->nx)); if (*cells_ptr == NULL) die("cannot allocate memory for cells", __LINE__, __FILE__); /* 'helper' grid, used as scratch space */ *tmp_cells_ptr = (t_speed*)malloc(sizeof(t_speed) * (params->ny * params->nx)); if (*tmp_cells_ptr == NULL) die("cannot allocate memory for tmp_cells", __LINE__, __FILE__); /* the map of obstacles */ *obstacles_ptr = (int*) malloc (sizeof(int) * params->ny * params->nx); if (*obstacles_ptr == NULL) die("cannot allocate column memory for obstacles", __LINE__, __FILE__); /* initialise densities */ float w0 = params->density * 4.f / 9.f; float w1 = params->density / 9.f; float w2 = params->density / 36.f; for (int jj = 0; jj < params->ny; jj++) { for (int ii = 0; ii < params->nx; ii++) { /* centre */ (*cells_ptr)[ii + jj*params->nx].speeds[0] = w0; /* axis directions */ (*cells_ptr)[ii + jj*params->nx].speeds[1] = w1; (*cells_ptr)[ii + jj*params->nx].speeds[2] = w1; (*cells_ptr)[ii + jj*params->nx].speeds[3] = w1; (*cells_ptr)[ii + jj*params->nx].speeds[4] = w1; /* diagonals */ (*cells_ptr)[ii + jj*params->nx].speeds[5] = w2; (*cells_ptr)[ii + jj*params->nx].speeds[6] = w2; (*cells_ptr)[ii + jj*params->nx].speeds[7] = w2; (*cells_ptr)[ii + jj*params->nx].speeds[8] = w2; } } /* first set all cells in obstacle array to zero */ for (int jj = 0; jj < params->ny; jj++) { for (int ii = 0; ii < params->nx; ii++) { (*obstacles_ptr)[ii + jj*params->nx] = 0; } } /* open the obstacle data file */ fp = fopen(obstaclefile, "r"); if (fp == NULL) { sprintf(message, "could not open input obstacles file: %s", obstaclefile); die(message, __LINE__, __FILE__); } /* read-in the blocked cells list */ while ((retval = fscanf(fp, "%d %d %d\n", &xx, &yy, &blocked)) != EOF) { /* some checks */ if (retval != 3) die("expected 3 values per line in obstacle file", __LINE__, __FILE__); if (xx < 0 || xx > params->nx - 1) die("obstacle x-coord out of range", __LINE__, __FILE__); if (yy < 0 || yy > params->ny - 1) die("obstacle y-coord out of range", __LINE__, __FILE__); if (blocked != 1) die("obstacle blocked value should be 1", __LINE__, __FILE__); /* assign to array */ (*obstacles_ptr)[xx + yy*params->nx] = blocked; } /* and close the file */ fclose(fp); /* ** allocate space to hold a record of the avarage velocities computed ** at each timestep */ *av_vels_ptr = (float*)malloc(sizeof(float) * params->maxIters); return EXIT_SUCCESS; } int finalise(t_speed* cells_ptr, t_speed* tmp_cells_ptr, int* obstacles_ptr, float* av_vels_ptr) { /* ** free up allocated memory */ free(cells_ptr); free(tmp_cells_ptr); free(obstacles_ptr); free(av_vels_ptr); return EXIT_SUCCESS; } float calc_reynolds(const t_param params, t_speed* cells, int* obstacles) { const float viscosity = 1.f / 6.f * (2.f / params.omega - 1.f); return av_velocity(params, cells, obstacles) * params.reynolds_dim / viscosity; } float total_density(const t_param params, t_speed* cells) { float total = 0.f; /* accumulator */ for (int jj = 0; jj < params.ny; jj++) { for (int ii = 0; ii < params.nx; ii++) { for (int kk = 0; kk < NSPEEDS; kk++) { total += cells[ii + jj*params.nx].speeds[kk]; } } } return total; } int write_values(const t_param params, t_speed* cells, int* obstacles, float* av_vels) { FILE* fp; /* file pointer */ const float c_sq = 1.f / 3.f; /* sq. of speed of sound */ float local_density; /* per grid cell sum of densities */ float pressure; /* fluid pressure in grid cell */ float u_x; /* x-component of velocity in grid cell */ float u_y; /* y-component of velocity in grid cell */ float u; /* norm--root of summed squares--of u_x and u_y */ fp = fopen(FINALSTATEFILE, "w"); if (fp == NULL) { die("could not open file output file", __LINE__, __FILE__); } for (int jj = 0; jj < params.ny; jj++) { for (int ii = 0; ii < params.nx; ii++) { /* an occupied cell */ if (obstacles[ii + jj*params.nx]) { u_x = u_y = u = 0.f; pressure = params.density * c_sq; } /* no obstacle */ else { local_density = 0.f; for (int kk = 0; kk < NSPEEDS; kk++) { local_density += cells[ii + jj*params.nx].speeds[kk]; } /* compute x velocity component */ u_x = (cells[ii + jj*params.nx].speeds[1] + cells[ii + jj*params.nx].speeds[5] + cells[ii + jj*params.nx].speeds[8] - (cells[ii + jj*params.nx].speeds[3] + cells[ii + jj*params.nx].speeds[6] + cells[ii + jj*params.nx].speeds[7])) / local_density; /* compute y velocity component */ u_y = (cells[ii + jj*params.nx].speeds[2] + cells[ii + jj*params.nx].speeds[5] + cells[ii + jj*params.nx].speeds[6] - (cells[ii + jj*params.nx].speeds[4] + cells[ii + jj*params.nx].speeds[7] + cells[ii + jj*params.nx].speeds[8])) / local_density; /* compute norm of velocity */ u = sqrtf((u_x * u_x) + (u_y * u_y)); /* compute pressure */ pressure = local_density * c_sq; } /* write to file */ fprintf(fp, "%d %d %.12E %.12E %.12E %.12E %d\n", ii, jj, u_x, u_y, u, pressure, obstacles[ii * params.nx + jj]); } } fclose(fp); fp = fopen(AVVELSFILE, "w"); if (fp == NULL) { die("could not open file output file", __LINE__, __FILE__); } for (int ii = 0; ii < params.maxIters; ii++) { fprintf(fp, "%d:\t%.12E\n", ii, av_vels[ii]); } fclose(fp); return EXIT_SUCCESS; } void die(const char* message, const int line, const char* file) { fprintf(stderr, "Error at line %d of file %s:\n", line, file); fprintf(stderr, "%s\n", message); fflush(stderr); exit(EXIT_FAILURE); } void usage(const char* exe) { fprintf(stderr, "Usage: %s <paramfile> <obstaclefile>\n", exe); exit(EXIT_FAILURE); }
476d82f48040603fe8bf8ea6ad8d939b97687238.cu
/* ** Code to implement a d2q9-bgk lattice boltzmann scheme. ** 'd2' inidates a 2-dimensional grid, and ** 'q9' indicates 9 velocities per grid cell. ** 'bgk' refers to the Bhatnagar-Gross-Krook collision step. ** ** The 'speeds' in each cell are numbered as follows: ** ** 6 2 5 ** \|/ ** 3-0-1 ** /|\ ** 7 4 8 ** ** A 2D grid: ** ** cols ** --- --- --- ** | D | E | F | ** rows --- --- --- ** | A | B | C | ** --- --- --- ** ** 'unwrapped' in row major order to give a 1D array: ** ** --- --- --- --- --- --- ** | A | B | C | D | E | F | ** --- --- --- --- --- --- ** ** Grid indicies are: ** ** ny ** ^ cols(ii) ** | ----- ----- ----- ** | | ... | ... | etc | ** | ----- ----- ----- ** rows(jj) | | 1,0 | 1,1 | 1,2 | ** | ----- ----- ----- ** | | 0,0 | 0,1 | 0,2 | ** | ----- ----- ----- ** ----------------------> nx ** ** Note the names of the input parameter and obstacle files ** are passed on the command line, e.g.: ** ** ./d2q9-bgk input.params obstacles.dat ** ** Be sure to adjust the grid dimensions in the parameter file ** if you choose a different obstacle file. */ #include <stdio.h> #include <stdlib.h> #include <math.h> #include <time.h> #include <string.h> #include <sys/time.h> #include <cuda.h> #define WARMUPS 1000 #define NSPEEDS 9 #define LOCALSIZEX 128 #define LOCALSIZEY 1 /* dump output files for verification */ #define FINALSTATEFILE "final_state.dat" #define AVVELSFILE "av_vels.dat" /* struct to hold the parameter values */ typedef struct { int nx; /* no. of cells in x-direction */ int ny; /* no. of cells in y-direction */ int maxIters; /* no. of iterations */ int reynolds_dim; /* dimension for Reynolds number */ float density; /* density per link */ float accel; /* density redistribution */ float omega; /* relaxation parameter */ } t_param; /* struct to hold the 'speed' values */ typedef struct { float speeds[NSPEEDS]; } t_speed; /* ** function prototypes */ /* load params, allocate memory, load obstacles & initialise fluid particle densities */ int initialise(const char* paramfile, const char* obstaclefile, t_param* params, t_speed** cells_ptr, t_speed** tmp_cells_ptr, int** obstacles_ptr, float** av_vels_ptr); /* ** The main calculation methods. ** timestep calls, in order, the functions: ** accelerate_flow(), propagate(), rebound() & collision() */ int write_values(const t_param params, t_speed* cells, int* obstacles, float* av_vels); /* finalise, including freeing up allocated memory */ int finalise(t_speed* cells_ptr, t_speed* tmp_cells_ptr, int* obstacles_ptr, float* av_vels_ptr); /* Sum all the densities in the grid. ** The total should remain constant from one timestep to the next. */ float total_density(const t_param params, t_speed* cells); /* compute average velocity */ float av_velocity(const t_param params, t_speed* cells, int* obstacles); /* calculate Reynolds number */ float calc_reynolds(const t_param params, t_speed* cells, int* obstacles); /* utility functions */ void die(const char* message, const int line, const char* file); void usage(const char* exe); __device__ bool isGreater(const float x, const float y) { return x > y ? 1 : 0; } __global__ void d2q9_bgk( const float* __restrict__ Speed0A, const float* __restrict__ Speed1A, const float* __restrict__ Speed2A, const float* __restrict__ Speed3A, const float* __restrict__ Speed4A, const float* __restrict__ Speed5A, const float* __restrict__ Speed6A, const float* __restrict__ Speed7A, const float* __restrict__ Speed8A, float* __restrict__ Tmp0A, float* __restrict__ Tmp1A, float* __restrict__ Tmp2A, float* __restrict__ Tmp3A, float* __restrict__ Tmp4A, float* __restrict__ Tmp5A, float* __restrict__ Tmp6A, float* __restrict__ Tmp7A, float* __restrict__ Tmp8A, const int* __restrict__ ObstaclesA, float* __restrict__ Partial_Sum, int* __restrict__ Partial_Sum2, const float densityaccel, const float omega, const int nx, const int ny, const int tt) { //setup local memory __shared__ int local_sum2[LOCALSIZEX*LOCALSIZEY]; __shared__ float local_sum[LOCALSIZEX*LOCALSIZEY]; /* get column and row indices */ const int ii = blockIdx.x * blockDim.x + threadIdx.x; const int jj = blockIdx.y * blockDim.y + threadIdx.y; const float c_sq_inv = 3.f; const float c_sq = 1.f/c_sq_inv; /* square of speed of sound */ const float temp1 = 4.5f; const float w1 = 1.f/9.f; const float w0 = 4.f * w1; /* weighting factor */ const float w2 = 1.f/36.f; /* weighting factor */ const float w11 = densityaccel * w1; const float w21 = densityaccel * w2; /* determine indices of axis-direction neighbours ** respecting periodic boundary conditions (wrap around) */ const int y_n = (jj + 1) % ny; const int x_e = (ii + 1) % nx; const int y_s = (jj == 0) ? (jj + ny - 1) : (jj - 1); const int x_w = (ii == 0) ? (ii + nx - 1) : (ii - 1); /* propagate densities from neighbouring cells, following ** appropriate directions of travel and writing into ** scratch space grid */ float tmp_s0 = Speed0A[ii + jj*nx]; float tmp_s1 = (jj == ny-2 && (!ObstaclesA[x_w + jj*nx] && isGreater((Speed3A[x_w + jj*nx] - w11) , 0.f) && isGreater((Speed6A[x_w + jj*nx] - w21) , 0.f) && isGreater((Speed7A[x_w + jj*nx] - w21) , 0.f))) ? Speed1A[x_w + jj*nx]+w11 : Speed1A[x_w + jj*nx]; float tmp_s2 = Speed2A[ii + y_s*nx]; float tmp_s3 = (jj == ny-2 && (!ObstaclesA[x_e + jj*nx] && isGreater((Speed3A[x_e + jj*nx] - w11) , 0.f) && isGreater((Speed6A[x_e + jj*nx] - w21) , 0.f) && isGreater((Speed7A[x_e + jj*nx] - w21) , 0.f))) ? Speed3A[x_e + jj*nx]-w11 : Speed3A[x_e + jj*nx]; float tmp_s4 = Speed4A[ii + y_n*nx]; float tmp_s5 = (y_s == ny-2 && (!ObstaclesA[x_w + y_s*nx] && isGreater((Speed3A[x_w + y_s*nx] - w11) , 0.f) && isGreater((Speed6A[x_w + y_s*nx] - w21) , 0.f) && isGreater((Speed7A[x_w + y_s*nx] - w21) , 0.f))) ? Speed5A[x_w + y_s*nx]+w21 : Speed5A[x_w + y_s*nx]; float tmp_s6 = (y_s == ny-2 && (!ObstaclesA[x_e + y_s*nx] && isGreater((Speed3A[x_e + y_s*nx] - w11) , 0.f) && isGreater((Speed6A[x_e + y_s*nx] - w21) , 0.f) && isGreater((Speed7A[x_e + y_s*nx] - w21) , 0.f))) ? Speed6A[x_e + y_s*nx]-w21 : Speed6A[x_e + y_s*nx]; float tmp_s7 = (y_n == ny-2 && (!ObstaclesA[x_e + y_n*nx] && isGreater((Speed3A[x_e + y_n*nx] - w11) , 0.f) && isGreater((Speed6A[x_e + y_n*nx] - w21) , 0.f) && isGreater((Speed7A[x_e + y_n*nx] - w21) , 0.f))) ? Speed7A[x_e + y_n*nx]-w21 : Speed7A[x_e + y_n*nx]; float tmp_s8 = (y_n == ny-2 && (!ObstaclesA[x_w + y_n*nx] && isGreater((Speed3A[x_w + y_n*nx] - w11) , 0.f) && isGreater((Speed6A[x_w + y_n*nx] - w21) , 0.f) && isGreater((Speed7A[x_w + y_n*nx] - w21) , 0.f))) ? Speed8A[x_w + y_n*nx]+w21 : Speed8A[x_w + y_n*nx]; /* compute local density total */ float local_density = tmp_s0 + tmp_s1 + tmp_s2 + tmp_s3 + tmp_s4 + tmp_s5 + tmp_s6 + tmp_s7 + tmp_s8; const float local_density_recip = 1.f/(local_density); /* compute x velocity component */ float u_x = (tmp_s1 + tmp_s5 + tmp_s8 - tmp_s3 - tmp_s6 - tmp_s7) * local_density_recip; /* compute y velocity component */ float u_y = (tmp_s2 + tmp_s5 + tmp_s6 - tmp_s4 - tmp_s8 - tmp_s7) * local_density_recip; /* velocity squared */ const float temp2 = - (u_x * u_x + u_y * u_y)/(2.f * c_sq); /* equilibrium densities */ float d_equ[NSPEEDS]; /* zero velocity density: weight w0 */ d_equ[0] = w0 * local_density * (1.f + temp2); /* axis speeds: weight w1 */ d_equ[1] = w1 * local_density * (1.f + u_x * c_sq_inv + (u_x * u_x) * temp1 + temp2); d_equ[2] = w1 * local_density * (1.f + u_y * c_sq_inv + (u_y * u_y) * temp1 + temp2); d_equ[3] = w1 * local_density * (1.f - u_x * c_sq_inv + (u_x * u_x) * temp1 + temp2); d_equ[4] = w1 * local_density * (1.f - u_y * c_sq_inv + (u_y * u_y) * temp1 + temp2); /* diagonal speeds: weight w2 */ d_equ[5] = w2 * local_density * (1.f + (u_x + u_y) * c_sq_inv + ((u_x + u_y) * (u_x + u_y)) * temp1 + temp2); d_equ[6] = w2 * local_density * (1.f + (-u_x + u_y) * c_sq_inv + ((-u_x + u_y) * (-u_x + u_y)) * temp1 + temp2); d_equ[7] = w2 * local_density * (1.f + (-u_x - u_y) * c_sq_inv + ((-u_x - u_y) * (-u_x - u_y)) * temp1 + temp2); d_equ[8] = w2 * local_density * (1.f + (u_x - u_y) * c_sq_inv + ((u_x - u_y) * (u_x - u_y)) * temp1 + temp2); float tmp; int expression = ObstaclesA[ii + jj*nx]; tmp_s0 = expression ? tmp_s0 : (tmp_s0 + omega * (d_equ[0] - tmp_s0)); tmp = tmp_s1; tmp_s1 = expression ? tmp_s3 : (tmp_s1 + omega * (d_equ[1] - tmp_s1)); tmp_s3 = expression ? tmp : (tmp_s3 + omega * (d_equ[3] - tmp_s3)); tmp = tmp_s2; tmp_s2 = expression ? tmp_s4 : (tmp_s2 + omega * (d_equ[2] - tmp_s2)); tmp_s4 = expression ? tmp : (tmp_s4 + omega * (d_equ[4] - tmp_s4)); tmp = tmp_s5; tmp_s5 = expression ? tmp_s7 : (tmp_s5 + omega * (d_equ[5] - tmp_s5)); tmp_s7 = expression ? tmp : (tmp_s7 + omega * (d_equ[7] - tmp_s7)); tmp = tmp_s6; tmp_s6 = expression ? tmp_s8 : (tmp_s6 + omega * (d_equ[6] - tmp_s6)); tmp_s8 = expression ? tmp : (tmp_s8 + omega * (d_equ[8] - tmp_s8)); /* local density total */ local_density = 1.f/(tmp_s0 + tmp_s1 + tmp_s2 + tmp_s3 + tmp_s4 + tmp_s5 + tmp_s6 + tmp_s7 + tmp_s8); /* x-component of velocity */ u_x = (tmp_s1 + tmp_s5 + tmp_s8 - tmp_s3 - tmp_s6 - tmp_s7) * local_density; /* compute y velocity component */ u_y = (tmp_s2 + tmp_s5 + tmp_s6 - tmp_s4 - tmp_s7 - tmp_s8) * local_density; Tmp0A[ii + jj*nx] = tmp_s0; Tmp1A[ii + jj*nx] = tmp_s1; Tmp2A[ii + jj*nx] = tmp_s2; Tmp3A[ii + jj*nx] = tmp_s3; Tmp4A[ii + jj*nx] = tmp_s4; Tmp5A[ii + jj*nx] = tmp_s5; Tmp6A[ii + jj*nx] = tmp_s6; Tmp7A[ii + jj*nx] = tmp_s7; Tmp8A[ii + jj*nx] = tmp_s8; int local_idi = threadIdx.x; int local_idj = threadIdx.y; int local_sizei = blockDim.x; int local_sizej = blockDim.y; /* accumulate the norm of x- and y- velocity components */ local_sum[local_idi + local_idj*local_sizei] = (ObstaclesA[ii + jj*nx]) ? 0 : hypotf(u_x,u_y); /* increase counter of inspected cells */ local_sum2[local_idi + local_idj*local_sizei] = (ObstaclesA[ii + jj*nx]) ? 0 : 1 ; __syncthreads(); int group_id = blockIdx.x; int group_id2 = blockIdx.y; int group_size = gridDim.x; int group_size2 = gridDim.y; if(local_idi == 0 && local_idj == 0){ float sum = 0.0f; int sum2 = 0; for(int i = 0; i<local_sizei*local_sizej; i++){ sum += local_sum[i]; sum2 += local_sum2[i]; } Partial_Sum[group_id+group_id2*group_size+tt*group_size*group_size2] = sum; Partial_Sum2[group_id+group_id2*group_size+tt*group_size*group_size2] = sum2; } } int main(int argc, char* argv[]) { char* paramfile = NULL; /* input parameter file */ char* obstaclefile = NULL; /* input obstacle file */ t_param params; /* struct to hold parameter values */ t_speed* cells = NULL; /* grid containing fluid densities */ t_speed* tmp_cells = NULL; /* scratch space */ int* obstaclesHost = NULL;/* grid indicating which cells are blocked */ float* av_vels = NULL; /* a record of the av. velocity computed for each timestep */ struct timeval timstr; /* structure to hold elapsed time */ double tic, toc; /* floating point numbers to calculate elapsed wallclock time */ /* parse the command line */ if (argc != 3) { usage(argv[0]); } else { paramfile = argv[1]; obstaclefile = argv[2]; } /* initialise our data structures and load values from file */ initialise(paramfile, obstaclefile, &params, &cells, &tmp_cells, &obstaclesHost, &av_vels); // declare host arrays int Ny = params.ny; int Nx = params.nx; int MaxIters = params.maxIters; float *speedsHostS0 = (float*) malloc (sizeof(float)*Ny*Nx); float *speedsHostS1 = (float*) malloc (sizeof(float)*Ny*Nx); float *speedsHostS2 = (float*) malloc (sizeof(float)*Ny*Nx); float *speedsHostS3 = (float*) malloc (sizeof(float)*Ny*Nx); float *speedsHostS4 = (float*) malloc (sizeof(float)*Ny*Nx); float *speedsHostS5 = (float*) malloc (sizeof(float)*Ny*Nx); float *speedsHostS6 = (float*) malloc (sizeof(float)*Ny*Nx); float *speedsHostS7 = (float*) malloc (sizeof(float)*Ny*Nx); float *speedsHostS8 = (float*) malloc (sizeof(float)*Ny*Nx); float *tot_up = (float*) malloc (sizeof(float) * (Ny/LOCALSIZEY) * (Nx/LOCALSIZEX) * MaxIters); int *tot_cellsp = (int*) malloc (sizeof(int) * (Ny/LOCALSIZEY) * (Nx/LOCALSIZEX) * MaxIters); // Init arrays /* loop over _all_ cells */ for (int jj = 0; jj < Ny; jj++) { for (int ii = 0; ii < Nx; ii++) { speedsHostS0[ii + jj*Nx] = cells[ii + jj*Nx].speeds[0]; speedsHostS1[ii + jj*Nx] = cells[ii + jj*Nx].speeds[1]; speedsHostS2[ii + jj*Nx] = cells[ii + jj*Nx].speeds[2]; speedsHostS3[ii + jj*Nx] = cells[ii + jj*Nx].speeds[3]; speedsHostS4[ii + jj*Nx] = cells[ii + jj*Nx].speeds[4]; speedsHostS5[ii + jj*Nx] = cells[ii + jj*Nx].speeds[5]; speedsHostS6[ii + jj*Nx] = cells[ii + jj*Nx].speeds[6]; speedsHostS7[ii + jj*Nx] = cells[ii + jj*Nx].speeds[7]; speedsHostS8[ii + jj*Nx] = cells[ii + jj*Nx].speeds[8]; } } // Creating buffers which are bound to host arrays float *speeds0, *speeds1, *speeds2, *speeds3, *speeds4, *speeds5, *speeds6, *speeds7, *speeds8; float *tmp_speeds0, *tmp_speeds1, *tmp_speeds2, *tmp_speeds3, *tmp_speeds4, *tmp_speeds5, *tmp_speeds6, *tmp_speeds7, *tmp_speeds8; cudaMalloc((void**)&speeds0, sizeof(float)*Ny*Nx); cudaMemcpy(speeds0, speedsHostS0, sizeof(float)*Ny*Nx, cudaMemcpyHostToDevice); cudaMalloc((void**)&speeds1, sizeof(float)*Ny*Nx); cudaMemcpy(speeds1, speedsHostS1, sizeof(float)*Ny*Nx, cudaMemcpyHostToDevice); cudaMalloc((void**)&speeds2, sizeof(float)*Ny*Nx); cudaMemcpy(speeds2, speedsHostS2, sizeof(float)*Ny*Nx, cudaMemcpyHostToDevice); cudaMalloc((void**)&speeds3, sizeof(float)*Ny*Nx); cudaMemcpy(speeds3, speedsHostS3, sizeof(float)*Ny*Nx, cudaMemcpyHostToDevice); cudaMalloc((void**)&speeds4, sizeof(float)*Ny*Nx); cudaMemcpy(speeds4, speedsHostS4, sizeof(float)*Ny*Nx, cudaMemcpyHostToDevice); cudaMalloc((void**)&speeds5, sizeof(float)*Ny*Nx); cudaMemcpy(speeds5, speedsHostS5, sizeof(float)*Ny*Nx, cudaMemcpyHostToDevice); cudaMalloc((void**)&speeds6, sizeof(float)*Ny*Nx); cudaMemcpy(speeds6, speedsHostS6, sizeof(float)*Ny*Nx, cudaMemcpyHostToDevice); cudaMalloc((void**)&speeds7, sizeof(float)*Ny*Nx); cudaMemcpy(speeds7, speedsHostS7, sizeof(float)*Ny*Nx, cudaMemcpyHostToDevice); cudaMalloc((void**)&speeds8, sizeof(float)*Ny*Nx); cudaMemcpy(speeds8, speedsHostS8, sizeof(float)*Ny*Nx, cudaMemcpyHostToDevice); cudaMalloc((void**)&tmp_speeds0, sizeof(float)*Ny*Nx); cudaMalloc((void**)&tmp_speeds1, sizeof(float)*Ny*Nx); cudaMalloc((void**)&tmp_speeds2, sizeof(float)*Ny*Nx); cudaMalloc((void**)&tmp_speeds3, sizeof(float)*Ny*Nx); cudaMalloc((void**)&tmp_speeds4, sizeof(float)*Ny*Nx); cudaMalloc((void**)&tmp_speeds5, sizeof(float)*Ny*Nx); cudaMalloc((void**)&tmp_speeds6, sizeof(float)*Ny*Nx); cudaMalloc((void**)&tmp_speeds7, sizeof(float)*Ny*Nx); cudaMalloc((void**)&tmp_speeds8, sizeof(float)*Ny*Nx); int *obstacles, *partial_sum2; float *partial_sum; cudaMalloc((void**)&obstacles, sizeof(int)*Ny*Nx); cudaMalloc((void**)&partial_sum, sizeof(float)*(Ny/LOCALSIZEY)*(Nx/LOCALSIZEX)*MaxIters); cudaMalloc((void**)&partial_sum2, sizeof(int)*(Ny/LOCALSIZEY)*(Nx/LOCALSIZEX)*MaxIters); cudaMemcpy(obstacles, obstaclesHost, sizeof(int)*Ny*Nx, cudaMemcpyHostToDevice); // parameters for kernel float omega = params.omega; float densityaccel = params.density*params.accel; dim3 grids(Nx/LOCALSIZEX, Ny/LOCALSIZEY); dim3 threads(LOCALSIZEX, LOCALSIZEY); for (int tt = 0; tt < MaxIters; tt++){ if (tt == WARMUPS - 1) { //start timer after warmup cudaDeviceSynchronize(); gettimeofday(&timstr, NULL); tic = timstr.tv_sec * 1e6 + timstr.tv_usec; } d2q9_bgk<<<grids, threads>>>( speeds0, speeds1, speeds2, speeds3, speeds4, speeds5, speeds6, speeds7, speeds8, tmp_speeds0, tmp_speeds1, tmp_speeds2, tmp_speeds3, tmp_speeds4, tmp_speeds5, tmp_speeds6, tmp_speeds7, tmp_speeds8, obstacles, partial_sum, partial_sum2, densityaccel, omega, Nx, Ny, tt ); // swap the buffers float* speed_tmp = speeds0; speeds0 = tmp_speeds0; tmp_speeds0 = speed_tmp; speed_tmp = speeds1; speeds1 = tmp_speeds1; tmp_speeds1 = speed_tmp; speed_tmp = speeds2; speeds2 = tmp_speeds2; tmp_speeds2 = speed_tmp; speed_tmp = speeds3; speeds3 = tmp_speeds3; tmp_speeds3 = speed_tmp; speed_tmp = speeds4; speeds4 = tmp_speeds4; tmp_speeds4 = speed_tmp; speed_tmp = speeds5; speeds5 = tmp_speeds5; tmp_speeds5 = speed_tmp; speed_tmp = speeds6; speeds6 = tmp_speeds6; tmp_speeds6 = speed_tmp; speed_tmp = speeds7; speeds7 = tmp_speeds7; tmp_speeds7 = speed_tmp; speed_tmp = speeds8; speeds8 = tmp_speeds8; tmp_speeds8 = speed_tmp; } //end timer cudaDeviceSynchronize(); gettimeofday(&timstr, NULL); toc = timstr.tv_sec * 1e6 + timstr.tv_usec; printf("After warmup for %d iterations, ", WARMUPS); printf("average kernel execution time over %d iterations:\t\t\t%.6lf (us)\n", MaxIters - WARMUPS, (toc - tic) / (MaxIters - WARMUPS)); cudaMemcpy(tot_up, partial_sum, sizeof(float)*(Ny/LOCALSIZEY)*(Nx/LOCALSIZEX)*MaxIters, cudaMemcpyDeviceToHost); cudaMemcpy(tot_cellsp, partial_sum2, sizeof(int)*(Ny/LOCALSIZEY)*(Nx/LOCALSIZEX)*MaxIters, cudaMemcpyDeviceToHost); cudaMemcpy(speedsHostS0, speeds0, sizeof(float)*Ny*Nx, cudaMemcpyDeviceToHost); cudaMemcpy(speedsHostS1, speeds1, sizeof(float)*Ny*Nx, cudaMemcpyDeviceToHost); cudaMemcpy(speedsHostS2, speeds2, sizeof(float)*Ny*Nx, cudaMemcpyDeviceToHost); cudaMemcpy(speedsHostS3, speeds3, sizeof(float)*Ny*Nx, cudaMemcpyDeviceToHost); cudaMemcpy(speedsHostS4, speeds4, sizeof(float)*Ny*Nx, cudaMemcpyDeviceToHost); cudaMemcpy(speedsHostS5, speeds5, sizeof(float)*Ny*Nx, cudaMemcpyDeviceToHost); cudaMemcpy(speedsHostS6, speeds6, sizeof(float)*Ny*Nx, cudaMemcpyDeviceToHost); cudaMemcpy(speedsHostS7, speeds7, sizeof(float)*Ny*Nx, cudaMemcpyDeviceToHost); cudaMemcpy(speedsHostS8, speeds8, sizeof(float)*Ny*Nx, cudaMemcpyDeviceToHost); cudaFree(speeds0); cudaFree(speeds1); cudaFree(speeds2); cudaFree(speeds3); cudaFree(speeds4); cudaFree(speeds5); cudaFree(speeds6); cudaFree(speeds7); cudaFree(speeds8); cudaFree(tmp_speeds0); cudaFree(tmp_speeds1); cudaFree(tmp_speeds2); cudaFree(tmp_speeds3); cudaFree(tmp_speeds4); cudaFree(tmp_speeds5); cudaFree(tmp_speeds6); cudaFree(tmp_speeds7); cudaFree(tmp_speeds8); cudaFree(obstacles); cudaFree(partial_sum2); cudaFree(partial_sum); float tot_u = 0; int tot_cells = 0; for (int tt = 0; tt < params.maxIters; tt++){ tot_u = 0; tot_cells = 0; for(int i = 0; i < params.nx/LOCALSIZEX*params.ny/LOCALSIZEY; i++){ tot_u += tot_up[i+tt*params.nx/LOCALSIZEX*params.ny/LOCALSIZEY]; tot_cells += tot_cellsp[i+tt*params.nx/LOCALSIZEX*params.ny/LOCALSIZEY]; //printf("%d %f %d\n", i, tot_u, tot_cells); } av_vels[tt] = tot_u/tot_cells; } // put answers back into cells for (int jj = 0; jj < params.ny; jj++) { for (int ii = 0; ii < params.nx; ii++) { cells[ii + jj*params.nx].speeds[0] = speedsHostS0[ii + jj*params.nx]; cells[ii + jj*params.nx].speeds[1] = speedsHostS1[ii + jj*params.nx]; cells[ii + jj*params.nx].speeds[2] = speedsHostS2[ii + jj*params.nx]; cells[ii + jj*params.nx].speeds[3] = speedsHostS3[ii + jj*params.nx]; cells[ii + jj*params.nx].speeds[4] = speedsHostS4[ii + jj*params.nx]; cells[ii + jj*params.nx].speeds[5] = speedsHostS5[ii + jj*params.nx]; cells[ii + jj*params.nx].speeds[6] = speedsHostS6[ii + jj*params.nx]; cells[ii + jj*params.nx].speeds[7] = speedsHostS7[ii + jj*params.nx]; cells[ii + jj*params.nx].speeds[8] = speedsHostS8[ii + jj*params.nx]; } } /* write final values and free memory */ printf("==done==\n"); printf("Reynolds number:\t\t%.12E\n", calc_reynolds(params, cells, obstaclesHost)); write_values(params, cells, obstaclesHost, av_vels); finalise(cells, tmp_cells, obstaclesHost, av_vels); free(speedsHostS0); free(speedsHostS1); free(speedsHostS2); free(speedsHostS3); free(speedsHostS4); free(speedsHostS5); free(speedsHostS6); free(speedsHostS7); free(speedsHostS8); free(tot_up); free(tot_cellsp); return EXIT_SUCCESS; } float av_velocity(const t_param params, t_speed* cells, int* obstacles) { int tot_cells = 0; /* no. of cells used in calculation */ float tot_u; /* accumulated magnitudes of velocity for each cell */ /* initialise */ tot_u = 0.f; /* loop over all non-blocked cells */ for (int jj = 0; jj < params.ny; jj++) { for (int ii = 0; ii < params.nx; ii++) { /* ignore occupied cells */ if (!obstacles[ii + jj*params.nx]) { /* local density total */ float local_density = 0.f; for (int kk = 0; kk < NSPEEDS; kk++) { local_density += cells[ii + jj*params.nx].speeds[kk]; } /* x-component of velocity */ float u_x = (cells[ii + jj*params.nx].speeds[1] + cells[ii + jj*params.nx].speeds[5] + cells[ii + jj*params.nx].speeds[8] - (cells[ii + jj*params.nx].speeds[3] + cells[ii + jj*params.nx].speeds[6] + cells[ii + jj*params.nx].speeds[7])) / local_density; /* compute y velocity component */ float u_y = (cells[ii + jj*params.nx].speeds[2] + cells[ii + jj*params.nx].speeds[5] + cells[ii + jj*params.nx].speeds[6] - (cells[ii + jj*params.nx].speeds[4] + cells[ii + jj*params.nx].speeds[7] + cells[ii + jj*params.nx].speeds[8])) / local_density; /* accumulate the norm of x- and y- velocity components */ tot_u += sqrtf((u_x * u_x) + (u_y * u_y)); /* increase counter of inspected cells */ ++tot_cells; } } } return tot_u / (float)tot_cells; } int initialise(const char* paramfile, const char* obstaclefile, t_param* params, t_speed** cells_ptr, t_speed** tmp_cells_ptr, int** obstacles_ptr, float** av_vels_ptr){ char message[1024]; /* message buffer */ FILE* fp; /* file pointer */ int xx, yy; /* generic array indices */ int blocked; /* indicates whether a cell is blocked by an obstacle */ int retval; /* to hold return value for checking */ /* open the parameter file */ fp = fopen(paramfile, "r"); if (fp == NULL) { sprintf(message, "could not open input parameter file: %s", paramfile); die(message, __LINE__, __FILE__); } /* read in the parameter values */ retval = fscanf(fp, "%d\n", &(params->nx)); if (retval != 1) die("could not read param file: nx", __LINE__, __FILE__); retval = fscanf(fp, "%d\n", &(params->ny)); if (retval != 1) die("could not read param file: ny", __LINE__, __FILE__); retval = fscanf(fp, "%d\n", &(params->maxIters)); if (retval != 1) die("could not read param file: maxIters", __LINE__, __FILE__); retval = fscanf(fp, "%d\n", &(params->reynolds_dim)); if (retval != 1) die("could not read param file: reynolds_dim", __LINE__, __FILE__); retval = fscanf(fp, "%f\n", &(params->density)); if (retval != 1) die("could not read param file: density", __LINE__, __FILE__); retval = fscanf(fp, "%f\n", &(params->accel)); if (retval != 1) die("could not read param file: accel", __LINE__, __FILE__); retval = fscanf(fp, "%f\n", &(params->omega)); if (retval != 1) die("could not read param file: omega", __LINE__, __FILE__); /* and close up the file */ fclose(fp); /* ** allocate memory. ** ** remember C is pass-by-value, so we need to ** pass pointers into the initialise function. ** ** nb we are allocating a 1D array, so that the ** memory will be contiguous. We still want to ** index this memory as if it were a (row major ** ordered) 2D array, however. We will perform ** some arithmetic using the row and column ** coordinates, inside the square brackets, when ** we want to access elements of this array. ** ** note also that we are using a structure to ** hold an array of 'speeds'. We will allocate ** a 1D array of these structs. */ /* main grid */ *cells_ptr = (t_speed*)malloc(sizeof(t_speed) * (params->ny * params->nx)); if (*cells_ptr == NULL) die("cannot allocate memory for cells", __LINE__, __FILE__); /* 'helper' grid, used as scratch space */ *tmp_cells_ptr = (t_speed*)malloc(sizeof(t_speed) * (params->ny * params->nx)); if (*tmp_cells_ptr == NULL) die("cannot allocate memory for tmp_cells", __LINE__, __FILE__); /* the map of obstacles */ *obstacles_ptr = (int*) malloc (sizeof(int) * params->ny * params->nx); if (*obstacles_ptr == NULL) die("cannot allocate column memory for obstacles", __LINE__, __FILE__); /* initialise densities */ float w0 = params->density * 4.f / 9.f; float w1 = params->density / 9.f; float w2 = params->density / 36.f; for (int jj = 0; jj < params->ny; jj++) { for (int ii = 0; ii < params->nx; ii++) { /* centre */ (*cells_ptr)[ii + jj*params->nx].speeds[0] = w0; /* axis directions */ (*cells_ptr)[ii + jj*params->nx].speeds[1] = w1; (*cells_ptr)[ii + jj*params->nx].speeds[2] = w1; (*cells_ptr)[ii + jj*params->nx].speeds[3] = w1; (*cells_ptr)[ii + jj*params->nx].speeds[4] = w1; /* diagonals */ (*cells_ptr)[ii + jj*params->nx].speeds[5] = w2; (*cells_ptr)[ii + jj*params->nx].speeds[6] = w2; (*cells_ptr)[ii + jj*params->nx].speeds[7] = w2; (*cells_ptr)[ii + jj*params->nx].speeds[8] = w2; } } /* first set all cells in obstacle array to zero */ for (int jj = 0; jj < params->ny; jj++) { for (int ii = 0; ii < params->nx; ii++) { (*obstacles_ptr)[ii + jj*params->nx] = 0; } } /* open the obstacle data file */ fp = fopen(obstaclefile, "r"); if (fp == NULL) { sprintf(message, "could not open input obstacles file: %s", obstaclefile); die(message, __LINE__, __FILE__); } /* read-in the blocked cells list */ while ((retval = fscanf(fp, "%d %d %d\n", &xx, &yy, &blocked)) != EOF) { /* some checks */ if (retval != 3) die("expected 3 values per line in obstacle file", __LINE__, __FILE__); if (xx < 0 || xx > params->nx - 1) die("obstacle x-coord out of range", __LINE__, __FILE__); if (yy < 0 || yy > params->ny - 1) die("obstacle y-coord out of range", __LINE__, __FILE__); if (blocked != 1) die("obstacle blocked value should be 1", __LINE__, __FILE__); /* assign to array */ (*obstacles_ptr)[xx + yy*params->nx] = blocked; } /* and close the file */ fclose(fp); /* ** allocate space to hold a record of the avarage velocities computed ** at each timestep */ *av_vels_ptr = (float*)malloc(sizeof(float) * params->maxIters); return EXIT_SUCCESS; } int finalise(t_speed* cells_ptr, t_speed* tmp_cells_ptr, int* obstacles_ptr, float* av_vels_ptr) { /* ** free up allocated memory */ free(cells_ptr); free(tmp_cells_ptr); free(obstacles_ptr); free(av_vels_ptr); return EXIT_SUCCESS; } float calc_reynolds(const t_param params, t_speed* cells, int* obstacles) { const float viscosity = 1.f / 6.f * (2.f / params.omega - 1.f); return av_velocity(params, cells, obstacles) * params.reynolds_dim / viscosity; } float total_density(const t_param params, t_speed* cells) { float total = 0.f; /* accumulator */ for (int jj = 0; jj < params.ny; jj++) { for (int ii = 0; ii < params.nx; ii++) { for (int kk = 0; kk < NSPEEDS; kk++) { total += cells[ii + jj*params.nx].speeds[kk]; } } } return total; } int write_values(const t_param params, t_speed* cells, int* obstacles, float* av_vels) { FILE* fp; /* file pointer */ const float c_sq = 1.f / 3.f; /* sq. of speed of sound */ float local_density; /* per grid cell sum of densities */ float pressure; /* fluid pressure in grid cell */ float u_x; /* x-component of velocity in grid cell */ float u_y; /* y-component of velocity in grid cell */ float u; /* norm--root of summed squares--of u_x and u_y */ fp = fopen(FINALSTATEFILE, "w"); if (fp == NULL) { die("could not open file output file", __LINE__, __FILE__); } for (int jj = 0; jj < params.ny; jj++) { for (int ii = 0; ii < params.nx; ii++) { /* an occupied cell */ if (obstacles[ii + jj*params.nx]) { u_x = u_y = u = 0.f; pressure = params.density * c_sq; } /* no obstacle */ else { local_density = 0.f; for (int kk = 0; kk < NSPEEDS; kk++) { local_density += cells[ii + jj*params.nx].speeds[kk]; } /* compute x velocity component */ u_x = (cells[ii + jj*params.nx].speeds[1] + cells[ii + jj*params.nx].speeds[5] + cells[ii + jj*params.nx].speeds[8] - (cells[ii + jj*params.nx].speeds[3] + cells[ii + jj*params.nx].speeds[6] + cells[ii + jj*params.nx].speeds[7])) / local_density; /* compute y velocity component */ u_y = (cells[ii + jj*params.nx].speeds[2] + cells[ii + jj*params.nx].speeds[5] + cells[ii + jj*params.nx].speeds[6] - (cells[ii + jj*params.nx].speeds[4] + cells[ii + jj*params.nx].speeds[7] + cells[ii + jj*params.nx].speeds[8])) / local_density; /* compute norm of velocity */ u = sqrtf((u_x * u_x) + (u_y * u_y)); /* compute pressure */ pressure = local_density * c_sq; } /* write to file */ fprintf(fp, "%d %d %.12E %.12E %.12E %.12E %d\n", ii, jj, u_x, u_y, u, pressure, obstacles[ii * params.nx + jj]); } } fclose(fp); fp = fopen(AVVELSFILE, "w"); if (fp == NULL) { die("could not open file output file", __LINE__, __FILE__); } for (int ii = 0; ii < params.maxIters; ii++) { fprintf(fp, "%d:\t%.12E\n", ii, av_vels[ii]); } fclose(fp); return EXIT_SUCCESS; } void die(const char* message, const int line, const char* file) { fprintf(stderr, "Error at line %d of file %s:\n", line, file); fprintf(stderr, "%s\n", message); fflush(stderr); exit(EXIT_FAILURE); } void usage(const char* exe) { fprintf(stderr, "Usage: %s <paramfile> <obstaclefile>\n", exe); exit(EXIT_FAILURE); }
7cf29ba746190b830fca2c3f5b74ea771aa1f4ad.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /* -- MAGMA (version 1.6.1) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver @date January 2015 @generated from zgerbt.cu normal z -> d, Fri Jan 30 19:00:08 2015 @author Adrien REMY */ #include "common_magma.h" #include "dgerbt.h" #define block_height 32 #define block_width 4 #define block_length 256 #define NB 64 ///////////////////////////////////////////////////////////////////////////////////////////////////////////// /** Purpose ------- DPRBT_MVT compute B = UTB to randomize B Arguments --------- @param[in] n INTEGER The number of values of db. n >= 0. @param[in] du DOUBLE_PRECISION array, dimension (n,2) The 2*n vector representing the random butterfly matrix V @param[in,out] db DOUBLE_PRECISION array, dimension (n) The n vector db computed by DGESV_NOPIV_GPU On exit db = du*db @param[in] queue magma_queue_t Queue to execute in. ********************************************************************/ extern "C" void magmablas_dprbt_mtv_q( magma_int_t n, double *du, double *db, magma_queue_t queue) { /* */ magma_int_t threads = block_length; magma_int_t grid = n/(4*block_length) + ((n%(4*block_length))!=0); hipLaunchKernelGGL(( magmablas_dapply_transpose_vector_kernel), dim3(grid), dim3(threads), 0, queue , n/2, du, n, db, 0); hipLaunchKernelGGL(( magmablas_dapply_transpose_vector_kernel), dim3(grid), dim3(threads), 0, queue , n/2, du, n+n/2, db, n/2); threads = block_length; grid = n/(2*block_length) + ((n%(2*block_length))!=0); hipLaunchKernelGGL(( magmablas_dapply_transpose_vector_kernel), dim3(grid), dim3(threads), 0, queue , n, du, 0, db, 0); } /** @see magmablas_dprbt_mtv_q ********************************************************************/ extern "C" void magmablas_dprbt_mtv( magma_int_t n, double *du, double *db) { magmablas_dprbt_mtv_q(n, du, db, magma_stream); } ///////////////////////////////////////////////////////////////////////////////////////////////////////////// /** Purpose ------- DPRBT_MV compute B = VB to obtain the non randomized solution Arguments --------- @param[in] n INTEGER The number of values of db. n >= 0. @param[in,out] db DOUBLE_PRECISION array, dimension (n) The n vector db computed by DGESV_NOPIV_GPU On exit db = dv*db @param[in] dv DOUBLE_PRECISION array, dimension (n,2) The 2*n vector representing the random butterfly matrix V @param[in] queue magma_queue_t Queue to execute in. ********************************************************************/ extern "C" void magmablas_dprbt_mv_q( magma_int_t n, double *dv, double *db, magma_queue_t queue) { magma_int_t threads = block_length; magma_int_t grid = n/(2*block_length) + ((n%(2*block_length))!=0); hipLaunchKernelGGL(( magmablas_dapply_vector_kernel), dim3(grid), dim3(threads), 0, queue , n, dv, 0, db, 0); threads = block_length; grid = n/(4*block_length) + ((n%(4*block_length))!=0); hipLaunchKernelGGL(( magmablas_dapply_vector_kernel), dim3(grid), dim3(threads), 0, queue , n/2, dv, n, db, 0); hipLaunchKernelGGL(( magmablas_dapply_vector_kernel), dim3(grid), dim3(threads), 0, queue , n/2, dv, n+n/2, db, n/2); } /** @see magmablas_dprbt_mtv_q ********************************************************************/ extern "C" void magmablas_dprbt_mv( magma_int_t n, double *dv, double *db) { magmablas_dprbt_mv_q(n, dv, db, magma_stream); } ///////////////////////////////////////////////////////////////////////////////////////////////////////////// /** Purpose ------- DPRBT randomize a square general matrix using partial randomized transformation Arguments --------- @param[in] n INTEGER The number of columns and rows of the matrix dA. n >= 0. @param[in,out] dA DOUBLE_PRECISION array, dimension (n,ldda) The n-by-n matrix dA On exit dA = duT*dA*d_V @param[in] ldda INTEGER The leading dimension of the array dA. LDA >= max(1,n). @param[in] du DOUBLE_PRECISION array, dimension (n,2) The 2*n vector representing the random butterfly matrix U @param[in] dv DOUBLE_PRECISION array, dimension (n,2) The 2*n vector representing the random butterfly matrix V @param[in] queue magma_queue_t Queue to execute in. ********************************************************************/ extern "C" void magmablas_dprbt_q( magma_int_t n, double *dA, magma_int_t ldda, double *du, double *dv, magma_queue_t queue) { du += ldda; dv += ldda; dim3 threads(block_height, block_width); dim3 grid(n/(4*block_height) + ((n%(4*block_height))!=0), n/(4*block_width) + ((n%(4*block_width))!=0)); hipLaunchKernelGGL(( magmablas_delementary_multiplication_kernel), dim3(grid), dim3(threads), 0, queue , n/2, dA, 0, ldda, du, 0, dv, 0); hipLaunchKernelGGL(( magmablas_delementary_multiplication_kernel), dim3(grid), dim3(threads), 0, queue , n/2, dA, ldda*n/2, ldda, du, 0, dv, n/2); hipLaunchKernelGGL(( magmablas_delementary_multiplication_kernel), dim3(grid), dim3(threads), 0, queue , n/2, dA, n/2, ldda, du, n/2, dv, 0); hipLaunchKernelGGL(( magmablas_delementary_multiplication_kernel), dim3(grid), dim3(threads), 0, queue , n/2, dA, ldda*n/2+n/2, ldda, du, n/2, dv, n/2); dim3 threads2(block_height, block_width); dim3 grid2(n/(2*block_height) + ((n%(2*block_height))!=0), n/(2*block_width) + ((n%(2*block_width))!=0)); hipLaunchKernelGGL(( magmablas_delementary_multiplication_kernel), dim3(grid2), dim3(threads2), 0, queue , n, dA, 0, ldda, du, -ldda, dv, -ldda); } /** @see magmablas_dprbt_q ********************************************************************/ extern "C" void magmablas_dprbt( magma_int_t n, double *dA, magma_int_t ldda, double *du, double *dv) { magmablas_dprbt_q(n, dA, ldda, du, dv, magma_stream); } ///////////////////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////////////// // adds x += r --and-- // copies r = b // each thread does one index, x[i] and r[i] __global__ void daxpycp2_kernel( int m, double *r, double *x, const double *b) { const int i = threadIdx.x + blockIdx.x*NB; if ( i < m ) { x[i] = MAGMA_D_ADD( x[i], r[i] ); r[i] = b[i]; } } // ---------------------------------------------------------------------- // adds x += r --and-- // copies r = b extern "C" void magmablas_daxpycp2_q( magma_int_t m, double *r, double *x, const double *b, magma_queue_t queue ) { dim3 threads( NB ); dim3 grid( (m + NB - 1)/NB ); hipLaunchKernelGGL(( daxpycp2_kernel) , dim3(grid), dim3(threads), 0, queue , m, r, x, b ); } extern "C" void magmablas_daxpycp2( magma_int_t m, double *r, double *x, const double *b) { magmablas_daxpycp2_q( m, r, x, b, magma_stream ); }
7cf29ba746190b830fca2c3f5b74ea771aa1f4ad.cu
/* -- MAGMA (version 1.6.1) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver @date January 2015 @generated from zgerbt.cu normal z -> d, Fri Jan 30 19:00:08 2015 @author Adrien REMY */ #include "common_magma.h" #include "dgerbt.h" #define block_height 32 #define block_width 4 #define block_length 256 #define NB 64 ///////////////////////////////////////////////////////////////////////////////////////////////////////////// /** Purpose ------- DPRBT_MVT compute B = UTB to randomize B Arguments --------- @param[in] n INTEGER The number of values of db. n >= 0. @param[in] du DOUBLE_PRECISION array, dimension (n,2) The 2*n vector representing the random butterfly matrix V @param[in,out] db DOUBLE_PRECISION array, dimension (n) The n vector db computed by DGESV_NOPIV_GPU On exit db = du*db @param[in] queue magma_queue_t Queue to execute in. ********************************************************************/ extern "C" void magmablas_dprbt_mtv_q( magma_int_t n, double *du, double *db, magma_queue_t queue) { /* */ magma_int_t threads = block_length; magma_int_t grid = n/(4*block_length) + ((n%(4*block_length))!=0); magmablas_dapply_transpose_vector_kernel<<< grid, threads, 0, queue >>>(n/2, du, n, db, 0); magmablas_dapply_transpose_vector_kernel<<< grid, threads, 0, queue >>>(n/2, du, n+n/2, db, n/2); threads = block_length; grid = n/(2*block_length) + ((n%(2*block_length))!=0); magmablas_dapply_transpose_vector_kernel<<< grid, threads, 0, queue >>>(n, du, 0, db, 0); } /** @see magmablas_dprbt_mtv_q ********************************************************************/ extern "C" void magmablas_dprbt_mtv( magma_int_t n, double *du, double *db) { magmablas_dprbt_mtv_q(n, du, db, magma_stream); } ///////////////////////////////////////////////////////////////////////////////////////////////////////////// /** Purpose ------- DPRBT_MV compute B = VB to obtain the non randomized solution Arguments --------- @param[in] n INTEGER The number of values of db. n >= 0. @param[in,out] db DOUBLE_PRECISION array, dimension (n) The n vector db computed by DGESV_NOPIV_GPU On exit db = dv*db @param[in] dv DOUBLE_PRECISION array, dimension (n,2) The 2*n vector representing the random butterfly matrix V @param[in] queue magma_queue_t Queue to execute in. ********************************************************************/ extern "C" void magmablas_dprbt_mv_q( magma_int_t n, double *dv, double *db, magma_queue_t queue) { magma_int_t threads = block_length; magma_int_t grid = n/(2*block_length) + ((n%(2*block_length))!=0); magmablas_dapply_vector_kernel<<< grid, threads, 0, queue >>>(n, dv, 0, db, 0); threads = block_length; grid = n/(4*block_length) + ((n%(4*block_length))!=0); magmablas_dapply_vector_kernel<<< grid, threads, 0, queue >>>(n/2, dv, n, db, 0); magmablas_dapply_vector_kernel<<< grid, threads, 0, queue >>>(n/2, dv, n+n/2, db, n/2); } /** @see magmablas_dprbt_mtv_q ********************************************************************/ extern "C" void magmablas_dprbt_mv( magma_int_t n, double *dv, double *db) { magmablas_dprbt_mv_q(n, dv, db, magma_stream); } ///////////////////////////////////////////////////////////////////////////////////////////////////////////// /** Purpose ------- DPRBT randomize a square general matrix using partial randomized transformation Arguments --------- @param[in] n INTEGER The number of columns and rows of the matrix dA. n >= 0. @param[in,out] dA DOUBLE_PRECISION array, dimension (n,ldda) The n-by-n matrix dA On exit dA = duT*dA*d_V @param[in] ldda INTEGER The leading dimension of the array dA. LDA >= max(1,n). @param[in] du DOUBLE_PRECISION array, dimension (n,2) The 2*n vector representing the random butterfly matrix U @param[in] dv DOUBLE_PRECISION array, dimension (n,2) The 2*n vector representing the random butterfly matrix V @param[in] queue magma_queue_t Queue to execute in. ********************************************************************/ extern "C" void magmablas_dprbt_q( magma_int_t n, double *dA, magma_int_t ldda, double *du, double *dv, magma_queue_t queue) { du += ldda; dv += ldda; dim3 threads(block_height, block_width); dim3 grid(n/(4*block_height) + ((n%(4*block_height))!=0), n/(4*block_width) + ((n%(4*block_width))!=0)); magmablas_delementary_multiplication_kernel<<< grid, threads, 0, queue >>>(n/2, dA, 0, ldda, du, 0, dv, 0); magmablas_delementary_multiplication_kernel<<< grid, threads, 0, queue >>>(n/2, dA, ldda*n/2, ldda, du, 0, dv, n/2); magmablas_delementary_multiplication_kernel<<< grid, threads, 0, queue >>>(n/2, dA, n/2, ldda, du, n/2, dv, 0); magmablas_delementary_multiplication_kernel<<< grid, threads, 0, queue >>>(n/2, dA, ldda*n/2+n/2, ldda, du, n/2, dv, n/2); dim3 threads2(block_height, block_width); dim3 grid2(n/(2*block_height) + ((n%(2*block_height))!=0), n/(2*block_width) + ((n%(2*block_width))!=0)); magmablas_delementary_multiplication_kernel<<< grid2, threads2, 0, queue >>>(n, dA, 0, ldda, du, -ldda, dv, -ldda); } /** @see magmablas_dprbt_q ********************************************************************/ extern "C" void magmablas_dprbt( magma_int_t n, double *dA, magma_int_t ldda, double *du, double *dv) { magmablas_dprbt_q(n, dA, ldda, du, dv, magma_stream); } ///////////////////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////////////// // adds x += r --and-- // copies r = b // each thread does one index, x[i] and r[i] __global__ void daxpycp2_kernel( int m, double *r, double *x, const double *b) { const int i = threadIdx.x + blockIdx.x*NB; if ( i < m ) { x[i] = MAGMA_D_ADD( x[i], r[i] ); r[i] = b[i]; } } // ---------------------------------------------------------------------- // adds x += r --and-- // copies r = b extern "C" void magmablas_daxpycp2_q( magma_int_t m, double *r, double *x, const double *b, magma_queue_t queue ) { dim3 threads( NB ); dim3 grid( (m + NB - 1)/NB ); daxpycp2_kernel <<< grid, threads, 0, queue >>> ( m, r, x, b ); } extern "C" void magmablas_daxpycp2( magma_int_t m, double *r, double *x, const double *b) { magmablas_daxpycp2_q( m, r, x, b, magma_stream ); }
556ebdf6e60295675b00f45d0d6496e7661c621b.hip
// !!! This is a file automatically generated by hipify!!! #include <hip/hip_runtime.h> #include <hip/hip_runtime.h> #include <stdio.h> int main(int argc, char **argv) { double *buf_d = NULL; fprintf(stderr, "Allocating...\n"); hipMalloc((void **) &buf_d, sizeof(double) * 1024); fprintf(stderr, "Allocating DONE.\n"); return 0; }
556ebdf6e60295675b00f45d0d6496e7661c621b.cu
#include <cuda.h> #include <cuda_runtime.h> #include <stdio.h> int main(int argc, char **argv) { double *buf_d = NULL; fprintf(stderr, "Allocating...\n"); cudaMalloc((void **) &buf_d, sizeof(double) * 1024); fprintf(stderr, "Allocating DONE.\n"); return 0; }
7d8a29b570c8014d2a988245d6afb0cd03b8c426.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #ifdef USE_ROCM #include <Vectormath.hpp> #include <Manifoldmath.hpp> #include <vector> #include <memory> #include <cmath> #include <iostream> #include <stdio.h> // CUDA Version namespace Engine { namespace Manifoldmath { scalar norm(const vectorfield & vf) { scalar x = Vectormath::dot(vf, vf); return std::sqrt(x); } void normalize(vectorfield & vf) { scalar sc = 1.0/norm(vf); Vectormath::scale(vf, sc); } void project_parallel(vectorfield & vf1, const vectorfield & vf2) { vectorfield vf3 = vf1; project_orthogonal(vf3, vf2); Vectormath::add_c_a(-1, vf3, vf1); } __global__ void cu_project_orthogonal(Vector3 *vf1, const Vector3 *vf2, scalar proj, size_t N) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if(idx < N) { vf1[idx] -= proj*vf2[idx]; } } // The wrapper for the calling of the actual kernel void project_orthogonal(vectorfield & vf1, const vectorfield & vf2) { int n = vf1.size(); // Get projection scalar proj=Vectormath::dot(vf1, vf2); // Project vf1 hipLaunchKernelGGL(( cu_project_orthogonal), dim3((n+1023)/1024), dim3(1024), 0, 0, vf1.data(), vf2.data(), proj, n); CU_CHECK_AND_SYNC(); } void invert_parallel(vectorfield & vf1, const vectorfield & vf2) { scalar proj=Vectormath::dot(vf1, vf2); Vectormath::add_c_a(-2*proj, vf2, vf1); } void invert_orthogonal(vectorfield & vf1, const vectorfield & vf2) { vectorfield vf3 = vf1; project_orthogonal(vf3, vf2); Vectormath::add_c_a(-2, vf3, vf1); } __global__ void cu_project_tangential(Vector3 *vf1, const Vector3 *vf2, size_t N) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if(idx < N) { vf1[idx] -= vf1[idx].dot(vf2[idx]) * vf2[idx]; } } void project_tangential(vectorfield & vf1, const vectorfield & vf2) { int n = vf1.size(); hipLaunchKernelGGL(( cu_project_tangential), dim3((n+1023)/1024), dim3(1024), 0, 0, vf1.data(), vf2.data(), n); CU_CHECK_AND_SYNC(); } __inline__ __device__ scalar cu_dist_greatcircle(const Vector3 v1, const Vector3 v2) { scalar r = v1.dot(v2); // Prevent NaNs from occurring r = max(-1.0, min(1.0, r)); // Greatcircle distance return std::acos(r); } scalar dist_greatcircle(const Vector3 & v1, const Vector3 & v2) { scalar r = v1.dot(v2); // Prevent NaNs from occurring r = max(-1.0, min(1.0, r)); // Greatcircle distance return std::acos(r); } // Calculates the squares of the geodesic distances between vectors of two vectorfields __global__ void cu_dist_geodesic_2(const Vector3 * vf1, const Vector3 * vf2, scalar * sf, int N) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if(idx < N) { scalar d = cu_dist_greatcircle(vf1[idx], vf2[idx]); sf[idx] = d*d; } } scalar dist_geodesic(const vectorfield & vf1, const vectorfield & vf2) { int n = vf1.size(); scalarfield sf(n); hipLaunchKernelGGL(( cu_dist_geodesic_2), dim3((n+1023)/1024), dim3(1024), 0, 0, vf1.data(), vf2.data(), sf.data(), n); CU_CHECK_AND_SYNC(); scalar dist = Vectormath::sum(sf); return sqrt(dist); } /* Calculates the 'tangent' vectors, i.e.in crudest approximation the difference between an image and the neighbouring */ void Tangents(std::vector<std::shared_ptr<vectorfield>> configurations, const std::vector<scalar> & energies, std::vector<vectorfield> & tangents) { int noi = configurations.size(); int nos = (*configurations[0]).size(); for (int idx_img = 0; idx_img < noi; ++idx_img) { auto& image = *configurations[idx_img]; // First Image if (idx_img == 0) { auto& image_plus = *configurations[idx_img + 1]; Vectormath::set_c_a( 1, image_plus, tangents[idx_img]); Vectormath::add_c_a(-1, image, tangents[idx_img]); } // Last Image else if (idx_img == noi - 1) { auto& image_minus = *configurations[idx_img - 1]; Vectormath::set_c_a( 1, image, tangents[idx_img]); Vectormath::add_c_a(-1, image_minus, tangents[idx_img]); } // Images Inbetween else { auto& image_plus = *configurations[idx_img + 1]; auto& image_minus = *configurations[idx_img - 1]; // Energies scalar E_mid = 0, E_plus = 0, E_minus = 0; E_mid = energies[idx_img]; E_plus = energies[idx_img + 1]; E_minus = energies[idx_img - 1]; // Vectors to neighbouring images vectorfield t_plus(nos), t_minus(nos); Vectormath::set_c_a( 1, image_plus, t_plus); Vectormath::add_c_a(-1, image, t_plus); Vectormath::set_c_a( 1, image, t_minus); Vectormath::add_c_a(-1, image_minus, t_minus); // Near maximum or minimum if ((E_plus < E_mid && E_mid > E_minus) || (E_plus > E_mid && E_mid < E_minus)) { // Get a smooth transition between forward and backward tangent scalar E_max = ::max(std::abs(E_plus - E_mid), std::abs(E_minus - E_mid)); scalar E_min = ::min(std::abs(E_plus - E_mid), std::abs(E_minus - E_mid)); if (E_plus > E_minus) { Vectormath::set_c_a(E_max, t_plus, tangents[idx_img]); Vectormath::add_c_a(E_min, t_minus, tangents[idx_img]); } else { Vectormath::set_c_a(E_min, t_plus, tangents[idx_img]); Vectormath::add_c_a(E_max, t_minus, tangents[idx_img]); } } // Rising slope else if (E_plus > E_mid && E_mid > E_minus) { Vectormath::set_c_a(1, t_plus, tangents[idx_img]); } // Falling slope else if (E_plus < E_mid && E_mid < E_minus) { Vectormath::set_c_a(1, t_minus, tangents[idx_img]); //tangents = t_minus; for (int i = 0; i < nos; ++i) { tangents[idx_img][i] = t_minus[i]; } } // No slope(constant energy) else { Vectormath::set_c_a(1, t_plus, tangents[idx_img]); Vectormath::add_c_a(1, t_minus, tangents[idx_img]); } } // Project tangents into tangent planes of spin vectors to make them actual tangents project_tangential(tangents[idx_img], image); // Normalise in 3N - dimensional space Manifoldmath::normalize(tangents[idx_img]); }// end for idx_img }// end Tangents } } #endif
7d8a29b570c8014d2a988245d6afb0cd03b8c426.cu
#ifdef USE_CUDA #include <Vectormath.hpp> #include <Manifoldmath.hpp> #include <vector> #include <memory> #include <cmath> #include <iostream> #include <stdio.h> // CUDA Version namespace Engine { namespace Manifoldmath { scalar norm(const vectorfield & vf) { scalar x = Vectormath::dot(vf, vf); return std::sqrt(x); } void normalize(vectorfield & vf) { scalar sc = 1.0/norm(vf); Vectormath::scale(vf, sc); } void project_parallel(vectorfield & vf1, const vectorfield & vf2) { vectorfield vf3 = vf1; project_orthogonal(vf3, vf2); Vectormath::add_c_a(-1, vf3, vf1); } __global__ void cu_project_orthogonal(Vector3 *vf1, const Vector3 *vf2, scalar proj, size_t N) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if(idx < N) { vf1[idx] -= proj*vf2[idx]; } } // The wrapper for the calling of the actual kernel void project_orthogonal(vectorfield & vf1, const vectorfield & vf2) { int n = vf1.size(); // Get projection scalar proj=Vectormath::dot(vf1, vf2); // Project vf1 cu_project_orthogonal<<<(n+1023)/1024, 1024>>>(vf1.data(), vf2.data(), proj, n); CU_CHECK_AND_SYNC(); } void invert_parallel(vectorfield & vf1, const vectorfield & vf2) { scalar proj=Vectormath::dot(vf1, vf2); Vectormath::add_c_a(-2*proj, vf2, vf1); } void invert_orthogonal(vectorfield & vf1, const vectorfield & vf2) { vectorfield vf3 = vf1; project_orthogonal(vf3, vf2); Vectormath::add_c_a(-2, vf3, vf1); } __global__ void cu_project_tangential(Vector3 *vf1, const Vector3 *vf2, size_t N) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if(idx < N) { vf1[idx] -= vf1[idx].dot(vf2[idx]) * vf2[idx]; } } void project_tangential(vectorfield & vf1, const vectorfield & vf2) { int n = vf1.size(); cu_project_tangential<<<(n+1023)/1024, 1024>>>(vf1.data(), vf2.data(), n); CU_CHECK_AND_SYNC(); } __inline__ __device__ scalar cu_dist_greatcircle(const Vector3 v1, const Vector3 v2) { scalar r = v1.dot(v2); // Prevent NaNs from occurring r = max(-1.0, min(1.0, r)); // Greatcircle distance return std::acos(r); } scalar dist_greatcircle(const Vector3 & v1, const Vector3 & v2) { scalar r = v1.dot(v2); // Prevent NaNs from occurring r = max(-1.0, min(1.0, r)); // Greatcircle distance return std::acos(r); } // Calculates the squares of the geodesic distances between vectors of two vectorfields __global__ void cu_dist_geodesic_2(const Vector3 * vf1, const Vector3 * vf2, scalar * sf, int N) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if(idx < N) { scalar d = cu_dist_greatcircle(vf1[idx], vf2[idx]); sf[idx] = d*d; } } scalar dist_geodesic(const vectorfield & vf1, const vectorfield & vf2) { int n = vf1.size(); scalarfield sf(n); cu_dist_geodesic_2<<<(n+1023)/1024, 1024>>>(vf1.data(), vf2.data(), sf.data(), n); CU_CHECK_AND_SYNC(); scalar dist = Vectormath::sum(sf); return sqrt(dist); } /* Calculates the 'tangent' vectors, i.e.in crudest approximation the difference between an image and the neighbouring */ void Tangents(std::vector<std::shared_ptr<vectorfield>> configurations, const std::vector<scalar> & energies, std::vector<vectorfield> & tangents) { int noi = configurations.size(); int nos = (*configurations[0]).size(); for (int idx_img = 0; idx_img < noi; ++idx_img) { auto& image = *configurations[idx_img]; // First Image if (idx_img == 0) { auto& image_plus = *configurations[idx_img + 1]; Vectormath::set_c_a( 1, image_plus, tangents[idx_img]); Vectormath::add_c_a(-1, image, tangents[idx_img]); } // Last Image else if (idx_img == noi - 1) { auto& image_minus = *configurations[idx_img - 1]; Vectormath::set_c_a( 1, image, tangents[idx_img]); Vectormath::add_c_a(-1, image_minus, tangents[idx_img]); } // Images Inbetween else { auto& image_plus = *configurations[idx_img + 1]; auto& image_minus = *configurations[idx_img - 1]; // Energies scalar E_mid = 0, E_plus = 0, E_minus = 0; E_mid = energies[idx_img]; E_plus = energies[idx_img + 1]; E_minus = energies[idx_img - 1]; // Vectors to neighbouring images vectorfield t_plus(nos), t_minus(nos); Vectormath::set_c_a( 1, image_plus, t_plus); Vectormath::add_c_a(-1, image, t_plus); Vectormath::set_c_a( 1, image, t_minus); Vectormath::add_c_a(-1, image_minus, t_minus); // Near maximum or minimum if ((E_plus < E_mid && E_mid > E_minus) || (E_plus > E_mid && E_mid < E_minus)) { // Get a smooth transition between forward and backward tangent scalar E_max = std::max(std::abs(E_plus - E_mid), std::abs(E_minus - E_mid)); scalar E_min = std::min(std::abs(E_plus - E_mid), std::abs(E_minus - E_mid)); if (E_plus > E_minus) { Vectormath::set_c_a(E_max, t_plus, tangents[idx_img]); Vectormath::add_c_a(E_min, t_minus, tangents[idx_img]); } else { Vectormath::set_c_a(E_min, t_plus, tangents[idx_img]); Vectormath::add_c_a(E_max, t_minus, tangents[idx_img]); } } // Rising slope else if (E_plus > E_mid && E_mid > E_minus) { Vectormath::set_c_a(1, t_plus, tangents[idx_img]); } // Falling slope else if (E_plus < E_mid && E_mid < E_minus) { Vectormath::set_c_a(1, t_minus, tangents[idx_img]); //tangents = t_minus; for (int i = 0; i < nos; ++i) { tangents[idx_img][i] = t_minus[i]; } } // No slope(constant energy) else { Vectormath::set_c_a(1, t_plus, tangents[idx_img]); Vectormath::add_c_a(1, t_minus, tangents[idx_img]); } } // Project tangents into tangent planes of spin vectors to make them actual tangents project_tangential(tangents[idx_img], image); // Normalise in 3N - dimensional space Manifoldmath::normalize(tangents[idx_img]); }// end for idx_img }// end Tangents } } #endif
41cd7ffced84f486cd8205df8508bb3009b21769.hip
// !!! This is a file automatically generated by hipify!!! /** * Copyright 2020 Mobvoi Inc. (authors: Fangjun Kuang) * * See LICENSE for clarification regarding multiple authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <algorithm> #include <cstdlib> #include <random> #include <vector> #include "k2/csrc/fsa.h" #include "k2/csrc/host/fsa_util.h" #include "k2/csrc/host_shim.h" #include "k2/csrc/macros.h" #include "k2/csrc/math.h" #include "k2/csrc/test_utils.h" namespace k2 { Array1<int32_t> GenerateRandomIndexes(ContextPtr context, bool allow_minus_one, int32_t dim, int32_t max_value) { std::vector<int32_t> indexes(dim); int32_t start = allow_minus_one ? -1 : 0; for (int32_t &i : indexes) { int32_t tmp = RandInt(-max_value, max_value); i = ::max(tmp, start); } return Array1<int32_t>(context, indexes); } } // namespace k2
41cd7ffced84f486cd8205df8508bb3009b21769.cu
/** * Copyright 2020 Mobvoi Inc. (authors: Fangjun Kuang) * * See LICENSE for clarification regarding multiple authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <algorithm> #include <cstdlib> #include <random> #include <vector> #include "k2/csrc/fsa.h" #include "k2/csrc/host/fsa_util.h" #include "k2/csrc/host_shim.h" #include "k2/csrc/macros.h" #include "k2/csrc/math.h" #include "k2/csrc/test_utils.h" namespace k2 { Array1<int32_t> GenerateRandomIndexes(ContextPtr context, bool allow_minus_one, int32_t dim, int32_t max_value) { std::vector<int32_t> indexes(dim); int32_t start = allow_minus_one ? -1 : 0; for (int32_t &i : indexes) { int32_t tmp = RandInt(-max_value, max_value); i = std::max(tmp, start); } return Array1<int32_t>(context, indexes); } } // namespace k2
fa8d8698e8aa9b406c17a56c2f806a3af8c4bc2c.hip
// !!! This is a file automatically generated by hipify!!! #include <stdio.h> #include <stdlib.h> #include <hip/hip_runtime.h> #include <time.h> #define TIMER_CREATE(t) \ hipEvent_t t##_start, t##_end; \ hipEventCreate(&t##_start); \ hipEventCreate(&t##_end); #define TIMER_START(t) \ hipEventRecord(t##_start); \ hipEventSynchronize(t##_start); \ #define TIMER_END(t) \ hipEventRecord(t##_end); \ hipEventSynchronize(t##_end); \ hipEventElapsedTime(&t, t##_start, t##_end); \ hipEventDestroy(t##_start); \ hipEventDestroy(t##_end); #define TILE_SIZE 16 #define CUDA_TIMING #define DEBUG #define HIST_SIZE 256 #define SCAN_SIZE HIST_SIZE*2 unsigned char *input_gpu; //unsigned char *output_gpu; float *cdf; float *hist_array; double CLOCK() { struct timespec t; clock_gettime(CLOCK_MONOTONIC, &t); return (t.tv_sec * 1000)+(t.tv_nsec*1e-6); } /*******************************************************/ /* Cuda Error Function */ /*******************************************************/ inline hipError_t checkCuda(hipError_t result) { #if defined(DEBUG) || defined(_DEBUG) if (result != hipSuccess) { fprintf(stderr, "CUDA Runtime Error: %s\n", hipGetErrorString(result)); exit(-1); } #endif return result; } // sparse histogram with shared memory __global__ void kernel_hist(unsigned char *input, float *hist, unsigned int height, unsigned int width){ //int x = blockIdx.x*TILE_SIZE+threadIdx.x; //int y = blockIdx.y*TILE_SIZE+threadIdx.y; int interval_x = (width - 1) / TILE_SIZE + 1; int interval_y = (height - 1) / TILE_SIZE + 1; int y = threadIdx.y*interval_y+blockIdx.y; int x = threadIdx.x*interval_x+blockIdx.x; //int location = y*TILE_SIZE*gridDim.x+x; //int location = y*width+x; int location = y*width + x; int block_loc = threadIdx.y*TILE_SIZE+threadIdx.x; // HIST_SIZE 256 __shared__ unsigned int hist_shared[HIST_SIZE]; /*if (block_loc<HIST_SIZE) hist_shared[block_loc]=0; __syncthreads();*/ hist_shared[block_loc]=0; __syncthreads(); if (x<width && y<height) atomicAdd(&(hist_shared[input[location]]),1); __syncthreads(); //if (block_loc<HIST_SIZE) { atomicAdd(&(hist[block_loc]),(float)hist_shared[block_loc]); //} } //normal histogram with shared memory __global__ void kernel_hist3(unsigned char *input, float *hist, unsigned int height, unsigned int width){ int x = blockIdx.x*TILE_SIZE+threadIdx.x; int y = blockIdx.y*TILE_SIZE+threadIdx.y; // int interval_x = (width - 1) / TILE_SIZE + 1; // int interval_y = (height - 1) / TILE_SIZE + 1; // int y = threadIdx.y*interval_y+blockIdx.y; // int x = threadIdx.x*interval_x+blockIdx.x; // int location = y*TILE_SIZE*gridDim.x+x; // int location = y*width+x; int location = y*width + x; int block_loc = threadIdx.y*TILE_SIZE+threadIdx.x; // HIST_SIZE 256 __shared__ unsigned int hist_shared[HIST_SIZE]; /*if (block_loc<HIST_SIZE) hist_shared[block_loc]=0; __syncthreads();*/ hist_shared[block_loc]=0; __syncthreads(); if (x<width && y<height) atomicAdd(&(hist_shared[input[location]]),1); __syncthreads(); //if (block_loc<HIST_SIZE) { atomicAdd(&(hist[block_loc]),(float)hist_shared[block_loc]); //} } __global__ void kernel_hist_global(unsigned char *input, float *hist, unsigned int height, unsigned int width){ int x = blockIdx.x*TILE_SIZE+threadIdx.x; int y = blockIdx.y*TILE_SIZE+threadIdx.y; int location = y*TILE_SIZE*gridDim.x+x; // int block_loc = threadIdx.y*TILE_SIZE+threadIdx.x; // HIST_SIZE 256 //__shared__ unsigned int hist_shared[HIST_SIZE]; if (x<width && y<height) atomicAdd(&(hist[input[location]]),1); __syncthreads(); } __global__ void kernel_cdf(float *hist_array, int size){ __shared__ float p[HIST_SIZE]; int tid=blockIdx.x*blockDim.x+threadIdx.x; if (tid<HIST_SIZE){ p[tid]=hist_array[tid] / (float)size; } __syncthreads(); for (int i=1; i<=HIST_SIZE;i=i<<1){ int ai=(threadIdx.x+1)*i*2-1; if (ai<HIST_SIZE) p[ai]+=p[ai-i]; __syncthreads(); } for (int i=HIST_SIZE/2;i>0;i=i>>1){ int bi=(threadIdx.x+1)*i*2-1; if (bi+i<HIST_SIZE) p[bi+i]+=p[bi]; __syncthreads(); } if (tid<HIST_SIZE) hist_array[tid]=p[threadIdx.x]; } __global__ void kernel_equlization( unsigned char *input, float * cdf, unsigned int height, unsigned int width){ int x = blockIdx.x*TILE_SIZE+threadIdx.x; int y = blockIdx.y*TILE_SIZE+threadIdx.y; int location = y*TILE_SIZE*gridDim.x+x; float min=cdf[0]; float down=0.0F; float up=255.0F; if (x<width && y<height) { float value=255.0F * (cdf[input[location]]-min) / (1.0F-min); if (value<down) value=down; if (value>up) value=up; input[location]=(unsigned char) value; } } void histogram_gpu(unsigned char *data, unsigned int height, unsigned int width){ //float cdf_cpu[HIST_SIZE]={0}; //unsigned int hist_cpu[HIST_SIZE]={0}; int gridXSize = 1 + (( width - 1) / TILE_SIZE); int gridYSize = 1 + ((height - 1) / TILE_SIZE); int XSize = gridXSize*TILE_SIZE; int YSize = gridYSize*TILE_SIZE; // Both are the same size (CPU/GPU). int size = XSize*YSize; int block_size2=256; int grid_size2=1+((width*height-1) / block_size2); hipHostRegister((void*)data, size*sizeof(unsigned char),0); // Allocate arrays in GPU memory // float Ktime00; // TIMER_CREATE(Ktime00); // TIMER_START(Ktime00); hipMalloc((void**)&input_gpu , size*sizeof(unsigned char)); hipMalloc((void**)&hist_array , HIST_SIZE*sizeof(float)); // hipMallocManaged((void**)&input_gpu , size*sizeof(unsigned char)); // hipMallocManaged((void**)&hist_array , HIST_SIZE*sizeof(float)); // hipHostRegister((void*)&input_gpu , size*sizeof(unsigned char),0); // hipHostRegister((void*)&hist_array , HIST_SIZE*sizeof(float),0); // TIMER_END(Ktime00); // printf("CUDA_MALLOC Execution Time: %f ms\n", Ktime00); // hipMalloc((void**)&output_gpu , size*sizeof(unsigned char)); // checkCuda(hipMalloc((void**)&cdf , size*sizeof(float))); // init output_gpu to 0 //checkCuda(hipMemset(output_gpu , 0 , size*sizeof(unsigned char))); hipMemset(hist_array , 0 , HIST_SIZE*sizeof(float)); // checkCuda(hipMemset(cdf , 0 , HIST_SIZE*sizeof(float))); // Copy data to GPU hipMemcpy(input_gpu, data, size*sizeof(char), hipMemcpyHostToDevice); checkCuda(hipDeviceSynchronize()); // Execute algorithm dim3 dimGrid(gridXSize, gridYSize); dim3 dimBlock(TILE_SIZE, TILE_SIZE); //hist2 dim3 dimGrid2(grid_size2); dim3 dimBlock2(block_size2); dim3 dimCdfGrid(1); dim3 dimCdfBlock(HIST_SIZE); // Kernel Call #if defined(CUDA_TIMING) float Ktime; TIMER_CREATE(Ktime); TIMER_START(Ktime); #endif // float Ktime0; // TIMER_CREATE(Ktime0); // TIMER_START(Ktime0); hipLaunchKernelGGL(( kernel_hist), dim3(dimGrid), dim3(dimBlock), 0, 0, input_gpu, hist_array, height, width); checkCuda(hipPeekAtLastError()); checkCuda(hipDeviceSynchronize()); //TIMER_END(Ktime0); //printf("HIST Kernel Execution Time: %f ms\n", Ktime0); // float Ktime1; // TIMER_CREATE(Ktime1); // TIMER_START(Ktime1); hipLaunchKernelGGL(( kernel_cdf), dim3(dimCdfGrid),dim3(dimCdfBlock), 0, 0, hist_array, height*width); checkCuda(hipPeekAtLastError()); checkCuda(hipDeviceSynchronize()); // TIMER_END(Ktime1); // printf("CDF Kernel Execution Time: %f ms\n", Ktime1); // float Ktime2; // TIMER_CREATE(Ktime2); // TIMER_START(Ktime2); hipLaunchKernelGGL(( kernel_equlization), dim3(dimGrid), dim3(dimBlock), 0, 0, input_gpu, hist_array, height, width); checkCuda(hipPeekAtLastError()); checkCuda(hipDeviceSynchronize()); // TIMER_END(Ktime2); // printf("EQUALIZATION Kernel Execution Time: %f ms\n", Ktime2); #if defined(CUDA_TIMING) TIMER_END(Ktime); printf("Kernel Execution Time: %f ms\n", Ktime); #endif // Retrieve results from the GPU checkCuda(hipMemcpy(data, input_gpu, size*sizeof(unsigned char), hipMemcpyDeviceToHost)); // Free resources and end the program // checkCuda(hipFree(output_gpu)); checkCuda(hipFree(input_gpu)); checkCuda(hipFree(hist_array)); } void histogram_gpu_warmup(unsigned char *data, unsigned int height, unsigned int width){ //float cdf_cpu[HIST_SIZE]={0}; //unsigned int hist_cpu[HIST_SIZE]={0}; int gridXSize = 1 + (( width - 1) / TILE_SIZE); int gridYSize = 1 + ((height - 1) / TILE_SIZE); int XSize = gridXSize*TILE_SIZE; int YSize = gridYSize*TILE_SIZE; // Both are the same size (CPU/GPU). int size = XSize*YSize; int block_size2=256; int grid_size2=1+((width*height-1) / block_size2); // Allocate arrays in GPU memory // float Ktime00; // TIMER_CREATE(Ktime00); // TIMER_START(Ktime00); hipHostRegister((void*)data, size*sizeof(unsigned char),0); hipMalloc((void**)&input_gpu , size*sizeof(unsigned char)); hipMalloc((void**)&hist_array , HIST_SIZE*sizeof(float)); // hipMallocManaged((void**)&input_gpu , size*sizeof(unsigned char)); // hipMallocManaged((void**)&hist_array , HIST_SIZE*sizeof(float)); // hipHostRegister((void*)&input_gpu , size*sizeof(unsigned char),0); // hipHostRegister((void*)&hist_array , HIST_SIZE*sizeof(float),0); // TIMER_END(Ktime00); //printf("CUDA_MALLOC Execution Time: %f ms\n", Ktime00); // hipMalloc((void**)&output_gpu , size*sizeof(unsigned char)); // checkCuda(hipMalloc((void**)&cdf , size*sizeof(float))); // init output_gpu to 0 //checkCuda(hipMemset(output_gpu , 0 , size*sizeof(unsigned char))); hipMemset(hist_array , 0 , HIST_SIZE*sizeof(float)); // checkCuda(hipMemset(cdf , 0 , HIST_SIZE*sizeof(float))); // Copy data to GPU hipMemcpy(input_gpu, data, size*sizeof(char), hipMemcpyHostToDevice); checkCuda(hipDeviceSynchronize()); // Execute algorithm dim3 dimGrid(gridXSize, gridYSize); dim3 dimBlock(TILE_SIZE, TILE_SIZE); //hist2 dim3 dimGrid2(grid_size2); dim3 dimBlock2(block_size2); dim3 dimCdfGrid(1); dim3 dimCdfBlock(HIST_SIZE); // Kernel Call #if defined(CUDA_TIMING) float Ktime; TIMER_CREATE(Ktime); TIMER_START(Ktime); #endif // float Ktime0; // TIMER_CREATE(Ktime0); // TIMER_START(Ktime0); hipLaunchKernelGGL(( kernel_hist), dim3(dimGrid), dim3(dimBlock), 0, 0, input_gpu, hist_array, height, width); checkCuda(hipPeekAtLastError()); checkCuda(hipDeviceSynchronize()); // TIMER_END(Ktime0); //printf("HIST Kernel Execution Time: %f ms\n", Ktime0); // float Ktime1; // TIMER_CREATE(Ktime1); // TIMER_START(Ktime1); hipLaunchKernelGGL(( kernel_cdf), dim3(dimCdfGrid),dim3(dimCdfBlock), 0, 0, hist_array, height*width); checkCuda(hipPeekAtLastError()); checkCuda(hipDeviceSynchronize()); // TIMER_END(Ktime1); //printf("CDF Kernel Execution Time: %f ms\n", Ktime1); // float Ktime2; // TIMER_CREATE(Ktime2); // TIMER_START(Ktime2); hipLaunchKernelGGL(( kernel_equlization), dim3(dimGrid), dim3(dimBlock), 0, 0, input_gpu, hist_array, height, width); checkCuda(hipPeekAtLastError()); checkCuda(hipDeviceSynchronize()); // TIMER_END(Ktime2); // printf("EQUALIZATION Kernel Execution Time: %f ms\n", Ktime2); #if defined(CUDA_TIMING) TIMER_END(Ktime); //printf("Kernel Execution Time: %f ms\n", Ktime); #endif // Retrieve results from the GPU checkCuda(hipMemcpy(data, input_gpu, size*sizeof(unsigned char), hipMemcpyDeviceToHost)); // Free resources and end the program // checkCuda(hipFree(output_gpu)); checkCuda(hipFree(input_gpu)); checkCuda(hipFree(hist_array)); }
fa8d8698e8aa9b406c17a56c2f806a3af8c4bc2c.cu
#include <stdio.h> #include <stdlib.h> #include <cuda.h> #include <time.h> #define TIMER_CREATE(t) \ cudaEvent_t t##_start, t##_end; \ cudaEventCreate(&t##_start); \ cudaEventCreate(&t##_end); #define TIMER_START(t) \ cudaEventRecord(t##_start); \ cudaEventSynchronize(t##_start); \ #define TIMER_END(t) \ cudaEventRecord(t##_end); \ cudaEventSynchronize(t##_end); \ cudaEventElapsedTime(&t, t##_start, t##_end); \ cudaEventDestroy(t##_start); \ cudaEventDestroy(t##_end); #define TILE_SIZE 16 #define CUDA_TIMING #define DEBUG #define HIST_SIZE 256 #define SCAN_SIZE HIST_SIZE*2 unsigned char *input_gpu; //unsigned char *output_gpu; float *cdf; float *hist_array; double CLOCK() { struct timespec t; clock_gettime(CLOCK_MONOTONIC, &t); return (t.tv_sec * 1000)+(t.tv_nsec*1e-6); } /*******************************************************/ /* Cuda Error Function */ /*******************************************************/ inline cudaError_t checkCuda(cudaError_t result) { #if defined(DEBUG) || defined(_DEBUG) if (result != cudaSuccess) { fprintf(stderr, "CUDA Runtime Error: %s\n", cudaGetErrorString(result)); exit(-1); } #endif return result; } // sparse histogram with shared memory __global__ void kernel_hist(unsigned char *input, float *hist, unsigned int height, unsigned int width){ //int x = blockIdx.x*TILE_SIZE+threadIdx.x; //int y = blockIdx.y*TILE_SIZE+threadIdx.y; int interval_x = (width - 1) / TILE_SIZE + 1; int interval_y = (height - 1) / TILE_SIZE + 1; int y = threadIdx.y*interval_y+blockIdx.y; int x = threadIdx.x*interval_x+blockIdx.x; //int location = y*TILE_SIZE*gridDim.x+x; //int location = y*width+x; int location = y*width + x; int block_loc = threadIdx.y*TILE_SIZE+threadIdx.x; // HIST_SIZE 256 __shared__ unsigned int hist_shared[HIST_SIZE]; /*if (block_loc<HIST_SIZE) hist_shared[block_loc]=0; __syncthreads();*/ hist_shared[block_loc]=0; __syncthreads(); if (x<width && y<height) atomicAdd(&(hist_shared[input[location]]),1); __syncthreads(); //if (block_loc<HIST_SIZE) { atomicAdd(&(hist[block_loc]),(float)hist_shared[block_loc]); //} } //normal histogram with shared memory __global__ void kernel_hist3(unsigned char *input, float *hist, unsigned int height, unsigned int width){ int x = blockIdx.x*TILE_SIZE+threadIdx.x; int y = blockIdx.y*TILE_SIZE+threadIdx.y; // int interval_x = (width - 1) / TILE_SIZE + 1; // int interval_y = (height - 1) / TILE_SIZE + 1; // int y = threadIdx.y*interval_y+blockIdx.y; // int x = threadIdx.x*interval_x+blockIdx.x; // int location = y*TILE_SIZE*gridDim.x+x; // int location = y*width+x; int location = y*width + x; int block_loc = threadIdx.y*TILE_SIZE+threadIdx.x; // HIST_SIZE 256 __shared__ unsigned int hist_shared[HIST_SIZE]; /*if (block_loc<HIST_SIZE) hist_shared[block_loc]=0; __syncthreads();*/ hist_shared[block_loc]=0; __syncthreads(); if (x<width && y<height) atomicAdd(&(hist_shared[input[location]]),1); __syncthreads(); //if (block_loc<HIST_SIZE) { atomicAdd(&(hist[block_loc]),(float)hist_shared[block_loc]); //} } __global__ void kernel_hist_global(unsigned char *input, float *hist, unsigned int height, unsigned int width){ int x = blockIdx.x*TILE_SIZE+threadIdx.x; int y = blockIdx.y*TILE_SIZE+threadIdx.y; int location = y*TILE_SIZE*gridDim.x+x; // int block_loc = threadIdx.y*TILE_SIZE+threadIdx.x; // HIST_SIZE 256 //__shared__ unsigned int hist_shared[HIST_SIZE]; if (x<width && y<height) atomicAdd(&(hist[input[location]]),1); __syncthreads(); } __global__ void kernel_cdf(float *hist_array, int size){ __shared__ float p[HIST_SIZE]; int tid=blockIdx.x*blockDim.x+threadIdx.x; if (tid<HIST_SIZE){ p[tid]=hist_array[tid] / (float)size; } __syncthreads(); for (int i=1; i<=HIST_SIZE;i=i<<1){ int ai=(threadIdx.x+1)*i*2-1; if (ai<HIST_SIZE) p[ai]+=p[ai-i]; __syncthreads(); } for (int i=HIST_SIZE/2;i>0;i=i>>1){ int bi=(threadIdx.x+1)*i*2-1; if (bi+i<HIST_SIZE) p[bi+i]+=p[bi]; __syncthreads(); } if (tid<HIST_SIZE) hist_array[tid]=p[threadIdx.x]; } __global__ void kernel_equlization( unsigned char *input, float * cdf, unsigned int height, unsigned int width){ int x = blockIdx.x*TILE_SIZE+threadIdx.x; int y = blockIdx.y*TILE_SIZE+threadIdx.y; int location = y*TILE_SIZE*gridDim.x+x; float min=cdf[0]; float down=0.0F; float up=255.0F; if (x<width && y<height) { float value=255.0F * (cdf[input[location]]-min) / (1.0F-min); if (value<down) value=down; if (value>up) value=up; input[location]=(unsigned char) value; } } void histogram_gpu(unsigned char *data, unsigned int height, unsigned int width){ //float cdf_cpu[HIST_SIZE]={0}; //unsigned int hist_cpu[HIST_SIZE]={0}; int gridXSize = 1 + (( width - 1) / TILE_SIZE); int gridYSize = 1 + ((height - 1) / TILE_SIZE); int XSize = gridXSize*TILE_SIZE; int YSize = gridYSize*TILE_SIZE; // Both are the same size (CPU/GPU). int size = XSize*YSize; int block_size2=256; int grid_size2=1+((width*height-1) / block_size2); cudaHostRegister((void*)data, size*sizeof(unsigned char),0); // Allocate arrays in GPU memory // float Ktime00; // TIMER_CREATE(Ktime00); // TIMER_START(Ktime00); cudaMalloc((void**)&input_gpu , size*sizeof(unsigned char)); cudaMalloc((void**)&hist_array , HIST_SIZE*sizeof(float)); // cudaMallocManaged((void**)&input_gpu , size*sizeof(unsigned char)); // cudaMallocManaged((void**)&hist_array , HIST_SIZE*sizeof(float)); // cudaHostRegister((void*)&input_gpu , size*sizeof(unsigned char),0); // cudaHostRegister((void*)&hist_array , HIST_SIZE*sizeof(float),0); // TIMER_END(Ktime00); // printf("CUDA_MALLOC Execution Time: %f ms\n", Ktime00); // cudaMalloc((void**)&output_gpu , size*sizeof(unsigned char)); // checkCuda(cudaMalloc((void**)&cdf , size*sizeof(float))); // init output_gpu to 0 //checkCuda(cudaMemset(output_gpu , 0 , size*sizeof(unsigned char))); cudaMemset(hist_array , 0 , HIST_SIZE*sizeof(float)); // checkCuda(cudaMemset(cdf , 0 , HIST_SIZE*sizeof(float))); // Copy data to GPU cudaMemcpy(input_gpu, data, size*sizeof(char), cudaMemcpyHostToDevice); checkCuda(cudaDeviceSynchronize()); // Execute algorithm dim3 dimGrid(gridXSize, gridYSize); dim3 dimBlock(TILE_SIZE, TILE_SIZE); //hist2 dim3 dimGrid2(grid_size2); dim3 dimBlock2(block_size2); dim3 dimCdfGrid(1); dim3 dimCdfBlock(HIST_SIZE); // Kernel Call #if defined(CUDA_TIMING) float Ktime; TIMER_CREATE(Ktime); TIMER_START(Ktime); #endif // float Ktime0; // TIMER_CREATE(Ktime0); // TIMER_START(Ktime0); kernel_hist<<<dimGrid, dimBlock>>>(input_gpu, hist_array, height, width); checkCuda(cudaPeekAtLastError()); checkCuda(cudaDeviceSynchronize()); //TIMER_END(Ktime0); //printf("HIST Kernel Execution Time: %f ms\n", Ktime0); // float Ktime1; // TIMER_CREATE(Ktime1); // TIMER_START(Ktime1); kernel_cdf<<<dimCdfGrid,dimCdfBlock>>>( hist_array, height*width); checkCuda(cudaPeekAtLastError()); checkCuda(cudaDeviceSynchronize()); // TIMER_END(Ktime1); // printf("CDF Kernel Execution Time: %f ms\n", Ktime1); // float Ktime2; // TIMER_CREATE(Ktime2); // TIMER_START(Ktime2); kernel_equlization<<<dimGrid, dimBlock>>>( input_gpu, hist_array, height, width); checkCuda(cudaPeekAtLastError()); checkCuda(cudaDeviceSynchronize()); // TIMER_END(Ktime2); // printf("EQUALIZATION Kernel Execution Time: %f ms\n", Ktime2); #if defined(CUDA_TIMING) TIMER_END(Ktime); printf("Kernel Execution Time: %f ms\n", Ktime); #endif // Retrieve results from the GPU checkCuda(cudaMemcpy(data, input_gpu, size*sizeof(unsigned char), cudaMemcpyDeviceToHost)); // Free resources and end the program // checkCuda(cudaFree(output_gpu)); checkCuda(cudaFree(input_gpu)); checkCuda(cudaFree(hist_array)); } void histogram_gpu_warmup(unsigned char *data, unsigned int height, unsigned int width){ //float cdf_cpu[HIST_SIZE]={0}; //unsigned int hist_cpu[HIST_SIZE]={0}; int gridXSize = 1 + (( width - 1) / TILE_SIZE); int gridYSize = 1 + ((height - 1) / TILE_SIZE); int XSize = gridXSize*TILE_SIZE; int YSize = gridYSize*TILE_SIZE; // Both are the same size (CPU/GPU). int size = XSize*YSize; int block_size2=256; int grid_size2=1+((width*height-1) / block_size2); // Allocate arrays in GPU memory // float Ktime00; // TIMER_CREATE(Ktime00); // TIMER_START(Ktime00); cudaHostRegister((void*)data, size*sizeof(unsigned char),0); cudaMalloc((void**)&input_gpu , size*sizeof(unsigned char)); cudaMalloc((void**)&hist_array , HIST_SIZE*sizeof(float)); // cudaMallocManaged((void**)&input_gpu , size*sizeof(unsigned char)); // cudaMallocManaged((void**)&hist_array , HIST_SIZE*sizeof(float)); // cudaHostRegister((void*)&input_gpu , size*sizeof(unsigned char),0); // cudaHostRegister((void*)&hist_array , HIST_SIZE*sizeof(float),0); // TIMER_END(Ktime00); //printf("CUDA_MALLOC Execution Time: %f ms\n", Ktime00); // cudaMalloc((void**)&output_gpu , size*sizeof(unsigned char)); // checkCuda(cudaMalloc((void**)&cdf , size*sizeof(float))); // init output_gpu to 0 //checkCuda(cudaMemset(output_gpu , 0 , size*sizeof(unsigned char))); cudaMemset(hist_array , 0 , HIST_SIZE*sizeof(float)); // checkCuda(cudaMemset(cdf , 0 , HIST_SIZE*sizeof(float))); // Copy data to GPU cudaMemcpy(input_gpu, data, size*sizeof(char), cudaMemcpyHostToDevice); checkCuda(cudaDeviceSynchronize()); // Execute algorithm dim3 dimGrid(gridXSize, gridYSize); dim3 dimBlock(TILE_SIZE, TILE_SIZE); //hist2 dim3 dimGrid2(grid_size2); dim3 dimBlock2(block_size2); dim3 dimCdfGrid(1); dim3 dimCdfBlock(HIST_SIZE); // Kernel Call #if defined(CUDA_TIMING) float Ktime; TIMER_CREATE(Ktime); TIMER_START(Ktime); #endif // float Ktime0; // TIMER_CREATE(Ktime0); // TIMER_START(Ktime0); kernel_hist<<<dimGrid, dimBlock>>>(input_gpu, hist_array, height, width); checkCuda(cudaPeekAtLastError()); checkCuda(cudaDeviceSynchronize()); // TIMER_END(Ktime0); //printf("HIST Kernel Execution Time: %f ms\n", Ktime0); // float Ktime1; // TIMER_CREATE(Ktime1); // TIMER_START(Ktime1); kernel_cdf<<<dimCdfGrid,dimCdfBlock>>>( hist_array, height*width); checkCuda(cudaPeekAtLastError()); checkCuda(cudaDeviceSynchronize()); // TIMER_END(Ktime1); //printf("CDF Kernel Execution Time: %f ms\n", Ktime1); // float Ktime2; // TIMER_CREATE(Ktime2); // TIMER_START(Ktime2); kernel_equlization<<<dimGrid, dimBlock>>>( input_gpu, hist_array, height, width); checkCuda(cudaPeekAtLastError()); checkCuda(cudaDeviceSynchronize()); // TIMER_END(Ktime2); // printf("EQUALIZATION Kernel Execution Time: %f ms\n", Ktime2); #if defined(CUDA_TIMING) TIMER_END(Ktime); //printf("Kernel Execution Time: %f ms\n", Ktime); #endif // Retrieve results from the GPU checkCuda(cudaMemcpy(data, input_gpu, size*sizeof(unsigned char), cudaMemcpyDeviceToHost)); // Free resources and end the program // checkCuda(cudaFree(output_gpu)); checkCuda(cudaFree(input_gpu)); checkCuda(cudaFree(hist_array)); }
0f4238a12fa0790c1d2b1de3621d0e0bb2ac0ed0.hip
// !!! This is a file automatically generated by hipify!!! /** * The MIT License (MIT) * * Copyright (c) 2015 Kyle Hollins Wray, University of Massachusetts * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "utilities/mdp_model_gpu.h" #include "error_codes.h" #include <stdio.h> namespace nova { int mdp_initialize_successors_gpu(MDP *mdp) { // Ensure the data is valid. if (mdp->n == 0 || mdp->m == 0 || mdp->ns == 0 || mdp->S == nullptr) { fprintf(stderr, "Error[mdp_initialize_successors_gpu]: %s\n", "Invalid input."); return NOVA_ERROR_INVALID_DATA; } // Allocate the memory on the device. if (hipMalloc(&mdp->d_S, mdp->n * mdp->m * mdp->ns * sizeof(int)) != hipSuccess) { fprintf(stderr, "Error[mdp_initialize_successors_gpu]: %s\n", "Failed to allocate device-side memory for the successor states."); return NOVA_ERROR_DEVICE_MALLOC; } // Copy the data from the host to the device. if (hipMemcpy(mdp->d_S, mdp->S, mdp->n * mdp->m * mdp->ns * sizeof(int), hipMemcpyHostToDevice) != hipSuccess) { fprintf(stderr, "Error[mdp_initialize_successors_gpu]: %s\n", "Failed to copy memory from host to device for the successor states."); return NOVA_ERROR_MEMCPY_TO_DEVICE; } return NOVA_SUCCESS; } int mdp_uninitialize_successors_gpu(MDP *mdp) { if (mdp->d_S != nullptr) { if (hipFree(mdp->d_S) != hipSuccess) { fprintf(stderr, "Error[mdp_uninitialize_successors_gpu]: %s\n", "Failed to free device-side memory for the successor states."); return NOVA_ERROR_DEVICE_FREE; } } mdp->d_S = nullptr; return NOVA_SUCCESS; } int mdp_initialize_state_transitions_gpu(MDP *mdp) { // Ensure the data is valid. if (mdp->n == 0 || mdp->m == 0 || mdp->ns == 0 || mdp->T == nullptr) { fprintf(stderr, "Error[mdp_initialize_state_transitions_gpu]: %s\n", "Invalid input."); return NOVA_ERROR_INVALID_DATA; } // Allocate the memory on the device. if (hipMalloc(&mdp->d_T, mdp->n * mdp->m * mdp->ns * sizeof(float)) != hipSuccess) { fprintf(stderr, "Error[mdp_initialize_state_transitions_gpu]: %s\n", "Failed to allocate device-side memory for the state transitions."); return NOVA_ERROR_DEVICE_MALLOC; } // Copy the data from the host to the device. if (hipMemcpy(mdp->d_T, mdp->T, mdp->n * mdp->m * mdp->ns * sizeof(float), hipMemcpyHostToDevice) != hipSuccess) { fprintf(stderr, "Error[nova_mdp_pbvi_initialize_state_transitions]: %s\n", "Failed to copy memory from host to device for the state transitions."); return NOVA_ERROR_MEMCPY_TO_DEVICE; } return NOVA_SUCCESS; } int mdp_uninitialize_state_transitions_gpu(MDP *mdp) { if (mdp->d_T != nullptr) { if (hipFree(mdp->d_T) != hipSuccess) { fprintf(stderr, "Error[mdp_uninitialize_state_transitions_gpu]: %s\n", "Failed to free device-side memory for the state transitions."); return NOVA_ERROR_DEVICE_FREE; } } mdp->d_T = nullptr; return NOVA_SUCCESS; } int mdp_initialize_rewards_gpu(MDP *mdp) { // Ensure the data is valid. if (mdp->n == 0 || mdp->m == 0 || mdp->R == nullptr) { fprintf(stderr, "Error[mdp_initialize_rewards_gpu]: %s\n", "Invalid input."); return NOVA_ERROR_INVALID_DATA; } // Allocate the memory on the device. if (hipMalloc(&mdp->d_R, mdp->n * mdp->m * sizeof(float)) != hipSuccess) { fprintf(stderr, "Error[mdp_initialize_rewards_gpu]: %s\n", "Failed to allocate device-side memory for the rewards."); return NOVA_ERROR_DEVICE_MALLOC; } // Copy the data from the host to the device. if (hipMemcpy(mdp->d_R, mdp->R, mdp->n * mdp->m * sizeof(float), hipMemcpyHostToDevice) != hipSuccess) { fprintf(stderr, "Error[mdp_initialize_rewards_gpu]: %s\n", "Failed to copy memory from host to device for the rewards."); return NOVA_ERROR_MEMCPY_TO_DEVICE; } return NOVA_SUCCESS; } int mdp_uninitialize_rewards_gpu(MDP *mdp) { if (mdp->d_R != nullptr) { if (hipFree(mdp->d_R) != hipSuccess) { fprintf(stderr, "Error[mdp_uninitialize_rewards_gpu]: %s\n", "Failed to free device-side memory for the rewards."); return NOVA_ERROR_DEVICE_FREE; } } mdp->d_R = nullptr; return NOVA_SUCCESS; } }; // namespace nova
0f4238a12fa0790c1d2b1de3621d0e0bb2ac0ed0.cu
/** * The MIT License (MIT) * * Copyright (c) 2015 Kyle Hollins Wray, University of Massachusetts * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "utilities/mdp_model_gpu.h" #include "error_codes.h" #include <stdio.h> namespace nova { int mdp_initialize_successors_gpu(MDP *mdp) { // Ensure the data is valid. if (mdp->n == 0 || mdp->m == 0 || mdp->ns == 0 || mdp->S == nullptr) { fprintf(stderr, "Error[mdp_initialize_successors_gpu]: %s\n", "Invalid input."); return NOVA_ERROR_INVALID_DATA; } // Allocate the memory on the device. if (cudaMalloc(&mdp->d_S, mdp->n * mdp->m * mdp->ns * sizeof(int)) != cudaSuccess) { fprintf(stderr, "Error[mdp_initialize_successors_gpu]: %s\n", "Failed to allocate device-side memory for the successor states."); return NOVA_ERROR_DEVICE_MALLOC; } // Copy the data from the host to the device. if (cudaMemcpy(mdp->d_S, mdp->S, mdp->n * mdp->m * mdp->ns * sizeof(int), cudaMemcpyHostToDevice) != cudaSuccess) { fprintf(stderr, "Error[mdp_initialize_successors_gpu]: %s\n", "Failed to copy memory from host to device for the successor states."); return NOVA_ERROR_MEMCPY_TO_DEVICE; } return NOVA_SUCCESS; } int mdp_uninitialize_successors_gpu(MDP *mdp) { if (mdp->d_S != nullptr) { if (cudaFree(mdp->d_S) != cudaSuccess) { fprintf(stderr, "Error[mdp_uninitialize_successors_gpu]: %s\n", "Failed to free device-side memory for the successor states."); return NOVA_ERROR_DEVICE_FREE; } } mdp->d_S = nullptr; return NOVA_SUCCESS; } int mdp_initialize_state_transitions_gpu(MDP *mdp) { // Ensure the data is valid. if (mdp->n == 0 || mdp->m == 0 || mdp->ns == 0 || mdp->T == nullptr) { fprintf(stderr, "Error[mdp_initialize_state_transitions_gpu]: %s\n", "Invalid input."); return NOVA_ERROR_INVALID_DATA; } // Allocate the memory on the device. if (cudaMalloc(&mdp->d_T, mdp->n * mdp->m * mdp->ns * sizeof(float)) != cudaSuccess) { fprintf(stderr, "Error[mdp_initialize_state_transitions_gpu]: %s\n", "Failed to allocate device-side memory for the state transitions."); return NOVA_ERROR_DEVICE_MALLOC; } // Copy the data from the host to the device. if (cudaMemcpy(mdp->d_T, mdp->T, mdp->n * mdp->m * mdp->ns * sizeof(float), cudaMemcpyHostToDevice) != cudaSuccess) { fprintf(stderr, "Error[nova_mdp_pbvi_initialize_state_transitions]: %s\n", "Failed to copy memory from host to device for the state transitions."); return NOVA_ERROR_MEMCPY_TO_DEVICE; } return NOVA_SUCCESS; } int mdp_uninitialize_state_transitions_gpu(MDP *mdp) { if (mdp->d_T != nullptr) { if (cudaFree(mdp->d_T) != cudaSuccess) { fprintf(stderr, "Error[mdp_uninitialize_state_transitions_gpu]: %s\n", "Failed to free device-side memory for the state transitions."); return NOVA_ERROR_DEVICE_FREE; } } mdp->d_T = nullptr; return NOVA_SUCCESS; } int mdp_initialize_rewards_gpu(MDP *mdp) { // Ensure the data is valid. if (mdp->n == 0 || mdp->m == 0 || mdp->R == nullptr) { fprintf(stderr, "Error[mdp_initialize_rewards_gpu]: %s\n", "Invalid input."); return NOVA_ERROR_INVALID_DATA; } // Allocate the memory on the device. if (cudaMalloc(&mdp->d_R, mdp->n * mdp->m * sizeof(float)) != cudaSuccess) { fprintf(stderr, "Error[mdp_initialize_rewards_gpu]: %s\n", "Failed to allocate device-side memory for the rewards."); return NOVA_ERROR_DEVICE_MALLOC; } // Copy the data from the host to the device. if (cudaMemcpy(mdp->d_R, mdp->R, mdp->n * mdp->m * sizeof(float), cudaMemcpyHostToDevice) != cudaSuccess) { fprintf(stderr, "Error[mdp_initialize_rewards_gpu]: %s\n", "Failed to copy memory from host to device for the rewards."); return NOVA_ERROR_MEMCPY_TO_DEVICE; } return NOVA_SUCCESS; } int mdp_uninitialize_rewards_gpu(MDP *mdp) { if (mdp->d_R != nullptr) { if (cudaFree(mdp->d_R) != cudaSuccess) { fprintf(stderr, "Error[mdp_uninitialize_rewards_gpu]: %s\n", "Failed to free device-side memory for the rewards."); return NOVA_ERROR_DEVICE_FREE; } } mdp->d_R = nullptr; return NOVA_SUCCESS; } }; // namespace nova
cb16cd9a2eae4f711bde9725608fbd9070bf3a62.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "cuda_common.hpp" #include <cstdio> #include <numeric> #include "kernel_files/pack_kernel.cuknl" extern "C" void cuda_pack_buffers_ (int fields[NUM_FIELDS], int offsets[NUM_FIELDS], int * depth, int * face, double * host_buffer) { cuda_chunk.packUnpackAllBuffers(fields, offsets, *depth, *face, 1, host_buffer); } extern "C" void cuda_unpack_buffers_ (int fields[NUM_FIELDS], int offsets[NUM_FIELDS], int * depth, int * face, double * host_buffer) { cuda_chunk.packUnpackAllBuffers(fields, offsets, *depth, *face, 0, host_buffer); } void CloverleafCudaChunk::packUnpackAllBuffers (int fields[NUM_FIELDS], int offsets[NUM_FIELDS], const int depth, const int face, const int pack, double * host_buffer) { const int n_exchanged = std::accumulate(fields, fields + NUM_FIELDS, 0); if (n_exchanged < 1) { return; } // which buffer is being used for this operation double * device_buffer = NULL; switch (face) { case CHUNK_LEFT: device_buffer = left_buffer; break; case CHUNK_RIGHT: device_buffer = right_buffer; break; case CHUNK_BOTTOM: device_buffer = bottom_buffer; break; case CHUNK_TOP: device_buffer = top_buffer; break; default: DIE("Invalid face identifier %d passed to mpi buffer packing\n", face); } pack_func_t pack_kernel = NULL; kernel_info_t kernel_info; // set which kernel to call if (pack) { switch (face) { case CHUNK_LEFT: pack_kernel = &device_pack_left_buffer; kernel_info = kernel_info_map.at("device_pack_left_buffer"); break; case CHUNK_RIGHT: pack_kernel = &device_pack_right_buffer; kernel_info = kernel_info_map.at("device_pack_right_buffer"); break; case CHUNK_BOTTOM: pack_kernel = &device_pack_bottom_buffer; kernel_info = kernel_info_map.at("device_pack_bottom_buffer"); break; case CHUNK_TOP: pack_kernel = &device_pack_top_buffer; kernel_info = kernel_info_map.at("device_pack_top_buffer"); break; default: DIE("Invalid face identifier %d passed to pack\n", face); } } else { switch (face) { case CHUNK_LEFT: pack_kernel = &device_unpack_left_buffer; kernel_info = kernel_info_map.at("device_unpack_left_buffer"); break; case CHUNK_RIGHT: pack_kernel = &device_unpack_right_buffer; kernel_info = kernel_info_map.at("device_unpack_right_buffer"); break; case CHUNK_BOTTOM: pack_kernel = &device_unpack_bottom_buffer; kernel_info = kernel_info_map.at("device_unpack_bottom_buffer"); break; case CHUNK_TOP: pack_kernel = &device_unpack_top_buffer; kernel_info = kernel_info_map.at("device_unpack_top_buffer"); break; default: DIE("Invalid face identifier %d passed to unpack\n", face); } } kernel_info.x_offset = halo_exchange_depth - depth; kernel_info.y_offset = halo_exchange_depth - depth; // size of this buffer int side_size = 0; // launch sizes for packing/unpacking arrays dim3 pack_num_blocks, pack_block_size; switch (face) { // pad it to fit in 32 local work group size (always on NVIDIA hardware) case CHUNK_LEFT: case CHUNK_RIGHT: side_size = depth*(y_max + 2*depth); pack_num_blocks = update_lr_num_blocks[depth]; pack_block_size = update_lr_block_sizes[depth]; break; case CHUNK_BOTTOM: case CHUNK_TOP: side_size = depth*(x_max + 2*depth); pack_num_blocks = update_bt_num_blocks[depth]; pack_block_size = update_bt_block_sizes[depth]; break; default: DIE("Invalid face identifier %d passed to mpi buffer packing\n", face); } side_size *= sizeof(double); if (!pack) { hipMemcpy(device_buffer, host_buffer, n_exchanged*side_size, hipMemcpyHostToDevice); CUDA_ERR_CHECK; } for (int ii = 0; ii < NUM_FIELDS; ii++) { int which_field = ii+1; if (fields[ii]) { if (offsets[ii] < 0 || offsets[ii] > NUM_FIELDS*side_size) { DIE("Tried to pack/unpack field %d but invalid offset %d given\n", ii, offsets[ii]); } int x_inc = 0, y_inc = 0; // x_inc / y_inc set to 0 in tea leaf #define CASE_BUF(which_array) \ case FIELD_##which_array: \ { \ device_array = which_array; \ } double * device_array = NULL; switch (which_field) { CASE_BUF(density); break; CASE_BUF(energy0); break; CASE_BUF(energy1); break; CASE_BUF(u); break; CASE_BUF(vector_p); break; CASE_BUF(vector_sd); break; CASE_BUF(vector_r); break; default: DIE("Invalid face %d passed to pack buffer function\n", which_field); } #undef CASE_BUF hipLaunchKernelGGL(( pack_kernel), dim3(pack_num_blocks), dim3(pack_block_size) , 0, 0, kernel_info, x_inc, y_inc, device_array, device_buffer, depth, offsets[ii]); CUDA_ERR_CHECK; } } if (pack) { hipMemcpy(host_buffer, device_buffer, n_exchanged*side_size, hipMemcpyDeviceToHost); CUDA_ERR_CHECK; } }
cb16cd9a2eae4f711bde9725608fbd9070bf3a62.cu
#include "cuda_common.hpp" #include <cstdio> #include <numeric> #include "kernel_files/pack_kernel.cuknl" extern "C" void cuda_pack_buffers_ (int fields[NUM_FIELDS], int offsets[NUM_FIELDS], int * depth, int * face, double * host_buffer) { cuda_chunk.packUnpackAllBuffers(fields, offsets, *depth, *face, 1, host_buffer); } extern "C" void cuda_unpack_buffers_ (int fields[NUM_FIELDS], int offsets[NUM_FIELDS], int * depth, int * face, double * host_buffer) { cuda_chunk.packUnpackAllBuffers(fields, offsets, *depth, *face, 0, host_buffer); } void CloverleafCudaChunk::packUnpackAllBuffers (int fields[NUM_FIELDS], int offsets[NUM_FIELDS], const int depth, const int face, const int pack, double * host_buffer) { const int n_exchanged = std::accumulate(fields, fields + NUM_FIELDS, 0); if (n_exchanged < 1) { return; } // which buffer is being used for this operation double * device_buffer = NULL; switch (face) { case CHUNK_LEFT: device_buffer = left_buffer; break; case CHUNK_RIGHT: device_buffer = right_buffer; break; case CHUNK_BOTTOM: device_buffer = bottom_buffer; break; case CHUNK_TOP: device_buffer = top_buffer; break; default: DIE("Invalid face identifier %d passed to mpi buffer packing\n", face); } pack_func_t pack_kernel = NULL; kernel_info_t kernel_info; // set which kernel to call if (pack) { switch (face) { case CHUNK_LEFT: pack_kernel = &device_pack_left_buffer; kernel_info = kernel_info_map.at("device_pack_left_buffer"); break; case CHUNK_RIGHT: pack_kernel = &device_pack_right_buffer; kernel_info = kernel_info_map.at("device_pack_right_buffer"); break; case CHUNK_BOTTOM: pack_kernel = &device_pack_bottom_buffer; kernel_info = kernel_info_map.at("device_pack_bottom_buffer"); break; case CHUNK_TOP: pack_kernel = &device_pack_top_buffer; kernel_info = kernel_info_map.at("device_pack_top_buffer"); break; default: DIE("Invalid face identifier %d passed to pack\n", face); } } else { switch (face) { case CHUNK_LEFT: pack_kernel = &device_unpack_left_buffer; kernel_info = kernel_info_map.at("device_unpack_left_buffer"); break; case CHUNK_RIGHT: pack_kernel = &device_unpack_right_buffer; kernel_info = kernel_info_map.at("device_unpack_right_buffer"); break; case CHUNK_BOTTOM: pack_kernel = &device_unpack_bottom_buffer; kernel_info = kernel_info_map.at("device_unpack_bottom_buffer"); break; case CHUNK_TOP: pack_kernel = &device_unpack_top_buffer; kernel_info = kernel_info_map.at("device_unpack_top_buffer"); break; default: DIE("Invalid face identifier %d passed to unpack\n", face); } } kernel_info.x_offset = halo_exchange_depth - depth; kernel_info.y_offset = halo_exchange_depth - depth; // size of this buffer int side_size = 0; // launch sizes for packing/unpacking arrays dim3 pack_num_blocks, pack_block_size; switch (face) { // pad it to fit in 32 local work group size (always on NVIDIA hardware) case CHUNK_LEFT: case CHUNK_RIGHT: side_size = depth*(y_max + 2*depth); pack_num_blocks = update_lr_num_blocks[depth]; pack_block_size = update_lr_block_sizes[depth]; break; case CHUNK_BOTTOM: case CHUNK_TOP: side_size = depth*(x_max + 2*depth); pack_num_blocks = update_bt_num_blocks[depth]; pack_block_size = update_bt_block_sizes[depth]; break; default: DIE("Invalid face identifier %d passed to mpi buffer packing\n", face); } side_size *= sizeof(double); if (!pack) { cudaMemcpy(device_buffer, host_buffer, n_exchanged*side_size, cudaMemcpyHostToDevice); CUDA_ERR_CHECK; } for (int ii = 0; ii < NUM_FIELDS; ii++) { int which_field = ii+1; if (fields[ii]) { if (offsets[ii] < 0 || offsets[ii] > NUM_FIELDS*side_size) { DIE("Tried to pack/unpack field %d but invalid offset %d given\n", ii, offsets[ii]); } int x_inc = 0, y_inc = 0; // x_inc / y_inc set to 0 in tea leaf #define CASE_BUF(which_array) \ case FIELD_##which_array: \ { \ device_array = which_array; \ } double * device_array = NULL; switch (which_field) { CASE_BUF(density); break; CASE_BUF(energy0); break; CASE_BUF(energy1); break; CASE_BUF(u); break; CASE_BUF(vector_p); break; CASE_BUF(vector_sd); break; CASE_BUF(vector_r); break; default: DIE("Invalid face %d passed to pack buffer function\n", which_field); } #undef CASE_BUF pack_kernel<<< pack_num_blocks, pack_block_size >>>(kernel_info, x_inc, y_inc, device_array, device_buffer, depth, offsets[ii]); CUDA_ERR_CHECK; } } if (pack) { cudaMemcpy(host_buffer, device_buffer, n_exchanged*side_size, cudaMemcpyDeviceToHost); CUDA_ERR_CHECK; } }
9304a5670421462dce940a0579789c07696a2b2c.hip
// !!! This is a file automatically generated by hipify!!! #include <stdio.h> #include "hip/hip_runtime.h" #include "device_launch_parameters.h" #include "../include/helper_cuda.h" #include "../cuGMP.h" __global__ void shiftLeftKernel(__dev_mpz_struct *res, __dev_mpz_struct *a, unsigned int shift_limbs, unsigned int shift_bits, unsigned int source_limbs) { unsigned int i = THREAD_ID; if (i <= source_limbs) { if (i < shift_limbs) { res->_mp_d[i] = 0; } else if (i == shift_limbs) { res->_mp_d[i] = (a->_mp_d[i - shift_limbs] << shift_bits); } else if (i < source_limbs) { res->_mp_d[i] = (a->_mp_d[i - shift_limbs] << shift_bits) + (a->_mp_d[i - shift_limbs - 1] >> (GMP_LIMB_BITS - shift_bits)); } else if (i == source_limbs) { res->_mp_d[i] = (a->_mp_d[i - shift_limbs - 1] >> (GMP_LIMB_BITS - shift_bits)); if (res->_mp_d[i] > 0) { res->_mp_size = i + 1; } } } } void mpz_mul_2exp(mpz_ptr res, mpz_ptr a, unsigned long int exponent) { unsigned int source_limbs = ABS(a->_mp_size) + exponent / GMP_LIMB_BITS; unsigned int result_limbs = source_limbs + 1; allocate_memory(res, result_limbs, source_limbs); unsigned int shift_limbs = exponent / GMP_LIMB_BITS; unsigned int shift_bits = exponent % GMP_LIMB_BITS; #ifdef KERNEL_PRINT printf("shiftLeftKernel <<<%d, %d>>>\n", result_limbs / BLOCK_SIZE + 1, BLOCK_SIZE); #endif shiftLeftKernel << <result_limbs / BLOCK_SIZE + 1, BLOCK_SIZE >> > (res->_dev_mp_struct, a->_dev_mp_struct, shift_limbs, shift_bits, source_limbs); getLastCudaError("Kernel execution failed: [ shiftLeftKernel ]"); #ifdef EXPLICIT_SYNCHRONIZATION checkCudaErrors(hipDeviceSynchronize()); #endif // mp_size could have changed on the device - reflect on the host. copy_operand_data_without_limbs(res, MemcpyDirection::memcpyDeviceToHost); // If the number shifted is negative, reflect it in the result. if (a->_mp_size < 0) { res->_mp_size = -1 * ABS(res->_mp_size); copy_operand_data_without_limbs(res, MemcpyDirection::memcpyHostToDevice); } }
9304a5670421462dce940a0579789c07696a2b2c.cu
#include <stdio.h> #include "cuda_runtime.h" #include "device_launch_parameters.h" #include "../include/helper_cuda.h" #include "../cuGMP.h" __global__ void shiftLeftKernel(__dev_mpz_struct *res, __dev_mpz_struct *a, unsigned int shift_limbs, unsigned int shift_bits, unsigned int source_limbs) { unsigned int i = THREAD_ID; if (i <= source_limbs) { if (i < shift_limbs) { res->_mp_d[i] = 0; } else if (i == shift_limbs) { res->_mp_d[i] = (a->_mp_d[i - shift_limbs] << shift_bits); } else if (i < source_limbs) { res->_mp_d[i] = (a->_mp_d[i - shift_limbs] << shift_bits) + (a->_mp_d[i - shift_limbs - 1] >> (GMP_LIMB_BITS - shift_bits)); } else if (i == source_limbs) { res->_mp_d[i] = (a->_mp_d[i - shift_limbs - 1] >> (GMP_LIMB_BITS - shift_bits)); if (res->_mp_d[i] > 0) { res->_mp_size = i + 1; } } } } void mpz_mul_2exp(mpz_ptr res, mpz_ptr a, unsigned long int exponent) { unsigned int source_limbs = ABS(a->_mp_size) + exponent / GMP_LIMB_BITS; unsigned int result_limbs = source_limbs + 1; allocate_memory(res, result_limbs, source_limbs); unsigned int shift_limbs = exponent / GMP_LIMB_BITS; unsigned int shift_bits = exponent % GMP_LIMB_BITS; #ifdef KERNEL_PRINT printf("shiftLeftKernel <<<%d, %d>>>\n", result_limbs / BLOCK_SIZE + 1, BLOCK_SIZE); #endif shiftLeftKernel << <result_limbs / BLOCK_SIZE + 1, BLOCK_SIZE >> > (res->_dev_mp_struct, a->_dev_mp_struct, shift_limbs, shift_bits, source_limbs); getLastCudaError("Kernel execution failed: [ shiftLeftKernel ]"); #ifdef EXPLICIT_SYNCHRONIZATION checkCudaErrors(cudaDeviceSynchronize()); #endif // mp_size could have changed on the device - reflect on the host. copy_operand_data_without_limbs(res, MemcpyDirection::memcpyDeviceToHost); // If the number shifted is negative, reflect it in the result. if (a->_mp_size < 0) { res->_mp_size = -1 * ABS(res->_mp_size); copy_operand_data_without_limbs(res, MemcpyDirection::memcpyHostToDevice); } }
8bc3e5a7279666f078c10ac339b7234a551347cb.hip
// !!! This is a file automatically generated by hipify!!! #include <ATen/ATen.h> #include <ATen/hip/HIPContext.h> #include <ATen/NativeFunctions.h> #include <ATen/SparseTensorUtils.h> #include <ATen/native/sparse/SparseTensorMath.h> #include <ATen/native/sparse/hip/SparseHIPApplyUtils.cuh> #include <ATen/native/sparse/hip/SparseHIPBlas.cuh> #include <ATen/hip/HIPApplyUtils.cuh> #include <ATen/hip/HIPUtils.h> #include <ATen/hip/detail/IndexUtils.cuh> #include <ATen/WrapDimUtilsMulti.h> #include <ATen/ExpandUtils.h> #include <THH/THHTensorMathPointwise.cuh> #include <THH/THHThrustAllocator.cuh> #include <thrust/device_ptr.h> #include <thrust/sequence.h> #include <thrust/binary_search.h> #include <thrust/sort.h> #include <thrust/system/hip/execution_policy.h> #include <bitset> #include <hipsparse.h> #include <hip/hip_runtime_api.h> #include <memory> #define I_INFO(tensor) cuda::detail::getTensorInfo<int64_t, uint64_t>(tensor) #define V_INFO(tensor) cuda::detail::getTensorInfo<scalar_t, uint64_t>(tensor) namespace at { namespace native { using namespace at::sparse; using at::cuda::detail::TensorInfo; using at::cuda::detail::getTensorInfo; // -------------------------------------------------------------------- // Utility functions // -------------------------------------------------------------------- namespace { IntTensor _to_csr_int(const LongTensor& rowIndices, int64_t dim, int64_t nnz) { IntTensor csr = at::empty({dim+1}, CUDA(kInt)); IntTensor rowIndicesInt = at::empty({rowIndices.size(0)}, CUDA(kInt)); rowIndicesInt.copy_(rowIndices); sparse::cuda::Xcoo2csr(rowIndicesInt.data_ptr<int32_t>(), nnz, dim, csr.data_ptr<int32_t>()); return csr; } } // NB: Deleted spaddcmul (aka addcmul_, but not actually wired up), spaddcdiv (not // wired at all) template <typename scalar_t> void s_addmm_out_sparse_dense_cuda_worker(int64_t nnz, int64_t m, int64_t n, int64_t k, Tensor& r_, Scalar beta, const Tensor& t, Scalar alpha, LongTensor& indices, Tensor& values, const Tensor& dense) { scalar_t cast_beta = beta.to<scalar_t>(); scalar_t cast_alpha = alpha.to<scalar_t>(); LongTensor rowIndices = indices.select(0, 0); LongTensor colIndices = indices.select(0, 1); IntTensor csr = _to_csr_int(rowIndices, m, nnz); IntTensor colIndicesInt = at::empty({colIndices.size(0)}, indices.options().dtype(kInt)); colIndicesInt.copy_(colIndices); Tensor r__; if (cast_beta == 0) { r_.zero_(); } else if (cast_beta == 1) { if (!is_same_tensor(t, r_)) { r_.copy_(t); } } else { at::mul_out(r_, t, scalar_to_tensor(beta)); } if(r_.stride(0) == 1 && r_.stride(1) == r_.size(0)) { r__ = r_; } else { // TODO: how... strange r__ = r_.transpose(0, 1).clone(at::MemoryFormat::Contiguous); r__.transpose_(0, 1); } if (nnz > 0) { Tensor dense_; char transpose_dense; if(dense.stride(0) == 1 && dense.stride(1) == dense.size(0)) { transpose_dense = 'n'; dense_ = dense; } else if(dense.stride(1) == 1 && dense.stride(0) != dense.size(1)) { transpose_dense = 't'; dense_ = dense; } else { transpose_dense = 't'; dense_ = dense.contiguous(); } sparse::cuda::csrmm2( 'n', transpose_dense, m, n, k, nnz, cast_alpha, values.data_ptr<scalar_t>(), csr.data_ptr<int32_t>(), colIndicesInt.data_ptr<int32_t>(), dense_.data_ptr<scalar_t>(), (transpose_dense == 'n' ? dense_.stride(1) : dense_.stride(0)), cast_beta, r__.data_ptr<scalar_t>(), r__.stride(1)); } r_.copy_(r__); } // -------------------------------------------------------------------- // addmm(Tensor, SparseTensor, Tensor, Scalar, Scalar) [broadcasts] // -------------------------------------------------------------------- Tensor& s_addmm_out_sparse_dense_cuda(Tensor& r_, const Tensor& t, const SparseTensor& sparse_, const Tensor& dense, Scalar beta, Scalar alpha) { TORCH_CHECK(t.is_cuda(), "addmm: expected 'self' to be CUDA, but got CPU"); TORCH_CHECK(r_.is_cuda(), "addmm: expected 'out' to be CUDA, but got CPU"); TORCH_CHECK(sparse_.is_cuda(), "addmm: expected 'mat1' to be CUDA, but got CPU"); TORCH_CHECK(dense.is_cuda(), "addmm: expected 'mat2' to be CUDA, but got CPU"); TORCH_CHECK(cuda::check_device({sparse_, r_, t, dense})); TORCH_CHECK(dense.dim() == 2, "addmm: 2D tensor expected, got ", dense.dim(), "D tensor"); TORCH_CHECK(sparse_.sparse_dim() == 2, "addmm: expected first two dims to be sparse (indices has size 2 at first dim), but got ", sparse_.sparse_dim(), " sparse dims"); // no need to check dense_dim because dense_dim + sparse_dim = dim // mxk * kxn = mxn int64_t m = sparse_.size(0); int64_t k = sparse_.size(1); int64_t n = dense.size(1); TORCH_CHECK(t.size(0) == m, "addmm: Argument #1 (t): Expected dim 0 size ", m, ", got ", t.size(0)); TORCH_CHECK(t.size(1) == n, "addmm: Argument #1 (t): Expected dim 1 size ", n, ", got ", t.size(1)); TORCH_CHECK(dense.size(0) == k, "addmm: Argument #3 (dense): Expected dim 0 size ", k, ", got ", dense.size(0)); r_.resize_({m, n}); SparseTensor sparse = sparse_.coalesce(); int64_t nnz = sparse._nnz(); LongTensor indices = sparse._indices(); Tensor values = sparse._values(); // No half support, so we don't have to use CUDATypeConversion AT_DISPATCH_FLOATING_TYPES( values.scalar_type(), "addmm_sparse_cuda", [&] { s_addmm_out_sparse_dense_cuda_worker<scalar_t>(nnz, m, n, k, r_, beta, t, alpha, indices, values, dense); } ); return r_; } Tensor& addmm_out_sparse_dense_cuda( Tensor& result, const Tensor& self, const SparseTensor& mat1, const Tensor& mat2, Scalar beta, Scalar alpha ) { Tensor b_self; std::tie(b_self) = expand_size(self, {mat1.size(0), mat2.size(1)}, "addmm_out"); return s_addmm_out_sparse_dense_cuda(result, b_self, mat1, mat2, beta, alpha); } Tensor s_addmm_sparse_dense_cuda( const Tensor& t, const SparseTensor& sparse, const Tensor& dense, Scalar beta, Scalar alpha ) { Tensor r = at::empty({0}, t.options()); s_addmm_out_sparse_dense_cuda(r, t, sparse, dense, beta, alpha); return r; } Tensor addmm_sparse_dense_cuda( const Tensor& self, const SparseTensor& mat1, const Tensor& mat2, Scalar beta, Scalar alpha ) { Tensor b_self; std::tie(b_self) = expand_size(self, {mat1.size(0), mat2.size(1)}, "addmm_out"); return s_addmm_sparse_dense_cuda(b_self, mat1, mat2, beta, alpha); } Tensor& s_addmm_sparse_dense_cuda_( Tensor& t, const SparseTensor& sparse, const Tensor& dense, Scalar beta, Scalar alpha ) { return s_addmm_out_sparse_dense_cuda(t, t, sparse, dense, beta, alpha); } // NB: Purposely no broadcasting version of addmm inplace // Deleted sspaddmm (sparse, dense) -> sparse // -------------------------------------------------------------------- // hspmm(SparseTensor mat1, Tensor mat2) // -------------------------------------------------------------------- SparseTensor& hspmm_out_sparse_cuda(SparseTensor& r_, const SparseTensor& sparse_, const Tensor& dense/* , Scalar alpha */) { TORCH_CHECK(sparse_.is_cuda(), "hspmm: expected 'self' to be CUDA, but got CPU"); TORCH_CHECK(r_.is_cuda(), "hspmm: expected 'out' to be CUDA, but got CPU"); TORCH_CHECK(dense.is_cuda(), "hspmm: expected 'mat2' to be CUDA, but got CPU"); TORCH_CHECK(cuda::check_device({r_, sparse_, dense})); TORCH_CHECK(sparse_.sparse_dim() == 2, "hspmm: Argument #2: 2D tensor expected, got ", sparse_.sparse_dim(), "D tensor"); TORCH_CHECK(sparse_.dense_dim() == 0, "hspmm: Argument #2: scalar values expected, got ", sparse_.dense_dim(), "D values"); TORCH_CHECK(dense.dim() == 2, "hspmm: Argument #3: 2D tensor expected, got ", dense.dim(), "D tensor"); int64_t m = sparse_.size(0); int64_t k = sparse_.size(1); int64_t n = dense.size(1); TORCH_CHECK(dense.size(0) == k, "hspmm: Argument #3: Expected dim 0 size ", k, ", got ", dense.size(0)); get_sparse_impl(r_)->resize_and_clear_(1, 1, {m, n}); hipStream_t stream = at::hip::getCurrentHIPStreamMasqueradingAsCUDA(); auto allocator = THCThrustAllocator(globalContext().lazyInitCUDA()); auto policy = thrust::hip::par(allocator).on(stream); SparseTensor sparse = sparse_.coalesce(); int64_t nnz = sparse._nnz(); LongTensor indices = at::empty({1, nnz}, CUDA(kLong)); // create values in column-major format to avoid copying in spaddmm Tensor values = at::empty({n, nnz}, dense.options()); values.transpose_(0, 1); // why does sparse need to be cloned? If this is really necessary maybe we // need to fuse this with newCoalesce SparseTensor newSparse = sparse.clone(); LongTensor spIndices = newSparse._indices(); LongTensor dstIndices = spIndices.select(0, 0); // Save destination indices to output hybrid tensor indices.copy_(dstIndices); // Replace destination indices with 0, 1, 2, 3, ... and compute output values // tensor with sparse * dense multiplication thrust::device_ptr<int64_t> indicesIter(dstIndices.data_ptr<int64_t>()); thrust::sequence(policy, indicesIter, indicesIter + nnz); std::vector<int64_t> new_size = get_sparse_impl(newSparse)->sizes().vec(); new_size[0] = nnz; get_sparse_impl(newSparse)->raw_resize_(get_sparse_impl(newSparse)->sparse_dim(), get_sparse_impl(newSparse)->dense_dim(), new_size); s_addmm_out_sparse_dense_cuda(values, values, newSparse, dense, 0, /*alpha*/ 1); get_sparse_impl(r_)->set_indices_and_values_unsafe(indices, values); return r_; } SparseTensor hspmm_sparse_cuda(const SparseTensor& sparse, const Tensor& dense) { SparseTensor r = at::empty({0}, sparse.options()); hspmm_out_sparse_cuda(r, sparse, dense); return r; } // -------------------------------------------------------------------- // add(Tensor, SparseTensor, Scalar) // formerly known as spcadd // -------------------------------------------------------------------- Tensor& add_out_dense_sparse_cuda(Tensor& r_, const Tensor& dense, const SparseTensor& sparse, at::Scalar value) { TORCH_CHECK(dense.is_cuda(), "add: expected 'self' to be a CUDA tensor, but got a CPU tensor"); TORCH_CHECK(sparse.is_cuda(), "add: expected 'other' to be a CUDA tensor, but got a CPU tensor"); TORCH_CHECK(r_.is_cuda(), "add: expected 'out' to be a CUDA tensor, but got a CPU tensor"); TORCH_CHECK(cuda::check_device({sparse, r_, dense})); TORCH_CHECK(dense.sizes().equals(sparse.sizes()), "add: expected 'self' and 'other' to have same size, but self has size ", dense.sizes(), " while other has size ", sparse.sizes(), " (FYI: dense-sparse addition does not currently support broadcasting)"); const int64_t nnz = sparse._nnz(); if (nnz == 0) { r_.resize_as_(dense); r_.copy_(dense); return r_; } auto commonDtype = at::result_type(dense, sparse); TORCH_CHECK(canCast(commonDtype, r_.scalar_type()), "Can't convert result type ", commonDtype, " to output ", r_.scalar_type()); Tensor r = r_; if (r_.scalar_type() != commonDtype) { r = at::empty_like(dense, r_.options().dtype(commonDtype)); } Tensor dense_buffer = dense.to(commonDtype); Tensor values = sparse._values().to(commonDtype); if (is_same_tensor(r, dense_buffer)) { TORCH_CHECK(r_.is_contiguous(), "add: CUDA dense-sparse addition with a non-contiguous output tensor does not work; shout if you need it (see https://github.com/pytorch/pytorch/issues/1521 )"); } else { r.resize_as_(dense); r.copy_(dense_buffer); } LongTensor indices = sparse._indices(); int64_t nDim = dense.dim(); int64_t nDimI = sparse.sparse_dim(); if (values.numel() == 0) { return r_; } if (sparse.is_coalesced()) { // TODO benchmark to decide whether to remove this special case const dim3 block = cuda::getApplyBlock(); dim3 grid; int curDevice = -1; hipGetDevice(&curDevice); hipStream_t stream = at::hip::getCurrentHIPStreamMasqueradingAsCUDA(curDevice); if (sparse.dense_dim() == 0) { TORCH_CHECK(cuda::getApplyGrid(nnz, grid, curDevice), "add: Argument #0: tensor too large or too many dimensions"); AT_DISPATCH_ALL_TYPES_AND2( at::ScalarType::Half, at::ScalarType::BFloat16, commonDtype, "add_out_dense_sparse_cuda", [&] { AT_SKIP_BFLOAT16_IF_NOT_ROCM(scalar_t, "add_out_dense_sparse_cuda", [&] { hipLaunchKernelGGL(( apply::sparseElementwiseKernelScalar<TensorCAddOp<scalar_t>, uint64_t, scalar_t>) , dim3(grid), dim3(block), 0, stream, TensorCAddOp<scalar_t>(value.to<scalar_t>()), V_INFO(r), I_INFO(indices), V_INFO(values), static_cast<uint64_t>(nnz)); }); }); } else { TORCH_CHECK(cuda::getApplyGrid(nnz * block.x, grid, curDevice), "add: Argument #0: tensor too large or too many dimensions"); // sparseElementwiseKernel needs values to be contiguous too values = values.contiguous(); AT_DISPATCH_ALL_TYPES_AND2( at::ScalarType::Half, at::ScalarType::BFloat16, commonDtype, "add_out_dense_sparse_cuda", [&] { AT_SKIP_BFLOAT16_IF_NOT_ROCM(scalar_t, "add_out_dense_sparse_cuda", [&] { hipLaunchKernelGGL(( apply::sparseElementwiseKernel<TensorCAddOp<scalar_t>, uint64_t, scalar_t>) , dim3(grid), dim3(block), 0, stream, TensorCAddOp<scalar_t>(value.to<scalar_t>()), V_INFO(r), I_INFO(indices), V_INFO(values), static_cast<uint64_t>(nnz)); }); }); } } else { LongTensor indices1D = flatten_indices(indices, sparse.sizes(), 0); int64_t view_rows = 1; int64_t view_columns = 1; for (int i = 0; i < nDimI; i++) { view_rows *= r.size(i); } for (int i = nDimI; i < nDim; i++) { view_columns *= r.size(i); } Tensor r_view = r.view({view_rows, view_columns}); values = values.reshape({nnz, view_columns}); r_view.index_add_(0, indices1D, values, value); } THCudaCheck(hipGetLastError()); r_.copy_(r); return r_; } // -------------------------------------------------------------------- // add(SparseTensor, SparseTensor, Scalar) [broadcasts] // -------------------------------------------------------------------- Tensor& add_out_dense_sparse_cuda(Tensor& r, const Tensor& dense, const SparseTensor& sparse_, Scalar value); SparseTensor& add_out_sparse_cuda(SparseTensor& r_, const SparseTensor& t, const SparseTensor& src, Scalar value) { if (!t.is_sparse()) { return add_out_dense_sparse_cuda(r_, t, src, value); } // TODO: This test seems a bit goofy TORCH_CHECK(src.is_sparse(), "add(sparse, dense) is not supported. Use add(dense, sparse) instead."); TORCH_CHECK(t.is_cuda(), "add: expected 'self' to be CUDA, but got CPU"); TORCH_CHECK(src.is_cuda(), "add: expected 'other' to be CUDA, but got CPU"); TORCH_CHECK(r_.is_cuda(), "add: expected 'out' to be CUDA, but got CPU"); TORCH_CHECK(cuda::check_device({r_, t, src})); auto commonDtype = at::result_type(t, src); TORCH_CHECK(canCast(commonDtype, r_.scalar_type()), "Can't convert result type ", commonDtype, " to output ", r_.scalar_type()); TORCH_CHECK(t.sizes().equals(src.sizes()), "add: expected 'self' and 'other' to have same size, but ", t.sizes(), " != ", src.sizes()); if (src._nnz() == 0) { return copy_sparse_to_sparse_(r_, t); } if (t._nnz() == 0) { return mul_out_sparse_scalar(r_, src, value); } TORCH_CHECK(is_same_density(t, src), "add: expected 'self' and 'other' to have same density, but 'self' has ", t.sparse_dim(), " sparse dimensions while 'other' has ", src.sparse_dim(), " sparse dimensions"); // We deliberately choose to simply concat the indices and values tensors // rather than merging them. This removes the need to synchronously fetch nnz // at the end of the operation, at the cost of having a non-coalesced result. // This trade-off is preferable for the common use-case of gradient accumulation. LongTensor t_indices_ = t._indices(); LongTensor s_indices_ = src._indices(); Tensor t_values_ = t._values().to(commonDtype); Tensor s_values_ = src._values().to(commonDtype); AT_DISPATCH_ALL_TYPES_AND2( at::ScalarType::Half, at::ScalarType::BFloat16, commonDtype, "add_out_sparse_cuda", [&] { AT_SKIP_BFLOAT16_IF_NOT_ROCM(scalar_t, "add_out_sparse_cuda", [&] { if (value.to<scalar_t>() != static_cast<scalar_t>(1)) { s_values_ = s_values_.mul(value); } }); }); LongTensor r_indices_ = at::cat({t_indices_, s_indices_}, 1); Tensor r_values_ = at::cat({t_values_, s_values_}, 0); if (r_.scalar_type() != commonDtype) { SparseTensor promoted = at::empty({0}, r_.options().dtype(commonDtype)); promoted.resize_as_(src); alias_into_sparse(promoted, r_indices_, r_values_); // performs the addition under the common dtype. promoted = promoted.coalesce(); r_values_ = promoted._values().to(r_.scalar_type()); r_indices_ = promoted._indices(); } else { r_.resize_as_(src); } alias_into_sparse(r_, r_indices_, r_values_); // Prevent unbounded growth of nnz // TODO: Improved heuristic on when to coalesce or remove need to coalesce if (r_._nnz() > r_.numel()) { auto c = r_.coalesce(); alias_into_sparse(r_, c._indices(), c._values()); } return r_; } // -------------------------------------------------------------------- // mul(SparseTensor, SparseTensor) [broadcasts] // -------------------------------------------------------------------- SparseTensor& mul_out_sparse_cuda(SparseTensor& r_, const SparseTensor& t_, const SparseTensor& src_) { if (src_.dim() == 0) { return mul_out_sparse_zerodim(r_, t_, src_); } else if (t_.dim() == 0) { return mul_out_sparse_zerodim(r_, src_, t_); } TORCH_CHECK(t_.is_cuda(), "mul: expected 'self' to be CUDA, but got CPU"); TORCH_CHECK(src_.is_cuda(), "mul: expected 'other' to be CUDA, but got CPU"); TORCH_CHECK(r_.is_cuda(), "mul: expected 'out' to be CUDA, but got CPU"); TORCH_CHECK(cuda::check_device({r_, t_, src_})); TORCH_CHECK(t_.sizes().equals(src_.sizes()), "mul: expected 'self' and 'other' to have same size, but ", t_.sizes(), " != ", src_.sizes()); SparseTensor t = t_.coalesce(); SparseTensor src = src_.coalesce(); if (src_._nnz() == 0 || t_._nnz() == 0) { r_.resize_as_(src_); return r_.zero_(); } // saving those because they can be overwritten when doing in-place operations int64_t t_nnz = t._nnz(), s_nnz = src._nnz(); int64_t max_nnz = ::min(t_nnz, s_nnz); // multiply by zero is zero, and can be dropped int64_t sparse_dim = src.sparse_dim(); auto commonDtype = at::result_type(t, src); TORCH_CHECK(canCast(commonDtype, r_.scalar_type()), "Can't convert result type ", commonDtype, " to output ", r_.scalar_type()); LongTensor t_indices_ = t._indices().contiguous(); Tensor t_values_ = t._values().to(commonDtype); LongTensor s_indices_ = src._indices().contiguous(); Tensor s_values_ = src._values().to(commonDtype); LongTensor r_indices_ = at::empty({sparse_dim, max_nnz}, t_indices_.options()); r_.resize_as_(src); Tensor r_values_ = new_values_with_size_of(t_values_, max_nnz).zero_(); int64_t valueSize = t_values_.stride(0); const dim3 block = dim3(::min(static_cast<int64_t>(cuda::getApplyBlock().x), valueSize)); dim3 grid; int curDevice = -1; hipGetDevice(&curDevice); hipStream_t stream = at::hip::getCurrentHIPStreamMasqueradingAsCUDA(curDevice); TORCH_CHECK(cuda::getApplyGrid(valueSize, grid, curDevice), "mul: Argument #0: tensor too large or too many dimensions"); LongTensor resultNnz = at::empty({1}, CUDA(kLong)); AT_DISPATCH_ALL_TYPES_AND( at::ScalarType::Half, commonDtype, "mul_out_sparse_cuda", [&] { hipLaunchKernelGGL(( apply::valueSparseIntersectionKernel<TensorMulOp<scalar_t>, uint64_t, scalar_t>) , dim3(grid), dim3(block), 0, stream, TensorMulOp<scalar_t>(), I_INFO(r_indices_), I_INFO(t_indices_), I_INFO(s_indices_), V_INFO(r_values_), V_INFO(t_values_), V_INFO(s_values_), static_cast<uint64_t>(t_nnz), static_cast<uint64_t>(s_nnz)); THCudaCheck(hipGetLastError()); hipLaunchKernelGGL(( apply::indexSparseIntersectionKernel<uint64_t, scalar_t>) , dim3(1), dim3(1), 0, stream, I_INFO(r_indices_), I_INFO(t_indices_), I_INFO(s_indices_), // reinterpret_cast shenanigans, because we don't actually have // unsigned tensors... static_cast<uint64_t>(t_nnz), static_cast<uint64_t>(s_nnz), reinterpret_cast<uint64_t*>(resultNnz.data_ptr())); THCudaCheck(hipGetLastError()); }); r_values_ = r_values_.to(r_.scalar_type()); get_sparse_impl(r_)->set_indices_and_values_unsafe(r_indices_, r_values_); // sync! (surely there is a more idiomatic way to do this...) LongTensor cpu_resultNnz = at::empty({1}, CPU(kLong)); cpu_resultNnz.copy_(resultNnz); get_sparse_impl(r_)->set_nnz_and_narrow(cpu_resultNnz.accessor<int64_t, 1>()[0]); return r_._coalesced_(true); } // -------------------------------------------------------------------- // sparse.sum() backward // // see NOTE [ sparse.sum() backward ] // -------------------------------------------------------------------- template <typename scalar_t> #ifdef __HIP_PLATFORM_HCC__ C10_LAUNCH_BOUNDS_1(512) #endif __global__ void _sparse_sum_backward_cuda_kernel( int64_t total_threads, const TensorInfo<int64_t, int64_t> grad_indices_ti, const TensorInfo<int64_t, int64_t> input_indices_ti, const TensorInfo<int64_t, int64_t> input_indices_pos_ti, const TensorInfo<scalar_t, int64_t> grad_values_expand_ti, TensorInfo<scalar_t, int64_t> grad_input_values_ti ) { const int64_t i = blockIdx.x * blockDim.x + threadIdx.x; if (i >= total_threads) return; const int64_t j = input_indices_pos_ti.data[i]; bool has_match = false; if (grad_indices_ti.data[j] == input_indices_ti.data[i]) { has_match = true; } int64_t grad_input_values_stride0 = grad_input_values_ti.strides[0]; int64_t out_start = i * grad_input_values_stride0; int64_t out_end = (i + 1) * grad_input_values_stride0; int64_t in_start = j * grad_values_expand_ti.strides[0]; if (has_match) { for (int64_t out_i = out_start, in_i = in_start; out_i < out_end; out_i++, in_i++) { grad_input_values_ti.data[out_i] = grad_values_expand_ti.data[in_i]; } } else { for (int64_t out_i = out_start; out_i < out_end; out_i++) { grad_input_values_ti.data[out_i] = scalar_t(0); } } } Tensor _sparse_sum_backward_cuda(const Tensor& grad_, const SparseTensor& input_, IntArrayRef dims_to_sum) { TORCH_CHECK(grad_.is_cuda(), "_sparse_sum_backward_cuda: expected 'grad_' to be CUDA tensor, but got CPU tensor"); TORCH_CHECK(input_.is_cuda(), "_sparse_sum_backward_cuda: expected 'input_' to be CUDA tensor, but got CPU tensor"); auto input = input_.coalesce(); const int64_t input_dim = input.dim(); auto dims_to_sum_b = dim_list_to_bitset(dims_to_sum, input_dim); auto dims_to_sum_v = dims_to_sum.vec(); maybe_wrap_dims(dims_to_sum_v, input_dim); LongTensor input_indices = input._indices(); Tensor input_values = input._values(); IntArrayRef input_sizes = input.sizes(); const int64_t input_sparse_dim = input.sparse_dim(); const int64_t input_dense_dim = input.dense_dim(); const int64_t input_nnz = input._nnz(); int64_t sparse_dims_to_sum_size = 0; auto sparse_dims_to_keep_v = std::vector<int64_t>(); auto dense_dims_to_sum_v = std::vector<int64_t>(); for (int64_t d = 0; d < input_dim; d++) { if (dims_to_sum_b[d]) { if (d < input_sparse_dim) sparse_dims_to_sum_size ++; else dense_dims_to_sum_v.emplace_back(d + 1 - input_sparse_dim); } else { if (d < input_sparse_dim) sparse_dims_to_keep_v.emplace_back(d); } } const bool sum_all_sparse_dim = (input_sparse_dim == sparse_dims_to_sum_size); const bool sum_dense_dim = (dense_dims_to_sum_v.size() > 0); const bool sum_sparse_dim = (sparse_dims_to_sum_size > 0); if (sum_all_sparse_dim) { TORCH_CHECK(!grad_.is_sparse(), "_sparse_sum_backward_cuda: expected grad Tensor to be dense since all sparse dims are summed"); auto grad_input_values = grad_; auto expand_size = input_values.sizes().vec(); if (sum_dense_dim) { auto dense_expand_size = std::vector<int64_t>(expand_size); dense_expand_size.erase(dense_expand_size.begin()); // remove nnz dim for (auto d : dense_dims_to_sum_v) grad_input_values = grad_input_values.unsqueeze(d - 1); // -1 since grad has no nnz dim grad_input_values = grad_input_values.expand(dense_expand_size); } grad_input_values = grad_input_values.expand(expand_size).clone(at::MemoryFormat::Contiguous); return at::_sparse_coo_tensor_with_dims_and_tensors(input_sparse_dim, input_dense_dim, input_sizes, input_indices.clone(at::MemoryFormat::Contiguous), grad_input_values, input.options().dtype(grad_.dtype())); // convert to grad dtype } else { TORCH_CHECK(grad_.is_sparse(), "_sparse_sum_backward_cuda: expected grad_ Tensor to be sparse, but got dense"); auto grad = grad_.coalesce(); LongTensor grad_indices = grad._indices(); Tensor grad_values = grad._values(); const int64_t grad_sparse_dim = grad.sparse_dim(); const int64_t grad_nnz = grad._nnz(); Tensor grad_values_expand = grad_values; if (sum_dense_dim) { auto expand_size = input_values.sizes().vec(); if (sum_sparse_dim) expand_size[0] = grad_values.size(0); // update nnz for (auto d : dense_dims_to_sum_v) grad_values_expand = grad_values_expand.unsqueeze(d); grad_values_expand = grad_values_expand.expand(expand_size).clone(at::MemoryFormat::Contiguous); } Tensor grad_input_values; if (!sum_sparse_dim) { grad_input_values = grad_values_expand; } else { int curDevice = -1; hipGetDevice(&curDevice); hipStream_t stream = at::hip::getCurrentHIPStreamMasqueradingAsCUDA(curDevice); auto allocator = THCThrustAllocator(globalContext().lazyInitCUDA()); auto policy = thrust::hip::par(allocator).on(stream); typedef thrust::device_ptr<int64_t> thrust_ptr; grad_input_values = at::empty_like(input_values, grad_values.options(), LEGACY_CONTIGUOUS_MEMORY_FORMAT); AT_ASSERT(grad_input_values.is_cuda()); // get 1D indices auto grad_sparse_dim_to_keep_v = std::vector<int64_t>(grad_sparse_dim); std::iota(grad_sparse_dim_to_keep_v.begin(), grad_sparse_dim_to_keep_v.end(), 0); auto grad_indices_1D = flatten_indices_by_dims(grad_indices, grad.sizes(), grad_sparse_dim_to_keep_v); // flatten indices on all sparse_dim of grad, output indices is coalesced and sorted auto input_indices_1D = flatten_indices_by_dims(input_indices, input_sizes, sparse_dims_to_keep_v); thrust_ptr grad_indices_iter(grad_indices_1D.data_ptr<int64_t>()); thrust_ptr input_indices_iter(input_indices_1D.data_ptr<int64_t>()); // store lower_bound of input indices at grad indices LongTensor input_indices_pos = at::empty_like(input_indices_1D, LEGACY_CONTIGUOUS_MEMORY_FORMAT); thrust_ptr input_indices_pos_iter(input_indices_pos.data_ptr<int64_t>()); thrust::lower_bound(policy, grad_indices_iter, grad_indices_iter + grad_nnz, input_indices_iter, input_indices_iter + input_nnz, input_indices_pos_iter); // config to run cuda kernel int64_t total_threads = input_nnz; const dim3 block = dim3(::min(static_cast<int64_t>(cuda::getApplyBlock().x), total_threads)); dim3 grid; TORCH_CHECK(cuda::getApplyGrid(total_threads, grid, curDevice), "_sparse_sum_backward_cuda: input too large or too many dimensions"); auto grad_indices_ti = getTensorInfo<int64_t, int64_t>(grad_indices_1D); auto input_indices_ti = getTensorInfo<int64_t, int64_t>(input_indices_1D); auto input_indices_pos_ti = getTensorInfo<int64_t, int64_t>(input_indices_pos); AT_DISPATCH_FLOATING_TYPES_AND_HALF(grad_values.scalar_type(), "_sparse_sum_backward_cuda", [&] { auto grad_values_expand_ti = getTensorInfo<scalar_t, int64_t>(grad_values_expand); auto grad_input_values_ti = getTensorInfo<scalar_t, int64_t>(grad_input_values); hipLaunchKernelGGL(( _sparse_sum_backward_cuda_kernel<scalar_t>), dim3(grid), dim3(block), 0, stream, total_threads, grad_indices_ti, input_indices_ti, input_indices_pos_ti, grad_values_expand_ti, grad_input_values_ti ); }); } return at::_sparse_coo_tensor_with_dims_and_tensors(input_sparse_dim, input_dense_dim, input_sizes, input_indices.clone(at::MemoryFormat::Contiguous), grad_input_values, grad.options()); } } Tensor bmm_sparse_cuda(const SparseTensor& self, const Tensor& mat2) { Tensor result = at::empty({self.size(0), mat2.size(2), self.size(1)}, mat2.options(), at::MemoryFormat::Contiguous); return _bmm_out_sparse_cuda(result, self, mat2, false); } Tensor _bmm_sparse_cuda(const SparseTensor& self, const Tensor& mat2, bool deterministic) { Tensor result = at::empty({self.size(0), mat2.size(2), self.size(1)}, mat2.options(), at::MemoryFormat::Contiguous); return _bmm_out_sparse_cuda(result, self, mat2, deterministic); } #if !(defined(__HIP_PLATFORM_HCC__) || (defined(_MSC_VER) && CUSPARSE_VERSION < 11000)) __global__ void search_end_matrix_indices_cuda_kernel( int64_t* mat_el_end_indices, int64_t num_matrices, const TensorInfo<int64_t, int64_t> indices_1D_ti, const int64_t num_elements ){ const int64_t target_mat_num = blockIdx.x * blockDim.x + threadIdx.x; if (target_mat_num >= num_matrices) return; const int64_t* indices_1D = indices_1D_ti.data; const int64_t indices_1D_stride = indices_1D_ti.strides[0]; int64_t start_idx = 0; int64_t end_idx = num_elements - 1; int64_t mid_idx = (start_idx + end_idx) >> 1; int64_t mid_val = indices_1D[mid_idx*indices_1D_stride]; bool found; while ( start_idx <= end_idx ) { bool trim_right = mid_val > target_mat_num; int64_t mid_idx_minus_1 = mid_idx - 1; int64_t mid_idx_plus_1 = mid_idx + 1; end_idx = trim_right ? mid_idx_minus_1 : end_idx; start_idx = trim_right ? start_idx : mid_idx_plus_1; mid_idx = (start_idx + end_idx) >> 1; mid_val = indices_1D[mid_idx*indices_1D_stride]; } found = (mid_val == target_mat_num) && ( (mid_idx == (num_elements-1)) || (indices_1D[(mid_idx+1)*indices_1D_stride] != target_mat_num) ); mat_el_end_indices[target_mat_num] = found ? mid_idx : -1; } // Search through a 1D tensor of sorted sparse matrix // indices to find the end index for each matrix void search_end_matrix_indices(int64_t* mat_el_end_indices, int64_t num_matrices, const LongTensor& indices_1D) { int curDevice = -1; hipGetDevice(&curDevice); hipStream_t stream = at::hip::getCurrentHIPStreamMasqueradingAsCUDA(curDevice); auto indices_1D_ti = getTensorInfo<int64_t, int64_t>(indices_1D); int64_t grid_size = (num_matrices / 64)+1; int64_t block_size = 64; int64_t num_elements = indices_1D.size(0); hipLaunchKernelGGL(( search_end_matrix_indices_cuda_kernel), dim3(grid_size), dim3(block_size), 0, stream, mat_el_end_indices, num_matrices, indices_1D_ti, num_elements ); hipDeviceSynchronize(); } hipDataType getTensorCudaDataType(Tensor self) { hipDataType cuda_data_type; switch (self.scalar_type()) { case ScalarType::Float: cuda_data_type = HIP_R_32F; break; case ScalarType::Double: cuda_data_type = HIP_R_64F; break; default: TORCH_CHECK(false, "Tensor types must be either float32 or float64"); break; } return cuda_data_type; } #endif Tensor& bmm_out_sparse_cuda(Tensor& result, const SparseTensor& self, const Tensor& mat2) { return _bmm_out_sparse_cuda(result, self, mat2, false); } Tensor& _bmm_out_sparse_cuda(Tensor& result, const SparseTensor& self, const Tensor& mat2, bool deterministic) { #if defined __HIP_PLATFORM_HCC__ TORCH_CHECK(false, "bmm sparse-dense is not supported on HIP"); #elif defined(_MSC_VER) && (CUSPARSE_VERSION < 11000) TORCH_CHECK(false, "bmm sparse-dense CUDA is not supported on Windows with cuda before 11.0"); #elif defined(CUDART_VERSION) && (CUDART_VERSION >= 10010) // linux cuda >= 10.1 or windows cuda >= 11.0 TORCH_CHECK(!mat2.is_sparse(), "bmm_sparse: Tensor 'mat2' must be dense"); TORCH_CHECK(self.dense_dim() == 0, "bmm_sparse: Tensor 'self' must have 0 dense dims, but has ", self.dense_dim()); TORCH_CHECK(self.sparse_dim() == 3, "bmm_sparse: Tensor 'self' must have 3 sparse dims, but has ", self.sparse_dim()); TORCH_CHECK(mat2.dim() == 3, "bmm_sparse: Tensor 'mat2' must have 3 dims, but has ", mat2.dim()); TORCH_CHECK(self.size(0) == mat2.size(0), "bmm_sparse: 'self.size(0)' and 'mat2.size(0)' must match"); TORCH_CHECK(self.size(2) == mat2.size(1), "bmm_sparse: 'self.size(2)' and 'mat2.size(1)' must match"); int64_t num_matrices = self.size(0); int64_t dim_i = self.size(1); int64_t dim_j = self.size(2); int64_t dim_k = mat2.size(2); result.resize_({num_matrices, dim_k, dim_i}); if ((self._nnz() == 0) || (dim_j == 0) || (dim_k == 0)) { result.zero_().transpose_(1, 2); return result; } Tensor tmp_result; bool need_copy_result; // If the result tensor is contiguous, we can just write results directly to it. // Otherwise, we'll need to write results to a temp buffer and then copy. if (result.is_contiguous()) { tmp_result = result; need_copy_result = false; } else { tmp_result = at::empty({num_matrices, dim_k, dim_i}, result.options(), at::MemoryFormat::Contiguous); need_copy_result = true; } // Dense matrices have to be contiguous for hipsparseSpMM to work const Tensor mat2_contig = mat2.contiguous(); auto cusparse_handle = at::cuda::getCurrentCUDASparseHandle(); // First need to coalesce to get all of the first dimension indices // in order since we'll be sending each matrix into the MM operation SparseTensor self_coalesced = coalesce_sparse_cuda(self); int64_t nnz = self_coalesced._nnz(); LongTensor indices = self_coalesced._indices(); Tensor values = self_coalesced._values(); LongTensor indices_dim0 = indices[0]; // Need to convert dim1 and dim2 indices to 32-bit since hipsparseSpMM // only supports 32-bit indices Tensor indices_dim1 = indices[1].to(ScalarType::Int); Tensor indices_dim2 = indices[2].to(ScalarType::Int); std::unique_ptr<int64_t[]> mat_el_end_indices_host(new int64_t[num_matrices]); int64_t* mat_el_end_indices_device; hipMalloc(&mat_el_end_indices_device, num_matrices*sizeof(int64_t)); search_end_matrix_indices(mat_el_end_indices_device, num_matrices, indices_dim0); hipMemcpy( mat_el_end_indices_host.get(), mat_el_end_indices_device, num_matrices*sizeof(int64_t), hipMemcpyDeviceToHost ); hipFree(mat_el_end_indices_device); // Need a pointer to an array to access within a lambda int64_t* mat_el_end_indices = &mat_el_end_indices_host[0]; Scalar beta = 0; Scalar alpha = 1; int64_t mat_el_begin_idx = 0; size_t workspace_buffer_size = 0; void* workspace_buffer = nullptr; // See Note [Enabling Deterministic Operations] deterministic = deterministic || globalContext().deterministic(); hipsparseSpMMAlg_t mm_alg = deterministic ? HIPSPARSE_COOMM_ALG2 : HIPSPARSE_COOMM_ALG1; // Iterate through each set of 2D matrices within the 3D // tensor inputs, performing a matrix multiply with each AT_DISPATCH_FLOATING_TYPES( values.scalar_type(), "bmm_sparse_cuda", [&] { scalar_t alpha_val = alpha.to<scalar_t>(); scalar_t beta_val = beta.to<scalar_t>(); uint32_t* row_indices_start_ptr = reinterpret_cast<uint32_t*>(indices_dim1.data_ptr()); uint32_t* col_indices_start_ptr = reinterpret_cast<uint32_t*>(indices_dim2.data_ptr()); scalar_t* values_start_ptr = reinterpret_cast<scalar_t*>(values.data_ptr()); scalar_t* mat2_start_ptr = reinterpret_cast<scalar_t*>(mat2_contig.data_ptr()); scalar_t* result_start_ptr = reinterpret_cast<scalar_t*>(tmp_result.data_ptr()); for ( int64_t cur_mat_num = 0; (cur_mat_num < num_matrices); cur_mat_num++ ) { int64_t mat_el_end_idx = mat_el_end_indices[cur_mat_num]; if (mat_el_end_idx != -1) { mat_el_end_idx++; // Create tensors to view just the current set of matrices int64_t sparse_nnz = mat_el_end_idx - mat_el_begin_idx; hipDataType cuda_data_type = getTensorCudaDataType(mat2_contig); uint32_t* row_indices_ptr = &row_indices_start_ptr[mat_el_begin_idx]; uint32_t* col_indices_ptr = &col_indices_start_ptr[mat_el_begin_idx]; scalar_t* values_ptr = &values_start_ptr[mat_el_begin_idx]; hipsparseSpMatDescr_t sparse_descr; TORCH_CUDASPARSE_CHECK(hipsparseCreateCoo( &sparse_descr, dim_i, dim_j, sparse_nnz, reinterpret_cast<void*>(row_indices_ptr), reinterpret_cast<void*>(col_indices_ptr), reinterpret_cast<void*>(values_ptr), HIPSPARSE_INDEX_32I, HIPSPARSE_INDEX_BASE_ZERO, cuda_data_type )); scalar_t* mat2_ptr = &mat2_start_ptr[dim_k*dim_j*cur_mat_num]; hipsparseDnMatDescr_t dense_descr; TORCH_CUDASPARSE_CHECK(hipsparseCreateDnMat( &dense_descr, dim_k, dim_j, dim_k, reinterpret_cast<void*>(mat2_ptr), cuda_data_type, HIPSPARSE_ORDER_COL )); scalar_t* result_ptr = &result_start_ptr[dim_i*dim_k*cur_mat_num]; hipsparseDnMatDescr_t result_descr; TORCH_CUDASPARSE_CHECK(hipsparseCreateDnMat( &result_descr, dim_i, dim_k, dim_i, reinterpret_cast<void*>(result_ptr), cuda_data_type, HIPSPARSE_ORDER_COL )); size_t required_workspace_buffer_size = 0; TORCH_CUDASPARSE_CHECK(hipsparseSpMM_bufferSize( cusparse_handle, HIPSPARSE_OPERATION_NON_TRANSPOSE, HIPSPARSE_OPERATION_TRANSPOSE, (void*)&alpha_val, sparse_descr, dense_descr, (void*)&beta_val, result_descr, cuda_data_type, mm_alg, &required_workspace_buffer_size )); if (required_workspace_buffer_size > workspace_buffer_size) { if (workspace_buffer != nullptr) { hipFree(workspace_buffer); } workspace_buffer_size = required_workspace_buffer_size; hipMallocManaged(&workspace_buffer, workspace_buffer_size); } TORCH_CUDASPARSE_CHECK(hipsparseSpMM( cusparse_handle, HIPSPARSE_OPERATION_NON_TRANSPOSE, HIPSPARSE_OPERATION_TRANSPOSE, (void*)&alpha_val, sparse_descr, dense_descr, (void*)&beta_val, result_descr, cuda_data_type, mm_alg, workspace_buffer )); TORCH_CUDASPARSE_CHECK(hipsparseDestroySpMat(sparse_descr)); TORCH_CUDASPARSE_CHECK(hipsparseDestroyDnMat(dense_descr)); TORCH_CUDASPARSE_CHECK(hipsparseDestroyDnMat(result_descr)); mat_el_begin_idx = mat_el_end_idx; } else { tmp_result[cur_mat_num].zero_(); } } } ); if (need_copy_result) { result.copy_(tmp_result); } // Need to transpose the result matrices since cusparse stores // them in column-major order in memory result.transpose_(1,2); if (workspace_buffer != nullptr) { hipFree(workspace_buffer); } #else TORCH_CHECK(false, "bmm sparse-dense requires CUDA 10.1 or greater"); #endif return result; } }} // namespace at::native
8bc3e5a7279666f078c10ac339b7234a551347cb.cu
#include <ATen/ATen.h> #include <ATen/cuda/CUDAContext.h> #include <ATen/NativeFunctions.h> #include <ATen/SparseTensorUtils.h> #include <ATen/native/sparse/SparseTensorMath.h> #include <ATen/native/sparse/cuda/SparseCUDAApplyUtils.cuh> #include <ATen/native/sparse/cuda/SparseCUDABlas.cuh> #include <ATen/cuda/CUDAApplyUtils.cuh> #include <ATen/cuda/CUDAUtils.h> #include <ATen/cuda/detail/IndexUtils.cuh> #include <ATen/WrapDimUtilsMulti.h> #include <ATen/ExpandUtils.h> #include <THC/THCTensorMathPointwise.cuh> #include <THC/THCThrustAllocator.cuh> #include <thrust/device_ptr.h> #include <thrust/sequence.h> #include <thrust/binary_search.h> #include <thrust/sort.h> #include <thrust/system/cuda/execution_policy.h> #include <bitset> #include <cusparse.h> #include <cuda_runtime_api.h> #include <memory> #define I_INFO(tensor) cuda::detail::getTensorInfo<int64_t, uint64_t>(tensor) #define V_INFO(tensor) cuda::detail::getTensorInfo<scalar_t, uint64_t>(tensor) namespace at { namespace native { using namespace at::sparse; using at::cuda::detail::TensorInfo; using at::cuda::detail::getTensorInfo; // -------------------------------------------------------------------- // Utility functions // -------------------------------------------------------------------- namespace { IntTensor _to_csr_int(const LongTensor& rowIndices, int64_t dim, int64_t nnz) { IntTensor csr = at::empty({dim+1}, CUDA(kInt)); IntTensor rowIndicesInt = at::empty({rowIndices.size(0)}, CUDA(kInt)); rowIndicesInt.copy_(rowIndices); sparse::cuda::Xcoo2csr(rowIndicesInt.data_ptr<int32_t>(), nnz, dim, csr.data_ptr<int32_t>()); return csr; } } // NB: Deleted spaddcmul (aka addcmul_, but not actually wired up), spaddcdiv (not // wired at all) template <typename scalar_t> void s_addmm_out_sparse_dense_cuda_worker(int64_t nnz, int64_t m, int64_t n, int64_t k, Tensor& r_, Scalar beta, const Tensor& t, Scalar alpha, LongTensor& indices, Tensor& values, const Tensor& dense) { scalar_t cast_beta = beta.to<scalar_t>(); scalar_t cast_alpha = alpha.to<scalar_t>(); LongTensor rowIndices = indices.select(0, 0); LongTensor colIndices = indices.select(0, 1); IntTensor csr = _to_csr_int(rowIndices, m, nnz); IntTensor colIndicesInt = at::empty({colIndices.size(0)}, indices.options().dtype(kInt)); colIndicesInt.copy_(colIndices); Tensor r__; if (cast_beta == 0) { r_.zero_(); } else if (cast_beta == 1) { if (!is_same_tensor(t, r_)) { r_.copy_(t); } } else { at::mul_out(r_, t, scalar_to_tensor(beta)); } if(r_.stride(0) == 1 && r_.stride(1) == r_.size(0)) { r__ = r_; } else { // TODO: how... strange r__ = r_.transpose(0, 1).clone(at::MemoryFormat::Contiguous); r__.transpose_(0, 1); } if (nnz > 0) { Tensor dense_; char transpose_dense; if(dense.stride(0) == 1 && dense.stride(1) == dense.size(0)) { transpose_dense = 'n'; dense_ = dense; } else if(dense.stride(1) == 1 && dense.stride(0) != dense.size(1)) { transpose_dense = 't'; dense_ = dense; } else { transpose_dense = 't'; dense_ = dense.contiguous(); } sparse::cuda::csrmm2( 'n', transpose_dense, m, n, k, nnz, cast_alpha, values.data_ptr<scalar_t>(), csr.data_ptr<int32_t>(), colIndicesInt.data_ptr<int32_t>(), dense_.data_ptr<scalar_t>(), (transpose_dense == 'n' ? dense_.stride(1) : dense_.stride(0)), cast_beta, r__.data_ptr<scalar_t>(), r__.stride(1)); } r_.copy_(r__); } // -------------------------------------------------------------------- // addmm(Tensor, SparseTensor, Tensor, Scalar, Scalar) [broadcasts] // -------------------------------------------------------------------- Tensor& s_addmm_out_sparse_dense_cuda(Tensor& r_, const Tensor& t, const SparseTensor& sparse_, const Tensor& dense, Scalar beta, Scalar alpha) { TORCH_CHECK(t.is_cuda(), "addmm: expected 'self' to be CUDA, but got CPU"); TORCH_CHECK(r_.is_cuda(), "addmm: expected 'out' to be CUDA, but got CPU"); TORCH_CHECK(sparse_.is_cuda(), "addmm: expected 'mat1' to be CUDA, but got CPU"); TORCH_CHECK(dense.is_cuda(), "addmm: expected 'mat2' to be CUDA, but got CPU"); TORCH_CHECK(cuda::check_device({sparse_, r_, t, dense})); TORCH_CHECK(dense.dim() == 2, "addmm: 2D tensor expected, got ", dense.dim(), "D tensor"); TORCH_CHECK(sparse_.sparse_dim() == 2, "addmm: expected first two dims to be sparse (indices has size 2 at first dim), but got ", sparse_.sparse_dim(), " sparse dims"); // no need to check dense_dim because dense_dim + sparse_dim = dim // mxk * kxn = mxn int64_t m = sparse_.size(0); int64_t k = sparse_.size(1); int64_t n = dense.size(1); TORCH_CHECK(t.size(0) == m, "addmm: Argument #1 (t): Expected dim 0 size ", m, ", got ", t.size(0)); TORCH_CHECK(t.size(1) == n, "addmm: Argument #1 (t): Expected dim 1 size ", n, ", got ", t.size(1)); TORCH_CHECK(dense.size(0) == k, "addmm: Argument #3 (dense): Expected dim 0 size ", k, ", got ", dense.size(0)); r_.resize_({m, n}); SparseTensor sparse = sparse_.coalesce(); int64_t nnz = sparse._nnz(); LongTensor indices = sparse._indices(); Tensor values = sparse._values(); // No half support, so we don't have to use CUDATypeConversion AT_DISPATCH_FLOATING_TYPES( values.scalar_type(), "addmm_sparse_cuda", [&] { s_addmm_out_sparse_dense_cuda_worker<scalar_t>(nnz, m, n, k, r_, beta, t, alpha, indices, values, dense); } ); return r_; } Tensor& addmm_out_sparse_dense_cuda( Tensor& result, const Tensor& self, const SparseTensor& mat1, const Tensor& mat2, Scalar beta, Scalar alpha ) { Tensor b_self; std::tie(b_self) = expand_size(self, {mat1.size(0), mat2.size(1)}, "addmm_out"); return s_addmm_out_sparse_dense_cuda(result, b_self, mat1, mat2, beta, alpha); } Tensor s_addmm_sparse_dense_cuda( const Tensor& t, const SparseTensor& sparse, const Tensor& dense, Scalar beta, Scalar alpha ) { Tensor r = at::empty({0}, t.options()); s_addmm_out_sparse_dense_cuda(r, t, sparse, dense, beta, alpha); return r; } Tensor addmm_sparse_dense_cuda( const Tensor& self, const SparseTensor& mat1, const Tensor& mat2, Scalar beta, Scalar alpha ) { Tensor b_self; std::tie(b_self) = expand_size(self, {mat1.size(0), mat2.size(1)}, "addmm_out"); return s_addmm_sparse_dense_cuda(b_self, mat1, mat2, beta, alpha); } Tensor& s_addmm_sparse_dense_cuda_( Tensor& t, const SparseTensor& sparse, const Tensor& dense, Scalar beta, Scalar alpha ) { return s_addmm_out_sparse_dense_cuda(t, t, sparse, dense, beta, alpha); } // NB: Purposely no broadcasting version of addmm inplace // Deleted sspaddmm (sparse, dense) -> sparse // -------------------------------------------------------------------- // hspmm(SparseTensor mat1, Tensor mat2) // -------------------------------------------------------------------- SparseTensor& hspmm_out_sparse_cuda(SparseTensor& r_, const SparseTensor& sparse_, const Tensor& dense/* , Scalar alpha */) { TORCH_CHECK(sparse_.is_cuda(), "hspmm: expected 'self' to be CUDA, but got CPU"); TORCH_CHECK(r_.is_cuda(), "hspmm: expected 'out' to be CUDA, but got CPU"); TORCH_CHECK(dense.is_cuda(), "hspmm: expected 'mat2' to be CUDA, but got CPU"); TORCH_CHECK(cuda::check_device({r_, sparse_, dense})); TORCH_CHECK(sparse_.sparse_dim() == 2, "hspmm: Argument #2: 2D tensor expected, got ", sparse_.sparse_dim(), "D tensor"); TORCH_CHECK(sparse_.dense_dim() == 0, "hspmm: Argument #2: scalar values expected, got ", sparse_.dense_dim(), "D values"); TORCH_CHECK(dense.dim() == 2, "hspmm: Argument #3: 2D tensor expected, got ", dense.dim(), "D tensor"); int64_t m = sparse_.size(0); int64_t k = sparse_.size(1); int64_t n = dense.size(1); TORCH_CHECK(dense.size(0) == k, "hspmm: Argument #3: Expected dim 0 size ", k, ", got ", dense.size(0)); get_sparse_impl(r_)->resize_and_clear_(1, 1, {m, n}); cudaStream_t stream = at::cuda::getCurrentCUDAStream(); auto allocator = THCThrustAllocator(globalContext().lazyInitCUDA()); auto policy = thrust::cuda::par(allocator).on(stream); SparseTensor sparse = sparse_.coalesce(); int64_t nnz = sparse._nnz(); LongTensor indices = at::empty({1, nnz}, CUDA(kLong)); // create values in column-major format to avoid copying in spaddmm Tensor values = at::empty({n, nnz}, dense.options()); values.transpose_(0, 1); // why does sparse need to be cloned? If this is really necessary maybe we // need to fuse this with newCoalesce SparseTensor newSparse = sparse.clone(); LongTensor spIndices = newSparse._indices(); LongTensor dstIndices = spIndices.select(0, 0); // Save destination indices to output hybrid tensor indices.copy_(dstIndices); // Replace destination indices with 0, 1, 2, 3, ... and compute output values // tensor with sparse * dense multiplication thrust::device_ptr<int64_t> indicesIter(dstIndices.data_ptr<int64_t>()); thrust::sequence(policy, indicesIter, indicesIter + nnz); std::vector<int64_t> new_size = get_sparse_impl(newSparse)->sizes().vec(); new_size[0] = nnz; get_sparse_impl(newSparse)->raw_resize_(get_sparse_impl(newSparse)->sparse_dim(), get_sparse_impl(newSparse)->dense_dim(), new_size); s_addmm_out_sparse_dense_cuda(values, values, newSparse, dense, 0, /*alpha*/ 1); get_sparse_impl(r_)->set_indices_and_values_unsafe(indices, values); return r_; } SparseTensor hspmm_sparse_cuda(const SparseTensor& sparse, const Tensor& dense) { SparseTensor r = at::empty({0}, sparse.options()); hspmm_out_sparse_cuda(r, sparse, dense); return r; } // -------------------------------------------------------------------- // add(Tensor, SparseTensor, Scalar) // formerly known as spcadd // -------------------------------------------------------------------- Tensor& add_out_dense_sparse_cuda(Tensor& r_, const Tensor& dense, const SparseTensor& sparse, at::Scalar value) { TORCH_CHECK(dense.is_cuda(), "add: expected 'self' to be a CUDA tensor, but got a CPU tensor"); TORCH_CHECK(sparse.is_cuda(), "add: expected 'other' to be a CUDA tensor, but got a CPU tensor"); TORCH_CHECK(r_.is_cuda(), "add: expected 'out' to be a CUDA tensor, but got a CPU tensor"); TORCH_CHECK(cuda::check_device({sparse, r_, dense})); TORCH_CHECK(dense.sizes().equals(sparse.sizes()), "add: expected 'self' and 'other' to have same size, but self has size ", dense.sizes(), " while other has size ", sparse.sizes(), " (FYI: dense-sparse addition does not currently support broadcasting)"); const int64_t nnz = sparse._nnz(); if (nnz == 0) { r_.resize_as_(dense); r_.copy_(dense); return r_; } auto commonDtype = at::result_type(dense, sparse); TORCH_CHECK(canCast(commonDtype, r_.scalar_type()), "Can't convert result type ", commonDtype, " to output ", r_.scalar_type()); Tensor r = r_; if (r_.scalar_type() != commonDtype) { r = at::empty_like(dense, r_.options().dtype(commonDtype)); } Tensor dense_buffer = dense.to(commonDtype); Tensor values = sparse._values().to(commonDtype); if (is_same_tensor(r, dense_buffer)) { TORCH_CHECK(r_.is_contiguous(), "add: CUDA dense-sparse addition with a non-contiguous output tensor does not work; shout if you need it (see https://github.com/pytorch/pytorch/issues/1521 )"); } else { r.resize_as_(dense); r.copy_(dense_buffer); } LongTensor indices = sparse._indices(); int64_t nDim = dense.dim(); int64_t nDimI = sparse.sparse_dim(); if (values.numel() == 0) { return r_; } if (sparse.is_coalesced()) { // TODO benchmark to decide whether to remove this special case const dim3 block = cuda::getApplyBlock(); dim3 grid; int curDevice = -1; cudaGetDevice(&curDevice); cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice); if (sparse.dense_dim() == 0) { TORCH_CHECK(cuda::getApplyGrid(nnz, grid, curDevice), "add: Argument #0: tensor too large or too many dimensions"); AT_DISPATCH_ALL_TYPES_AND2( at::ScalarType::Half, at::ScalarType::BFloat16, commonDtype, "add_out_dense_sparse_cuda", [&] { AT_SKIP_BFLOAT16_IF_NOT_ROCM(scalar_t, "add_out_dense_sparse_cuda", [&] { apply::sparseElementwiseKernelScalar<TensorCAddOp<scalar_t>, uint64_t, scalar_t> <<<grid, block, 0, stream>>>( TensorCAddOp<scalar_t>(value.to<scalar_t>()), V_INFO(r), I_INFO(indices), V_INFO(values), static_cast<uint64_t>(nnz)); }); }); } else { TORCH_CHECK(cuda::getApplyGrid(nnz * block.x, grid, curDevice), "add: Argument #0: tensor too large or too many dimensions"); // sparseElementwiseKernel needs values to be contiguous too values = values.contiguous(); AT_DISPATCH_ALL_TYPES_AND2( at::ScalarType::Half, at::ScalarType::BFloat16, commonDtype, "add_out_dense_sparse_cuda", [&] { AT_SKIP_BFLOAT16_IF_NOT_ROCM(scalar_t, "add_out_dense_sparse_cuda", [&] { apply::sparseElementwiseKernel<TensorCAddOp<scalar_t>, uint64_t, scalar_t> <<<grid, block, 0, stream>>>( TensorCAddOp<scalar_t>(value.to<scalar_t>()), V_INFO(r), I_INFO(indices), V_INFO(values), static_cast<uint64_t>(nnz)); }); }); } } else { LongTensor indices1D = flatten_indices(indices, sparse.sizes(), 0); int64_t view_rows = 1; int64_t view_columns = 1; for (int i = 0; i < nDimI; i++) { view_rows *= r.size(i); } for (int i = nDimI; i < nDim; i++) { view_columns *= r.size(i); } Tensor r_view = r.view({view_rows, view_columns}); values = values.reshape({nnz, view_columns}); r_view.index_add_(0, indices1D, values, value); } THCudaCheck(cudaGetLastError()); r_.copy_(r); return r_; } // -------------------------------------------------------------------- // add(SparseTensor, SparseTensor, Scalar) [broadcasts] // -------------------------------------------------------------------- Tensor& add_out_dense_sparse_cuda(Tensor& r, const Tensor& dense, const SparseTensor& sparse_, Scalar value); SparseTensor& add_out_sparse_cuda(SparseTensor& r_, const SparseTensor& t, const SparseTensor& src, Scalar value) { if (!t.is_sparse()) { return add_out_dense_sparse_cuda(r_, t, src, value); } // TODO: This test seems a bit goofy TORCH_CHECK(src.is_sparse(), "add(sparse, dense) is not supported. Use add(dense, sparse) instead."); TORCH_CHECK(t.is_cuda(), "add: expected 'self' to be CUDA, but got CPU"); TORCH_CHECK(src.is_cuda(), "add: expected 'other' to be CUDA, but got CPU"); TORCH_CHECK(r_.is_cuda(), "add: expected 'out' to be CUDA, but got CPU"); TORCH_CHECK(cuda::check_device({r_, t, src})); auto commonDtype = at::result_type(t, src); TORCH_CHECK(canCast(commonDtype, r_.scalar_type()), "Can't convert result type ", commonDtype, " to output ", r_.scalar_type()); TORCH_CHECK(t.sizes().equals(src.sizes()), "add: expected 'self' and 'other' to have same size, but ", t.sizes(), " != ", src.sizes()); if (src._nnz() == 0) { return copy_sparse_to_sparse_(r_, t); } if (t._nnz() == 0) { return mul_out_sparse_scalar(r_, src, value); } TORCH_CHECK(is_same_density(t, src), "add: expected 'self' and 'other' to have same density, but 'self' has ", t.sparse_dim(), " sparse dimensions while 'other' has ", src.sparse_dim(), " sparse dimensions"); // We deliberately choose to simply concat the indices and values tensors // rather than merging them. This removes the need to synchronously fetch nnz // at the end of the operation, at the cost of having a non-coalesced result. // This trade-off is preferable for the common use-case of gradient accumulation. LongTensor t_indices_ = t._indices(); LongTensor s_indices_ = src._indices(); Tensor t_values_ = t._values().to(commonDtype); Tensor s_values_ = src._values().to(commonDtype); AT_DISPATCH_ALL_TYPES_AND2( at::ScalarType::Half, at::ScalarType::BFloat16, commonDtype, "add_out_sparse_cuda", [&] { AT_SKIP_BFLOAT16_IF_NOT_ROCM(scalar_t, "add_out_sparse_cuda", [&] { if (value.to<scalar_t>() != static_cast<scalar_t>(1)) { s_values_ = s_values_.mul(value); } }); }); LongTensor r_indices_ = at::cat({t_indices_, s_indices_}, 1); Tensor r_values_ = at::cat({t_values_, s_values_}, 0); if (r_.scalar_type() != commonDtype) { SparseTensor promoted = at::empty({0}, r_.options().dtype(commonDtype)); promoted.resize_as_(src); alias_into_sparse(promoted, r_indices_, r_values_); // performs the addition under the common dtype. promoted = promoted.coalesce(); r_values_ = promoted._values().to(r_.scalar_type()); r_indices_ = promoted._indices(); } else { r_.resize_as_(src); } alias_into_sparse(r_, r_indices_, r_values_); // Prevent unbounded growth of nnz // TODO: Improved heuristic on when to coalesce or remove need to coalesce if (r_._nnz() > r_.numel()) { auto c = r_.coalesce(); alias_into_sparse(r_, c._indices(), c._values()); } return r_; } // -------------------------------------------------------------------- // mul(SparseTensor, SparseTensor) [broadcasts] // -------------------------------------------------------------------- SparseTensor& mul_out_sparse_cuda(SparseTensor& r_, const SparseTensor& t_, const SparseTensor& src_) { if (src_.dim() == 0) { return mul_out_sparse_zerodim(r_, t_, src_); } else if (t_.dim() == 0) { return mul_out_sparse_zerodim(r_, src_, t_); } TORCH_CHECK(t_.is_cuda(), "mul: expected 'self' to be CUDA, but got CPU"); TORCH_CHECK(src_.is_cuda(), "mul: expected 'other' to be CUDA, but got CPU"); TORCH_CHECK(r_.is_cuda(), "mul: expected 'out' to be CUDA, but got CPU"); TORCH_CHECK(cuda::check_device({r_, t_, src_})); TORCH_CHECK(t_.sizes().equals(src_.sizes()), "mul: expected 'self' and 'other' to have same size, but ", t_.sizes(), " != ", src_.sizes()); SparseTensor t = t_.coalesce(); SparseTensor src = src_.coalesce(); if (src_._nnz() == 0 || t_._nnz() == 0) { r_.resize_as_(src_); return r_.zero_(); } // saving those because they can be overwritten when doing in-place operations int64_t t_nnz = t._nnz(), s_nnz = src._nnz(); int64_t max_nnz = std::min(t_nnz, s_nnz); // multiply by zero is zero, and can be dropped int64_t sparse_dim = src.sparse_dim(); auto commonDtype = at::result_type(t, src); TORCH_CHECK(canCast(commonDtype, r_.scalar_type()), "Can't convert result type ", commonDtype, " to output ", r_.scalar_type()); LongTensor t_indices_ = t._indices().contiguous(); Tensor t_values_ = t._values().to(commonDtype); LongTensor s_indices_ = src._indices().contiguous(); Tensor s_values_ = src._values().to(commonDtype); LongTensor r_indices_ = at::empty({sparse_dim, max_nnz}, t_indices_.options()); r_.resize_as_(src); Tensor r_values_ = new_values_with_size_of(t_values_, max_nnz).zero_(); int64_t valueSize = t_values_.stride(0); const dim3 block = dim3(std::min(static_cast<int64_t>(cuda::getApplyBlock().x), valueSize)); dim3 grid; int curDevice = -1; cudaGetDevice(&curDevice); cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice); TORCH_CHECK(cuda::getApplyGrid(valueSize, grid, curDevice), "mul: Argument #0: tensor too large or too many dimensions"); LongTensor resultNnz = at::empty({1}, CUDA(kLong)); AT_DISPATCH_ALL_TYPES_AND( at::ScalarType::Half, commonDtype, "mul_out_sparse_cuda", [&] { apply::valueSparseIntersectionKernel<TensorMulOp<scalar_t>, uint64_t, scalar_t> <<<grid, block, 0, stream>>>( TensorMulOp<scalar_t>(), I_INFO(r_indices_), I_INFO(t_indices_), I_INFO(s_indices_), V_INFO(r_values_), V_INFO(t_values_), V_INFO(s_values_), static_cast<uint64_t>(t_nnz), static_cast<uint64_t>(s_nnz)); THCudaCheck(cudaGetLastError()); apply::indexSparseIntersectionKernel<uint64_t, scalar_t> <<<1, 1, 0, stream>>>( I_INFO(r_indices_), I_INFO(t_indices_), I_INFO(s_indices_), // reinterpret_cast shenanigans, because we don't actually have // unsigned tensors... static_cast<uint64_t>(t_nnz), static_cast<uint64_t>(s_nnz), reinterpret_cast<uint64_t*>(resultNnz.data_ptr())); THCudaCheck(cudaGetLastError()); }); r_values_ = r_values_.to(r_.scalar_type()); get_sparse_impl(r_)->set_indices_and_values_unsafe(r_indices_, r_values_); // sync! (surely there is a more idiomatic way to do this...) LongTensor cpu_resultNnz = at::empty({1}, CPU(kLong)); cpu_resultNnz.copy_(resultNnz); get_sparse_impl(r_)->set_nnz_and_narrow(cpu_resultNnz.accessor<int64_t, 1>()[0]); return r_._coalesced_(true); } // -------------------------------------------------------------------- // sparse.sum() backward // // see NOTE [ sparse.sum() backward ] // -------------------------------------------------------------------- template <typename scalar_t> #ifdef __HIP_PLATFORM_HCC__ C10_LAUNCH_BOUNDS_1(512) #endif __global__ void _sparse_sum_backward_cuda_kernel( int64_t total_threads, const TensorInfo<int64_t, int64_t> grad_indices_ti, const TensorInfo<int64_t, int64_t> input_indices_ti, const TensorInfo<int64_t, int64_t> input_indices_pos_ti, const TensorInfo<scalar_t, int64_t> grad_values_expand_ti, TensorInfo<scalar_t, int64_t> grad_input_values_ti ) { const int64_t i = blockIdx.x * blockDim.x + threadIdx.x; if (i >= total_threads) return; const int64_t j = input_indices_pos_ti.data[i]; bool has_match = false; if (grad_indices_ti.data[j] == input_indices_ti.data[i]) { has_match = true; } int64_t grad_input_values_stride0 = grad_input_values_ti.strides[0]; int64_t out_start = i * grad_input_values_stride0; int64_t out_end = (i + 1) * grad_input_values_stride0; int64_t in_start = j * grad_values_expand_ti.strides[0]; if (has_match) { for (int64_t out_i = out_start, in_i = in_start; out_i < out_end; out_i++, in_i++) { grad_input_values_ti.data[out_i] = grad_values_expand_ti.data[in_i]; } } else { for (int64_t out_i = out_start; out_i < out_end; out_i++) { grad_input_values_ti.data[out_i] = scalar_t(0); } } } Tensor _sparse_sum_backward_cuda(const Tensor& grad_, const SparseTensor& input_, IntArrayRef dims_to_sum) { TORCH_CHECK(grad_.is_cuda(), "_sparse_sum_backward_cuda: expected 'grad_' to be CUDA tensor, but got CPU tensor"); TORCH_CHECK(input_.is_cuda(), "_sparse_sum_backward_cuda: expected 'input_' to be CUDA tensor, but got CPU tensor"); auto input = input_.coalesce(); const int64_t input_dim = input.dim(); auto dims_to_sum_b = dim_list_to_bitset(dims_to_sum, input_dim); auto dims_to_sum_v = dims_to_sum.vec(); maybe_wrap_dims(dims_to_sum_v, input_dim); LongTensor input_indices = input._indices(); Tensor input_values = input._values(); IntArrayRef input_sizes = input.sizes(); const int64_t input_sparse_dim = input.sparse_dim(); const int64_t input_dense_dim = input.dense_dim(); const int64_t input_nnz = input._nnz(); int64_t sparse_dims_to_sum_size = 0; auto sparse_dims_to_keep_v = std::vector<int64_t>(); auto dense_dims_to_sum_v = std::vector<int64_t>(); for (int64_t d = 0; d < input_dim; d++) { if (dims_to_sum_b[d]) { if (d < input_sparse_dim) sparse_dims_to_sum_size ++; else dense_dims_to_sum_v.emplace_back(d + 1 - input_sparse_dim); } else { if (d < input_sparse_dim) sparse_dims_to_keep_v.emplace_back(d); } } const bool sum_all_sparse_dim = (input_sparse_dim == sparse_dims_to_sum_size); const bool sum_dense_dim = (dense_dims_to_sum_v.size() > 0); const bool sum_sparse_dim = (sparse_dims_to_sum_size > 0); if (sum_all_sparse_dim) { TORCH_CHECK(!grad_.is_sparse(), "_sparse_sum_backward_cuda: expected grad Tensor to be dense since all sparse dims are summed"); auto grad_input_values = grad_; auto expand_size = input_values.sizes().vec(); if (sum_dense_dim) { auto dense_expand_size = std::vector<int64_t>(expand_size); dense_expand_size.erase(dense_expand_size.begin()); // remove nnz dim for (auto d : dense_dims_to_sum_v) grad_input_values = grad_input_values.unsqueeze(d - 1); // -1 since grad has no nnz dim grad_input_values = grad_input_values.expand(dense_expand_size); } grad_input_values = grad_input_values.expand(expand_size).clone(at::MemoryFormat::Contiguous); return at::_sparse_coo_tensor_with_dims_and_tensors(input_sparse_dim, input_dense_dim, input_sizes, input_indices.clone(at::MemoryFormat::Contiguous), grad_input_values, input.options().dtype(grad_.dtype())); // convert to grad dtype } else { TORCH_CHECK(grad_.is_sparse(), "_sparse_sum_backward_cuda: expected grad_ Tensor to be sparse, but got dense"); auto grad = grad_.coalesce(); LongTensor grad_indices = grad._indices(); Tensor grad_values = grad._values(); const int64_t grad_sparse_dim = grad.sparse_dim(); const int64_t grad_nnz = grad._nnz(); Tensor grad_values_expand = grad_values; if (sum_dense_dim) { auto expand_size = input_values.sizes().vec(); if (sum_sparse_dim) expand_size[0] = grad_values.size(0); // update nnz for (auto d : dense_dims_to_sum_v) grad_values_expand = grad_values_expand.unsqueeze(d); grad_values_expand = grad_values_expand.expand(expand_size).clone(at::MemoryFormat::Contiguous); } Tensor grad_input_values; if (!sum_sparse_dim) { grad_input_values = grad_values_expand; } else { int curDevice = -1; cudaGetDevice(&curDevice); cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice); auto allocator = THCThrustAllocator(globalContext().lazyInitCUDA()); auto policy = thrust::cuda::par(allocator).on(stream); typedef thrust::device_ptr<int64_t> thrust_ptr; grad_input_values = at::empty_like(input_values, grad_values.options(), LEGACY_CONTIGUOUS_MEMORY_FORMAT); AT_ASSERT(grad_input_values.is_cuda()); // get 1D indices auto grad_sparse_dim_to_keep_v = std::vector<int64_t>(grad_sparse_dim); std::iota(grad_sparse_dim_to_keep_v.begin(), grad_sparse_dim_to_keep_v.end(), 0); auto grad_indices_1D = flatten_indices_by_dims(grad_indices, grad.sizes(), grad_sparse_dim_to_keep_v); // flatten indices on all sparse_dim of grad, output indices is coalesced and sorted auto input_indices_1D = flatten_indices_by_dims(input_indices, input_sizes, sparse_dims_to_keep_v); thrust_ptr grad_indices_iter(grad_indices_1D.data_ptr<int64_t>()); thrust_ptr input_indices_iter(input_indices_1D.data_ptr<int64_t>()); // store lower_bound of input indices at grad indices LongTensor input_indices_pos = at::empty_like(input_indices_1D, LEGACY_CONTIGUOUS_MEMORY_FORMAT); thrust_ptr input_indices_pos_iter(input_indices_pos.data_ptr<int64_t>()); thrust::lower_bound(policy, grad_indices_iter, grad_indices_iter + grad_nnz, input_indices_iter, input_indices_iter + input_nnz, input_indices_pos_iter); // config to run cuda kernel int64_t total_threads = input_nnz; const dim3 block = dim3(std::min(static_cast<int64_t>(cuda::getApplyBlock().x), total_threads)); dim3 grid; TORCH_CHECK(cuda::getApplyGrid(total_threads, grid, curDevice), "_sparse_sum_backward_cuda: input too large or too many dimensions"); auto grad_indices_ti = getTensorInfo<int64_t, int64_t>(grad_indices_1D); auto input_indices_ti = getTensorInfo<int64_t, int64_t>(input_indices_1D); auto input_indices_pos_ti = getTensorInfo<int64_t, int64_t>(input_indices_pos); AT_DISPATCH_FLOATING_TYPES_AND_HALF(grad_values.scalar_type(), "_sparse_sum_backward_cuda", [&] { auto grad_values_expand_ti = getTensorInfo<scalar_t, int64_t>(grad_values_expand); auto grad_input_values_ti = getTensorInfo<scalar_t, int64_t>(grad_input_values); _sparse_sum_backward_cuda_kernel<scalar_t><<<grid, block, 0, stream>>>( total_threads, grad_indices_ti, input_indices_ti, input_indices_pos_ti, grad_values_expand_ti, grad_input_values_ti ); }); } return at::_sparse_coo_tensor_with_dims_and_tensors(input_sparse_dim, input_dense_dim, input_sizes, input_indices.clone(at::MemoryFormat::Contiguous), grad_input_values, grad.options()); } } Tensor bmm_sparse_cuda(const SparseTensor& self, const Tensor& mat2) { Tensor result = at::empty({self.size(0), mat2.size(2), self.size(1)}, mat2.options(), at::MemoryFormat::Contiguous); return _bmm_out_sparse_cuda(result, self, mat2, false); } Tensor _bmm_sparse_cuda(const SparseTensor& self, const Tensor& mat2, bool deterministic) { Tensor result = at::empty({self.size(0), mat2.size(2), self.size(1)}, mat2.options(), at::MemoryFormat::Contiguous); return _bmm_out_sparse_cuda(result, self, mat2, deterministic); } #if !(defined(__HIP_PLATFORM_HCC__) || (defined(_MSC_VER) && CUSPARSE_VERSION < 11000)) __global__ void search_end_matrix_indices_cuda_kernel( int64_t* mat_el_end_indices, int64_t num_matrices, const TensorInfo<int64_t, int64_t> indices_1D_ti, const int64_t num_elements ){ const int64_t target_mat_num = blockIdx.x * blockDim.x + threadIdx.x; if (target_mat_num >= num_matrices) return; const int64_t* indices_1D = indices_1D_ti.data; const int64_t indices_1D_stride = indices_1D_ti.strides[0]; int64_t start_idx = 0; int64_t end_idx = num_elements - 1; int64_t mid_idx = (start_idx + end_idx) >> 1; int64_t mid_val = indices_1D[mid_idx*indices_1D_stride]; bool found; while ( start_idx <= end_idx ) { bool trim_right = mid_val > target_mat_num; int64_t mid_idx_minus_1 = mid_idx - 1; int64_t mid_idx_plus_1 = mid_idx + 1; end_idx = trim_right ? mid_idx_minus_1 : end_idx; start_idx = trim_right ? start_idx : mid_idx_plus_1; mid_idx = (start_idx + end_idx) >> 1; mid_val = indices_1D[mid_idx*indices_1D_stride]; } found = (mid_val == target_mat_num) && ( (mid_idx == (num_elements-1)) || (indices_1D[(mid_idx+1)*indices_1D_stride] != target_mat_num) ); mat_el_end_indices[target_mat_num] = found ? mid_idx : -1; } // Search through a 1D tensor of sorted sparse matrix // indices to find the end index for each matrix void search_end_matrix_indices(int64_t* mat_el_end_indices, int64_t num_matrices, const LongTensor& indices_1D) { int curDevice = -1; cudaGetDevice(&curDevice); cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice); auto indices_1D_ti = getTensorInfo<int64_t, int64_t>(indices_1D); int64_t grid_size = (num_matrices / 64)+1; int64_t block_size = 64; int64_t num_elements = indices_1D.size(0); search_end_matrix_indices_cuda_kernel<<<grid_size, block_size, 0, stream>>>( mat_el_end_indices, num_matrices, indices_1D_ti, num_elements ); cudaDeviceSynchronize(); } cudaDataType getTensorCudaDataType(Tensor self) { cudaDataType cuda_data_type; switch (self.scalar_type()) { case ScalarType::Float: cuda_data_type = CUDA_R_32F; break; case ScalarType::Double: cuda_data_type = CUDA_R_64F; break; default: TORCH_CHECK(false, "Tensor types must be either float32 or float64"); break; } return cuda_data_type; } #endif Tensor& bmm_out_sparse_cuda(Tensor& result, const SparseTensor& self, const Tensor& mat2) { return _bmm_out_sparse_cuda(result, self, mat2, false); } Tensor& _bmm_out_sparse_cuda(Tensor& result, const SparseTensor& self, const Tensor& mat2, bool deterministic) { #if defined __HIP_PLATFORM_HCC__ TORCH_CHECK(false, "bmm sparse-dense is not supported on HIP"); #elif defined(_MSC_VER) && (CUSPARSE_VERSION < 11000) TORCH_CHECK(false, "bmm sparse-dense CUDA is not supported on Windows with cuda before 11.0"); #elif defined(CUDART_VERSION) && (CUDART_VERSION >= 10010) // linux cuda >= 10.1 or windows cuda >= 11.0 TORCH_CHECK(!mat2.is_sparse(), "bmm_sparse: Tensor 'mat2' must be dense"); TORCH_CHECK(self.dense_dim() == 0, "bmm_sparse: Tensor 'self' must have 0 dense dims, but has ", self.dense_dim()); TORCH_CHECK(self.sparse_dim() == 3, "bmm_sparse: Tensor 'self' must have 3 sparse dims, but has ", self.sparse_dim()); TORCH_CHECK(mat2.dim() == 3, "bmm_sparse: Tensor 'mat2' must have 3 dims, but has ", mat2.dim()); TORCH_CHECK(self.size(0) == mat2.size(0), "bmm_sparse: 'self.size(0)' and 'mat2.size(0)' must match"); TORCH_CHECK(self.size(2) == mat2.size(1), "bmm_sparse: 'self.size(2)' and 'mat2.size(1)' must match"); int64_t num_matrices = self.size(0); int64_t dim_i = self.size(1); int64_t dim_j = self.size(2); int64_t dim_k = mat2.size(2); result.resize_({num_matrices, dim_k, dim_i}); if ((self._nnz() == 0) || (dim_j == 0) || (dim_k == 0)) { result.zero_().transpose_(1, 2); return result; } Tensor tmp_result; bool need_copy_result; // If the result tensor is contiguous, we can just write results directly to it. // Otherwise, we'll need to write results to a temp buffer and then copy. if (result.is_contiguous()) { tmp_result = result; need_copy_result = false; } else { tmp_result = at::empty({num_matrices, dim_k, dim_i}, result.options(), at::MemoryFormat::Contiguous); need_copy_result = true; } // Dense matrices have to be contiguous for cusparseSpMM to work const Tensor mat2_contig = mat2.contiguous(); auto cusparse_handle = at::cuda::getCurrentCUDASparseHandle(); // First need to coalesce to get all of the first dimension indices // in order since we'll be sending each matrix into the MM operation SparseTensor self_coalesced = coalesce_sparse_cuda(self); int64_t nnz = self_coalesced._nnz(); LongTensor indices = self_coalesced._indices(); Tensor values = self_coalesced._values(); LongTensor indices_dim0 = indices[0]; // Need to convert dim1 and dim2 indices to 32-bit since cusparseSpMM // only supports 32-bit indices Tensor indices_dim1 = indices[1].to(ScalarType::Int); Tensor indices_dim2 = indices[2].to(ScalarType::Int); std::unique_ptr<int64_t[]> mat_el_end_indices_host(new int64_t[num_matrices]); int64_t* mat_el_end_indices_device; cudaMalloc(&mat_el_end_indices_device, num_matrices*sizeof(int64_t)); search_end_matrix_indices(mat_el_end_indices_device, num_matrices, indices_dim0); cudaMemcpy( mat_el_end_indices_host.get(), mat_el_end_indices_device, num_matrices*sizeof(int64_t), cudaMemcpyDeviceToHost ); cudaFree(mat_el_end_indices_device); // Need a pointer to an array to access within a lambda int64_t* mat_el_end_indices = &mat_el_end_indices_host[0]; Scalar beta = 0; Scalar alpha = 1; int64_t mat_el_begin_idx = 0; size_t workspace_buffer_size = 0; void* workspace_buffer = nullptr; // See Note [Enabling Deterministic Operations] deterministic = deterministic || globalContext().deterministic(); cusparseSpMMAlg_t mm_alg = deterministic ? CUSPARSE_COOMM_ALG2 : CUSPARSE_COOMM_ALG1; // Iterate through each set of 2D matrices within the 3D // tensor inputs, performing a matrix multiply with each AT_DISPATCH_FLOATING_TYPES( values.scalar_type(), "bmm_sparse_cuda", [&] { scalar_t alpha_val = alpha.to<scalar_t>(); scalar_t beta_val = beta.to<scalar_t>(); uint32_t* row_indices_start_ptr = reinterpret_cast<uint32_t*>(indices_dim1.data_ptr()); uint32_t* col_indices_start_ptr = reinterpret_cast<uint32_t*>(indices_dim2.data_ptr()); scalar_t* values_start_ptr = reinterpret_cast<scalar_t*>(values.data_ptr()); scalar_t* mat2_start_ptr = reinterpret_cast<scalar_t*>(mat2_contig.data_ptr()); scalar_t* result_start_ptr = reinterpret_cast<scalar_t*>(tmp_result.data_ptr()); for ( int64_t cur_mat_num = 0; (cur_mat_num < num_matrices); cur_mat_num++ ) { int64_t mat_el_end_idx = mat_el_end_indices[cur_mat_num]; if (mat_el_end_idx != -1) { mat_el_end_idx++; // Create tensors to view just the current set of matrices int64_t sparse_nnz = mat_el_end_idx - mat_el_begin_idx; cudaDataType cuda_data_type = getTensorCudaDataType(mat2_contig); uint32_t* row_indices_ptr = &row_indices_start_ptr[mat_el_begin_idx]; uint32_t* col_indices_ptr = &col_indices_start_ptr[mat_el_begin_idx]; scalar_t* values_ptr = &values_start_ptr[mat_el_begin_idx]; cusparseSpMatDescr_t sparse_descr; TORCH_CUDASPARSE_CHECK(cusparseCreateCoo( &sparse_descr, dim_i, dim_j, sparse_nnz, reinterpret_cast<void*>(row_indices_ptr), reinterpret_cast<void*>(col_indices_ptr), reinterpret_cast<void*>(values_ptr), CUSPARSE_INDEX_32I, CUSPARSE_INDEX_BASE_ZERO, cuda_data_type )); scalar_t* mat2_ptr = &mat2_start_ptr[dim_k*dim_j*cur_mat_num]; cusparseDnMatDescr_t dense_descr; TORCH_CUDASPARSE_CHECK(cusparseCreateDnMat( &dense_descr, dim_k, dim_j, dim_k, reinterpret_cast<void*>(mat2_ptr), cuda_data_type, CUSPARSE_ORDER_COL )); scalar_t* result_ptr = &result_start_ptr[dim_i*dim_k*cur_mat_num]; cusparseDnMatDescr_t result_descr; TORCH_CUDASPARSE_CHECK(cusparseCreateDnMat( &result_descr, dim_i, dim_k, dim_i, reinterpret_cast<void*>(result_ptr), cuda_data_type, CUSPARSE_ORDER_COL )); size_t required_workspace_buffer_size = 0; TORCH_CUDASPARSE_CHECK(cusparseSpMM_bufferSize( cusparse_handle, CUSPARSE_OPERATION_NON_TRANSPOSE, CUSPARSE_OPERATION_TRANSPOSE, (void*)&alpha_val, sparse_descr, dense_descr, (void*)&beta_val, result_descr, cuda_data_type, mm_alg, &required_workspace_buffer_size )); if (required_workspace_buffer_size > workspace_buffer_size) { if (workspace_buffer != nullptr) { cudaFree(workspace_buffer); } workspace_buffer_size = required_workspace_buffer_size; cudaMallocManaged(&workspace_buffer, workspace_buffer_size); } TORCH_CUDASPARSE_CHECK(cusparseSpMM( cusparse_handle, CUSPARSE_OPERATION_NON_TRANSPOSE, CUSPARSE_OPERATION_TRANSPOSE, (void*)&alpha_val, sparse_descr, dense_descr, (void*)&beta_val, result_descr, cuda_data_type, mm_alg, workspace_buffer )); TORCH_CUDASPARSE_CHECK(cusparseDestroySpMat(sparse_descr)); TORCH_CUDASPARSE_CHECK(cusparseDestroyDnMat(dense_descr)); TORCH_CUDASPARSE_CHECK(cusparseDestroyDnMat(result_descr)); mat_el_begin_idx = mat_el_end_idx; } else { tmp_result[cur_mat_num].zero_(); } } } ); if (need_copy_result) { result.copy_(tmp_result); } // Need to transpose the result matrices since cusparse stores // them in column-major order in memory result.transpose_(1,2); if (workspace_buffer != nullptr) { cudaFree(workspace_buffer); } #else TORCH_CHECK(false, "bmm sparse-dense requires CUDA 10.1 or greater"); #endif return result; } }} // namespace at::native
f81b50cb433afddb18dea93c9b7e36707283cf95.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "includes.h" //////////////////////////////////////////////////////////////////////////////// /* Hologram generating algorithms for CUDA Devices Copyright 2009, 2010, 2011, 2012 Martin Persson [email protected] This file is part of GenerateHologramCUDA. GenerateHologramCUDA is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. GenerateHologramCUDA is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with GenerateHologramCUDA. If not, see <http://www.gnu.org/licenses/>. */ /////////////////////////////////////////////////////////////////////////////////// //The function "GenerateHologram" contains two different algorithms for //hologram generation. The last parameter in the function call selects which //one to use: //0: Complex addition of "Lenses and Prisms", no optimization (3D) //1: Weighted Gerchberg-Saxton algorithm using Fresnel propagation (3D) //2: Weighted Gerchberg-Saxton algorithm using Fast Fourier Transforms (2D) //-(0) produces optimal holograms for 1 or 2 traps and is significantly faster. // (0) is automatically selected if the number of spots is < 3. //////////////////////////////////////////////////////////////////////////////// //Fresnel propagation based algorithm (1) described in: //Roberto Di Leonardo, Francesca Ianni, and Giancarlo Ruocco //"Computer generation of optimal holograms for optical trap arrays" //Opt. Express 15, 1913-1922 (2007) // //The original algorithm has been modified to allow variable spot amplitudes //////////////////////////////////////////////////////////////////////////////// //Naming convention for variables: //-The prefix indicates where data is located //--In host functions: h = host memory // d = device memory // c = constant memory //--In global functions: g = global memory // s = shared memory // c = constant memory // no prefix = registers //-The suffix indicates the data type, no suffix usually indicates an iteger //////////////////////////////////////////////////////////////////////////////// //Possible improvements: //-Improve convergence of the GS algorithms for 2 spots. *done //-Compensate spot intensities for distance from center of field. *done //-Put all arguments for device functions and trap positions in constant memory. *done // (Requires all functions to be moved into the same file or the use of some // workaround found on nVidia forum) //-Put pSLMstart and aLaser in texture memory (may not improve performance on Fermi devices) //-Use "zero-copy" to transfer pSLM to host. //-Rename functions and variables for consistency and readability //-Allow variable spot phases for Lenses and Prisms //////////////////////////////////////////////////////////////////////////////// //#define M_CUDA_DEBUG //activates a number of custom debug macros// float dt_milliseconds; hipEvent_t start, stop; //////////////////////////////////////////////////////////////////////////////// //Includes //////////////////////////////////////////////////////////////////////////////// #ifndef M_PI #define M_PI 3.14159265358979323846f #endif #define MAX_SPOTS 1024 //decrease this if your GPU keeps running out of memory #define BLOCK_SIZE 256 //should be a power of 2 #define SLM_SIZE 512 #if ((SLM_SIZE==16)||(SLM_SIZE==32)||(SLM_SIZE==64)||(SLM_SIZE==128)||(SLM_SIZE==256)||(SLM_SIZE==512)||(SLM_SIZE==1024)||(SLM_SIZE==2048)) #define SLMPOW2 //Uses bitwise modulu operations if the SLM size is a power of 2 #endif //////////////////////////////////////////////////////////////////////////////// // forward declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// //Set correction parameters //////////////////////////////////////////////////////////////////////////////// __device__ unsigned char applyPolLUT(float phase2pi, float X, float Y, float *s_c) { switch (c_N_PolLUTCoeff[0]) { case 120: return (unsigned char)(s_c[0] + s_c[1]*X + s_c[2]*Y + s_c[3]*phase2pi + s_c[4]*X*X + s_c[5]*X*Y + s_c[6]*X*phase2pi + s_c[7]*Y*Y + s_c[8]*Y*phase2pi + s_c[9]*phase2pi*phase2pi + s_c[10]*X*X*X + s_c[11]*X*X*Y + s_c[12]*X*X*phase2pi + s_c[13]*X*Y*Y + s_c[14]*X*Y*phase2pi + s_c[15]*X*phase2pi*phase2pi + s_c[16]*Y*Y*Y + s_c[17]*Y*Y*phase2pi + s_c[18]*Y*phase2pi*phase2pi + s_c[19]*phase2pi*phase2pi*phase2pi + s_c[20]*X*X*X*X + s_c[21]*X*X*X*Y + s_c[22]*X*X*X*phase2pi + s_c[23]*X*X*Y*Y + s_c[24]*X*X*Y*phase2pi + s_c[25]*X*X*phase2pi*phase2pi + s_c[26]*X*Y*Y*Y + s_c[27]*X*Y*Y*phase2pi + s_c[28]*X*Y*phase2pi*phase2pi + s_c[29]*X*phase2pi*phase2pi*phase2pi + s_c[30]*Y*Y*Y*Y + s_c[31]*Y*Y*Y*phase2pi + s_c[32]*Y*Y*phase2pi*phase2pi + s_c[33]*Y*phase2pi*phase2pi*phase2pi + s_c[34]*phase2pi*phase2pi*phase2pi*phase2pi + s_c[35]*X*X*X*X*X + s_c[36]*X*X*X*X*Y + s_c[37]*X*X*X*X*phase2pi + s_c[38]*X*X*X*Y*Y + s_c[39]*X*X*X*Y*phase2pi + s_c[40]*X*X*X*phase2pi*phase2pi + s_c[41]*X*X*Y*Y*Y + s_c[42]*X*X*Y*Y*phase2pi + s_c[43]*X*X*Y*phase2pi*phase2pi + s_c[44]*X*X*phase2pi*phase2pi*phase2pi + s_c[45]*X*Y*Y*Y*Y + s_c[46]*X*Y*Y*Y*phase2pi + s_c[47]*X*Y*Y*phase2pi*phase2pi + s_c[48]*X*Y*phase2pi*phase2pi*phase2pi + s_c[49]*X*phase2pi*phase2pi*phase2pi*phase2pi + s_c[50]*Y*Y*Y*Y*Y + s_c[51]*Y*Y*Y*Y*phase2pi + s_c[52]*Y*Y*Y*phase2pi*phase2pi + s_c[53]*Y*Y*phase2pi*phase2pi*phase2pi + s_c[54]*Y*phase2pi*phase2pi*phase2pi*phase2pi + s_c[55]*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi + s_c[56]*X*X*X*X*X*X + s_c[57]*X*X*X*X*X*Y + s_c[58]*X*X*X*X*X*phase2pi + s_c[59]*X*X*X*X*Y*Y + s_c[60]*X*X*X*X*Y*phase2pi + s_c[61]*X*X*X*X*phase2pi*phase2pi + s_c[62]*X*X*X*Y*Y*Y + s_c[63]*X*X*X*Y*Y*phase2pi + s_c[64]*X*X*X*Y*phase2pi*phase2pi + s_c[65]*X*X*X*phase2pi*phase2pi*phase2pi + s_c[66]*X*X*Y*Y*Y*Y + s_c[67]*X*X*Y*Y*Y*phase2pi + s_c[68]*X*X*Y*Y*phase2pi*phase2pi + s_c[69]*X*X*Y*phase2pi*phase2pi*phase2pi + s_c[70]*X*X*phase2pi*phase2pi*phase2pi*phase2pi + s_c[71]*X*Y*Y*Y*Y*Y + s_c[72]*X*Y*Y*Y*Y*phase2pi + s_c[73]*X*Y*Y*Y*phase2pi*phase2pi + s_c[74]*X*Y*Y*phase2pi*phase2pi*phase2pi + s_c[75]*X*Y*phase2pi*phase2pi*phase2pi*phase2pi + s_c[76]*X*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi + s_c[77]*Y*Y*Y*Y*Y*Y + s_c[78]*Y*Y*Y*Y*Y*phase2pi + s_c[79]*Y*Y*Y*Y*phase2pi*phase2pi + s_c[80]*Y*Y*Y*phase2pi*phase2pi*phase2pi + s_c[81]*Y*Y*phase2pi*phase2pi*phase2pi*phase2pi + s_c[82]*Y*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi + s_c[83]*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi + s_c[84]*X*X*X*X*X*X*X + s_c[85]*X*X*X*X*X*X*Y + s_c[86]*X*X*X*X*X*X*phase2pi + s_c[87]*X*X*X*X*X*Y*Y + s_c[88]*X*X*X*X*X*Y*phase2pi + s_c[89]*X*X*X*X*X*phase2pi*phase2pi + s_c[90]*X*X*X*X*Y*Y*Y + s_c[91]*X*X*X*X*Y*Y*phase2pi + s_c[92]*X*X*X*X*Y*phase2pi*phase2pi + s_c[93]*X*X*X*X*phase2pi*phase2pi*phase2pi + s_c[94]*X*X*X*Y*Y*Y*Y + s_c[95]*X*X*X*Y*Y*Y*phase2pi + s_c[96]*X*X*X*Y*Y*phase2pi*phase2pi + s_c[97]*X*X*X*Y*phase2pi*phase2pi*phase2pi + s_c[98]*X*X*X*phase2pi*phase2pi*phase2pi*phase2pi + s_c[99]*X*X*Y*Y*Y*Y*Y + s_c[100]*X*X*Y*Y*Y*Y*phase2pi + s_c[101]*X*X*Y*Y*Y*phase2pi*phase2pi + s_c[102]*X*X*Y*Y*phase2pi*phase2pi*phase2pi + s_c[103]*X*X*Y*phase2pi*phase2pi*phase2pi*phase2pi + s_c[104]*X*X*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi + s_c[105]*X*Y*Y*Y*Y*Y*Y + s_c[106]*X*Y*Y*Y*Y*Y*phase2pi + s_c[107]*X*Y*Y*Y*Y*phase2pi*phase2pi + s_c[108]*X*Y*Y*Y*phase2pi*phase2pi*phase2pi + s_c[109]*X*Y*Y*phase2pi*phase2pi*phase2pi*phase2pi + s_c[110]*X*Y*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi + s_c[111]*X*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi + s_c[112]*Y*Y*Y*Y*Y*Y*Y + s_c[113]*Y*Y*Y*Y*Y*Y*phase2pi + s_c[114]*Y*Y*Y*Y*Y*phase2pi*phase2pi + s_c[115]*Y*Y*Y*Y*phase2pi*phase2pi*phase2pi + s_c[116]*Y*Y*Y*phase2pi*phase2pi*phase2pi*phase2pi + s_c[117]*Y*Y*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi + s_c[118]*Y*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi + s_c[119]*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi); case 84: return (unsigned char)(s_c[0] + s_c[1]*X + s_c[2]*Y + s_c[3]*phase2pi + s_c[4]*X*X + s_c[5]*X*Y + s_c[6]*X*phase2pi + s_c[7]*Y*Y + s_c[8]*Y*phase2pi + s_c[9]*phase2pi*phase2pi + s_c[10]*X*X*X + s_c[11]*X*X*Y + s_c[12]*X*X*phase2pi + s_c[13]*X*Y*Y + s_c[14]*X*Y*phase2pi + s_c[15]*X*phase2pi*phase2pi + s_c[16]*Y*Y*Y + s_c[17]*Y*Y*phase2pi + s_c[18]*Y*phase2pi*phase2pi + s_c[19]*phase2pi*phase2pi*phase2pi + s_c[20]*X*X*X*X + s_c[21]*X*X*X*Y + s_c[22]*X*X*X*phase2pi + s_c[23]*X*X*Y*Y + s_c[24]*X*X*Y*phase2pi + s_c[25]*X*X*phase2pi*phase2pi + s_c[26]*X*Y*Y*Y + s_c[27]*X*Y*Y*phase2pi + s_c[28]*X*Y*phase2pi*phase2pi + s_c[29]*X*phase2pi*phase2pi*phase2pi + s_c[30]*Y*Y*Y*Y + s_c[31]*Y*Y*Y*phase2pi + s_c[32]*Y*Y*phase2pi*phase2pi + s_c[33]*Y*phase2pi*phase2pi*phase2pi + s_c[34]*phase2pi*phase2pi*phase2pi*phase2pi + s_c[35]*X*X*X*X*X + s_c[36]*X*X*X*X*Y + s_c[37]*X*X*X*X*phase2pi + s_c[38]*X*X*X*Y*Y + s_c[39]*X*X*X*Y*phase2pi + s_c[40]*X*X*X*phase2pi*phase2pi + s_c[41]*X*X*Y*Y*Y + s_c[42]*X*X*Y*Y*phase2pi + s_c[43]*X*X*Y*phase2pi*phase2pi + s_c[44]*X*X*phase2pi*phase2pi*phase2pi + s_c[45]*X*Y*Y*Y*Y + s_c[46]*X*Y*Y*Y*phase2pi + s_c[47]*X*Y*Y*phase2pi*phase2pi + s_c[48]*X*Y*phase2pi*phase2pi*phase2pi + s_c[49]*X*phase2pi*phase2pi*phase2pi*phase2pi + s_c[50]*Y*Y*Y*Y*Y + s_c[51]*Y*Y*Y*Y*phase2pi + s_c[52]*Y*Y*Y*phase2pi*phase2pi + s_c[53]*Y*Y*phase2pi*phase2pi*phase2pi + s_c[54]*Y*phase2pi*phase2pi*phase2pi*phase2pi + s_c[55]*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi + s_c[56]*X*X*X*X*X*X + s_c[57]*X*X*X*X*X*Y + s_c[58]*X*X*X*X*X*phase2pi + s_c[59]*X*X*X*X*Y*Y + s_c[60]*X*X*X*X*Y*phase2pi + s_c[61]*X*X*X*X*phase2pi*phase2pi + s_c[62]*X*X*X*Y*Y*Y + s_c[63]*X*X*X*Y*Y*phase2pi + s_c[64]*X*X*X*Y*phase2pi*phase2pi + s_c[65]*X*X*X*phase2pi*phase2pi*phase2pi + s_c[66]*X*X*Y*Y*Y*Y + s_c[67]*X*X*Y*Y*Y*phase2pi + s_c[68]*X*X*Y*Y*phase2pi*phase2pi + s_c[69]*X*X*Y*phase2pi*phase2pi*phase2pi + s_c[70]*X*X*phase2pi*phase2pi*phase2pi*phase2pi + s_c[71]*X*Y*Y*Y*Y*Y + s_c[72]*X*Y*Y*Y*Y*phase2pi + s_c[73]*X*Y*Y*Y*phase2pi*phase2pi + s_c[74]*X*Y*Y*phase2pi*phase2pi*phase2pi + s_c[75]*X*Y*phase2pi*phase2pi*phase2pi*phase2pi + s_c[76]*X*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi + s_c[77]*Y*Y*Y*Y*Y*Y + s_c[78]*Y*Y*Y*Y*Y*phase2pi + s_c[79]*Y*Y*Y*Y*phase2pi*phase2pi + s_c[80]*Y*Y*Y*phase2pi*phase2pi*phase2pi + s_c[81]*Y*Y*phase2pi*phase2pi*phase2pi*phase2pi + s_c[82]*Y*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi + s_c[83]*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi); case 56: return (unsigned char)(s_c[0] + s_c[1]*X + s_c[2]*Y + s_c[3]*phase2pi + s_c[4]*X*X + s_c[5]*X*Y + s_c[6]*X*phase2pi + s_c[7]*Y*Y + s_c[8]*Y*phase2pi + s_c[9]*phase2pi*phase2pi + s_c[10]*X*X*X + s_c[11]*X*X*Y + s_c[12]*X*X*phase2pi + s_c[13]*X*Y*Y + s_c[14]*X*Y*phase2pi + s_c[15]*X*phase2pi*phase2pi + s_c[16]*Y*Y*Y + s_c[17]*Y*Y*phase2pi + s_c[18]*Y*phase2pi*phase2pi + s_c[19]*phase2pi*phase2pi*phase2pi + s_c[20]*X*X*X*X + s_c[21]*X*X*X*Y + s_c[22]*X*X*X*phase2pi + s_c[23]*X*X*Y*Y + s_c[24]*X*X*Y*phase2pi + s_c[25]*X*X*phase2pi*phase2pi + s_c[26]*X*Y*Y*Y + s_c[27]*X*Y*Y*phase2pi + s_c[28]*X*Y*phase2pi*phase2pi + s_c[29]*X*phase2pi*phase2pi*phase2pi + s_c[30]*Y*Y*Y*Y + s_c[31]*Y*Y*Y*phase2pi + s_c[32]*Y*Y*phase2pi*phase2pi + s_c[33]*Y*phase2pi*phase2pi*phase2pi + s_c[34]*phase2pi*phase2pi*phase2pi*phase2pi + s_c[35]*X*X*X*X*X + s_c[36]*X*X*X*X*Y + s_c[37]*X*X*X*X*phase2pi + s_c[38]*X*X*X*Y*Y + s_c[39]*X*X*X*Y*phase2pi + s_c[40]*X*X*X*phase2pi*phase2pi + s_c[41]*X*X*Y*Y*Y + s_c[42]*X*X*Y*Y*phase2pi + s_c[43]*X*X*Y*phase2pi*phase2pi + s_c[44]*X*X*phase2pi*phase2pi*phase2pi + s_c[45]*X*Y*Y*Y*Y + s_c[46]*X*Y*Y*Y*phase2pi + s_c[47]*X*Y*Y*phase2pi*phase2pi + s_c[48]*X*Y*phase2pi*phase2pi*phase2pi + s_c[49]*X*phase2pi*phase2pi*phase2pi*phase2pi + s_c[50]*Y*Y*Y*Y*Y + s_c[51]*Y*Y*Y*Y*phase2pi + s_c[52]*Y*Y*Y*phase2pi*phase2pi + s_c[53]*Y*Y*phase2pi*phase2pi*phase2pi + s_c[54]*Y*phase2pi*phase2pi*phase2pi*phase2pi + s_c[55]*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi); case 35: return (unsigned char)(s_c[0] + s_c[1]*X + s_c[2]*Y + s_c[3]*phase2pi + s_c[4]*X*X + s_c[5]*X*Y + s_c[6]*X*phase2pi + s_c[7]*Y*Y + s_c[8]*Y*phase2pi + s_c[9]*phase2pi*phase2pi + s_c[10]*X*X*X + s_c[11]*X*X*Y + s_c[12]*X*X*phase2pi + s_c[13]*X*Y*Y + s_c[14]*X*Y*phase2pi + s_c[15]*X*phase2pi*phase2pi + s_c[16]*Y*Y*Y + s_c[17]*Y*Y*phase2pi + s_c[18]*Y*phase2pi*phase2pi + s_c[19]*phase2pi*phase2pi*phase2pi + s_c[20]*X*X*X*X + s_c[21]*X*X*X*Y + s_c[22]*X*X*X*phase2pi + s_c[23]*X*X*Y*Y + s_c[24]*X*X*Y*phase2pi + s_c[25]*X*X*phase2pi*phase2pi + s_c[26]*X*Y*Y*Y + s_c[27]*X*Y*Y*phase2pi + s_c[28]*X*Y*phase2pi*phase2pi + s_c[29]*X*phase2pi*phase2pi*phase2pi + s_c[30]*Y*Y*Y*Y + s_c[31]*Y*Y*Y*phase2pi + s_c[32]*Y*Y*phase2pi*phase2pi + s_c[33]*Y*phase2pi*phase2pi*phase2pi + s_c[34]*phase2pi*phase2pi*phase2pi*phase2pi); case 20: return (unsigned char)(s_c[0] + s_c[1]*X + s_c[2]*Y + s_c[3]*phase2pi + s_c[4]*X*X + s_c[5]*X*Y + s_c[6]*X*phase2pi + s_c[7]*Y*Y + s_c[8]*Y*phase2pi + s_c[9]*phase2pi*phase2pi + s_c[10]*X*X*X + s_c[11]*X*X*Y + s_c[12]*X*X*phase2pi + s_c[13]*X*Y*Y + s_c[14]*X*Y*phase2pi + s_c[15]*X*phase2pi*phase2pi + s_c[16]*Y*Y*Y + s_c[17]*Y*Y*phase2pi + s_c[18]*Y*phase2pi*phase2pi + s_c[19]*phase2pi*phase2pi*phase2pi); default: return 0; } } __device__ int getYint(int index, int X_int) { #ifdef SLMPOW2 int Y_int = (index-X_int)>>c_log2data_w[0]; #else int Y_int = (float)(floor((float)index/c_data_w_f[0])); #endif return Y_int; } __device__ int getXint(int index) { #ifdef SLMPOW2 int X_int = index&(c_data_w[0]-1); #else float X_int= index%c_data_w[0]; #endif return X_int; } __device__ float ApplyAberrationCorrection(float pSpot, float correction) { pSpot = pSpot - correction; //apply correction return (pSpot - (2.0f*M_PI) * floor((pSpot+M_PI) / (2.0f*M_PI))); //apply mod([-pi, pi], pSpot) } __device__ int phase2int32(float phase2pi) { return (int)floor((phase2pi + M_PI)*256.0f / (2.0f * M_PI)); } __device__ unsigned char phase2uc(float phase2pi) { return (unsigned char)floor((phase2pi + M_PI)*256.0f / (2.0f * M_PI)); } __device__ float uc2phase(float uc) { return (float)uc*2.0f*M_PI/256.0f - M_PI; } __global__ void ApplyCorrections(unsigned char *g_pSLM_uc, unsigned char *g_LUT, float *g_AberrationCorr_f, float *g_LUTPolCoeff_f) { int tid = threadIdx.x; int idx = blockIdx.x * blockDim.x + threadIdx.x; float pSLM2pi_f = uc2phase(g_pSLM_uc[idx]); if (c_useAberrationCorr_b[0]) pSLM2pi_f = ApplyAberrationCorrection(pSLM2pi_f, g_AberrationCorr_f[idx]); if (c_usePolLUT_b[0]) { int X_int = getXint(idx); int Y_int = getYint(idx, X_int); float X = c_SLMpitch_f[0]*(X_int - c_half_w_f[0]); float Y = c_SLMpitch_f[0]*(Y_int - c_half_w_f[0]); __shared__ float s_LUTcoeff[120]; if (tid < c_N_PolLUTCoeff[0]) s_LUTcoeff[tid] = g_LUTPolCoeff_f[tid]; __syncthreads(); g_pSLM_uc[idx] = applyPolLUT(pSLM2pi_f, X, Y, s_LUTcoeff); } else if (c_applyLUT_b[0]) { __shared__ unsigned char s_LUT[256]; if (tid < 256) s_LUT[tid] = g_LUT[tid]; __syncthreads(); g_pSLM_uc[idx] = s_LUT[phase2int32(pSLM2pi_f)]; } else g_pSLM_uc[idx] = phase2uc(pSLM2pi_f); }
f81b50cb433afddb18dea93c9b7e36707283cf95.cu
#include "includes.h" //////////////////////////////////////////////////////////////////////////////// /* Hologram generating algorithms for CUDA Devices Copyright 2009, 2010, 2011, 2012 Martin Persson [email protected] This file is part of GenerateHologramCUDA. GenerateHologramCUDA is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. GenerateHologramCUDA is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with GenerateHologramCUDA. If not, see <http://www.gnu.org/licenses/>. */ /////////////////////////////////////////////////////////////////////////////////// //The function "GenerateHologram" contains two different algorithms for //hologram generation. The last parameter in the function call selects which //one to use: //0: Complex addition of "Lenses and Prisms", no optimization (3D) //1: Weighted Gerchberg-Saxton algorithm using Fresnel propagation (3D) //2: Weighted Gerchberg-Saxton algorithm using Fast Fourier Transforms (2D) //-(0) produces optimal holograms for 1 or 2 traps and is significantly faster. // (0) is automatically selected if the number of spots is < 3. //////////////////////////////////////////////////////////////////////////////// //Fresnel propagation based algorithm (1) described in: //Roberto Di Leonardo, Francesca Ianni, and Giancarlo Ruocco //"Computer generation of optimal holograms for optical trap arrays" //Opt. Express 15, 1913-1922 (2007) // //The original algorithm has been modified to allow variable spot amplitudes //////////////////////////////////////////////////////////////////////////////// //Naming convention for variables: //-The prefix indicates where data is located //--In host functions: h = host memory // d = device memory // c = constant memory //--In global functions: g = global memory // s = shared memory // c = constant memory // no prefix = registers //-The suffix indicates the data type, no suffix usually indicates an iteger //////////////////////////////////////////////////////////////////////////////// //Possible improvements: //-Improve convergence of the GS algorithms for 2 spots. *done //-Compensate spot intensities for distance from center of field. *done //-Put all arguments for device functions and trap positions in constant memory. *done // (Requires all functions to be moved into the same file or the use of some // workaround found on nVidia forum) //-Put pSLMstart and aLaser in texture memory (may not improve performance on Fermi devices) //-Use "zero-copy" to transfer pSLM to host. //-Rename functions and variables for consistency and readability //-Allow variable spot phases for Lenses and Prisms //////////////////////////////////////////////////////////////////////////////// //#define M_CUDA_DEBUG //activates a number of custom debug macros// float dt_milliseconds; cudaEvent_t start, stop; //////////////////////////////////////////////////////////////////////////////// //Includes //////////////////////////////////////////////////////////////////////////////// #ifndef M_PI #define M_PI 3.14159265358979323846f #endif #define MAX_SPOTS 1024 //decrease this if your GPU keeps running out of memory #define BLOCK_SIZE 256 //should be a power of 2 #define SLM_SIZE 512 #if ((SLM_SIZE==16)||(SLM_SIZE==32)||(SLM_SIZE==64)||(SLM_SIZE==128)||(SLM_SIZE==256)||(SLM_SIZE==512)||(SLM_SIZE==1024)||(SLM_SIZE==2048)) #define SLMPOW2 //Uses bitwise modulu operations if the SLM size is a power of 2 #endif //////////////////////////////////////////////////////////////////////////////// // forward declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// //Set correction parameters //////////////////////////////////////////////////////////////////////////////// __device__ unsigned char applyPolLUT(float phase2pi, float X, float Y, float *s_c) { switch (c_N_PolLUTCoeff[0]) { case 120: return (unsigned char)(s_c[0] + s_c[1]*X + s_c[2]*Y + s_c[3]*phase2pi + s_c[4]*X*X + s_c[5]*X*Y + s_c[6]*X*phase2pi + s_c[7]*Y*Y + s_c[8]*Y*phase2pi + s_c[9]*phase2pi*phase2pi + s_c[10]*X*X*X + s_c[11]*X*X*Y + s_c[12]*X*X*phase2pi + s_c[13]*X*Y*Y + s_c[14]*X*Y*phase2pi + s_c[15]*X*phase2pi*phase2pi + s_c[16]*Y*Y*Y + s_c[17]*Y*Y*phase2pi + s_c[18]*Y*phase2pi*phase2pi + s_c[19]*phase2pi*phase2pi*phase2pi + s_c[20]*X*X*X*X + s_c[21]*X*X*X*Y + s_c[22]*X*X*X*phase2pi + s_c[23]*X*X*Y*Y + s_c[24]*X*X*Y*phase2pi + s_c[25]*X*X*phase2pi*phase2pi + s_c[26]*X*Y*Y*Y + s_c[27]*X*Y*Y*phase2pi + s_c[28]*X*Y*phase2pi*phase2pi + s_c[29]*X*phase2pi*phase2pi*phase2pi + s_c[30]*Y*Y*Y*Y + s_c[31]*Y*Y*Y*phase2pi + s_c[32]*Y*Y*phase2pi*phase2pi + s_c[33]*Y*phase2pi*phase2pi*phase2pi + s_c[34]*phase2pi*phase2pi*phase2pi*phase2pi + s_c[35]*X*X*X*X*X + s_c[36]*X*X*X*X*Y + s_c[37]*X*X*X*X*phase2pi + s_c[38]*X*X*X*Y*Y + s_c[39]*X*X*X*Y*phase2pi + s_c[40]*X*X*X*phase2pi*phase2pi + s_c[41]*X*X*Y*Y*Y + s_c[42]*X*X*Y*Y*phase2pi + s_c[43]*X*X*Y*phase2pi*phase2pi + s_c[44]*X*X*phase2pi*phase2pi*phase2pi + s_c[45]*X*Y*Y*Y*Y + s_c[46]*X*Y*Y*Y*phase2pi + s_c[47]*X*Y*Y*phase2pi*phase2pi + s_c[48]*X*Y*phase2pi*phase2pi*phase2pi + s_c[49]*X*phase2pi*phase2pi*phase2pi*phase2pi + s_c[50]*Y*Y*Y*Y*Y + s_c[51]*Y*Y*Y*Y*phase2pi + s_c[52]*Y*Y*Y*phase2pi*phase2pi + s_c[53]*Y*Y*phase2pi*phase2pi*phase2pi + s_c[54]*Y*phase2pi*phase2pi*phase2pi*phase2pi + s_c[55]*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi + s_c[56]*X*X*X*X*X*X + s_c[57]*X*X*X*X*X*Y + s_c[58]*X*X*X*X*X*phase2pi + s_c[59]*X*X*X*X*Y*Y + s_c[60]*X*X*X*X*Y*phase2pi + s_c[61]*X*X*X*X*phase2pi*phase2pi + s_c[62]*X*X*X*Y*Y*Y + s_c[63]*X*X*X*Y*Y*phase2pi + s_c[64]*X*X*X*Y*phase2pi*phase2pi + s_c[65]*X*X*X*phase2pi*phase2pi*phase2pi + s_c[66]*X*X*Y*Y*Y*Y + s_c[67]*X*X*Y*Y*Y*phase2pi + s_c[68]*X*X*Y*Y*phase2pi*phase2pi + s_c[69]*X*X*Y*phase2pi*phase2pi*phase2pi + s_c[70]*X*X*phase2pi*phase2pi*phase2pi*phase2pi + s_c[71]*X*Y*Y*Y*Y*Y + s_c[72]*X*Y*Y*Y*Y*phase2pi + s_c[73]*X*Y*Y*Y*phase2pi*phase2pi + s_c[74]*X*Y*Y*phase2pi*phase2pi*phase2pi + s_c[75]*X*Y*phase2pi*phase2pi*phase2pi*phase2pi + s_c[76]*X*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi + s_c[77]*Y*Y*Y*Y*Y*Y + s_c[78]*Y*Y*Y*Y*Y*phase2pi + s_c[79]*Y*Y*Y*Y*phase2pi*phase2pi + s_c[80]*Y*Y*Y*phase2pi*phase2pi*phase2pi + s_c[81]*Y*Y*phase2pi*phase2pi*phase2pi*phase2pi + s_c[82]*Y*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi + s_c[83]*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi + s_c[84]*X*X*X*X*X*X*X + s_c[85]*X*X*X*X*X*X*Y + s_c[86]*X*X*X*X*X*X*phase2pi + s_c[87]*X*X*X*X*X*Y*Y + s_c[88]*X*X*X*X*X*Y*phase2pi + s_c[89]*X*X*X*X*X*phase2pi*phase2pi + s_c[90]*X*X*X*X*Y*Y*Y + s_c[91]*X*X*X*X*Y*Y*phase2pi + s_c[92]*X*X*X*X*Y*phase2pi*phase2pi + s_c[93]*X*X*X*X*phase2pi*phase2pi*phase2pi + s_c[94]*X*X*X*Y*Y*Y*Y + s_c[95]*X*X*X*Y*Y*Y*phase2pi + s_c[96]*X*X*X*Y*Y*phase2pi*phase2pi + s_c[97]*X*X*X*Y*phase2pi*phase2pi*phase2pi + s_c[98]*X*X*X*phase2pi*phase2pi*phase2pi*phase2pi + s_c[99]*X*X*Y*Y*Y*Y*Y + s_c[100]*X*X*Y*Y*Y*Y*phase2pi + s_c[101]*X*X*Y*Y*Y*phase2pi*phase2pi + s_c[102]*X*X*Y*Y*phase2pi*phase2pi*phase2pi + s_c[103]*X*X*Y*phase2pi*phase2pi*phase2pi*phase2pi + s_c[104]*X*X*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi + s_c[105]*X*Y*Y*Y*Y*Y*Y + s_c[106]*X*Y*Y*Y*Y*Y*phase2pi + s_c[107]*X*Y*Y*Y*Y*phase2pi*phase2pi + s_c[108]*X*Y*Y*Y*phase2pi*phase2pi*phase2pi + s_c[109]*X*Y*Y*phase2pi*phase2pi*phase2pi*phase2pi + s_c[110]*X*Y*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi + s_c[111]*X*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi + s_c[112]*Y*Y*Y*Y*Y*Y*Y + s_c[113]*Y*Y*Y*Y*Y*Y*phase2pi + s_c[114]*Y*Y*Y*Y*Y*phase2pi*phase2pi + s_c[115]*Y*Y*Y*Y*phase2pi*phase2pi*phase2pi + s_c[116]*Y*Y*Y*phase2pi*phase2pi*phase2pi*phase2pi + s_c[117]*Y*Y*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi + s_c[118]*Y*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi + s_c[119]*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi); case 84: return (unsigned char)(s_c[0] + s_c[1]*X + s_c[2]*Y + s_c[3]*phase2pi + s_c[4]*X*X + s_c[5]*X*Y + s_c[6]*X*phase2pi + s_c[7]*Y*Y + s_c[8]*Y*phase2pi + s_c[9]*phase2pi*phase2pi + s_c[10]*X*X*X + s_c[11]*X*X*Y + s_c[12]*X*X*phase2pi + s_c[13]*X*Y*Y + s_c[14]*X*Y*phase2pi + s_c[15]*X*phase2pi*phase2pi + s_c[16]*Y*Y*Y + s_c[17]*Y*Y*phase2pi + s_c[18]*Y*phase2pi*phase2pi + s_c[19]*phase2pi*phase2pi*phase2pi + s_c[20]*X*X*X*X + s_c[21]*X*X*X*Y + s_c[22]*X*X*X*phase2pi + s_c[23]*X*X*Y*Y + s_c[24]*X*X*Y*phase2pi + s_c[25]*X*X*phase2pi*phase2pi + s_c[26]*X*Y*Y*Y + s_c[27]*X*Y*Y*phase2pi + s_c[28]*X*Y*phase2pi*phase2pi + s_c[29]*X*phase2pi*phase2pi*phase2pi + s_c[30]*Y*Y*Y*Y + s_c[31]*Y*Y*Y*phase2pi + s_c[32]*Y*Y*phase2pi*phase2pi + s_c[33]*Y*phase2pi*phase2pi*phase2pi + s_c[34]*phase2pi*phase2pi*phase2pi*phase2pi + s_c[35]*X*X*X*X*X + s_c[36]*X*X*X*X*Y + s_c[37]*X*X*X*X*phase2pi + s_c[38]*X*X*X*Y*Y + s_c[39]*X*X*X*Y*phase2pi + s_c[40]*X*X*X*phase2pi*phase2pi + s_c[41]*X*X*Y*Y*Y + s_c[42]*X*X*Y*Y*phase2pi + s_c[43]*X*X*Y*phase2pi*phase2pi + s_c[44]*X*X*phase2pi*phase2pi*phase2pi + s_c[45]*X*Y*Y*Y*Y + s_c[46]*X*Y*Y*Y*phase2pi + s_c[47]*X*Y*Y*phase2pi*phase2pi + s_c[48]*X*Y*phase2pi*phase2pi*phase2pi + s_c[49]*X*phase2pi*phase2pi*phase2pi*phase2pi + s_c[50]*Y*Y*Y*Y*Y + s_c[51]*Y*Y*Y*Y*phase2pi + s_c[52]*Y*Y*Y*phase2pi*phase2pi + s_c[53]*Y*Y*phase2pi*phase2pi*phase2pi + s_c[54]*Y*phase2pi*phase2pi*phase2pi*phase2pi + s_c[55]*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi + s_c[56]*X*X*X*X*X*X + s_c[57]*X*X*X*X*X*Y + s_c[58]*X*X*X*X*X*phase2pi + s_c[59]*X*X*X*X*Y*Y + s_c[60]*X*X*X*X*Y*phase2pi + s_c[61]*X*X*X*X*phase2pi*phase2pi + s_c[62]*X*X*X*Y*Y*Y + s_c[63]*X*X*X*Y*Y*phase2pi + s_c[64]*X*X*X*Y*phase2pi*phase2pi + s_c[65]*X*X*X*phase2pi*phase2pi*phase2pi + s_c[66]*X*X*Y*Y*Y*Y + s_c[67]*X*X*Y*Y*Y*phase2pi + s_c[68]*X*X*Y*Y*phase2pi*phase2pi + s_c[69]*X*X*Y*phase2pi*phase2pi*phase2pi + s_c[70]*X*X*phase2pi*phase2pi*phase2pi*phase2pi + s_c[71]*X*Y*Y*Y*Y*Y + s_c[72]*X*Y*Y*Y*Y*phase2pi + s_c[73]*X*Y*Y*Y*phase2pi*phase2pi + s_c[74]*X*Y*Y*phase2pi*phase2pi*phase2pi + s_c[75]*X*Y*phase2pi*phase2pi*phase2pi*phase2pi + s_c[76]*X*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi + s_c[77]*Y*Y*Y*Y*Y*Y + s_c[78]*Y*Y*Y*Y*Y*phase2pi + s_c[79]*Y*Y*Y*Y*phase2pi*phase2pi + s_c[80]*Y*Y*Y*phase2pi*phase2pi*phase2pi + s_c[81]*Y*Y*phase2pi*phase2pi*phase2pi*phase2pi + s_c[82]*Y*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi + s_c[83]*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi); case 56: return (unsigned char)(s_c[0] + s_c[1]*X + s_c[2]*Y + s_c[3]*phase2pi + s_c[4]*X*X + s_c[5]*X*Y + s_c[6]*X*phase2pi + s_c[7]*Y*Y + s_c[8]*Y*phase2pi + s_c[9]*phase2pi*phase2pi + s_c[10]*X*X*X + s_c[11]*X*X*Y + s_c[12]*X*X*phase2pi + s_c[13]*X*Y*Y + s_c[14]*X*Y*phase2pi + s_c[15]*X*phase2pi*phase2pi + s_c[16]*Y*Y*Y + s_c[17]*Y*Y*phase2pi + s_c[18]*Y*phase2pi*phase2pi + s_c[19]*phase2pi*phase2pi*phase2pi + s_c[20]*X*X*X*X + s_c[21]*X*X*X*Y + s_c[22]*X*X*X*phase2pi + s_c[23]*X*X*Y*Y + s_c[24]*X*X*Y*phase2pi + s_c[25]*X*X*phase2pi*phase2pi + s_c[26]*X*Y*Y*Y + s_c[27]*X*Y*Y*phase2pi + s_c[28]*X*Y*phase2pi*phase2pi + s_c[29]*X*phase2pi*phase2pi*phase2pi + s_c[30]*Y*Y*Y*Y + s_c[31]*Y*Y*Y*phase2pi + s_c[32]*Y*Y*phase2pi*phase2pi + s_c[33]*Y*phase2pi*phase2pi*phase2pi + s_c[34]*phase2pi*phase2pi*phase2pi*phase2pi + s_c[35]*X*X*X*X*X + s_c[36]*X*X*X*X*Y + s_c[37]*X*X*X*X*phase2pi + s_c[38]*X*X*X*Y*Y + s_c[39]*X*X*X*Y*phase2pi + s_c[40]*X*X*X*phase2pi*phase2pi + s_c[41]*X*X*Y*Y*Y + s_c[42]*X*X*Y*Y*phase2pi + s_c[43]*X*X*Y*phase2pi*phase2pi + s_c[44]*X*X*phase2pi*phase2pi*phase2pi + s_c[45]*X*Y*Y*Y*Y + s_c[46]*X*Y*Y*Y*phase2pi + s_c[47]*X*Y*Y*phase2pi*phase2pi + s_c[48]*X*Y*phase2pi*phase2pi*phase2pi + s_c[49]*X*phase2pi*phase2pi*phase2pi*phase2pi + s_c[50]*Y*Y*Y*Y*Y + s_c[51]*Y*Y*Y*Y*phase2pi + s_c[52]*Y*Y*Y*phase2pi*phase2pi + s_c[53]*Y*Y*phase2pi*phase2pi*phase2pi + s_c[54]*Y*phase2pi*phase2pi*phase2pi*phase2pi + s_c[55]*phase2pi*phase2pi*phase2pi*phase2pi*phase2pi); case 35: return (unsigned char)(s_c[0] + s_c[1]*X + s_c[2]*Y + s_c[3]*phase2pi + s_c[4]*X*X + s_c[5]*X*Y + s_c[6]*X*phase2pi + s_c[7]*Y*Y + s_c[8]*Y*phase2pi + s_c[9]*phase2pi*phase2pi + s_c[10]*X*X*X + s_c[11]*X*X*Y + s_c[12]*X*X*phase2pi + s_c[13]*X*Y*Y + s_c[14]*X*Y*phase2pi + s_c[15]*X*phase2pi*phase2pi + s_c[16]*Y*Y*Y + s_c[17]*Y*Y*phase2pi + s_c[18]*Y*phase2pi*phase2pi + s_c[19]*phase2pi*phase2pi*phase2pi + s_c[20]*X*X*X*X + s_c[21]*X*X*X*Y + s_c[22]*X*X*X*phase2pi + s_c[23]*X*X*Y*Y + s_c[24]*X*X*Y*phase2pi + s_c[25]*X*X*phase2pi*phase2pi + s_c[26]*X*Y*Y*Y + s_c[27]*X*Y*Y*phase2pi + s_c[28]*X*Y*phase2pi*phase2pi + s_c[29]*X*phase2pi*phase2pi*phase2pi + s_c[30]*Y*Y*Y*Y + s_c[31]*Y*Y*Y*phase2pi + s_c[32]*Y*Y*phase2pi*phase2pi + s_c[33]*Y*phase2pi*phase2pi*phase2pi + s_c[34]*phase2pi*phase2pi*phase2pi*phase2pi); case 20: return (unsigned char)(s_c[0] + s_c[1]*X + s_c[2]*Y + s_c[3]*phase2pi + s_c[4]*X*X + s_c[5]*X*Y + s_c[6]*X*phase2pi + s_c[7]*Y*Y + s_c[8]*Y*phase2pi + s_c[9]*phase2pi*phase2pi + s_c[10]*X*X*X + s_c[11]*X*X*Y + s_c[12]*X*X*phase2pi + s_c[13]*X*Y*Y + s_c[14]*X*Y*phase2pi + s_c[15]*X*phase2pi*phase2pi + s_c[16]*Y*Y*Y + s_c[17]*Y*Y*phase2pi + s_c[18]*Y*phase2pi*phase2pi + s_c[19]*phase2pi*phase2pi*phase2pi); default: return 0; } } __device__ int getYint(int index, int X_int) { #ifdef SLMPOW2 int Y_int = (index-X_int)>>c_log2data_w[0]; #else int Y_int = (float)(floor((float)index/c_data_w_f[0])); #endif return Y_int; } __device__ int getXint(int index) { #ifdef SLMPOW2 int X_int = index&(c_data_w[0]-1); #else float X_int= index%c_data_w[0]; #endif return X_int; } __device__ float ApplyAberrationCorrection(float pSpot, float correction) { pSpot = pSpot - correction; //apply correction return (pSpot - (2.0f*M_PI) * floor((pSpot+M_PI) / (2.0f*M_PI))); //apply mod([-pi, pi], pSpot) } __device__ int phase2int32(float phase2pi) { return (int)floor((phase2pi + M_PI)*256.0f / (2.0f * M_PI)); } __device__ unsigned char phase2uc(float phase2pi) { return (unsigned char)floor((phase2pi + M_PI)*256.0f / (2.0f * M_PI)); } __device__ float uc2phase(float uc) { return (float)uc*2.0f*M_PI/256.0f - M_PI; } __global__ void ApplyCorrections(unsigned char *g_pSLM_uc, unsigned char *g_LUT, float *g_AberrationCorr_f, float *g_LUTPolCoeff_f) { int tid = threadIdx.x; int idx = blockIdx.x * blockDim.x + threadIdx.x; float pSLM2pi_f = uc2phase(g_pSLM_uc[idx]); if (c_useAberrationCorr_b[0]) pSLM2pi_f = ApplyAberrationCorrection(pSLM2pi_f, g_AberrationCorr_f[idx]); if (c_usePolLUT_b[0]) { int X_int = getXint(idx); int Y_int = getYint(idx, X_int); float X = c_SLMpitch_f[0]*(X_int - c_half_w_f[0]); float Y = c_SLMpitch_f[0]*(Y_int - c_half_w_f[0]); __shared__ float s_LUTcoeff[120]; if (tid < c_N_PolLUTCoeff[0]) s_LUTcoeff[tid] = g_LUTPolCoeff_f[tid]; __syncthreads(); g_pSLM_uc[idx] = applyPolLUT(pSLM2pi_f, X, Y, s_LUTcoeff); } else if (c_applyLUT_b[0]) { __shared__ unsigned char s_LUT[256]; if (tid < 256) s_LUT[tid] = g_LUT[tid]; __syncthreads(); g_pSLM_uc[idx] = s_LUT[phase2int32(pSLM2pi_f)]; } else g_pSLM_uc[idx] = phase2uc(pSLM2pi_f); }
ff0e56878bfce0767cc2442ab473348992beeaba.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #ifndef IUSPARSECOMPARE_CU #define IUSPARSECOMPARE_CU #include <list> #include <iostream> #include <iudefs.h> #include <iucore.h> #include <iucutil.h> #include <iumath.h> #include <iusparse.h> // textures texture<float, 2, hipReadModeElementType> rof_tex_u; texture<float, 2, hipReadModeElementType> rof_tex_u_; texture<float, 2, hipReadModeElementType> rof_tex_f; texture<float2, 2, hipReadModeElementType> rof_tex_p; texture<float2, 2, hipReadModeElementType> rof_tex_gradient; texture<float, 2, hipReadModeElementType> rof_tex_divergence; const unsigned int BSX=32; const unsigned int BSY=16; //////////////////////////////////////////////////////////////////////////////// void bindTexture(texture<float, 2>& tex, iu::ImageGpu_32f_C1* mem) { tex.addressMode[0] = hipAddressModeClamp; // Neumann Boundary Conditions tex.addressMode[1] = hipAddressModeClamp; // Neumann Boundary Conditions tex.filterMode = hipFilterModeLinear; tex.normalized = false; hipChannelFormatDesc channel_desc = hipCreateChannelDesc<float>(); ( hipBindTexture2D( 0, &tex, mem->data(), &channel_desc, mem->width(), mem->height(), mem->pitch())); } //////////////////////////////////////////////////////////////////////////////// void bindTexture(texture<float2, 2>& tex, iu::ImageGpu_32f_C2* mem) { tex.addressMode[0] = hipAddressModeClamp; // Neumann Boundary Conditions tex.addressMode[1] = hipAddressModeClamp; // Neumann Boundary Conditions tex.filterMode = hipFilterModeLinear; tex.normalized = false; hipChannelFormatDesc channel_desc_float2 = hipCreateChannelDesc<float2>(); ( hipBindTexture2D( 0, &tex, mem->data(), &channel_desc_float2, mem->width(), mem->height(), mem->pitch())); } //////////////////////////////////////////////////////////////////////////////// //############################################################################// //OOOOOOOOOOOOOOOOOOOOOOOOOOO STANDARD MODEL OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO// //############################################################################// //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// __global__ void update_primal(float* device_u, float* device_u_, float tau, float theta, float lambda, int width, int height, int xstride) { int x = blockIdx.x*blockDim.x + threadIdx.x; int y = blockIdx.y*blockDim.y + threadIdx.y; int c = y*xstride + x; if(x<width && y<height) { // texture fetches float f = tex2D(rof_tex_f, x+0.5f, y+0.5f); float u = tex2D(rof_tex_u, x+0.5f, y+0.5f); float u_ = u; float divergence = dp_ad(rof_tex_p, x, y, width, height); // update primal variable u = (u + tau*(divergence + lambda*f))/(1.0f+tau*lambda); device_u[c] = u; device_u_[c] = u + theta*(u-u_); } } //////////////////////////////////////////////////////////////////////////////// __global__ void update_dual(float2* device_p, float sigma, int width, int height, int stride) { int x = blockIdx.x*blockDim.x + threadIdx.x; int y = blockIdx.y*blockDim.y + threadIdx.y; if(x<width && y<height) { float2 p = tex2D(rof_tex_p, x+0.5f, y+0.5f); float2 grad_u = dp(rof_tex_u_, x, y); // update dual variable p = p + sigma*grad_u; p = p/max(1.0f, length(p)); device_p[y*stride + x] = p; } } //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// void rof_primal_dual(iu::ImageGpu_32f_C1* device_f, iu::ImageGpu_32f_C1* device_u, iu::ImageGpu_32f_C1* device_u_, iu::ImageGpu_32f_C2* device_p, float lambda, int max_iter) { int width = device_f->width(); int height = device_f->height(); // fragmentation int nb_x = width/BSX; int nb_y = height/BSY; if (nb_x*BSX < width) nb_x++; if (nb_y*BSY < height) nb_y++; dim3 dimBlock(BSX,BSY); dim3 dimGrid(nb_x,nb_y); bindTexture(rof_tex_f, device_f); bindTexture(rof_tex_u, device_u); bindTexture(rof_tex_u_, device_u_); bindTexture(rof_tex_p, device_p); float L = sqrtf(8.0f); float tau = 1/L; float sigma = 1/L; float theta; for (int k = 0; k < max_iter; ++k) { hipLaunchKernelGGL(( update_dual), dim3(dimGrid), dim3(dimBlock), 0, 0, device_p->data(), sigma, width, height, device_p->stride()); if (sigma < 1000.0f) theta = 1/sqrtf(1.0f+0.7f*lambda*tau); else theta = 1.0f; hipLaunchKernelGGL(( update_primal), dim3(dimGrid), dim3(dimBlock), 0, 0, device_u->data(), device_u_->data(), tau, theta, lambda, width, height, device_u->stride()); sigma /= theta; tau *= theta; } iu::checkCudaErrorState(__FILE__, __FUNCTION__, __LINE__); } //////////////////////////////////////////////////////////////////////////////// //############################################################################// //OOOOOOOOOOOOOOOOOOOOOOOOOOOOO NO TEXTURE OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO// //############################################################################// //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// __global__ void update_primal_notex(float* device_u, float* device_u_, float* device_f, float2* device_p, float tau, float theta, float lambda, int width, int height, int xstride, int xstride2) { int x = blockIdx.x*blockDim.x + threadIdx.x; int y = blockIdx.y*blockDim.y + threadIdx.y; int c = y*xstride + x; if(x<width && y<height) { // texture fetches float f = device_f[c]; float u = device_u[c]; float u_ = u; float2 cval = device_p[y*xstride2 + x]; float2 wval = device_p[y*xstride2 + max(0,x-1)]; float2 nval = device_p[max(0,y-1)*xstride2 + x]; if (x == 0) wval.x = 0.0f; else if (x >= width-1) cval.x = 0.0f; if (y == 0) nval.y = 0.0f; else if (y >= height-1) cval.y = 0.0f; float divergence = cval.x - wval.x + cval.y - nval.y; // update primal variable u = (u + tau*(divergence + lambda*f))/(1.0f+tau*lambda); device_u[c] = u; device_u_[c] = u + theta*(u-u_); } } //////////////////////////////////////////////////////////////////////////////// __global__ void update_dual_notex(float2* device_p, float* device_u_, float sigma, int width, int height, int xstride, int xstride2) { int x = blockIdx.x*blockDim.x + threadIdx.x; int y = blockIdx.y*blockDim.y + threadIdx.y; int c2 = y*xstride2 + x; if(x<width && y<height) { float2 p = device_p[c2]; float2 grad_u = make_float2(0.0f, 0.0f); float cval = device_u_[y*xstride + x]; grad_u.x = device_u_[y*xstride + min(width-1,x+1)] - cval; grad_u.y = device_u_[min(height-1,y+1)*xstride + x] - cval; // update dual variable p = p + sigma*grad_u; p = p/max(1.0f, length(p)); device_p[c2] = p; } } //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// void rof_primal_dual_notex(iu::ImageGpu_32f_C1* device_f, iu::ImageGpu_32f_C1* device_u, iu::ImageGpu_32f_C1* device_u_, iu::ImageGpu_32f_C2* device_p, float lambda, int max_iter) { int width = device_f->width(); int height = device_f->height(); // fragmentation int nb_x = width/BSX; int nb_y = height/BSY; if (nb_x*BSX < width) nb_x++; if (nb_y*BSY < height) nb_y++; dim3 dimBlock(BSX,BSY); dim3 dimGrid(nb_x,nb_y); float L = sqrtf(8.0f); float tau = 1/L; float sigma = 1/L; float theta; hipFuncSetCacheConfig("_Z17update_dual_notexP6float2Pffiiii", hipFuncCachePreferShared); iu::checkCudaErrorState(__FILE__, __FUNCTION__, __LINE__); hipFuncSetCacheConfig("_Z19update_primal_notexPfS_S_P6float2fffiiii", hipFuncCachePreferShared); iu::checkCudaErrorState(__FILE__, __FUNCTION__, __LINE__); for (int k = 0; k < max_iter; ++k) { hipLaunchKernelGGL(( update_dual_notex), dim3(dimGrid), dim3(dimBlock), 0, 0, device_p->data(), device_u_->data(), sigma, width, height, device_u_->stride(), device_p->stride()); if (sigma < 1000.0f) theta = 1/sqrtf(1.0f+0.7f*lambda*tau); else theta = 1.0f; hipLaunchKernelGGL(( update_primal_notex), dim3(dimGrid), dim3(dimBlock), 0, 0, device_u->data(), device_u_->data(), device_f->data(), device_p->data(), tau, theta, lambda, width, height, device_u->stride(), device_p->stride()); sigma /= theta; tau *= theta; } iu::checkCudaErrorState(__FILE__, __FUNCTION__, __LINE__); } //////////////////////////////////////////////////////////////////////////////// //############################################################################// //OOOOOOOOOOOOOOOOOOOOOOOOOOO SPARSE MATRIX OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO// //############################################################################// //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// __global__ void update_primal_sparse(float* device_u, float* device_u_, float tau, float theta, float lambda, int width, int height, int xstride) { int x = blockIdx.x*blockDim.x + threadIdx.x; int y = blockIdx.y*blockDim.y + threadIdx.y; int c = y*xstride + x; if(x<width && y<height) { // texture fetches float u = tex2D(rof_tex_u, x+0.5f, y+0.5f); float u_ = u; // update primal variable u = (u + tau*(-tex2D(rof_tex_divergence, x+0.5f, y+0.5f) + lambda*tex2D(rof_tex_f, x+0.5f, y+0.5f)))/(1.0f+tau*lambda); device_u[c] = u; device_u_[c] = u + theta*(u-u_); } } //////////////////////////////////////////////////////////////////////////////// __global__ void update_dual_sparse(float2* device_p, float sigma, int width, int height, int stride) { int x = blockIdx.x*blockDim.x + threadIdx.x; int y = blockIdx.y*blockDim.y + threadIdx.y; if(x<width && y<height) { float2 p = tex2D(rof_tex_p, x+0.5f, y+0.5f) + sigma*tex2D(rof_tex_gradient, x+0.5f, y+0.5f); device_p[y*stride + x] = p/max(1.0f, length(p)); } } //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// void rof_primal_dual_sparse(iu::SparseMatrixGpu_32f* G, iu::ImageGpu_32f_C1* device_f, iu::ImageGpu_32f_C1* device_u, iu::ImageGpu_32f_C1* device_u_, iu::ImageGpu_32f_C2* device_p, float lambda, int max_iter) { int width = device_f->width(); int height = device_f->height(); // fragmentation int nb_x = width/BSX; int nb_y = height/BSY; if (nb_x*BSX < width) nb_x++; if (nb_y*BSY < height) nb_y++; dim3 dimBlock(BSX,BSY); dim3 dimGrid(nb_x,nb_y); iu::ImageGpu_32f_C2 gradient(width, height); iu::ImageGpu_32f_C1 divergence(width, height); float L = sqrtf(8.0f); float tau = 1/L; float sigma = 1/L; float theta; for (int k = 0; k < max_iter; ++k) { // Gradient iu::sparseMultiplication(G->handle(), G, device_u_, &gradient); // Dual update bindTexture(rof_tex_p, device_p); bindTexture(rof_tex_gradient, &gradient); hipLaunchKernelGGL(( update_dual_sparse), dim3(dimGrid), dim3(dimBlock) , 0, 0, device_p->data(), sigma, width, height, device_p->stride()); hipUnbindTexture(&rof_tex_p); hipUnbindTexture(&rof_tex_gradient); // Update Timesteps if (sigma < 1000.0f) theta = 1/sqrtf(1.0f+0.7f*lambda*tau); else theta = 1.0f; // Divergence iu::sparseMultiplication(G->handle(), G, device_p, &divergence, HIPSPARSE_OPERATION_TRANSPOSE); // Primal update bindTexture(rof_tex_f, device_f); bindTexture(rof_tex_u, device_u); bindTexture(rof_tex_divergence, &divergence); hipLaunchKernelGGL(( update_primal_sparse), dim3(dimGrid), dim3(dimBlock) , 0, 0, device_u->data(), device_u_->data(), tau, theta, lambda, width, height, device_u->stride()); hipUnbindTexture(&rof_tex_f); hipUnbindTexture(&rof_tex_u); hipUnbindTexture(&rof_tex_divergence); // Update Timesteps sigma /= theta; tau *= theta; } iu::checkCudaErrorState(__FILE__, __FUNCTION__, __LINE__); } //////////////////////////////////////////////////////////////////////////////// //############################################################################// //OOOOOOOOOOOOOOOOOOOOOOOOOOO SHARED MEMORY OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO// //############################################################################// //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// __global__ void update_primal_shared(float* device_u, float* device_u_, float tau, float theta, float lambda, int width, int height, int xstride) { int x = blockIdx.x*blockDim.x + threadIdx.x; int y = blockIdx.y*blockDim.y + threadIdx.y; int c = y*xstride + x; if(x<width && y<height) { // texture fetches float f = tex2D(rof_tex_f, x+0.5f, y+0.5f); float u = tex2D(rof_tex_u, x+0.5f, y+0.5f); float u_ = u; __shared__ float2 p[BSX+1][BSY+1]; p[threadIdx.x+1][threadIdx.y+1] = tex2D(rof_tex_p, x+0.5f, y+0.5f); if (threadIdx.x==0) { p[threadIdx.x][threadIdx.y+1] = tex2D(rof_tex_p, x-0.5f, y+0.5f); if (x==0) p[threadIdx.x][threadIdx.y+1].x = 0.0f; } if (threadIdx.y==0) { p[threadIdx.x+1][threadIdx.y] = tex2D(rof_tex_p, x+0.5f, y-0.5f); if (y==0) p[threadIdx.x+1][threadIdx.y].y = 0.0f; } if (x >= width-1) p[threadIdx.x+1][threadIdx.y+1].x = 0.0f; if (y >= height-1) p[threadIdx.x+1][threadIdx.y+1].y = 0.0f; // syncthreads(); float divergence = p[threadIdx.x+1][threadIdx.y+1].x - p[threadIdx.x][threadIdx.y+1].x + p[threadIdx.x+1][threadIdx.y+1].y - p[threadIdx.x+1][threadIdx.y].y; // update primal variable u = (u + tau*(divergence + lambda*f))/(1.0f+tau*lambda); device_u[c] = u; device_u_[c] = u + theta*(u-u_); } } //////////////////////////////////////////////////////////////////////////////// __global__ void update_dual_shared(float2* device_p, float sigma, int width, int height, int stride) { int x = blockIdx.x*blockDim.x + threadIdx.x; int y = blockIdx.y*blockDim.y + threadIdx.y; if(x<width && y<height) { float2 p = tex2D(rof_tex_p, x+0.5f, y+0.5f); __shared__ float u_[BSX+1][BSY+1]; u_[threadIdx.x][threadIdx.y] = tex2D(rof_tex_u_, x+0.5f, y+0.5f); if (threadIdx.x==BSX-1) u_[threadIdx.x+1][threadIdx.y] = tex2D(rof_tex_u_, x+1.5f, y+0.5f); if (threadIdx.y==BSY-1) u_[threadIdx.x][threadIdx.y+1] = tex2D(rof_tex_u_, x+0.5f, y+1.5f); // syncthreads(); float2 grad_u = make_float2(u_[threadIdx.x+1][threadIdx.y] - u_[threadIdx.x][threadIdx.y], u_[threadIdx.x][threadIdx.y+1] - u_[threadIdx.x][threadIdx.y] ); // update dual variable p = p + sigma*grad_u; p = p/max(1.0f, length(p)); device_p[y*stride + x] = p; } } //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// void rof_primal_dual_shared(iu::ImageGpu_32f_C1* device_f, iu::ImageGpu_32f_C1* device_u, iu::ImageGpu_32f_C1* device_u_, iu::ImageGpu_32f_C2* device_p, float lambda, int max_iter) { int width = device_f->width(); int height = device_f->height(); // fragmentation int nb_x = width/BSX; int nb_y = height/BSY; if (nb_x*BSX < width) nb_x++; if (nb_y*BSY < height) nb_y++; dim3 dimBlock(BSX,BSY); dim3 dimGrid(nb_x,nb_y); bindTexture(rof_tex_f, device_f); bindTexture(rof_tex_u, device_u); bindTexture(rof_tex_u_, device_u_); bindTexture(rof_tex_p, device_p); float L = sqrtf(8.0f); float tau = 1/L; float sigma = 1/L; float theta; for (int k = 0; k < max_iter; ++k) { hipLaunchKernelGGL(( update_dual_shared), dim3(dimGrid), dim3(dimBlock), 0, 0, device_p->data(), sigma, width, height, device_p->stride()); if (sigma < 1000.0f) theta = 1/sqrtf(1.0f+0.7f*lambda*tau); else theta = 1.0f; hipLaunchKernelGGL(( update_primal_shared), dim3(dimGrid), dim3(dimBlock), 0, 0, device_u->data(), device_u_->data(), tau, theta, lambda, width, height, device_u->stride()); sigma /= theta; tau *= theta; } iu::checkCudaErrorState(__FILE__, __FUNCTION__, __LINE__); } //////////////////////////////////////////////////////////////////////////////// //############################################################################// //OOOOOOOOOOOOOOOOOOOOOOOO SINGLE SHARED MEMORY OOOOOOOOOOOOOOOOOOOOOOOOOOOOO// //############################################################################// //////////////////////////////////////////////////////////////////////////////// const unsigned int BSX_SINGLE=16; const unsigned int BSY_SINGLE=12; //////////////////////////////////////////////////////////////////////////////// __global__ void update_shared_single(float* device_u, float2* device_p, float tau, float theta, float sigma, float lambda, int width, int height, int stride1, int stride2) { int x = blockIdx.x*(blockDim.x-1) + threadIdx.x; int y = blockIdx.y*(blockDim.y-1) + threadIdx.y; __shared__ float u_[BSX_SINGLE][BSY_SINGLE]; float2 p = tex2D(rof_tex_p, x+0.5f, y+0.5f); float2 pwval = tex2D(rof_tex_p, x-0.5f, y+0.5f); float2 pnval = tex2D(rof_tex_p, x+0.5f, y-0.5f); if (x == 0) pwval.x = 0.0f; else if (x >= width-1) p.x = 0.0f; if (y == 0) pnval.y = 0.0f; else if (y >= height-1) p.y = 0.0f; float f = tex2D(rof_tex_f, x+0.5f, y+0.5f); float u = tex2D(rof_tex_u, x+0.5f, y+0.5f); // Remember old u u_[threadIdx.x][threadIdx.y] = u; // Primal update u = (u + tau*((p.x - pwval.x + p.y - pnval.y) + lambda*f))/(1.0f+tau*lambda); // Overrelaxation u_[threadIdx.x][threadIdx.y] = u + theta*(u-u_[threadIdx.x][threadIdx.y]); __syncthreads(); if(x<width && y<height) { if ( (threadIdx.x < BSX_SINGLE-1) && (threadIdx.y < BSY_SINGLE-1) ) { // Dual Update float2 grad_u = make_float2(u_[threadIdx.x+1][threadIdx.y] - u_[threadIdx.x][threadIdx.y], u_[threadIdx.x][threadIdx.y+1] - u_[threadIdx.x][threadIdx.y] ); p = p + sigma*grad_u; p = p/max(1.0f, length(p)); // Write Back device_p[y*stride2 + x] = p; device_u[y*stride1 + x] = u; } } } //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// void rof_primal_dual_shared_single(iu::ImageGpu_32f_C1* device_f, iu::ImageGpu_32f_C1* device_u, iu::ImageGpu_32f_C2* device_p, float lambda, int max_iter) { int width = device_f->width(); int height = device_f->height(); // fragmentation int nb_x = width/(BSX_SINGLE-1); int nb_y = height/(BSY_SINGLE-1); if (nb_x*(BSX_SINGLE-1) < width) nb_x++; if (nb_y*(BSY_SINGLE-1) < height) nb_y++; dim3 dimBlock(BSX_SINGLE,BSY_SINGLE); dim3 dimGrid(nb_x,nb_y); bindTexture(rof_tex_f, device_f); bindTexture(rof_tex_u, device_u); bindTexture(rof_tex_p, device_p); float L = sqrtf(8.0f); float tau = 1/L; float sigma = 1/L; float theta; for (int k = 0; k < max_iter; ++k) { if (sigma < 1000.0f) theta = 1/sqrtf(1.0f+0.7f*lambda*tau); else theta = 1.0f; hipLaunchKernelGGL(( update_shared_single), dim3(dimGrid), dim3(dimBlock), 0, 0, device_u->data(), device_p->data(), tau, theta, sigma, lambda, width, height, device_u->stride(), device_p->stride()); sigma /= theta; tau *= theta; } iu::checkCudaErrorState(__FILE__, __FUNCTION__, __LINE__); } //////////////////////////////////////////////////////////////////////////////// //############################################################################// //OOOOOOOOOOOOOOOOOOOOOO TWO SINGLE SHARED MEMORY OOOOOOOOOOOOOOOOOOOOOOOOOOO// //############################################################################// //////////////////////////////////////////////////////////////////////////////// const unsigned int BSX_SINGLE2=16; const unsigned int BSY_SINGLE2=10; //////////////////////////////////////////////////////////////////////////////// __global__ void update_shared_single2(float* device_u, float2* device_p, float tau, float theta, float sigma, float lambda, int width, int height, int stride1, int stride2) { int x = blockIdx.x*(blockDim.x-3) + threadIdx.x - 1; int y = blockIdx.y*(blockDim.y-3) + threadIdx.y - 1; __shared__ float u_[BSX_SINGLE2][BSY_SINGLE2]; __shared__ float2 p[BSX_SINGLE2][BSY_SINGLE2]; float2 pc = tex2D(rof_tex_p, x+0.5f, y+0.5f); float2 pwval = tex2D(rof_tex_p, x-0.5f, y+0.5f); float2 pnval = tex2D(rof_tex_p, x+0.5f, y-0.5f); if (x == 0) pwval.x = 0.0f; else if (x >= width-1) pc.x = 0.0f; if (y == 0) pnval.y = 0.0f; else if (y >= height-1) pc.y = 0.0f; float f = tex2D(rof_tex_f, x+0.5f, y+0.5f); float u = tex2D(rof_tex_u, x+0.5f, y+0.5f); // Remember old u u_[threadIdx.x][threadIdx.y] = u; // Primal update u = (u + tau*((pc.x - pwval.x + pc.y - pnval.y) + lambda*f))/(1.0f+tau*lambda); // Overrelaxation u_[threadIdx.x][threadIdx.y] = u + theta*(u-u_[threadIdx.x][threadIdx.y]); __syncthreads(); if ( (threadIdx.x < BSX_SINGLE2-1) && (threadIdx.y < BSY_SINGLE2-1) ) { // Dual Update float2 grad_u = make_float2(u_[threadIdx.x+1][threadIdx.y] - u_[threadIdx.x][threadIdx.y], u_[threadIdx.x][threadIdx.y+1] - u_[threadIdx.x][threadIdx.y] ); pc = pc + sigma*grad_u; p[threadIdx.x][threadIdx.y] = pc/max(1.0f, length(pc)); } __syncthreads(); if (threadIdx.x>0 && threadIdx.y>0) { // Remember old u u_[threadIdx.x][threadIdx.y] = u; // Primal update float div = p[threadIdx.x][threadIdx.y].x - p[threadIdx.x-1][threadIdx.y].x + p[threadIdx.x][threadIdx.y].y - p[threadIdx.x][threadIdx.y-1].y; u = (u + tau*(div + lambda*f))/(1.0f+tau*lambda); // Overrelaxation u_[threadIdx.x][threadIdx.y] = u + theta*(u-u_[threadIdx.x][threadIdx.y]); } __syncthreads(); if(x<width && y<height) { if ( (threadIdx.x < BSX_SINGLE2-2) && (threadIdx.y < BSY_SINGLE2-2) ) { // Dual Update float2 grad_u = make_float2(u_[threadIdx.x+1][threadIdx.y] - u_[threadIdx.x][threadIdx.y], u_[threadIdx.x][threadIdx.y+1] - u_[threadIdx.x][threadIdx.y] ); pc = p[threadIdx.x][threadIdx.y] + sigma*grad_u; p[threadIdx.x][threadIdx.y] = pc/max(1.0f, length(pc)); if (threadIdx.x>0 && threadIdx.y>0) { // Write Back device_p[y*stride2 + x] = p[threadIdx.x][threadIdx.y]; device_u[y*stride1 + x] = u; } } } } //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// void rof_primal_dual_shared_single2(iu::ImageGpu_32f_C1* device_f, iu::ImageGpu_32f_C1* device_u, iu::ImageGpu_32f_C2* device_p, float lambda, int max_iter) { int width = device_f->width(); int height = device_f->height(); // fragmentation int nb_x = width/(BSX_SINGLE2-3); int nb_y = height/(BSY_SINGLE2-3); if (nb_x*(BSX_SINGLE2-3) < width) nb_x++; if (nb_y*(BSY_SINGLE2-3) < height) nb_y++; dim3 dimBlock(BSX_SINGLE2,BSY_SINGLE2); dim3 dimGrid(nb_x,nb_y); bindTexture(rof_tex_f, device_f); bindTexture(rof_tex_u, device_u); bindTexture(rof_tex_p, device_p); float L = sqrtf(8.0f); float tau = 1/L; float sigma = 1/L; float theta; for (int k = 0; k < max_iter; k+=2) { if (sigma < 1000.0f) theta = 1/sqrtf(1.0f+0.7f*lambda*tau); else theta = 1.0f; hipLaunchKernelGGL(( update_shared_single2), dim3(dimGrid), dim3(dimBlock), 0, 0, device_u->data(), device_p->data(), tau, theta, sigma, lambda, width, height, device_u->stride(), device_p->stride()); sigma /= theta; tau *= theta; } iu::checkCudaErrorState(__FILE__, __FUNCTION__, __LINE__); } #endif // IUSPARSECOMPARE_CU
ff0e56878bfce0767cc2442ab473348992beeaba.cu
#ifndef IUSPARSECOMPARE_CU #define IUSPARSECOMPARE_CU #include <list> #include <iostream> #include <iudefs.h> #include <iucore.h> #include <iucutil.h> #include <iumath.h> #include <iusparse.h> // textures texture<float, 2, cudaReadModeElementType> rof_tex_u; texture<float, 2, cudaReadModeElementType> rof_tex_u_; texture<float, 2, cudaReadModeElementType> rof_tex_f; texture<float2, 2, cudaReadModeElementType> rof_tex_p; texture<float2, 2, cudaReadModeElementType> rof_tex_gradient; texture<float, 2, cudaReadModeElementType> rof_tex_divergence; const unsigned int BSX=32; const unsigned int BSY=16; //////////////////////////////////////////////////////////////////////////////// void bindTexture(texture<float, 2>& tex, iu::ImageGpu_32f_C1* mem) { tex.addressMode[0] = cudaAddressModeClamp; // Neumann Boundary Conditions tex.addressMode[1] = cudaAddressModeClamp; // Neumann Boundary Conditions tex.filterMode = cudaFilterModeLinear; tex.normalized = false; cudaChannelFormatDesc channel_desc = cudaCreateChannelDesc<float>(); ( cudaBindTexture2D( 0, &tex, mem->data(), &channel_desc, mem->width(), mem->height(), mem->pitch())); } //////////////////////////////////////////////////////////////////////////////// void bindTexture(texture<float2, 2>& tex, iu::ImageGpu_32f_C2* mem) { tex.addressMode[0] = cudaAddressModeClamp; // Neumann Boundary Conditions tex.addressMode[1] = cudaAddressModeClamp; // Neumann Boundary Conditions tex.filterMode = cudaFilterModeLinear; tex.normalized = false; cudaChannelFormatDesc channel_desc_float2 = cudaCreateChannelDesc<float2>(); ( cudaBindTexture2D( 0, &tex, mem->data(), &channel_desc_float2, mem->width(), mem->height(), mem->pitch())); } //////////////////////////////////////////////////////////////////////////////// //############################################################################// //OOOOOOOOOOOOOOOOOOOOOOOOOOO STANDARD MODEL OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO// //############################################################################// //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// __global__ void update_primal(float* device_u, float* device_u_, float tau, float theta, float lambda, int width, int height, int xstride) { int x = blockIdx.x*blockDim.x + threadIdx.x; int y = blockIdx.y*blockDim.y + threadIdx.y; int c = y*xstride + x; if(x<width && y<height) { // texture fetches float f = tex2D(rof_tex_f, x+0.5f, y+0.5f); float u = tex2D(rof_tex_u, x+0.5f, y+0.5f); float u_ = u; float divergence = dp_ad(rof_tex_p, x, y, width, height); // update primal variable u = (u + tau*(divergence + lambda*f))/(1.0f+tau*lambda); device_u[c] = u; device_u_[c] = u + theta*(u-u_); } } //////////////////////////////////////////////////////////////////////////////// __global__ void update_dual(float2* device_p, float sigma, int width, int height, int stride) { int x = blockIdx.x*blockDim.x + threadIdx.x; int y = blockIdx.y*blockDim.y + threadIdx.y; if(x<width && y<height) { float2 p = tex2D(rof_tex_p, x+0.5f, y+0.5f); float2 grad_u = dp(rof_tex_u_, x, y); // update dual variable p = p + sigma*grad_u; p = p/max(1.0f, length(p)); device_p[y*stride + x] = p; } } //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// void rof_primal_dual(iu::ImageGpu_32f_C1* device_f, iu::ImageGpu_32f_C1* device_u, iu::ImageGpu_32f_C1* device_u_, iu::ImageGpu_32f_C2* device_p, float lambda, int max_iter) { int width = device_f->width(); int height = device_f->height(); // fragmentation int nb_x = width/BSX; int nb_y = height/BSY; if (nb_x*BSX < width) nb_x++; if (nb_y*BSY < height) nb_y++; dim3 dimBlock(BSX,BSY); dim3 dimGrid(nb_x,nb_y); bindTexture(rof_tex_f, device_f); bindTexture(rof_tex_u, device_u); bindTexture(rof_tex_u_, device_u_); bindTexture(rof_tex_p, device_p); float L = sqrtf(8.0f); float tau = 1/L; float sigma = 1/L; float theta; for (int k = 0; k < max_iter; ++k) { update_dual<<<dimGrid, dimBlock>>>(device_p->data(), sigma, width, height, device_p->stride()); if (sigma < 1000.0f) theta = 1/sqrtf(1.0f+0.7f*lambda*tau); else theta = 1.0f; update_primal<<<dimGrid, dimBlock>>>(device_u->data(), device_u_->data(), tau, theta, lambda, width, height, device_u->stride()); sigma /= theta; tau *= theta; } iu::checkCudaErrorState(__FILE__, __FUNCTION__, __LINE__); } //////////////////////////////////////////////////////////////////////////////// //############################################################################// //OOOOOOOOOOOOOOOOOOOOOOOOOOOOO NO TEXTURE OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO// //############################################################################// //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// __global__ void update_primal_notex(float* device_u, float* device_u_, float* device_f, float2* device_p, float tau, float theta, float lambda, int width, int height, int xstride, int xstride2) { int x = blockIdx.x*blockDim.x + threadIdx.x; int y = blockIdx.y*blockDim.y + threadIdx.y; int c = y*xstride + x; if(x<width && y<height) { // texture fetches float f = device_f[c]; float u = device_u[c]; float u_ = u; float2 cval = device_p[y*xstride2 + x]; float2 wval = device_p[y*xstride2 + max(0,x-1)]; float2 nval = device_p[max(0,y-1)*xstride2 + x]; if (x == 0) wval.x = 0.0f; else if (x >= width-1) cval.x = 0.0f; if (y == 0) nval.y = 0.0f; else if (y >= height-1) cval.y = 0.0f; float divergence = cval.x - wval.x + cval.y - nval.y; // update primal variable u = (u + tau*(divergence + lambda*f))/(1.0f+tau*lambda); device_u[c] = u; device_u_[c] = u + theta*(u-u_); } } //////////////////////////////////////////////////////////////////////////////// __global__ void update_dual_notex(float2* device_p, float* device_u_, float sigma, int width, int height, int xstride, int xstride2) { int x = blockIdx.x*blockDim.x + threadIdx.x; int y = blockIdx.y*blockDim.y + threadIdx.y; int c2 = y*xstride2 + x; if(x<width && y<height) { float2 p = device_p[c2]; float2 grad_u = make_float2(0.0f, 0.0f); float cval = device_u_[y*xstride + x]; grad_u.x = device_u_[y*xstride + min(width-1,x+1)] - cval; grad_u.y = device_u_[min(height-1,y+1)*xstride + x] - cval; // update dual variable p = p + sigma*grad_u; p = p/max(1.0f, length(p)); device_p[c2] = p; } } //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// void rof_primal_dual_notex(iu::ImageGpu_32f_C1* device_f, iu::ImageGpu_32f_C1* device_u, iu::ImageGpu_32f_C1* device_u_, iu::ImageGpu_32f_C2* device_p, float lambda, int max_iter) { int width = device_f->width(); int height = device_f->height(); // fragmentation int nb_x = width/BSX; int nb_y = height/BSY; if (nb_x*BSX < width) nb_x++; if (nb_y*BSY < height) nb_y++; dim3 dimBlock(BSX,BSY); dim3 dimGrid(nb_x,nb_y); float L = sqrtf(8.0f); float tau = 1/L; float sigma = 1/L; float theta; cudaFuncSetCacheConfig("_Z17update_dual_notexP6float2Pffiiii", cudaFuncCachePreferShared); iu::checkCudaErrorState(__FILE__, __FUNCTION__, __LINE__); cudaFuncSetCacheConfig("_Z19update_primal_notexPfS_S_P6float2fffiiii", cudaFuncCachePreferShared); iu::checkCudaErrorState(__FILE__, __FUNCTION__, __LINE__); for (int k = 0; k < max_iter; ++k) { update_dual_notex<<<dimGrid, dimBlock>>>(device_p->data(), device_u_->data(), sigma, width, height, device_u_->stride(), device_p->stride()); if (sigma < 1000.0f) theta = 1/sqrtf(1.0f+0.7f*lambda*tau); else theta = 1.0f; update_primal_notex<<<dimGrid, dimBlock>>>(device_u->data(), device_u_->data(), device_f->data(), device_p->data(), tau, theta, lambda, width, height, device_u->stride(), device_p->stride()); sigma /= theta; tau *= theta; } iu::checkCudaErrorState(__FILE__, __FUNCTION__, __LINE__); } //////////////////////////////////////////////////////////////////////////////// //############################################################################// //OOOOOOOOOOOOOOOOOOOOOOOOOOO SPARSE MATRIX OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO// //############################################################################// //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// __global__ void update_primal_sparse(float* device_u, float* device_u_, float tau, float theta, float lambda, int width, int height, int xstride) { int x = blockIdx.x*blockDim.x + threadIdx.x; int y = blockIdx.y*blockDim.y + threadIdx.y; int c = y*xstride + x; if(x<width && y<height) { // texture fetches float u = tex2D(rof_tex_u, x+0.5f, y+0.5f); float u_ = u; // update primal variable u = (u + tau*(-tex2D(rof_tex_divergence, x+0.5f, y+0.5f) + lambda*tex2D(rof_tex_f, x+0.5f, y+0.5f)))/(1.0f+tau*lambda); device_u[c] = u; device_u_[c] = u + theta*(u-u_); } } //////////////////////////////////////////////////////////////////////////////// __global__ void update_dual_sparse(float2* device_p, float sigma, int width, int height, int stride) { int x = blockIdx.x*blockDim.x + threadIdx.x; int y = blockIdx.y*blockDim.y + threadIdx.y; if(x<width && y<height) { float2 p = tex2D(rof_tex_p, x+0.5f, y+0.5f) + sigma*tex2D(rof_tex_gradient, x+0.5f, y+0.5f); device_p[y*stride + x] = p/max(1.0f, length(p)); } } //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// void rof_primal_dual_sparse(iu::SparseMatrixGpu_32f* G, iu::ImageGpu_32f_C1* device_f, iu::ImageGpu_32f_C1* device_u, iu::ImageGpu_32f_C1* device_u_, iu::ImageGpu_32f_C2* device_p, float lambda, int max_iter) { int width = device_f->width(); int height = device_f->height(); // fragmentation int nb_x = width/BSX; int nb_y = height/BSY; if (nb_x*BSX < width) nb_x++; if (nb_y*BSY < height) nb_y++; dim3 dimBlock(BSX,BSY); dim3 dimGrid(nb_x,nb_y); iu::ImageGpu_32f_C2 gradient(width, height); iu::ImageGpu_32f_C1 divergence(width, height); float L = sqrtf(8.0f); float tau = 1/L; float sigma = 1/L; float theta; for (int k = 0; k < max_iter; ++k) { // Gradient iu::sparseMultiplication(G->handle(), G, device_u_, &gradient); // Dual update bindTexture(rof_tex_p, device_p); bindTexture(rof_tex_gradient, &gradient); update_dual_sparse<<< dimGrid, dimBlock >>>(device_p->data(), sigma, width, height, device_p->stride()); cudaUnbindTexture(&rof_tex_p); cudaUnbindTexture(&rof_tex_gradient); // Update Timesteps if (sigma < 1000.0f) theta = 1/sqrtf(1.0f+0.7f*lambda*tau); else theta = 1.0f; // Divergence iu::sparseMultiplication(G->handle(), G, device_p, &divergence, CUSPARSE_OPERATION_TRANSPOSE); // Primal update bindTexture(rof_tex_f, device_f); bindTexture(rof_tex_u, device_u); bindTexture(rof_tex_divergence, &divergence); update_primal_sparse<<< dimGrid, dimBlock >>>(device_u->data(), device_u_->data(), tau, theta, lambda, width, height, device_u->stride()); cudaUnbindTexture(&rof_tex_f); cudaUnbindTexture(&rof_tex_u); cudaUnbindTexture(&rof_tex_divergence); // Update Timesteps sigma /= theta; tau *= theta; } iu::checkCudaErrorState(__FILE__, __FUNCTION__, __LINE__); } //////////////////////////////////////////////////////////////////////////////// //############################################################################// //OOOOOOOOOOOOOOOOOOOOOOOOOOO SHARED MEMORY OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO// //############################################################################// //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// __global__ void update_primal_shared(float* device_u, float* device_u_, float tau, float theta, float lambda, int width, int height, int xstride) { int x = blockIdx.x*blockDim.x + threadIdx.x; int y = blockIdx.y*blockDim.y + threadIdx.y; int c = y*xstride + x; if(x<width && y<height) { // texture fetches float f = tex2D(rof_tex_f, x+0.5f, y+0.5f); float u = tex2D(rof_tex_u, x+0.5f, y+0.5f); float u_ = u; __shared__ float2 p[BSX+1][BSY+1]; p[threadIdx.x+1][threadIdx.y+1] = tex2D(rof_tex_p, x+0.5f, y+0.5f); if (threadIdx.x==0) { p[threadIdx.x][threadIdx.y+1] = tex2D(rof_tex_p, x-0.5f, y+0.5f); if (x==0) p[threadIdx.x][threadIdx.y+1].x = 0.0f; } if (threadIdx.y==0) { p[threadIdx.x+1][threadIdx.y] = tex2D(rof_tex_p, x+0.5f, y-0.5f); if (y==0) p[threadIdx.x+1][threadIdx.y].y = 0.0f; } if (x >= width-1) p[threadIdx.x+1][threadIdx.y+1].x = 0.0f; if (y >= height-1) p[threadIdx.x+1][threadIdx.y+1].y = 0.0f; // syncthreads(); float divergence = p[threadIdx.x+1][threadIdx.y+1].x - p[threadIdx.x][threadIdx.y+1].x + p[threadIdx.x+1][threadIdx.y+1].y - p[threadIdx.x+1][threadIdx.y].y; // update primal variable u = (u + tau*(divergence + lambda*f))/(1.0f+tau*lambda); device_u[c] = u; device_u_[c] = u + theta*(u-u_); } } //////////////////////////////////////////////////////////////////////////////// __global__ void update_dual_shared(float2* device_p, float sigma, int width, int height, int stride) { int x = blockIdx.x*blockDim.x + threadIdx.x; int y = blockIdx.y*blockDim.y + threadIdx.y; if(x<width && y<height) { float2 p = tex2D(rof_tex_p, x+0.5f, y+0.5f); __shared__ float u_[BSX+1][BSY+1]; u_[threadIdx.x][threadIdx.y] = tex2D(rof_tex_u_, x+0.5f, y+0.5f); if (threadIdx.x==BSX-1) u_[threadIdx.x+1][threadIdx.y] = tex2D(rof_tex_u_, x+1.5f, y+0.5f); if (threadIdx.y==BSY-1) u_[threadIdx.x][threadIdx.y+1] = tex2D(rof_tex_u_, x+0.5f, y+1.5f); // syncthreads(); float2 grad_u = make_float2(u_[threadIdx.x+1][threadIdx.y] - u_[threadIdx.x][threadIdx.y], u_[threadIdx.x][threadIdx.y+1] - u_[threadIdx.x][threadIdx.y] ); // update dual variable p = p + sigma*grad_u; p = p/max(1.0f, length(p)); device_p[y*stride + x] = p; } } //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// void rof_primal_dual_shared(iu::ImageGpu_32f_C1* device_f, iu::ImageGpu_32f_C1* device_u, iu::ImageGpu_32f_C1* device_u_, iu::ImageGpu_32f_C2* device_p, float lambda, int max_iter) { int width = device_f->width(); int height = device_f->height(); // fragmentation int nb_x = width/BSX; int nb_y = height/BSY; if (nb_x*BSX < width) nb_x++; if (nb_y*BSY < height) nb_y++; dim3 dimBlock(BSX,BSY); dim3 dimGrid(nb_x,nb_y); bindTexture(rof_tex_f, device_f); bindTexture(rof_tex_u, device_u); bindTexture(rof_tex_u_, device_u_); bindTexture(rof_tex_p, device_p); float L = sqrtf(8.0f); float tau = 1/L; float sigma = 1/L; float theta; for (int k = 0; k < max_iter; ++k) { update_dual_shared<<<dimGrid, dimBlock>>>(device_p->data(), sigma, width, height, device_p->stride()); if (sigma < 1000.0f) theta = 1/sqrtf(1.0f+0.7f*lambda*tau); else theta = 1.0f; update_primal_shared<<<dimGrid, dimBlock>>>(device_u->data(), device_u_->data(), tau, theta, lambda, width, height, device_u->stride()); sigma /= theta; tau *= theta; } iu::checkCudaErrorState(__FILE__, __FUNCTION__, __LINE__); } //////////////////////////////////////////////////////////////////////////////// //############################################################################// //OOOOOOOOOOOOOOOOOOOOOOOO SINGLE SHARED MEMORY OOOOOOOOOOOOOOOOOOOOOOOOOOOOO// //############################################################################// //////////////////////////////////////////////////////////////////////////////// const unsigned int BSX_SINGLE=16; const unsigned int BSY_SINGLE=12; //////////////////////////////////////////////////////////////////////////////// __global__ void update_shared_single(float* device_u, float2* device_p, float tau, float theta, float sigma, float lambda, int width, int height, int stride1, int stride2) { int x = blockIdx.x*(blockDim.x-1) + threadIdx.x; int y = blockIdx.y*(blockDim.y-1) + threadIdx.y; __shared__ float u_[BSX_SINGLE][BSY_SINGLE]; float2 p = tex2D(rof_tex_p, x+0.5f, y+0.5f); float2 pwval = tex2D(rof_tex_p, x-0.5f, y+0.5f); float2 pnval = tex2D(rof_tex_p, x+0.5f, y-0.5f); if (x == 0) pwval.x = 0.0f; else if (x >= width-1) p.x = 0.0f; if (y == 0) pnval.y = 0.0f; else if (y >= height-1) p.y = 0.0f; float f = tex2D(rof_tex_f, x+0.5f, y+0.5f); float u = tex2D(rof_tex_u, x+0.5f, y+0.5f); // Remember old u u_[threadIdx.x][threadIdx.y] = u; // Primal update u = (u + tau*((p.x - pwval.x + p.y - pnval.y) + lambda*f))/(1.0f+tau*lambda); // Overrelaxation u_[threadIdx.x][threadIdx.y] = u + theta*(u-u_[threadIdx.x][threadIdx.y]); __syncthreads(); if(x<width && y<height) { if ( (threadIdx.x < BSX_SINGLE-1) && (threadIdx.y < BSY_SINGLE-1) ) { // Dual Update float2 grad_u = make_float2(u_[threadIdx.x+1][threadIdx.y] - u_[threadIdx.x][threadIdx.y], u_[threadIdx.x][threadIdx.y+1] - u_[threadIdx.x][threadIdx.y] ); p = p + sigma*grad_u; p = p/max(1.0f, length(p)); // Write Back device_p[y*stride2 + x] = p; device_u[y*stride1 + x] = u; } } } //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// void rof_primal_dual_shared_single(iu::ImageGpu_32f_C1* device_f, iu::ImageGpu_32f_C1* device_u, iu::ImageGpu_32f_C2* device_p, float lambda, int max_iter) { int width = device_f->width(); int height = device_f->height(); // fragmentation int nb_x = width/(BSX_SINGLE-1); int nb_y = height/(BSY_SINGLE-1); if (nb_x*(BSX_SINGLE-1) < width) nb_x++; if (nb_y*(BSY_SINGLE-1) < height) nb_y++; dim3 dimBlock(BSX_SINGLE,BSY_SINGLE); dim3 dimGrid(nb_x,nb_y); bindTexture(rof_tex_f, device_f); bindTexture(rof_tex_u, device_u); bindTexture(rof_tex_p, device_p); float L = sqrtf(8.0f); float tau = 1/L; float sigma = 1/L; float theta; for (int k = 0; k < max_iter; ++k) { if (sigma < 1000.0f) theta = 1/sqrtf(1.0f+0.7f*lambda*tau); else theta = 1.0f; update_shared_single<<<dimGrid, dimBlock>>>(device_u->data(), device_p->data(), tau, theta, sigma, lambda, width, height, device_u->stride(), device_p->stride()); sigma /= theta; tau *= theta; } iu::checkCudaErrorState(__FILE__, __FUNCTION__, __LINE__); } //////////////////////////////////////////////////////////////////////////////// //############################################################################// //OOOOOOOOOOOOOOOOOOOOOO TWO SINGLE SHARED MEMORY OOOOOOOOOOOOOOOOOOOOOOOOOOO// //############################################################################// //////////////////////////////////////////////////////////////////////////////// const unsigned int BSX_SINGLE2=16; const unsigned int BSY_SINGLE2=10; //////////////////////////////////////////////////////////////////////////////// __global__ void update_shared_single2(float* device_u, float2* device_p, float tau, float theta, float sigma, float lambda, int width, int height, int stride1, int stride2) { int x = blockIdx.x*(blockDim.x-3) + threadIdx.x - 1; int y = blockIdx.y*(blockDim.y-3) + threadIdx.y - 1; __shared__ float u_[BSX_SINGLE2][BSY_SINGLE2]; __shared__ float2 p[BSX_SINGLE2][BSY_SINGLE2]; float2 pc = tex2D(rof_tex_p, x+0.5f, y+0.5f); float2 pwval = tex2D(rof_tex_p, x-0.5f, y+0.5f); float2 pnval = tex2D(rof_tex_p, x+0.5f, y-0.5f); if (x == 0) pwval.x = 0.0f; else if (x >= width-1) pc.x = 0.0f; if (y == 0) pnval.y = 0.0f; else if (y >= height-1) pc.y = 0.0f; float f = tex2D(rof_tex_f, x+0.5f, y+0.5f); float u = tex2D(rof_tex_u, x+0.5f, y+0.5f); // Remember old u u_[threadIdx.x][threadIdx.y] = u; // Primal update u = (u + tau*((pc.x - pwval.x + pc.y - pnval.y) + lambda*f))/(1.0f+tau*lambda); // Overrelaxation u_[threadIdx.x][threadIdx.y] = u + theta*(u-u_[threadIdx.x][threadIdx.y]); __syncthreads(); if ( (threadIdx.x < BSX_SINGLE2-1) && (threadIdx.y < BSY_SINGLE2-1) ) { // Dual Update float2 grad_u = make_float2(u_[threadIdx.x+1][threadIdx.y] - u_[threadIdx.x][threadIdx.y], u_[threadIdx.x][threadIdx.y+1] - u_[threadIdx.x][threadIdx.y] ); pc = pc + sigma*grad_u; p[threadIdx.x][threadIdx.y] = pc/max(1.0f, length(pc)); } __syncthreads(); if (threadIdx.x>0 && threadIdx.y>0) { // Remember old u u_[threadIdx.x][threadIdx.y] = u; // Primal update float div = p[threadIdx.x][threadIdx.y].x - p[threadIdx.x-1][threadIdx.y].x + p[threadIdx.x][threadIdx.y].y - p[threadIdx.x][threadIdx.y-1].y; u = (u + tau*(div + lambda*f))/(1.0f+tau*lambda); // Overrelaxation u_[threadIdx.x][threadIdx.y] = u + theta*(u-u_[threadIdx.x][threadIdx.y]); } __syncthreads(); if(x<width && y<height) { if ( (threadIdx.x < BSX_SINGLE2-2) && (threadIdx.y < BSY_SINGLE2-2) ) { // Dual Update float2 grad_u = make_float2(u_[threadIdx.x+1][threadIdx.y] - u_[threadIdx.x][threadIdx.y], u_[threadIdx.x][threadIdx.y+1] - u_[threadIdx.x][threadIdx.y] ); pc = p[threadIdx.x][threadIdx.y] + sigma*grad_u; p[threadIdx.x][threadIdx.y] = pc/max(1.0f, length(pc)); if (threadIdx.x>0 && threadIdx.y>0) { // Write Back device_p[y*stride2 + x] = p[threadIdx.x][threadIdx.y]; device_u[y*stride1 + x] = u; } } } } //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// void rof_primal_dual_shared_single2(iu::ImageGpu_32f_C1* device_f, iu::ImageGpu_32f_C1* device_u, iu::ImageGpu_32f_C2* device_p, float lambda, int max_iter) { int width = device_f->width(); int height = device_f->height(); // fragmentation int nb_x = width/(BSX_SINGLE2-3); int nb_y = height/(BSY_SINGLE2-3); if (nb_x*(BSX_SINGLE2-3) < width) nb_x++; if (nb_y*(BSY_SINGLE2-3) < height) nb_y++; dim3 dimBlock(BSX_SINGLE2,BSY_SINGLE2); dim3 dimGrid(nb_x,nb_y); bindTexture(rof_tex_f, device_f); bindTexture(rof_tex_u, device_u); bindTexture(rof_tex_p, device_p); float L = sqrtf(8.0f); float tau = 1/L; float sigma = 1/L; float theta; for (int k = 0; k < max_iter; k+=2) { if (sigma < 1000.0f) theta = 1/sqrtf(1.0f+0.7f*lambda*tau); else theta = 1.0f; update_shared_single2<<<dimGrid, dimBlock>>>(device_u->data(), device_p->data(), tau, theta, sigma, lambda, width, height, device_u->stride(), device_p->stride()); sigma /= theta; tau *= theta; } iu::checkCudaErrorState(__FILE__, __FUNCTION__, __LINE__); } #endif // IUSPARSECOMPARE_CU
c306b41743d4cee93ed10acf8d942280b593e702.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "raytrace.h" #include <cassert> #include <iostream> #include "helper_cuda.h" #include "helper_math.h" #include "geometry.cuh" #include "geometry.cu" __device__ float siddonRPL( float3 source, float3 dest, float3 start, uint3 size, float3 spacing, hipTextureObject_t texDens, float stop_early=-1.f ) { // avoid division by zero (fixes blank center pixel issue) dest += 1e-12f; // projection vector for this thread float3 diff = dest - source; //////////////////////////////////////////////////////// /* Siddon's algorithm normalizes the distance between points 1 and 2 * alpha is the current position along that normalized vector as a scalar amount * alpha_min and alpha_max set the bounds of intersection between this vector and the volume of interest * limits of alpha parameter - aligned to plane positions not voxel center */ float a_min, a_max; float3 alpha_min, alpha_max; { float3 end = start + spacing*make_float3(size)-1.f; float3 a_first, a_last; a_first.x = (start.x - source.x - 0.5f*spacing.x) / diff.x; a_first.y = (start.y - source.y - 0.5f*spacing.y) / diff.y; a_first.z = (start.z - source.z - 0.5f*spacing.z) / diff.z; a_last.x = (end.x - source.x + 0.5f*spacing.x) / diff.x; a_last.y = (end.y - source.y + 0.5f*spacing.y) / diff.y; a_last.z = (end.z - source.z + 0.5f*spacing.z) / diff.z; alpha_min.x = min(a_first.x, a_last.x); alpha_min.y = min(a_first.y, a_last.y); alpha_min.z = min(a_first.z, a_last.z); alpha_max.x = max(a_first.x, a_last.x); alpha_max.y = max(a_first.y, a_last.y); alpha_max.z = max(a_first.z, a_last.z); a_min = fmaxf(0,fmaxf(fmaxf(alpha_min.x, alpha_min.y), alpha_min.z)); a_max = fminf(1,fminf(fminf(alpha_max.x, alpha_max.y), alpha_max.z)); } float rpl = 0.f; if (!(a_min >= a_max)) { float d12 = length(diff); // distance between ray end points float step_x = fabsf(spacing.x/diff.x); float step_y = fabsf(spacing.y/diff.y); float step_z = fabsf(spacing.z/diff.z); // step along the vector, sampling each time we cross any plane (meaning we've entered a new voxel) float alpha = a_min; float alpha_x = a_min; float alpha_y = a_min; float alpha_z = a_min; float nextalpha; float alpha_mid; const int max_iters = 5000; const float intersect_min = 0.001f*fmin(fmin(spacing.x, spacing.y), spacing.z); int iter = 0; while (alpha < a_max && ++iter < max_iters) { // find next intersection plane bool valid_x, valid_y, valid_z; if (alpha_x >= 0.0f && alpha_x < 1.0f) { valid_x = true; } else { valid_x = false; }; if (alpha_y >= 0.0f && alpha_y < 1.0f) { valid_y = true; } else { valid_y = false; }; if (alpha_z >= 0.0f && alpha_z < 1.0f) { valid_z = true; } else { valid_z = false; }; if (!(valid_x || valid_y || valid_z)) { break; } if (valid_x && (!valid_y || alpha_x <= alpha_y) && (!valid_z || alpha_x <= alpha_z)) { nextalpha = alpha_x; alpha_x += step_x; } else if (valid_y && (!valid_x || alpha_y <= alpha_x) && (!valid_z || alpha_y <= alpha_z)) { nextalpha = alpha_y; alpha_y += step_y; } else if (valid_z && (!valid_x || alpha_z <= alpha_x) && (!valid_y || alpha_z <= alpha_y)) { nextalpha = alpha_z; alpha_z += step_z; } // the total intersection length of previous voxel float intersection = fabsf(d12*(nextalpha-alpha)); // intersection is voxel intersection length if (intersection>=intersect_min) { // do not process unless > 0.1 mm alpha_mid = (nextalpha + alpha)*0.5f; // midpoint between intersections // Remember that this function traces only a single ray. // rpl has been set to zero during initialisation. float fetchX = (source.x + alpha_mid*diff.x - start.x) / spacing.x; float fetchY = (source.y + alpha_mid*diff.y - start.y) / spacing.y; float fetchZ = (source.z + alpha_mid*diff.z - start.z) / spacing.z; rpl += intersection * tex3D<float>( texDens, fetchX, fetchY, fetchZ); if (stop_early >= 0 && rpl > stop_early) { break; } } alpha = nextalpha; } assert(iter<max_iters); // something is wrong } if (!isfinite(rpl)) { rpl = 0.f; } return rpl; } // Ray-trace from source along beamlet central axis, returning path-length __global__ void cudaRayTrace( float* rpl, // output of radiologic path lengths for each src/dest pair float* sources, // array of src coords float* dests, // array of dest coords uint npts, // number of dests/rpls float3 densStart, // coords of volume start uint3 densSize, // array size float3 densSpacing, // voxelsize of volume hipTextureObject_t texDens, // volume texture with tri-linear interpolation float stop_early=-1.f ) { uint tid = threadIdx.y + blockIdx.x * blockDim.y; if (tid < npts) { // for each voxel, the ray begins at the beam source (point source assumption) // the ray ends at the center of current voxel float3 source = {sources[3*tid], sources[3*tid + 1], sources[3*tid + 2]}; float3 dest = {dests[3*tid], dests[3*tid + 1], dests[3*tid + 2]}; // radiological path length rpl[tid] = siddonRPL( source, dest, densStart, densSize, densSpacing, texDens, stop_early ); } } // Ray-trace from common source through center/corners/mid-edges of "detector" element positioned on the detector plane which is centered at isocenter and oriented at some angle #define subrayidx (threadIdx.x) #define subraycount (blockDim.x) #define s_index(ii) threadIdx.y+blockDim.y*(threadIdx.z+blockDim.z*ii) __global__ void cudaBeamTrace( float* rpl, float sad, uint2 detDims, float3 detCenter, float2 detSpacing, float2 detPixelSize, float detAzi, // gantry angle float detZen, // couch angle float detAng, // detAngimator angle float3 densStart, uint3 densSize, float3 densSpacing, hipTextureObject_t texDens, float stop_early=-1.f ) { // dynamically allocated shared memory extern __shared__ char s_subrpl[]; s_subrpl[s_index(subrayidx)] = 0; __syncthreads(); int ray_X = threadIdx.y + blockIdx.y*blockDim.y; int ray_Z = threadIdx.z + blockIdx.z*blockDim.z; // threads are launched for each pixel in the 2D output map // ray_X/ray_Z in Fluence Coord Sys (FCS) which matches RCS before rotation if (ray_X >= detDims.x || ray_Z >= detDims.y) { return; } // shift for sub-ray [-1, 0, +1] int subray_X = (subrayidx % 3) - 1; int subray_Z = (subrayidx / 3) - 1; // the end point of each ray is found from the 2D coordinates on the fluence map // center coord of fluence map is detCenter // bixel coords defined in ray_X-ray_Z plane (FCS) then rotated with beam angles into RCS // dont let x/y in int2 scare you, it is really x/z // we directly define bixel coords in DCS to be consistent with storage of texRay float2 detsize = make_float2(detDims-1)*detSpacing; float3 bixel_ctr_FCS = make_float3( -0.5f*detsize.x + ray_X*detSpacing.x + 0.5f*subray_X*detPixelSize.x, 0, -0.5f*detsize.y + ray_Z*detSpacing.y + 0.5f*subray_Z*detPixelSize.y ); float3 bixel_ctr = inverseRotateBeamAtOriginRHS(bixel_ctr_FCS, detAzi, detZen, detAng); bixel_ctr += detCenter; float3 source = inverseRotateBeamAtOriginRHS(make_float3(0.f, -sad, 0.f), detAzi, detZen, detAng) + detCenter; // extend end of raytrace beyond fluence map plane float3 shortdiff = bixel_ctr - source; float3 sink = source + 10.f*shortdiff; s_subrpl[s_index(subrayidx)] = siddonRPL( source, sink, densStart, densSize, densSpacing, texDens, stop_early ); __syncthreads(); if (subrayidx == 0) { float f = 0.f; for (int ii=0; ii<subraycount; ii++) { f += s_subrpl[s_index(ii)]; } // write out the fluence map rpl[ray_X + detDims.x * ray_Z] = f/9.f; } } // C-CALLABLE ENTRY POINT void raytrace_c( float* rpl, const float* sources, const float* dests, unsigned int npts, float* dens, float3 densStart, uint3 densSize, float3 densSpacing, float stop_early ) { // allocate hipArray opaque memory hipArray* d_densArr; hipChannelFormatDesc desc = hipCreateChannelDesc<float>(); hipExtent extent = make_hipExtent(densSize.x, densSize.y, densSize.z); checkCudaErrors( hipMalloc3DArray(&d_densArr, &desc, extent) ); // copy to hipArray hipMemcpy3DParms copyParams = {0}; copyParams.srcPtr = make_hipPitchedPtr(dens, extent.width*sizeof(float), extent.width, extent.height); copyParams.dstArray = d_densArr; copyParams.kind = hipMemcpyHostToDevice; copyParams.extent = extent; checkCudaErrors( hipMemcpy3D(&copyParams) ); // create texture object hipResourceDesc resDesc; memset(&resDesc, 0, sizeof(hipResourceDesc)); resDesc.resType = hipResourceTypeArray; resDesc.res.array.array = d_densArr; hipTextureDesc texDesc; memset(&texDesc, 0, sizeof(hipTextureDesc)); texDesc.normalizedCoords = false; texDesc.filterMode = hipFilterModeLinear; texDesc.addressMode[0] = hipAddressModeBorder; texDesc.addressMode[1] = hipAddressModeBorder; texDesc.addressMode[2] = hipAddressModeBorder; texDesc.readMode = hipReadModeElementType; hipTextureObject_t texDens; checkCudaErrors( hipCreateTextureObject(&texDens, &resDesc, &texDesc, NULL) ); // allocate device memory float* d_rpl; checkCudaErrors( hipMalloc(&d_rpl, npts*sizeof(float)) ); float* d_sources; checkCudaErrors( hipMalloc(&d_sources, npts*sizeof(float3)) ); checkCudaErrors( hipMemcpy(d_sources, sources, npts*3*sizeof(float), hipMemcpyHostToDevice) ); float* d_dests; checkCudaErrors( hipMalloc(&d_dests, npts*3*sizeof(float)) ); checkCudaErrors( hipMemcpy(d_dests, dests, npts*3*sizeof(float), hipMemcpyHostToDevice) ); // setup kernel call params dim3 rayBlock; uint threadLimit = 256; rayBlock = dim3(1, threadLimit, 1); dim3 rayGrid = dim3((uint)ceilf((float)npts/rayBlock.y), 1, 1); int sharedMem = rayBlock.x*rayBlock.y*rayBlock.z*sizeof(float); // std::cout << "rayBlock: ("<<rayBlock.x<<","<<rayBlock.y<<","<<rayBlock.z<<")"<<std::endl; // std::cout << "rayGrid: ("<<rayGrid.x<<","<<rayGrid.y<<","<<rayGrid.z<<")"<<std::endl; // std::cout << "raySharedMem: "<<sharedMem << " bytes"<< std::endl; // call raytracing kernel hipLaunchKernelGGL(( cudaRayTrace) , dim3(rayGrid), dim3(rayBlock), sharedMem , 0, d_rpl, d_sources, d_dests, npts, densStart, densSize, densSpacing, texDens, stop_early ); hipDeviceSynchronize(); getLastCudaError("Error during cudaRayTrace"); checkCudaErrors( hipMemcpy(rpl, d_rpl, npts*sizeof(float), hipMemcpyDeviceToHost) ); // free memory checkCudaErrors( hipFree(d_rpl) ); checkCudaErrors( hipFree(d_dests) ); checkCudaErrors( hipDestroyTextureObject(texDens) ); checkCudaErrors( hipFreeArray(d_densArr) ); } void beamtrace_c( float* rpl, const float sad, const uint2 detDims, const float3 detCenter, const float2 detSpacing, const float2 detPixelSize, const float detAzi, const float detZen, const float detAng, const float* dens, const float3 densStart, const uint3 densSize, const float3 densSpacing, const float stop_early ) { // allocate hipArray opaque memory hipArray* d_densArr; hipChannelFormatDesc desc = hipCreateChannelDesc<float>(); hipExtent extent = make_hipExtent(densSize.x, densSize.y, densSize.z); checkCudaErrors( hipMalloc3DArray(&d_densArr, &desc, extent) ); // copy to hipArray hipMemcpy3DParms copyParams = {0}; copyParams.srcPtr = make_hipPitchedPtr((void*)dens, extent.width*sizeof(float), extent.width, extent.height); copyParams.dstArray = d_densArr; copyParams.kind = hipMemcpyHostToDevice; copyParams.extent = extent; checkCudaErrors( hipMemcpy3D(&copyParams) ); // create texture object hipResourceDesc resDesc; memset(&resDesc, 0, sizeof(hipResourceDesc)); resDesc.resType = hipResourceTypeArray; resDesc.res.array.array = d_densArr; hipTextureDesc texDesc; memset(&texDesc, 0, sizeof(hipTextureDesc)); texDesc.normalizedCoords = false; texDesc.filterMode = hipFilterModeLinear; texDesc.addressMode[0] = hipAddressModeBorder; texDesc.addressMode[1] = hipAddressModeBorder; texDesc.addressMode[2] = hipAddressModeBorder; texDesc.readMode = hipReadModeElementType; hipTextureObject_t texDens; checkCudaErrors( hipCreateTextureObject(&texDens, &resDesc, &texDesc, NULL) ); ////////////////////////////////////////////////////////////////////////////////////////////// // projection through iso_cntr_matrix to create conformal field map from source float *d_rpl; int nbixels = detDims.x * detDims.y; checkCudaErrors( hipMalloc( &d_rpl, nbixels*sizeof(float) ) ); checkCudaErrors( hipMemset( d_rpl, 0, nbixels*sizeof(float) ) ); // use center/corner/edge sampling pattern dim3 rayGrid; dim3 rayBlock = dim3{9, 8, 8}; // create a thread for each pixel in a 2D square fluence map array rayGrid.y = ceilf((float)detDims.x/rayBlock.y); rayGrid.z = ceilf((float)detDims.y/rayBlock.z); // call raytracing kernel size_t sharedMem = rayBlock.x*rayBlock.y*rayBlock.z*sizeof(char); hipLaunchKernelGGL(( cudaBeamTrace) , dim3(rayGrid), dim3(rayBlock), sharedMem , 0, d_rpl, sad, detDims, detCenter, detSpacing, detPixelSize, detAzi, detZen, detAng, densStart, densSize, densSpacing, texDens, stop_early ); hipDeviceSynchronize(); getLastCudaError("Error during cudaBeamTrace"); checkCudaErrors( hipMemcpy(rpl, d_rpl, nbixels*sizeof(float), hipMemcpyDeviceToHost) ); // free memory checkCudaErrors( hipDestroyTextureObject(texDens) ); checkCudaErrors( hipFreeArray(d_densArr) ); checkCudaErrors( hipFree(d_rpl) ); }
c306b41743d4cee93ed10acf8d942280b593e702.cu
#include "raytrace.h" #include <cassert> #include <iostream> #include "helper_cuda.h" #include "helper_math.h" #include "geometry.cuh" #include "geometry.cu" __device__ float siddonRPL( float3 source, float3 dest, float3 start, uint3 size, float3 spacing, cudaTextureObject_t texDens, float stop_early=-1.f ) { // avoid division by zero (fixes blank center pixel issue) dest += 1e-12f; // projection vector for this thread float3 diff = dest - source; //////////////////////////////////////////////////////// /* Siddon's algorithm normalizes the distance between points 1 and 2 * alpha is the current position along that normalized vector as a scalar amount * alpha_min and alpha_max set the bounds of intersection between this vector and the volume of interest * limits of alpha parameter - aligned to plane positions not voxel center */ float a_min, a_max; float3 alpha_min, alpha_max; { float3 end = start + spacing*make_float3(size)-1.f; float3 a_first, a_last; a_first.x = (start.x - source.x - 0.5f*spacing.x) / diff.x; a_first.y = (start.y - source.y - 0.5f*spacing.y) / diff.y; a_first.z = (start.z - source.z - 0.5f*spacing.z) / diff.z; a_last.x = (end.x - source.x + 0.5f*spacing.x) / diff.x; a_last.y = (end.y - source.y + 0.5f*spacing.y) / diff.y; a_last.z = (end.z - source.z + 0.5f*spacing.z) / diff.z; alpha_min.x = min(a_first.x, a_last.x); alpha_min.y = min(a_first.y, a_last.y); alpha_min.z = min(a_first.z, a_last.z); alpha_max.x = max(a_first.x, a_last.x); alpha_max.y = max(a_first.y, a_last.y); alpha_max.z = max(a_first.z, a_last.z); a_min = fmaxf(0,fmaxf(fmaxf(alpha_min.x, alpha_min.y), alpha_min.z)); a_max = fminf(1,fminf(fminf(alpha_max.x, alpha_max.y), alpha_max.z)); } float rpl = 0.f; if (!(a_min >= a_max)) { float d12 = length(diff); // distance between ray end points float step_x = fabsf(spacing.x/diff.x); float step_y = fabsf(spacing.y/diff.y); float step_z = fabsf(spacing.z/diff.z); // step along the vector, sampling each time we cross any plane (meaning we've entered a new voxel) float alpha = a_min; float alpha_x = a_min; float alpha_y = a_min; float alpha_z = a_min; float nextalpha; float alpha_mid; const int max_iters = 5000; const float intersect_min = 0.001f*fmin(fmin(spacing.x, spacing.y), spacing.z); int iter = 0; while (alpha < a_max && ++iter < max_iters) { // find next intersection plane bool valid_x, valid_y, valid_z; if (alpha_x >= 0.0f && alpha_x < 1.0f) { valid_x = true; } else { valid_x = false; }; if (alpha_y >= 0.0f && alpha_y < 1.0f) { valid_y = true; } else { valid_y = false; }; if (alpha_z >= 0.0f && alpha_z < 1.0f) { valid_z = true; } else { valid_z = false; }; if (!(valid_x || valid_y || valid_z)) { break; } if (valid_x && (!valid_y || alpha_x <= alpha_y) && (!valid_z || alpha_x <= alpha_z)) { nextalpha = alpha_x; alpha_x += step_x; } else if (valid_y && (!valid_x || alpha_y <= alpha_x) && (!valid_z || alpha_y <= alpha_z)) { nextalpha = alpha_y; alpha_y += step_y; } else if (valid_z && (!valid_x || alpha_z <= alpha_x) && (!valid_y || alpha_z <= alpha_y)) { nextalpha = alpha_z; alpha_z += step_z; } // the total intersection length of previous voxel float intersection = fabsf(d12*(nextalpha-alpha)); // intersection is voxel intersection length if (intersection>=intersect_min) { // do not process unless > 0.1 mm alpha_mid = (nextalpha + alpha)*0.5f; // midpoint between intersections // Remember that this function traces only a single ray. // rpl has been set to zero during initialisation. float fetchX = (source.x + alpha_mid*diff.x - start.x) / spacing.x; float fetchY = (source.y + alpha_mid*diff.y - start.y) / spacing.y; float fetchZ = (source.z + alpha_mid*diff.z - start.z) / spacing.z; rpl += intersection * tex3D<float>( texDens, fetchX, fetchY, fetchZ); if (stop_early >= 0 && rpl > stop_early) { break; } } alpha = nextalpha; } assert(iter<max_iters); // something is wrong } if (!isfinite(rpl)) { rpl = 0.f; } return rpl; } // Ray-trace from source along beamlet central axis, returning path-length __global__ void cudaRayTrace( float* rpl, // output of radiologic path lengths for each src/dest pair float* sources, // array of src coords float* dests, // array of dest coords uint npts, // number of dests/rpls float3 densStart, // coords of volume start uint3 densSize, // array size float3 densSpacing, // voxelsize of volume cudaTextureObject_t texDens, // volume texture with tri-linear interpolation float stop_early=-1.f ) { uint tid = threadIdx.y + blockIdx.x * blockDim.y; if (tid < npts) { // for each voxel, the ray begins at the beam source (point source assumption) // the ray ends at the center of current voxel float3 source = {sources[3*tid], sources[3*tid + 1], sources[3*tid + 2]}; float3 dest = {dests[3*tid], dests[3*tid + 1], dests[3*tid + 2]}; // radiological path length rpl[tid] = siddonRPL( source, dest, densStart, densSize, densSpacing, texDens, stop_early ); } } // Ray-trace from common source through center/corners/mid-edges of "detector" element positioned on the detector plane which is centered at isocenter and oriented at some angle #define subrayidx (threadIdx.x) #define subraycount (blockDim.x) #define s_index(ii) threadIdx.y+blockDim.y*(threadIdx.z+blockDim.z*ii) __global__ void cudaBeamTrace( float* rpl, float sad, uint2 detDims, float3 detCenter, float2 detSpacing, float2 detPixelSize, float detAzi, // gantry angle float detZen, // couch angle float detAng, // detAngimator angle float3 densStart, uint3 densSize, float3 densSpacing, cudaTextureObject_t texDens, float stop_early=-1.f ) { // dynamically allocated shared memory extern __shared__ char s_subrpl[]; s_subrpl[s_index(subrayidx)] = 0; __syncthreads(); int ray_X = threadIdx.y + blockIdx.y*blockDim.y; int ray_Z = threadIdx.z + blockIdx.z*blockDim.z; // threads are launched for each pixel in the 2D output map // ray_X/ray_Z in Fluence Coord Sys (FCS) which matches RCS before rotation if (ray_X >= detDims.x || ray_Z >= detDims.y) { return; } // shift for sub-ray [-1, 0, +1] int subray_X = (subrayidx % 3) - 1; int subray_Z = (subrayidx / 3) - 1; // the end point of each ray is found from the 2D coordinates on the fluence map // center coord of fluence map is detCenter // bixel coords defined in ray_X-ray_Z plane (FCS) then rotated with beam angles into RCS // dont let x/y in int2 scare you, it is really x/z // we directly define bixel coords in DCS to be consistent with storage of texRay float2 detsize = make_float2(detDims-1)*detSpacing; float3 bixel_ctr_FCS = make_float3( -0.5f*detsize.x + ray_X*detSpacing.x + 0.5f*subray_X*detPixelSize.x, 0, -0.5f*detsize.y + ray_Z*detSpacing.y + 0.5f*subray_Z*detPixelSize.y ); float3 bixel_ctr = inverseRotateBeamAtOriginRHS(bixel_ctr_FCS, detAzi, detZen, detAng); bixel_ctr += detCenter; float3 source = inverseRotateBeamAtOriginRHS(make_float3(0.f, -sad, 0.f), detAzi, detZen, detAng) + detCenter; // extend end of raytrace beyond fluence map plane float3 shortdiff = bixel_ctr - source; float3 sink = source + 10.f*shortdiff; s_subrpl[s_index(subrayidx)] = siddonRPL( source, sink, densStart, densSize, densSpacing, texDens, stop_early ); __syncthreads(); if (subrayidx == 0) { float f = 0.f; for (int ii=0; ii<subraycount; ii++) { f += s_subrpl[s_index(ii)]; } // write out the fluence map rpl[ray_X + detDims.x * ray_Z] = f/9.f; } } // C-CALLABLE ENTRY POINT void raytrace_c( float* rpl, const float* sources, const float* dests, unsigned int npts, float* dens, float3 densStart, uint3 densSize, float3 densSpacing, float stop_early ) { // allocate cudaArray opaque memory cudaArray* d_densArr; cudaChannelFormatDesc desc = cudaCreateChannelDesc<float>(); cudaExtent extent = make_cudaExtent(densSize.x, densSize.y, densSize.z); checkCudaErrors( cudaMalloc3DArray(&d_densArr, &desc, extent) ); // copy to cudaArray cudaMemcpy3DParms copyParams = {0}; copyParams.srcPtr = make_cudaPitchedPtr(dens, extent.width*sizeof(float), extent.width, extent.height); copyParams.dstArray = d_densArr; copyParams.kind = cudaMemcpyHostToDevice; copyParams.extent = extent; checkCudaErrors( cudaMemcpy3D(&copyParams) ); // create texture object cudaResourceDesc resDesc; memset(&resDesc, 0, sizeof(cudaResourceDesc)); resDesc.resType = cudaResourceTypeArray; resDesc.res.array.array = d_densArr; cudaTextureDesc texDesc; memset(&texDesc, 0, sizeof(cudaTextureDesc)); texDesc.normalizedCoords = false; texDesc.filterMode = cudaFilterModeLinear; texDesc.addressMode[0] = cudaAddressModeBorder; texDesc.addressMode[1] = cudaAddressModeBorder; texDesc.addressMode[2] = cudaAddressModeBorder; texDesc.readMode = cudaReadModeElementType; cudaTextureObject_t texDens; checkCudaErrors( cudaCreateTextureObject(&texDens, &resDesc, &texDesc, NULL) ); // allocate device memory float* d_rpl; checkCudaErrors( cudaMalloc(&d_rpl, npts*sizeof(float)) ); float* d_sources; checkCudaErrors( cudaMalloc(&d_sources, npts*sizeof(float3)) ); checkCudaErrors( cudaMemcpy(d_sources, sources, npts*3*sizeof(float), cudaMemcpyHostToDevice) ); float* d_dests; checkCudaErrors( cudaMalloc(&d_dests, npts*3*sizeof(float)) ); checkCudaErrors( cudaMemcpy(d_dests, dests, npts*3*sizeof(float), cudaMemcpyHostToDevice) ); // setup kernel call params dim3 rayBlock; uint threadLimit = 256; rayBlock = dim3(1, threadLimit, 1); dim3 rayGrid = dim3((uint)ceilf((float)npts/rayBlock.y), 1, 1); int sharedMem = rayBlock.x*rayBlock.y*rayBlock.z*sizeof(float); // std::cout << "rayBlock: ("<<rayBlock.x<<","<<rayBlock.y<<","<<rayBlock.z<<")"<<std::endl; // std::cout << "rayGrid: ("<<rayGrid.x<<","<<rayGrid.y<<","<<rayGrid.z<<")"<<std::endl; // std::cout << "raySharedMem: "<<sharedMem << " bytes"<< std::endl; // call raytracing kernel cudaRayTrace <<< rayGrid, rayBlock, sharedMem >>>( d_rpl, d_sources, d_dests, npts, densStart, densSize, densSpacing, texDens, stop_early ); cudaDeviceSynchronize(); getLastCudaError("Error during cudaRayTrace"); checkCudaErrors( cudaMemcpy(rpl, d_rpl, npts*sizeof(float), cudaMemcpyDeviceToHost) ); // free memory checkCudaErrors( cudaFree(d_rpl) ); checkCudaErrors( cudaFree(d_dests) ); checkCudaErrors( cudaDestroyTextureObject(texDens) ); checkCudaErrors( cudaFreeArray(d_densArr) ); } void beamtrace_c( float* rpl, const float sad, const uint2 detDims, const float3 detCenter, const float2 detSpacing, const float2 detPixelSize, const float detAzi, const float detZen, const float detAng, const float* dens, const float3 densStart, const uint3 densSize, const float3 densSpacing, const float stop_early ) { // allocate cudaArray opaque memory cudaArray* d_densArr; cudaChannelFormatDesc desc = cudaCreateChannelDesc<float>(); cudaExtent extent = make_cudaExtent(densSize.x, densSize.y, densSize.z); checkCudaErrors( cudaMalloc3DArray(&d_densArr, &desc, extent) ); // copy to cudaArray cudaMemcpy3DParms copyParams = {0}; copyParams.srcPtr = make_cudaPitchedPtr((void*)dens, extent.width*sizeof(float), extent.width, extent.height); copyParams.dstArray = d_densArr; copyParams.kind = cudaMemcpyHostToDevice; copyParams.extent = extent; checkCudaErrors( cudaMemcpy3D(&copyParams) ); // create texture object cudaResourceDesc resDesc; memset(&resDesc, 0, sizeof(cudaResourceDesc)); resDesc.resType = cudaResourceTypeArray; resDesc.res.array.array = d_densArr; cudaTextureDesc texDesc; memset(&texDesc, 0, sizeof(cudaTextureDesc)); texDesc.normalizedCoords = false; texDesc.filterMode = cudaFilterModeLinear; texDesc.addressMode[0] = cudaAddressModeBorder; texDesc.addressMode[1] = cudaAddressModeBorder; texDesc.addressMode[2] = cudaAddressModeBorder; texDesc.readMode = cudaReadModeElementType; cudaTextureObject_t texDens; checkCudaErrors( cudaCreateTextureObject(&texDens, &resDesc, &texDesc, NULL) ); ////////////////////////////////////////////////////////////////////////////////////////////// // projection through iso_cntr_matrix to create conformal field map from source float *d_rpl; int nbixels = detDims.x * detDims.y; checkCudaErrors( cudaMalloc( &d_rpl, nbixels*sizeof(float) ) ); checkCudaErrors( cudaMemset( d_rpl, 0, nbixels*sizeof(float) ) ); // use center/corner/edge sampling pattern dim3 rayGrid; dim3 rayBlock = dim3{9, 8, 8}; // create a thread for each pixel in a 2D square fluence map array rayGrid.y = ceilf((float)detDims.x/rayBlock.y); rayGrid.z = ceilf((float)detDims.y/rayBlock.z); // call raytracing kernel size_t sharedMem = rayBlock.x*rayBlock.y*rayBlock.z*sizeof(char); cudaBeamTrace <<< rayGrid, rayBlock, sharedMem >>>( d_rpl, sad, detDims, detCenter, detSpacing, detPixelSize, detAzi, detZen, detAng, densStart, densSize, densSpacing, texDens, stop_early ); cudaDeviceSynchronize(); getLastCudaError("Error during cudaBeamTrace"); checkCudaErrors( cudaMemcpy(rpl, d_rpl, nbixels*sizeof(float), cudaMemcpyDeviceToHost) ); // free memory checkCudaErrors( cudaDestroyTextureObject(texDens) ); checkCudaErrors( cudaFreeArray(d_densArr) ); checkCudaErrors( cudaFree(d_rpl) ); }
d6949cabde689ab18401a5994c2ef4cee2b78575.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <ATen/ATen.h> #include <ATen/hip/detail/IndexUtils.cuh> #include <ATen/hip/detail/TensorInfo.cuh> #define THREADS 1024 #define BLOCKS(N) (N + THREADS - 1) / THREADS template <typename scalar_t> __global__ void grid_kernel(int64_t *cluster, at::cuda::detail::TensorInfo<scalar_t, int64_t> pos, scalar_t *__restrict__ size, scalar_t *__restrict__ start, scalar_t *__restrict__ end, size_t numel) { const size_t index = blockIdx.x * blockDim.x + threadIdx.x; const size_t stride = blockDim.x * gridDim.x; for (ptrdiff_t i = index; i < numel; i += stride) { int64_t c = 0, k = 1; for (ptrdiff_t d = 0; d < pos.sizes[1]; d++) { scalar_t p = pos.data[i * pos.strides[0] + d * pos.strides[1]] - start[d]; c += (int64_t)(p / size[d]) * k; k *= (int64_t)((end[d] - start[d]) / size[d]) + 1; } cluster[i] = c; } } at::Tensor grid_cuda(at::Tensor pos, at::Tensor size, at::Tensor start, at::Tensor end) { hipSetDevice(pos.get_device()); auto cluster = at::empty(pos.size(0), pos.options().dtype(at::kLong)); AT_DISPATCH_ALL_TYPES(pos.type(), "grid_kernel", [&] { hipLaunchKernelGGL(( grid_kernel<scalar_t>), dim3(BLOCKS(cluster.numel())), dim3(THREADS), 0, 0, cluster.data<int64_t>(), at::cuda::detail::getTensorInfo<scalar_t, int64_t>(pos), size.data<scalar_t>(), start.data<scalar_t>(), end.data<scalar_t>(), cluster.numel()); }); return cluster; }
d6949cabde689ab18401a5994c2ef4cee2b78575.cu
#include <ATen/ATen.h> #include <ATen/cuda/detail/IndexUtils.cuh> #include <ATen/cuda/detail/TensorInfo.cuh> #define THREADS 1024 #define BLOCKS(N) (N + THREADS - 1) / THREADS template <typename scalar_t> __global__ void grid_kernel(int64_t *cluster, at::cuda::detail::TensorInfo<scalar_t, int64_t> pos, scalar_t *__restrict__ size, scalar_t *__restrict__ start, scalar_t *__restrict__ end, size_t numel) { const size_t index = blockIdx.x * blockDim.x + threadIdx.x; const size_t stride = blockDim.x * gridDim.x; for (ptrdiff_t i = index; i < numel; i += stride) { int64_t c = 0, k = 1; for (ptrdiff_t d = 0; d < pos.sizes[1]; d++) { scalar_t p = pos.data[i * pos.strides[0] + d * pos.strides[1]] - start[d]; c += (int64_t)(p / size[d]) * k; k *= (int64_t)((end[d] - start[d]) / size[d]) + 1; } cluster[i] = c; } } at::Tensor grid_cuda(at::Tensor pos, at::Tensor size, at::Tensor start, at::Tensor end) { cudaSetDevice(pos.get_device()); auto cluster = at::empty(pos.size(0), pos.options().dtype(at::kLong)); AT_DISPATCH_ALL_TYPES(pos.type(), "grid_kernel", [&] { grid_kernel<scalar_t><<<BLOCKS(cluster.numel()), THREADS>>>( cluster.data<int64_t>(), at::cuda::detail::getTensorInfo<scalar_t, int64_t>(pos), size.data<scalar_t>(), start.data<scalar_t>(), end.data<scalar_t>(), cluster.numel()); }); return cluster; }
3a5306bed0f2fd6dc21b7d13ac8a1dbb207e8b08.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // // #include <loops/type_conversions.h> #include <types/types.h> namespace nd4j { template<typename S, typename T> void TypeCast::convertGenericCuda(Nd4jPointer *extras, void *dx, Nd4jLong N, void *dz) { auto stream = reinterpret_cast<hipStream_t *>(&extras[1]); hipLaunchKernelGGL(( nd4j::convertKernel<S, T>), dim3(256), dim3(1024), 1024, *stream, dx, N, dz); }; template<typename S, typename T> __device__ void convertKernelGeneric(S *x, Nd4jLong N, T *z) { int tid = blockIdx.x * blockDim.x + threadIdx.x; for (Nd4jLong i = tid; i < N; i+= blockDim.x * gridDim.x) { // despite it's stupid, it simplifies conversion to bottom dtypes // FIXME: get rid of through-float though z[i] = static_cast<T>(static_cast<float>(x[i])); } }; /* * PLEASE NOTE: This kernel doesn't allow loop for data. Basically: grid will be huge. */ template<typename T> __device__ inline void encoderKernelP1Generic(void *dx, Nd4jLong N, void *dz, float threshold) { auto x = reinterpret_cast<T *> (dx); auto z = reinterpret_cast<int *> (dz); //basically, for phase One we want do calculation: how many eligible values we have, and which blocks will be holding data Nd4jLong tid = blockIdx.x * blockDim.x + threadIdx.x; int pass = tid < N && nd4j::math::nd4j_abs<T>(x[tid]) >= static_cast<T>(threshold) ? 1 : 0; int bp=__syncthreads_count(pass); if (threadIdx.x == 0) { // saving out per-block passes z[blockIdx.x+1] = bp; // saving out sum atomicAdd(&z[0], bp); } } __device__ __inline__ int pow2i (int e){ return 1<<e; } // Define this to more rigorously avoid bank conflicts, even at the lower (root) levels of the tree //#define ZERO_BANK_CONFLICTS #ifdef ZERO_BANK_CONFLICTS #define CONFLICT_FREE_OFFSET(index) ((index) >> LOG_NUM_BANKS + (index) >> (2 * LOG_NUM_BANKS)) #else #define CONFLICT_FREE_OFFSET(index) ((index) >> LOG_NUM_BANKS) #endif #ifdef CHECK_BANK_CONFLICTS #define TEMP(index) CUT_BANK_CHECKER(temp, index) #else #define TEMP(index) temp[index] #endif template <bool isNP2> __device__ void loadSharedChunkFromMem(int *s_data, const int *g_idata, int n, int baseIndex, int& ai, int& bi, int& mem_ai, int& mem_bi, int& bankOffsetA, int& bankOffsetB) { int thid = threadIdx.x; mem_ai = baseIndex + threadIdx.x; mem_bi = mem_ai + blockDim.x; ai = thid; bi = thid + blockDim.x; // compute spacing to avoid bank conflicts bankOffsetA = CONFLICT_FREE_OFFSET(ai); bankOffsetB = CONFLICT_FREE_OFFSET(bi); // Cache the computational window in shared memory // pad values beyond n with zeros s_data[ai + bankOffsetA] = g_idata[mem_ai]; if (isNP2) { // compile-time decision s_data[bi + bankOffsetB] = (bi < n) ? g_idata[mem_bi] : 0; } else { s_data[bi + bankOffsetB] = g_idata[mem_bi]; } } template <bool isNP2> __device__ void storeSharedChunkToMem(int* g_odata, int* s_data, int n, int ai, int bi, int mem_ai, int mem_bi, int bankOffsetA, int bankOffsetB) { __syncthreads(); // write results to global memory g_odata[mem_ai] = s_data[ai + bankOffsetA]; if (isNP2) { // compile-time decision if (bi < n) g_odata[mem_bi] = s_data[bi + bankOffsetB]; } else { g_odata[mem_bi] = s_data[bi + bankOffsetB]; } } template <bool storeSum> __device__ void clearLastElement(int* s_data, int *g_blockSums, int blockIndex) { if (threadIdx.x == 0) { int index = (blockDim.x << 1) - 1; index += CONFLICT_FREE_OFFSET(index); if (storeSum) { // compile-time decision // write this block's total sum to the corresponding index in the blockSums array g_blockSums[blockIndex] = s_data[index]; } // zero the last element in the scan so it will propagate back to the front s_data[index] = 0; } } __device__ unsigned int buildSum(int *s_data) { unsigned int thid = threadIdx.x; unsigned int stride = 1; // build the sum in place up the tree for (int d = blockDim.x; d > 0; d >>= 1) { __syncthreads(); if (thid < d) { int i = __mul24(__mul24(2, stride), thid); int ai = i + stride - 1; int bi = ai + stride; ai += CONFLICT_FREE_OFFSET(ai); bi += CONFLICT_FREE_OFFSET(bi); s_data[bi] += s_data[ai]; } stride *= 2; } return stride; } __device__ void scanRootToLeaves(int *s_data, unsigned int stride) { unsigned int thid = threadIdx.x; // traverse down the tree building the scan in place for (int d = 1; d <= blockDim.x; d *= 2) { stride >>= 1; __syncthreads(); if (thid < d) { int i = __mul24(__mul24(2, stride), thid); int ai = i + stride - 1; int bi = ai + stride; ai += CONFLICT_FREE_OFFSET(ai); bi += CONFLICT_FREE_OFFSET(bi); float t = s_data[ai]; s_data[ai] = s_data[bi]; s_data[bi] += t; } } } template <bool storeSum> __device__ void prescanBlock(int *data, int blockIndex, int *blockSums) { int stride = buildSum(data); // build the sum in place up the tree clearLastElement<storeSum>(data, blockSums, (blockIndex == 0) ? blockIdx.x : blockIndex); scanRootToLeaves(data, stride); // traverse down tree to build the scan } template <bool storeSum, bool isNP2> __global__ void prescan(int *g_odata, const int *g_idata, int *g_blockSums, int n, int blockIndex, int baseIndex) { int ai, bi, mem_ai, mem_bi, bankOffsetA, bankOffsetB; extern __shared__ int s_data[]; // load data into shared memory loadSharedChunkFromMem<isNP2>(reinterpret_cast<int *>(s_data), g_idata, n, (baseIndex == 0) ? __mul24(blockIdx.x, (blockDim.x << 1)):baseIndex, ai, bi, mem_ai, mem_bi, bankOffsetA, bankOffsetB); // scan the data in each block prescanBlock<storeSum>(s_data, blockIndex, g_blockSums); // write results to device memory storeSharedChunkToMem<isNP2>(g_odata, s_data, n, ai, bi, mem_ai, mem_bi, bankOffsetA, bankOffsetB); } __global__ void uniformAdd(int *g_data, int *uniforms, int n, int blockOffset, int baseIndex) { __shared__ float uni; if (threadIdx.x == 0) uni = uniforms[blockIdx.x + blockOffset]; unsigned int address = __mul24(blockIdx.x, (blockDim.x << 1)) + baseIndex + threadIdx.x; __syncthreads(); // note two adds per thread g_data[address] += uni; g_data[address + blockDim.x] += (threadIdx.x + blockDim.x < n) * uni; } /* * This kernel does prefix sum in parallel, to calculate offsets for each block */ template<typename T> __device__ inline void encoderKernelP2Generic(void *dx, Nd4jLong n, void *dz) { // TODO: to be remove } /* * PLEASE NOTE: This kernel doesn't allow loop for data. Basically: grid will be huge. * * Based on: https://github.com/knotman90/cuStreamComp <-- efficient CUDA stream compaction algorithm */ template<typename T> __device__ inline void encoderKernelP3Generic(void *dx, int *offsets, Nd4jLong N, void *dz) { T *x = reinterpret_cast<T *> (dx); int *z = reinterpret_cast<int *> (dz); Nd4jLong tid = blockIdx.x * blockDim.x + threadIdx.x; extern __shared__ int warpTotals[]; // fetch block offset only once __shared__ float threshold; __shared__ FloatBits fb; __shared__ int bo; __shared__ int limit; if (threadIdx.x == 0) { limit = z[0]; fb.i_ = z[2]; threshold = fb.f_; bo = offsets[blockIdx.x]; } __syncthreads(); if (tid < N) { T value = x[tid]; int pred = nd4j::math::nd4j_abs<T>(value) >= static_cast<T>(threshold) ? 1 : 0; int w_i = threadIdx.x/warpSize; //warp index int w_l = tid % warpSize;//thread index within a warp int t_m = INT_MAX >> (warpSize-w_l-1); //thread mask (ERROR IN THE PAPER minus one is required) int b = __ballot(pred) & t_m; //balres = number whose ith bit isone if the ith's thread pred is true masked up to the current index in warp int t_u = __popc(b); // popc count the number of bit one. simply count the number predicated true BEFORE MY INDEX if(w_l==warpSize-1){ warpTotals[w_i]=t_u+pred; } __syncthreads(); if(w_i==0 && w_l<blockDim.x/warpSize){ int w_i_u=0; for(int j=0;j<=5;j++){ int b_j =__ballot( warpTotals[w_l] & pow2i(j) ); //# of the ones in the j'th digit of the warp offsets w_i_u += (__popc(b_j & t_m) ) << j; //printf("indice %i t_m=%i,j=%i,b_j=%i,w_i_u=%i\n",w_l,t_m,j,b_j,w_i_u); } warpTotals[w_l]=w_i_u; } __syncthreads(); if(pred){ int idx = t_u + warpTotals[w_i] + bo + 4; if (idx < limit + 4) { z[idx]= value > static_cast<T>(0.0f) ? tid+1 : -(tid + 1); x[tid] = value > static_cast<T>(0.0f) ? x[tid] - threshold : x[tid] + threshold; } } } } /* * This kernel handles decode from sparse threshold array, to dense array * * PLEASE NOTE: Z is expected to be memset to 0 */ template<typename T> __device__ inline void decoderKernelGeneric(void *dx, Nd4jLong N, void *dz) { auto x = reinterpret_cast<int *> (dx); auto z = reinterpret_cast<T *> (dz); int tid = blockIdx.x * blockDim.x + threadIdx.x; __shared__ float threshold; __shared__ int limit; __shared__ FloatBits fb; if (threadIdx.x == 0) { limit = x[0]; fb.i_ = x[2]; threshold = fb.f_; } __syncthreads(); for (int e = tid; e < limit; e += blockDim.x * gridDim.x) { int el = x[e+4]; int ael = nd4j::math::nd4j_abs<int>(el) - 1; // TODO: investigate, if += would work better here, as in "decoded accumulation" z[ael] += el > 0 ? threshold : -threshold; } } template<typename T> __device__ inline void cudaDecodeBitmapGeneric(void *dx, Nd4jLong N, T *dz) { int tid = blockIdx.x * blockDim.x + threadIdx.x; __shared__ T *shmem; __shared__ FloatBits fb; __shared__ float threshold; __shared__ int *x; if (threadIdx.x == 0){ extern __shared__ char mem[]; shmem = reinterpret_cast<T*>(mem); x = reinterpret_cast<int *>(dx); fb.i_ = x[2]; threshold = fb.f_; } __syncthreads(); int lim = N / 16 + 5; for (int i = tid; i < N; i += blockDim.x * gridDim.x) { int byteId = i / 16 + 4; // printf("I: [%i]; byteId: [%i]\n", i, byteId); shmem[threadIdx.x] = dz[i]; __syncthreads(); if (threadIdx.x % 16 == 0) { int byte = x[byteId]; for (int e = 0; e < 16; e++) { if (i + e >= N) continue; int bitId = (i + e) % 16; bool hasBit = (byte & 1 << (bitId) ) != 0; bool hasSign = (byte & 1 << (bitId + 16) ) != 0; if (hasBit) { if (hasSign) shmem[threadIdx.x + bitId] -= threshold; else shmem[threadIdx.x + bitId] += threshold; } else if (hasSign) { shmem[threadIdx.x + bitId] -= threshold / 2; } } } __syncthreads(); dz[i] = shmem[threadIdx.x]; } } template<typename T> __device__ inline void cudaEncodeBitmapGeneric(T *dx, Nd4jLong N, int *dz, int *scalar, int *reductionBuffer, float threshold) { int tid = blockIdx.x * blockDim.x + threadIdx.x; __shared__ int counter; __shared__ int *shmem; __shared__ T *vals; if (threadIdx.x == 0){ extern __shared__ char mem[]; shmem = reinterpret_cast<int*>(mem); vals = reinterpret_cast<T *>(shmem + blockDim.x); counter = 0; } __syncthreads(); for (int i = tid; i < N; i += blockDim.x * gridDim.x) { // all threads in block reading stuff T val = dx[i]; T abs = nd4j::math::nd4j_abs<T>(val); int byteId = i / 16 + 4; int bitId = i % 16; shmem[threadIdx.x] = 0; vals[threadIdx.x] = val; if (abs >= static_cast<T>(threshold)) { shmem[threadIdx.x] = 1 << (bitId); atomicAdd(&counter, 1); if (val < static_cast<T>(0.0f)) { shmem[threadIdx.x] |= 1 << (bitId + 16); vals[threadIdx.x] += static_cast<T>(threshold); } else { vals[threadIdx.x] -= static_cast<T>(threshold); } } else if (abs >= static_cast<T>(threshold) / static_cast<T>(2.0f) && val < static_cast<T>(0.0f)) { atomicAdd(&counter, 1); shmem[threadIdx.x] = 1 << (bitId + 16); vals[threadIdx.x] += static_cast<T>(threshold) / static_cast<T>(2.0f); } __syncthreads(); if (threadIdx.x % 16 == 0) { int byte = 0; for (int e = 0; e < 16; e++) { if (i + e >= N) continue; byte |= shmem[threadIdx.x + e]; } dz[byteId] = byte; } __syncthreads(); dx[i] = vals[threadIdx.x]; } __syncthreads(); if (threadIdx.x == 0) { atomicAdd(scalar, counter); } } __global__ void cudaEncodeBitmapFloat(float *dx, Nd4jLong N, int *dz, int *scalar, int *reductionBuffer, float threshold) { nd4j::cudaEncodeBitmapGeneric<float>(dx, N, dz, scalar, reductionBuffer, threshold); } __global__ void cudaEncodeBitmapDouble(double *dx, Nd4jLong N, int *dz, int *scalar, int *reductionBuffer, float threshold) { nd4j::cudaEncodeBitmapGeneric<double>(dx, N, dz, scalar, reductionBuffer, threshold); } __global__ void cudaEncodeBitmapHalf(float16 *dx, Nd4jLong N, int *dz, int *scalar, int *reductionBuffer, float threshold) { nd4j::cudaEncodeBitmapGeneric<float16>(dx, N, dz, scalar, reductionBuffer, threshold); } __global__ void cudaDecodeBitmapFloat(void *dx, Nd4jLong N, float *dz) { nd4j::cudaDecodeBitmapGeneric<float>(dx, N, dz); } __global__ void cudaDecodeBitmapDouble(void *dx, Nd4jLong N, double *dz) { nd4j::cudaDecodeBitmapGeneric<double>(dx, N, dz); } __global__ void cudaDecodeBitmapHalf(void *dx, Nd4jLong N, float16 *dz) { nd4j::cudaDecodeBitmapGeneric<float16>(dx, N, dz); } __global__ void encoderKernelP1Float(void *dx, Nd4jLong N, void *dz, float threshold) { nd4j::encoderKernelP1Generic<float>(dx, N, dz, threshold); } __global__ void encoderKernelP1Double(void *dx, Nd4jLong N, void *dz, float threshold) { nd4j::encoderKernelP1Generic<double>(dx, N, dz, threshold); } __global__ void encoderKernelP1Half(void *dx, Nd4jLong N, void *dz, float threshold) { nd4j::encoderKernelP1Generic<float16>(dx, N, dz, threshold); } __global__ void encoderKernelP2Float(int *dx, Nd4jLong N, int *dz) { nd4j::encoderKernelP2Generic<float>(dx, N, dz); } __global__ void encoderKernelP3Float(void *dx, int *offsets, Nd4jLong N, void *dz) { nd4j::encoderKernelP3Generic<float>(dx, offsets, N, dz); } __global__ void encoderKernelP3Double(void *dx, int *offsets, Nd4jLong N, void *dz) { nd4j::encoderKernelP3Generic<double>(dx, offsets, N, dz); } __global__ void encoderKernelP3Half(void *dx, int *offsets, Nd4jLong N, void *dz) { nd4j::encoderKernelP3Generic<float16>(dx, offsets, N, dz); } __global__ void decoderKernelFloat(void *dx, Nd4jLong N, void *dz) { nd4j::decoderKernelGeneric<float>(dx, N, dz); } __global__ void decoderKernelDouble(void *dx, Nd4jLong N, void *dz) { nd4j::decoderKernelGeneric<double>(dx, N, dz); } __global__ void decoderKernelHalf(void *dx, Nd4jLong N, void *dz) { nd4j::decoderKernelGeneric<float16>(dx, N, dz); } template <bool storeSum, bool isNP2> __host__ void prescanLauncher(dim3 &blocks, dim3 &threads, int shmem, hipStream_t *stream, int *g_odata, const int *g_idata, int *g_blockSums, int n, int blockIndex, int baseIndex) { hipLaunchKernelGGL(( prescan<storeSum, isNP2>), dim3(blocks), dim3(threads), shmem, *stream, g_odata, g_idata, g_blockSums, n, blockIndex, baseIndex); }; template <typename S, typename T> __global__ void convertKernel(void *dx, Nd4jLong N, void *dz) { auto x = reinterpret_cast<S *>(dx); auto z = reinterpret_cast<T *>(dz); nd4j::convertKernelGeneric(x, N, z); } #define LIBND4J_BOOLS \ 0, \ 1 BUILD_DOUBLE_TEMPLATE(template void TypeCast::convertGenericCuda, (Nd4jPointer * extras, void *dx, Nd4jLong N, void *dz), LIBND4J_TYPES, LIBND4J_TYPES) BUILD_DOUBLE_TEMPLATE(template void prescanLauncher, (dim3 &blocks, dim3 &threads, int shmem, hipStream_t *stream, int *g_odata, const int *g_idata, int *g_blockSums, int n, int blockIndex, int baseIndex), LIBND4J_BOOLS, LIBND4J_BOOLS) #undef LIBND4J_BOOLS }
3a5306bed0f2fd6dc21b7d13ac8a1dbb207e8b08.cu
/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // // #include <loops/type_conversions.h> #include <types/types.h> namespace nd4j { template<typename S, typename T> void TypeCast::convertGenericCuda(Nd4jPointer *extras, void *dx, Nd4jLong N, void *dz) { auto stream = reinterpret_cast<cudaStream_t *>(&extras[1]); nd4j::convertKernel<S, T><<<256, 1024, 1024, *stream>>>(dx, N, dz); }; template<typename S, typename T> __device__ void convertKernelGeneric(S *x, Nd4jLong N, T *z) { int tid = blockIdx.x * blockDim.x + threadIdx.x; for (Nd4jLong i = tid; i < N; i+= blockDim.x * gridDim.x) { // despite it's stupid, it simplifies conversion to bottom dtypes // FIXME: get rid of through-float though z[i] = static_cast<T>(static_cast<float>(x[i])); } }; /* * PLEASE NOTE: This kernel doesn't allow loop for data. Basically: grid will be huge. */ template<typename T> __device__ inline void encoderKernelP1Generic(void *dx, Nd4jLong N, void *dz, float threshold) { auto x = reinterpret_cast<T *> (dx); auto z = reinterpret_cast<int *> (dz); //basically, for phase One we want do calculation: how many eligible values we have, and which blocks will be holding data Nd4jLong tid = blockIdx.x * blockDim.x + threadIdx.x; int pass = tid < N && nd4j::math::nd4j_abs<T>(x[tid]) >= static_cast<T>(threshold) ? 1 : 0; int bp=__syncthreads_count(pass); if (threadIdx.x == 0) { // saving out per-block passes z[blockIdx.x+1] = bp; // saving out sum atomicAdd(&z[0], bp); } } __device__ __inline__ int pow2i (int e){ return 1<<e; } // Define this to more rigorously avoid bank conflicts, even at the lower (root) levels of the tree //#define ZERO_BANK_CONFLICTS #ifdef ZERO_BANK_CONFLICTS #define CONFLICT_FREE_OFFSET(index) ((index) >> LOG_NUM_BANKS + (index) >> (2 * LOG_NUM_BANKS)) #else #define CONFLICT_FREE_OFFSET(index) ((index) >> LOG_NUM_BANKS) #endif #ifdef CHECK_BANK_CONFLICTS #define TEMP(index) CUT_BANK_CHECKER(temp, index) #else #define TEMP(index) temp[index] #endif template <bool isNP2> __device__ void loadSharedChunkFromMem(int *s_data, const int *g_idata, int n, int baseIndex, int& ai, int& bi, int& mem_ai, int& mem_bi, int& bankOffsetA, int& bankOffsetB) { int thid = threadIdx.x; mem_ai = baseIndex + threadIdx.x; mem_bi = mem_ai + blockDim.x; ai = thid; bi = thid + blockDim.x; // compute spacing to avoid bank conflicts bankOffsetA = CONFLICT_FREE_OFFSET(ai); bankOffsetB = CONFLICT_FREE_OFFSET(bi); // Cache the computational window in shared memory // pad values beyond n with zeros s_data[ai + bankOffsetA] = g_idata[mem_ai]; if (isNP2) { // compile-time decision s_data[bi + bankOffsetB] = (bi < n) ? g_idata[mem_bi] : 0; } else { s_data[bi + bankOffsetB] = g_idata[mem_bi]; } } template <bool isNP2> __device__ void storeSharedChunkToMem(int* g_odata, int* s_data, int n, int ai, int bi, int mem_ai, int mem_bi, int bankOffsetA, int bankOffsetB) { __syncthreads(); // write results to global memory g_odata[mem_ai] = s_data[ai + bankOffsetA]; if (isNP2) { // compile-time decision if (bi < n) g_odata[mem_bi] = s_data[bi + bankOffsetB]; } else { g_odata[mem_bi] = s_data[bi + bankOffsetB]; } } template <bool storeSum> __device__ void clearLastElement(int* s_data, int *g_blockSums, int blockIndex) { if (threadIdx.x == 0) { int index = (blockDim.x << 1) - 1; index += CONFLICT_FREE_OFFSET(index); if (storeSum) { // compile-time decision // write this block's total sum to the corresponding index in the blockSums array g_blockSums[blockIndex] = s_data[index]; } // zero the last element in the scan so it will propagate back to the front s_data[index] = 0; } } __device__ unsigned int buildSum(int *s_data) { unsigned int thid = threadIdx.x; unsigned int stride = 1; // build the sum in place up the tree for (int d = blockDim.x; d > 0; d >>= 1) { __syncthreads(); if (thid < d) { int i = __mul24(__mul24(2, stride), thid); int ai = i + stride - 1; int bi = ai + stride; ai += CONFLICT_FREE_OFFSET(ai); bi += CONFLICT_FREE_OFFSET(bi); s_data[bi] += s_data[ai]; } stride *= 2; } return stride; } __device__ void scanRootToLeaves(int *s_data, unsigned int stride) { unsigned int thid = threadIdx.x; // traverse down the tree building the scan in place for (int d = 1; d <= blockDim.x; d *= 2) { stride >>= 1; __syncthreads(); if (thid < d) { int i = __mul24(__mul24(2, stride), thid); int ai = i + stride - 1; int bi = ai + stride; ai += CONFLICT_FREE_OFFSET(ai); bi += CONFLICT_FREE_OFFSET(bi); float t = s_data[ai]; s_data[ai] = s_data[bi]; s_data[bi] += t; } } } template <bool storeSum> __device__ void prescanBlock(int *data, int blockIndex, int *blockSums) { int stride = buildSum(data); // build the sum in place up the tree clearLastElement<storeSum>(data, blockSums, (blockIndex == 0) ? blockIdx.x : blockIndex); scanRootToLeaves(data, stride); // traverse down tree to build the scan } template <bool storeSum, bool isNP2> __global__ void prescan(int *g_odata, const int *g_idata, int *g_blockSums, int n, int blockIndex, int baseIndex) { int ai, bi, mem_ai, mem_bi, bankOffsetA, bankOffsetB; extern __shared__ int s_data[]; // load data into shared memory loadSharedChunkFromMem<isNP2>(reinterpret_cast<int *>(s_data), g_idata, n, (baseIndex == 0) ? __mul24(blockIdx.x, (blockDim.x << 1)):baseIndex, ai, bi, mem_ai, mem_bi, bankOffsetA, bankOffsetB); // scan the data in each block prescanBlock<storeSum>(s_data, blockIndex, g_blockSums); // write results to device memory storeSharedChunkToMem<isNP2>(g_odata, s_data, n, ai, bi, mem_ai, mem_bi, bankOffsetA, bankOffsetB); } __global__ void uniformAdd(int *g_data, int *uniforms, int n, int blockOffset, int baseIndex) { __shared__ float uni; if (threadIdx.x == 0) uni = uniforms[blockIdx.x + blockOffset]; unsigned int address = __mul24(blockIdx.x, (blockDim.x << 1)) + baseIndex + threadIdx.x; __syncthreads(); // note two adds per thread g_data[address] += uni; g_data[address + blockDim.x] += (threadIdx.x + blockDim.x < n) * uni; } /* * This kernel does prefix sum in parallel, to calculate offsets for each block */ template<typename T> __device__ inline void encoderKernelP2Generic(void *dx, Nd4jLong n, void *dz) { // TODO: to be remove } /* * PLEASE NOTE: This kernel doesn't allow loop for data. Basically: grid will be huge. * * Based on: https://github.com/knotman90/cuStreamComp <-- efficient CUDA stream compaction algorithm */ template<typename T> __device__ inline void encoderKernelP3Generic(void *dx, int *offsets, Nd4jLong N, void *dz) { T *x = reinterpret_cast<T *> (dx); int *z = reinterpret_cast<int *> (dz); Nd4jLong tid = blockIdx.x * blockDim.x + threadIdx.x; extern __shared__ int warpTotals[]; // fetch block offset only once __shared__ float threshold; __shared__ FloatBits fb; __shared__ int bo; __shared__ int limit; if (threadIdx.x == 0) { limit = z[0]; fb.i_ = z[2]; threshold = fb.f_; bo = offsets[blockIdx.x]; } __syncthreads(); if (tid < N) { T value = x[tid]; int pred = nd4j::math::nd4j_abs<T>(value) >= static_cast<T>(threshold) ? 1 : 0; int w_i = threadIdx.x/warpSize; //warp index int w_l = tid % warpSize;//thread index within a warp int t_m = INT_MAX >> (warpSize-w_l-1); //thread mask (ERROR IN THE PAPER minus one is required) int b = __ballot(pred) & t_m; //balres = number whose ith bit isone if the ith's thread pred is true masked up to the current index in warp int t_u = __popc(b); // popc count the number of bit one. simply count the number predicated true BEFORE MY INDEX if(w_l==warpSize-1){ warpTotals[w_i]=t_u+pred; } __syncthreads(); if(w_i==0 && w_l<blockDim.x/warpSize){ int w_i_u=0; for(int j=0;j<=5;j++){ int b_j =__ballot( warpTotals[w_l] & pow2i(j) ); //# of the ones in the j'th digit of the warp offsets w_i_u += (__popc(b_j & t_m) ) << j; //printf("indice %i t_m=%i,j=%i,b_j=%i,w_i_u=%i\n",w_l,t_m,j,b_j,w_i_u); } warpTotals[w_l]=w_i_u; } __syncthreads(); if(pred){ int idx = t_u + warpTotals[w_i] + bo + 4; if (idx < limit + 4) { z[idx]= value > static_cast<T>(0.0f) ? tid+1 : -(tid + 1); x[tid] = value > static_cast<T>(0.0f) ? x[tid] - threshold : x[tid] + threshold; } } } } /* * This kernel handles decode from sparse threshold array, to dense array * * PLEASE NOTE: Z is expected to be memset to 0 */ template<typename T> __device__ inline void decoderKernelGeneric(void *dx, Nd4jLong N, void *dz) { auto x = reinterpret_cast<int *> (dx); auto z = reinterpret_cast<T *> (dz); int tid = blockIdx.x * blockDim.x + threadIdx.x; __shared__ float threshold; __shared__ int limit; __shared__ FloatBits fb; if (threadIdx.x == 0) { limit = x[0]; fb.i_ = x[2]; threshold = fb.f_; } __syncthreads(); for (int e = tid; e < limit; e += blockDim.x * gridDim.x) { int el = x[e+4]; int ael = nd4j::math::nd4j_abs<int>(el) - 1; // TODO: investigate, if += would work better here, as in "decoded accumulation" z[ael] += el > 0 ? threshold : -threshold; } } template<typename T> __device__ inline void cudaDecodeBitmapGeneric(void *dx, Nd4jLong N, T *dz) { int tid = blockIdx.x * blockDim.x + threadIdx.x; __shared__ T *shmem; __shared__ FloatBits fb; __shared__ float threshold; __shared__ int *x; if (threadIdx.x == 0){ extern __shared__ char mem[]; shmem = reinterpret_cast<T*>(mem); x = reinterpret_cast<int *>(dx); fb.i_ = x[2]; threshold = fb.f_; } __syncthreads(); int lim = N / 16 + 5; for (int i = tid; i < N; i += blockDim.x * gridDim.x) { int byteId = i / 16 + 4; // printf("I: [%i]; byteId: [%i]\n", i, byteId); shmem[threadIdx.x] = dz[i]; __syncthreads(); if (threadIdx.x % 16 == 0) { int byte = x[byteId]; for (int e = 0; e < 16; e++) { if (i + e >= N) continue; int bitId = (i + e) % 16; bool hasBit = (byte & 1 << (bitId) ) != 0; bool hasSign = (byte & 1 << (bitId + 16) ) != 0; if (hasBit) { if (hasSign) shmem[threadIdx.x + bitId] -= threshold; else shmem[threadIdx.x + bitId] += threshold; } else if (hasSign) { shmem[threadIdx.x + bitId] -= threshold / 2; } } } __syncthreads(); dz[i] = shmem[threadIdx.x]; } } template<typename T> __device__ inline void cudaEncodeBitmapGeneric(T *dx, Nd4jLong N, int *dz, int *scalar, int *reductionBuffer, float threshold) { int tid = blockIdx.x * blockDim.x + threadIdx.x; __shared__ int counter; __shared__ int *shmem; __shared__ T *vals; if (threadIdx.x == 0){ extern __shared__ char mem[]; shmem = reinterpret_cast<int*>(mem); vals = reinterpret_cast<T *>(shmem + blockDim.x); counter = 0; } __syncthreads(); for (int i = tid; i < N; i += blockDim.x * gridDim.x) { // all threads in block reading stuff T val = dx[i]; T abs = nd4j::math::nd4j_abs<T>(val); int byteId = i / 16 + 4; int bitId = i % 16; shmem[threadIdx.x] = 0; vals[threadIdx.x] = val; if (abs >= static_cast<T>(threshold)) { shmem[threadIdx.x] = 1 << (bitId); atomicAdd(&counter, 1); if (val < static_cast<T>(0.0f)) { shmem[threadIdx.x] |= 1 << (bitId + 16); vals[threadIdx.x] += static_cast<T>(threshold); } else { vals[threadIdx.x] -= static_cast<T>(threshold); } } else if (abs >= static_cast<T>(threshold) / static_cast<T>(2.0f) && val < static_cast<T>(0.0f)) { atomicAdd(&counter, 1); shmem[threadIdx.x] = 1 << (bitId + 16); vals[threadIdx.x] += static_cast<T>(threshold) / static_cast<T>(2.0f); } __syncthreads(); if (threadIdx.x % 16 == 0) { int byte = 0; for (int e = 0; e < 16; e++) { if (i + e >= N) continue; byte |= shmem[threadIdx.x + e]; } dz[byteId] = byte; } __syncthreads(); dx[i] = vals[threadIdx.x]; } __syncthreads(); if (threadIdx.x == 0) { atomicAdd(scalar, counter); } } __global__ void cudaEncodeBitmapFloat(float *dx, Nd4jLong N, int *dz, int *scalar, int *reductionBuffer, float threshold) { nd4j::cudaEncodeBitmapGeneric<float>(dx, N, dz, scalar, reductionBuffer, threshold); } __global__ void cudaEncodeBitmapDouble(double *dx, Nd4jLong N, int *dz, int *scalar, int *reductionBuffer, float threshold) { nd4j::cudaEncodeBitmapGeneric<double>(dx, N, dz, scalar, reductionBuffer, threshold); } __global__ void cudaEncodeBitmapHalf(float16 *dx, Nd4jLong N, int *dz, int *scalar, int *reductionBuffer, float threshold) { nd4j::cudaEncodeBitmapGeneric<float16>(dx, N, dz, scalar, reductionBuffer, threshold); } __global__ void cudaDecodeBitmapFloat(void *dx, Nd4jLong N, float *dz) { nd4j::cudaDecodeBitmapGeneric<float>(dx, N, dz); } __global__ void cudaDecodeBitmapDouble(void *dx, Nd4jLong N, double *dz) { nd4j::cudaDecodeBitmapGeneric<double>(dx, N, dz); } __global__ void cudaDecodeBitmapHalf(void *dx, Nd4jLong N, float16 *dz) { nd4j::cudaDecodeBitmapGeneric<float16>(dx, N, dz); } __global__ void encoderKernelP1Float(void *dx, Nd4jLong N, void *dz, float threshold) { nd4j::encoderKernelP1Generic<float>(dx, N, dz, threshold); } __global__ void encoderKernelP1Double(void *dx, Nd4jLong N, void *dz, float threshold) { nd4j::encoderKernelP1Generic<double>(dx, N, dz, threshold); } __global__ void encoderKernelP1Half(void *dx, Nd4jLong N, void *dz, float threshold) { nd4j::encoderKernelP1Generic<float16>(dx, N, dz, threshold); } __global__ void encoderKernelP2Float(int *dx, Nd4jLong N, int *dz) { nd4j::encoderKernelP2Generic<float>(dx, N, dz); } __global__ void encoderKernelP3Float(void *dx, int *offsets, Nd4jLong N, void *dz) { nd4j::encoderKernelP3Generic<float>(dx, offsets, N, dz); } __global__ void encoderKernelP3Double(void *dx, int *offsets, Nd4jLong N, void *dz) { nd4j::encoderKernelP3Generic<double>(dx, offsets, N, dz); } __global__ void encoderKernelP3Half(void *dx, int *offsets, Nd4jLong N, void *dz) { nd4j::encoderKernelP3Generic<float16>(dx, offsets, N, dz); } __global__ void decoderKernelFloat(void *dx, Nd4jLong N, void *dz) { nd4j::decoderKernelGeneric<float>(dx, N, dz); } __global__ void decoderKernelDouble(void *dx, Nd4jLong N, void *dz) { nd4j::decoderKernelGeneric<double>(dx, N, dz); } __global__ void decoderKernelHalf(void *dx, Nd4jLong N, void *dz) { nd4j::decoderKernelGeneric<float16>(dx, N, dz); } template <bool storeSum, bool isNP2> __host__ void prescanLauncher(dim3 &blocks, dim3 &threads, int shmem, cudaStream_t *stream, int *g_odata, const int *g_idata, int *g_blockSums, int n, int blockIndex, int baseIndex) { prescan<storeSum, isNP2><<<blocks, threads, shmem, *stream>>>(g_odata, g_idata, g_blockSums, n, blockIndex, baseIndex); }; template <typename S, typename T> __global__ void convertKernel(void *dx, Nd4jLong N, void *dz) { auto x = reinterpret_cast<S *>(dx); auto z = reinterpret_cast<T *>(dz); nd4j::convertKernelGeneric(x, N, z); } #define LIBND4J_BOOLS \ 0, \ 1 BUILD_DOUBLE_TEMPLATE(template void TypeCast::convertGenericCuda, (Nd4jPointer * extras, void *dx, Nd4jLong N, void *dz), LIBND4J_TYPES, LIBND4J_TYPES) BUILD_DOUBLE_TEMPLATE(template void prescanLauncher, (dim3 &blocks, dim3 &threads, int shmem, cudaStream_t *stream, int *g_odata, const int *g_idata, int *g_blockSums, int n, int blockIndex, int baseIndex), LIBND4J_BOOLS, LIBND4J_BOOLS) #undef LIBND4J_BOOLS }
b76345531a36457a002430f14d3220bb159669de.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "THGeneral.h" #include "THHGeneral.h" #include "THHTensor.h" #ifndef DIVUP #define DIVUP(x, y) (((x) + (y) - 1) / (y)) #endif static void THCudaTensor_computesz(THCudaTensor *self, long **sz_, long **st_) { long *sz, *st, *szh; int i; THCudaCheck(hipMalloc(&sz, sizeof(long)*self->nDimension)); THCudaCheck(hipMalloc(&st, sizeof(long)*self->nDimension)); szh = (long*)THAlloc(sizeof(long)*self->nDimension); for(i = self->nDimension-1; i >= 0; i--) { if(i == self->nDimension-1) szh[i] = 1; else szh[i] = szh[i+1]*self->size[i+1]; } THCudaCheck(hipMemcpy(sz, szh, self->nDimension * sizeof(long), hipMemcpyHostToDevice)); THCudaCheck(hipMemcpy(st, self->stride, self->nDimension * sizeof(long), hipMemcpyHostToDevice)); THFree(szh); *sz_ = sz; *st_ = st; } __global__ void THCudaTensor_kernel_copy(float *dst, long *dst_sz, long *dst_st, int dst_dim, float *src, long *src_sz, long *src_st, int src_dim, long n_elem, long innerdim) { long k = (blockIdx.z * gridDim.x * gridDim.y + blockIdx.y * gridDim.x + blockIdx.x)*blockDim.y + threadIdx.y; long i_start = threadIdx.x * src_st[src_dim-1]; long i_step = blockDim.x * src_st[src_dim-1]; long o_start = threadIdx.x * dst_st[dst_dim-1]; long o_step = blockDim.x * dst_st[dst_dim-1]; long o_end = innerdim * dst_st[dst_dim-1]; if ( ((k+1) * innerdim) <= n_elem) // too safe { long dst_idx = 0; long dst_rest = k * innerdim; for(int dim = 0; dim < dst_dim; dim++) { dst_idx += (dst_rest/dst_sz[dim])*dst_st[dim]; dst_rest = dst_rest % dst_sz[dim]; } long src_idx = 0; long src_rest = k * innerdim; for(int dim = 0; dim < src_dim; dim++) { src_idx += (src_rest/src_sz[dim])*src_st[dim]; src_rest = src_rest % src_sz[dim]; } for (int i=i_start, o=o_start; o<o_end; i+=i_step, o+=o_step) { dst[dst_idx + o] = src[src_idx + i]; } } } THC_API void THCudaTensor_copy(THCudaTensor *self, THCudaTensor *src) { THArgCheck(THCudaTensor_nElement(self) == THCudaTensor_nElement(src), 2, "sizes do not match"); if(THCudaTensor_isContiguous(self) && THCudaTensor_isContiguous(src)) THCudaCheck(hipMemcpy(self->storage->data + self->storageOffset, src->storage->data + src->storageOffset, THCudaTensor_nElement(src) * sizeof(float), hipMemcpyDeviceToDevice)); else { long *d_self_sz, *d_self_st, *d_src_sz, *d_src_st; long size = THCudaTensor_nElement(self); long ndims = self->nDimension; long innermostdim = self->size[ndims-1]; THCudaTensor_computesz(self, &d_self_sz, &d_self_st); THCudaTensor_computesz(src, &d_src_sz, &d_src_st); dim3 threads(16,16); int nblocks = ceil((float)size / (16 * innermostdim )); // if nblocks greater than 65535 then we need to open a second dimension #define __MAX_NUM_BLOCKS_PER_GRID_DIM__ 65535 /* The configuration below can deal with Tensors * of size up to 65535 * 65535 * 65535 * 16 elements. */ int nblocks_x = (nblocks > __MAX_NUM_BLOCKS_PER_GRID_DIM__) ? __MAX_NUM_BLOCKS_PER_GRID_DIM__ : nblocks; int number_blocks_dim_x = DIVUP(nblocks, nblocks_x); int nblocks_y = (number_blocks_dim_x > __MAX_NUM_BLOCKS_PER_GRID_DIM__) ? __MAX_NUM_BLOCKS_PER_GRID_DIM__ : number_blocks_dim_x; int number_blocks_dim_y = DIVUP(nblocks, nblocks_x * nblocks_y); int nblocks_z = number_blocks_dim_y; dim3 grid(nblocks_x, nblocks_y, nblocks_z); hipLaunchKernelGGL(( THCudaTensor_kernel_copy), dim3(grid), dim3(threads), 0, 0, THCudaTensor_data(self), d_self_sz, d_self_st, ndims, THCudaTensor_data(src), d_src_sz, d_src_st, src->nDimension, size, innermostdim); hipError_t errcode = hipGetLastError(); if(errcode != hipSuccess) THError(hipGetErrorString(errcode)); THCudaCheck(hipFree(d_self_sz)); THCudaCheck(hipFree(d_self_st)); THCudaCheck(hipFree(d_src_sz)); THCudaCheck(hipFree(d_src_st)); } }
b76345531a36457a002430f14d3220bb159669de.cu
#include "THGeneral.h" #include "THCGeneral.h" #include "THCTensor.h" #ifndef DIVUP #define DIVUP(x, y) (((x) + (y) - 1) / (y)) #endif static void THCudaTensor_computesz(THCudaTensor *self, long **sz_, long **st_) { long *sz, *st, *szh; int i; THCudaCheck(cudaMalloc(&sz, sizeof(long)*self->nDimension)); THCudaCheck(cudaMalloc(&st, sizeof(long)*self->nDimension)); szh = (long*)THAlloc(sizeof(long)*self->nDimension); for(i = self->nDimension-1; i >= 0; i--) { if(i == self->nDimension-1) szh[i] = 1; else szh[i] = szh[i+1]*self->size[i+1]; } THCudaCheck(cudaMemcpy(sz, szh, self->nDimension * sizeof(long), cudaMemcpyHostToDevice)); THCudaCheck(cudaMemcpy(st, self->stride, self->nDimension * sizeof(long), cudaMemcpyHostToDevice)); THFree(szh); *sz_ = sz; *st_ = st; } __global__ void THCudaTensor_kernel_copy(float *dst, long *dst_sz, long *dst_st, int dst_dim, float *src, long *src_sz, long *src_st, int src_dim, long n_elem, long innerdim) { long k = (blockIdx.z * gridDim.x * gridDim.y + blockIdx.y * gridDim.x + blockIdx.x)*blockDim.y + threadIdx.y; long i_start = threadIdx.x * src_st[src_dim-1]; long i_step = blockDim.x * src_st[src_dim-1]; long o_start = threadIdx.x * dst_st[dst_dim-1]; long o_step = blockDim.x * dst_st[dst_dim-1]; long o_end = innerdim * dst_st[dst_dim-1]; if ( ((k+1) * innerdim) <= n_elem) // too safe { long dst_idx = 0; long dst_rest = k * innerdim; for(int dim = 0; dim < dst_dim; dim++) { dst_idx += (dst_rest/dst_sz[dim])*dst_st[dim]; dst_rest = dst_rest % dst_sz[dim]; } long src_idx = 0; long src_rest = k * innerdim; for(int dim = 0; dim < src_dim; dim++) { src_idx += (src_rest/src_sz[dim])*src_st[dim]; src_rest = src_rest % src_sz[dim]; } for (int i=i_start, o=o_start; o<o_end; i+=i_step, o+=o_step) { dst[dst_idx + o] = src[src_idx + i]; } } } THC_API void THCudaTensor_copy(THCudaTensor *self, THCudaTensor *src) { THArgCheck(THCudaTensor_nElement(self) == THCudaTensor_nElement(src), 2, "sizes do not match"); if(THCudaTensor_isContiguous(self) && THCudaTensor_isContiguous(src)) THCudaCheck(cudaMemcpy(self->storage->data + self->storageOffset, src->storage->data + src->storageOffset, THCudaTensor_nElement(src) * sizeof(float), cudaMemcpyDeviceToDevice)); else { long *d_self_sz, *d_self_st, *d_src_sz, *d_src_st; long size = THCudaTensor_nElement(self); long ndims = self->nDimension; long innermostdim = self->size[ndims-1]; THCudaTensor_computesz(self, &d_self_sz, &d_self_st); THCudaTensor_computesz(src, &d_src_sz, &d_src_st); dim3 threads(16,16); int nblocks = ceil((float)size / (16 * innermostdim )); // if nblocks greater than 65535 then we need to open a second dimension #define __MAX_NUM_BLOCKS_PER_GRID_DIM__ 65535 /* The configuration below can deal with Tensors * of size up to 65535 * 65535 * 65535 * 16 elements. */ int nblocks_x = (nblocks > __MAX_NUM_BLOCKS_PER_GRID_DIM__) ? __MAX_NUM_BLOCKS_PER_GRID_DIM__ : nblocks; int number_blocks_dim_x = DIVUP(nblocks, nblocks_x); int nblocks_y = (number_blocks_dim_x > __MAX_NUM_BLOCKS_PER_GRID_DIM__) ? __MAX_NUM_BLOCKS_PER_GRID_DIM__ : number_blocks_dim_x; int number_blocks_dim_y = DIVUP(nblocks, nblocks_x * nblocks_y); int nblocks_z = number_blocks_dim_y; dim3 grid(nblocks_x, nblocks_y, nblocks_z); THCudaTensor_kernel_copy<<<grid, threads>>>(THCudaTensor_data(self), d_self_sz, d_self_st, ndims, THCudaTensor_data(src), d_src_sz, d_src_st, src->nDimension, size, innermostdim); cudaError errcode = cudaGetLastError(); if(errcode != cudaSuccess) THError(cudaGetErrorString(errcode)); THCudaCheck(cudaFree(d_self_sz)); THCudaCheck(cudaFree(d_self_st)); THCudaCheck(cudaFree(d_src_sz)); THCudaCheck(cudaFree(d_src_st)); } }
2d8146927caae8b3b35bc02a089d031de9a2adae.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <iostream> #include <stdio.h> #include <time.h> #define LENGTH 256 using namespace std; struct soa{ int *a; int *b; int *c; }; __global__ void vector_add(int *a, int *b, int *c){ int i = threadIdx.x ; if (i < LENGTH) c[i] = a[i] + b[i]; // read } __host__ void vector_add_cpu(float a[], float b[], float *c){ for(int i=0 ; i< LENGTH ; i++){ c[i] = a[i] + b[i]; // std::cout << c[i] << std::endl; } } int main(){ soa h_s; int *d_s, *d_a, *d_b; h_s.a = new int [LENGTH]; h_s.b = new int [LENGTH]; h_s.c = new int [LENGTH]; for(int i=0 ; i< LENGTH; i++){ h_s.a[i] = i; h_s.b[i] = i; } hipMalloc((void**)&d_s, LENGTH*sizeof(int)); hipMalloc((void**)&d_a, LENGTH*sizeof(int)); hipMalloc((void**)&d_b, LENGTH*sizeof(int)); hipMemcpy(d_a, h_s.a, LENGTH*sizeof(int), hipMemcpyHostToDevice); hipMemcpy(d_b, h_s.b, LENGTH*sizeof(int), hipMemcpyHostToDevice); hipMemcpy(d_s, h_s.c, LENGTH*sizeof(int), hipMemcpyHostToDevice); hipEvent_t start, stop; hipEventCreate(&start); hipEventCreate(&stop); float milliseconds = 0; float total_time = 0.0; // for(int k=0 ; k< 1000 ; k++){ // hipEventRecord(start); hipLaunchKernelGGL(( vector_add), dim3(LENGTH/128), dim3(128), 0, 0, d_a, d_b, d_s); hipDeviceSynchronize(); // hipEventRecord(stop); hipMemcpy(h_s.c, d_s, LENGTH*sizeof(int), hipMemcpyDeviceToHost); // hipEventSynchronize(stop); hipEventElapsedTime(&milliseconds, start, stop); total_time += milliseconds; // } std::cout << "Time taken : " << milliseconds << " Avg time : " << total_time / 1000 << std::endl; for(int i=0; i<10 ;i++){ cout << h_s.c[i] << endl; } }
2d8146927caae8b3b35bc02a089d031de9a2adae.cu
#include <iostream> #include <stdio.h> #include <time.h> #define LENGTH 256 using namespace std; struct soa{ int *a; int *b; int *c; }; __global__ void vector_add(int *a, int *b, int *c){ int i = threadIdx.x ; if (i < LENGTH) c[i] = a[i] + b[i]; // read } __host__ void vector_add_cpu(float a[], float b[], float *c){ for(int i=0 ; i< LENGTH ; i++){ c[i] = a[i] + b[i]; // std::cout << c[i] << std::endl; } } int main(){ soa h_s; int *d_s, *d_a, *d_b; h_s.a = new int [LENGTH]; h_s.b = new int [LENGTH]; h_s.c = new int [LENGTH]; for(int i=0 ; i< LENGTH; i++){ h_s.a[i] = i; h_s.b[i] = i; } cudaMalloc((void**)&d_s, LENGTH*sizeof(int)); cudaMalloc((void**)&d_a, LENGTH*sizeof(int)); cudaMalloc((void**)&d_b, LENGTH*sizeof(int)); cudaMemcpy(d_a, h_s.a, LENGTH*sizeof(int), cudaMemcpyHostToDevice); cudaMemcpy(d_b, h_s.b, LENGTH*sizeof(int), cudaMemcpyHostToDevice); cudaMemcpy(d_s, h_s.c, LENGTH*sizeof(int), cudaMemcpyHostToDevice); cudaEvent_t start, stop; cudaEventCreate(&start); cudaEventCreate(&stop); float milliseconds = 0; float total_time = 0.0; // for(int k=0 ; k< 1000 ; k++){ // cudaEventRecord(start); vector_add<<<LENGTH/128, 128>>>(d_a, d_b, d_s); cudaDeviceSynchronize(); // cudaEventRecord(stop); cudaMemcpy(h_s.c, d_s, LENGTH*sizeof(int), cudaMemcpyDeviceToHost); // cudaEventSynchronize(stop); cudaEventElapsedTime(&milliseconds, start, stop); total_time += milliseconds; // } std::cout << "Time taken : " << milliseconds << " Avg time : " << total_time / 1000 << std::endl; for(int i=0; i<10 ;i++){ cout << h_s.c[i] << endl; } }
86c4b5fb86d2ee917933d1f410c50a4d4491ec89.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" // Implementes the math functions for CPU. #include <thrust/device_ptr.h> #include <thrust/reduce.h> #include <thrust/system/hip/detail/par.h> #include <thrust/version.h> #include "math.h" #include "context_gpu.h" static_assert(THRUST_VERSION >= 100800, "kurff requires a thrust version > 1.8."); namespace kurff { namespace math { // TODO(Yangqing): Yuck again. Maybe change it to templated functors? #define DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(T, Funcname, function) \ __global__ \ void _Kernel_##T##_##Funcname(const int N, const T* x, T* y) { \ CUDA_1D_KERNEL_LOOP(i, N) { \ y[i] = function(x[i]); \ } \ } \ template <> \ void Funcname<T, CUDAContext>( \ const int N, const T* x, T* y, \ CUDAContext* context) { \ hipLaunchKernelGGL(( _Kernel_##T##_##Funcname), dim3(CAFFE_GET_BLOCKS(N)), dim3(CAFFE_CUDA_NUM_THREADS), \ 0, context->cuda_stream(), \ N, x, y); \ } DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Exp, expf) DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(double, Exp, exp) DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Log, logf) DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(double, Log, log) __device__ float cuda_sqrf(const float x) { return x * x; } __device__ double cuda_sqr(const double x) { return x * x; } DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Sqr, cuda_sqrf) DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(double, Sqr, cuda_sqr) #define DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(T, Funcname, function) \ __global__ \ void _Kernel_##T##_##Funcname( \ const int N, const T* a, const T* b, T* y) { \ CUDA_1D_KERNEL_LOOP(i, N) { \ y[i] = function(a[i], b[i]); \ } \ } \ template <> \ void Funcname<T, CUDAContext>( \ const int N, const T* a, const T* b, T* y, \ CUDAContext* context) { \ hipLaunchKernelGGL(( _Kernel_##T##_##Funcname), dim3(CAFFE_GET_BLOCKS(N)), dim3(CAFFE_CUDA_NUM_THREADS), \ 0, context->cuda_stream(), \ N, a, b, y); \ } #define CAFFE_MATH_CUDA_ADD(x, y) (x + y) #define CAFFE_MATH_CUDA_SUB(x, y) (x - y) #define CAFFE_MATH_CUDA_MUL(x, y) (x * y) #define CAFFE_MATH_CUDA_DIV(x, y) (x / y) DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(float, Add, CAFFE_MATH_CUDA_ADD) DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(double, Add, CAFFE_MATH_CUDA_ADD) DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(float, Sub, CAFFE_MATH_CUDA_SUB) DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(double, Sub, CAFFE_MATH_CUDA_SUB) DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(float, Mul, CAFFE_MATH_CUDA_MUL) DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(double, Mul, CAFFE_MATH_CUDA_MUL) DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(float, Div, CAFFE_MATH_CUDA_DIV) DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(double, Div, CAFFE_MATH_CUDA_DIV) /* #define CAFFE2_SPECIALIZED_ROWWISEMAX(T) \ template <> \ void RowwiseMax<T, CPUContext>( \ const int N, const int D, const T* x, T* y, CPUContext* context) { \ for (int i = 0; i < N; ++i) { \ y[i] = x[i*D]; \ for (int j = 1; j < D; ++j) { \ y[i] = ::max(y[i], x[i * D + j]); \ } \ } \ } CAFFE2_SPECIALIZED_ROWWISEMAX(float) #define CAFFE2_SPECIALIZED_COLWISEMAX(T) \ template <> \ void ColwiseMax<T, CPUContext>( \ const int N, const int D, const T* x, T* y, CPUContext* context) { \ memcpy(y, x, sizeof(T) * D); \ for (int i = 1; i < N; ++i) { \ for (int j = 0; j < D; ++j) { \ y[j] = ::max(y[j], x[i * D + j]); \ } \ } \ } CAFFE2_SPECIALIZED_COLWISEMAX(float) */ namespace { template<typename T> __global__ void AddToRowKernel(const int M, const int N, const T* x, T* y) { CUDA_1D_KERNEL_LOOP(i, M * N) { y[i] += x[i % N]; } } template<typename T> __global__ void AddToColKernel(const int M, const int N, const T* x, T* y) { CUDA_1D_KERNEL_LOOP(i, M * N) { y[i] += x[i % M]; } } } // namespace template <> void AddToRow<float, CUDAContext>( const int M, const int N, const float* x, float* y, CUDAContext* context) { hipLaunchKernelGGL(( AddToRowKernel<float>), dim3(CAFFE_GET_BLOCKS(M * N)), dim3(CAFFE_CUDA_NUM_THREADS), 0, context->cuda_stream(), M, N, x, y); } template <> void AddToCol<float, CUDAContext>( const int M, const int N, const float* x, float* y, CUDAContext* context) { hipLaunchKernelGGL(( AddToColKernel<float>), dim3(CAFFE_GET_BLOCKS(M * N)), dim3(CAFFE_CUDA_NUM_THREADS), 0, context->cuda_stream(), M, N, x, y); } // Caffe2 gemm provides a simpler interface to the gemm functions, with the // limitation that the data has to be contiguous in memory. template <> void Gemm<float, CUDAContext>( const CBLAS_TRANSPOSE TransA, const CBLAS_TRANSPOSE TransB, const int M, const int N, const int K, const float alpha, const float* A, const float* B, const float beta, float* C, CUDAContext* context) { // Note that cublas follows fortran order, so the order is different from // the cblas convention. int lda = (TransA == CblasNoTrans) ? K : M; int ldb = (TransB == CblasNoTrans) ? N : K; hipblasOperation_t cuTransA = (TransA == CblasNoTrans) ? HIPBLAS_OP_N : HIPBLAS_OP_T; hipblasOperation_t cuTransB = (TransB == CblasNoTrans) ? HIPBLAS_OP_N : HIPBLAS_OP_T; CUBLAS_CHECK(hipblasSgemm(context->cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, N)); } template <> void Gemv<float, CUDAContext>( const CBLAS_TRANSPOSE TransA, const int M, const int N, const float alpha, const float* A, const float* x, const float beta, float* y, CUDAContext* context) { hipblasOperation_t cuTransA = (TransA == CblasNoTrans) ? HIPBLAS_OP_T : HIPBLAS_OP_N; CUBLAS_CHECK(hipblasSgemv(context->cublas_handle(), cuTransA, N, M, &alpha, A, N, x, 1, &beta, y, 1)); } namespace { template <typename T> __global__ void SetKernel(const int N, const T alpha, T* Y) { CUDA_1D_KERNEL_LOOP(i, N) { Y[i] = alpha; } } } // namespace #define CAFFE2_SPECIALIZED_CUDA_SET(T) \ template <> \ void Set<T, CUDAContext>(const int N, const T alpha, T *Y, \ CUDAContext* context) { \ hipLaunchKernelGGL(( SetKernel), dim3(CAFFE_GET_BLOCKS(N)), dim3(CAFFE_CUDA_NUM_THREADS), \ 0, context->cuda_stream(), N, alpha, Y); \ } CAFFE2_SPECIALIZED_CUDA_SET(float); CAFFE2_SPECIALIZED_CUDA_SET(double); CAFFE2_SPECIALIZED_CUDA_SET(int); #undef CAFFE2_SPECIALIZED_CUDA_SET namespace { template <typename T> __global__ void UniformShift(const int N, const T min, const T max, T* x) { T scale = max - min; CUDA_1D_KERNEL_LOOP(i, N) { x[i] = x[i] * scale + min; } } } // namespace template <> void RandUniform<float, CUDAContext>( const int n, const float min, const float max, float* r, CUDAContext* context) { CURAND_CHECK(hiprandGenerateUniform(context->curand_generator(), r, n)); hipLaunchKernelGGL(( UniformShift<float>), dim3(CAFFE_GET_BLOCKS(n)), dim3(CAFFE_CUDA_NUM_THREADS), 0, context->cuda_stream(), n, min, max, r); } template <> void RandUniform<double, CUDAContext>( const int n, const double min, const double max, double* r, CUDAContext* context) { CURAND_CHECK(hiprandGenerateUniformDouble(context->curand_generator(), r, n)); hipLaunchKernelGGL(( UniformShift<double>), dim3(CAFFE_GET_BLOCKS(n)), dim3(CAFFE_CUDA_NUM_THREADS), 0, context->cuda_stream(), n, min, max, r); } template <> void RandGaussian<float, CUDAContext>( const int n, const float mean, const float std, float* r, CUDAContext* context) { CURAND_CHECK(hiprandGenerateNormal( context->curand_generator(), r, n, mean, std)); } template <> void RandGaussian<double, CUDAContext>( const int n, const double mean, const double std, double* r, CUDAContext* context) { CURAND_CHECK(hiprandGenerateNormalDouble( context->curand_generator(), r, n, mean, std)); } template<> void Dot<float, CUDAContext>( const int n, const float* a, const float* b, float* y, CUDAContext* context) { float result; CUBLAS_CHECK(hipblasSdot(context->cublas_handle(), n, a, 1, b, 1, &result)); context->Copy<float, CPUContext, CUDAContext>(1, &result, y); } template<> void Dot<double, CUDAContext>( const int n, const double* a, const double* b, double* y, CUDAContext* context) { double result; CUBLAS_CHECK(hipblasDdot(context->cublas_handle(), n, a, 1, b, 1, y)); context->Copy<double, CPUContext, CUDAContext>(1, &result, y); } #define CAFFE2_MATH_SUM_FUNC(T) \ template<> \ void Sum<T, CUDAContext>(const int N, const T* x, T* y, CUDAContext* context) {\ thrust::device_ptr<const T> dev_ptr(x); \ T result = thrust::reduce( \ thrust::hip::par.on(context->cuda_stream()), \ dev_ptr, dev_ptr + N, static_cast<T>(0), thrust::plus<T>()); \ context->Copy<T, CPUContext, CUDAContext>(1, &result, y); \ } CAFFE2_MATH_SUM_FUNC(float) CAFFE2_MATH_SUM_FUNC(double) #undef CAFFE2_MATH_SUM_FUNC namespace { template <typename T> __global__ void SelectKernel( const int N, const int D, const float* x, const int* idx, float* y) { CUDA_1D_KERNEL_LOOP(i, N) { y[i] = x[i * D + idx[i]]; } } } // namespace template <> void Select<float, CUDAContext>( const int N, const int D, const float* x, const int* idx, float* y, CUDAContext* context) { hipLaunchKernelGGL(( SelectKernel<float>), dim3(CAFFE_GET_BLOCKS(N)), dim3(CAFFE_CUDA_NUM_THREADS), 0, context->cuda_stream(), N, D, x, idx, y); } namespace { template <typename T> __global__ void ScaleKernel( const int n, const T alpha, const T* x, T* y) { CUDA_1D_KERNEL_LOOP(i, n) { y[i] = x[i] * alpha; } } template <typename T> __global__ void ScaleKernelDeviceAlpha( const int n, const T* alpha, const T* x, T* y) { CUDA_1D_KERNEL_LOOP(i, n) { y[i] = x[i] * (*alpha); } } } // namespace template <> void Scale<float, CUDAContext>( const int n, const float alpha, const float *x, float* y, CUDAContext* context) { hipLaunchKernelGGL(( ScaleKernel<float>), dim3(CAFFE_GET_BLOCKS(n)), dim3(CAFFE_CUDA_NUM_THREADS), 0, context->cuda_stream(), n, alpha, x, y); } template <> void Scale<double, CUDAContext>( const int n, const double alpha, const double *x, double* y, CUDAContext* context) { hipLaunchKernelGGL(( ScaleKernel<double>), dim3(CAFFE_GET_BLOCKS(n)), dim3(CAFFE_CUDA_NUM_THREADS), 0, context->cuda_stream(), n, alpha, x, y); } template <> void Scale<float, CUDAContext>( const int n, const float* alpha, const float *x, float* y, CUDAContext* context) { hipLaunchKernelGGL(( ScaleKernelDeviceAlpha<float>), dim3(CAFFE_GET_BLOCKS(n)), dim3(CAFFE_CUDA_NUM_THREADS), 0, context->cuda_stream(), n, alpha, x, y); } template <> void Scale<double, CUDAContext>( const int n, const double* alpha, const double *x, double* y, CUDAContext* context) { hipLaunchKernelGGL(( ScaleKernelDeviceAlpha<double>), dim3(CAFFE_GET_BLOCKS(n)), dim3(CAFFE_CUDA_NUM_THREADS), 0, context->cuda_stream(), n, alpha, x, y); } template <> void Axpy<float, CUDAContext>(const int N, const float alpha, const float* X, float* Y, CUDAContext* context) { CUBLAS_CHECK(hipblasSaxpy(context->cublas_handle(), N, &alpha, X, 1, Y, 1)); } template <> void Axpy<double, CUDAContext>( const int N, const double alpha, const double* X, double* Y, CUDAContext* context) { CUBLAS_CHECK(hipblasDaxpy(context->cublas_handle(), N, &alpha, X, 1, Y, 1)); } namespace { template <typename T> __global__ void AxpyKernel(const int n, const T* a, const T* x, T* y) { CUDA_1D_KERNEL_LOOP(index, n) { y[index] += x[index] * (*a); } } } // namespace template <> void Axpy<float, CUDAContext>( const int n, const float* alpha, const float* X, float* Y, CUDAContext* context) { hipLaunchKernelGGL(( AxpyKernel<float>), dim3(CAFFE_GET_BLOCKS(n)), dim3(CAFFE_CUDA_NUM_THREADS), 0, context->cuda_stream(), n, alpha, X, Y); } template <> void Axpy<double, CUDAContext>( const int n, const double* alpha, const double* X, double* Y, CUDAContext* context) { hipLaunchKernelGGL(( AxpyKernel<double>), dim3(CAFFE_GET_BLOCKS(n)), dim3(CAFFE_CUDA_NUM_THREADS), 0, context->cuda_stream(), n, alpha, X, Y); } namespace { template <typename T> __global__ void AxpbyKernel(const int n, const T a, const T* x, const T b, T* y) { CUDA_1D_KERNEL_LOOP(index, n) { y[index] = x[index] * a + y[index] * b; } } } // namespace template <> void Axpby<float, CUDAContext>( const int n, const float a, const float* x, const float b, float* y, CUDAContext* context) { hipLaunchKernelGGL(( AxpbyKernel<float>), dim3(CAFFE_GET_BLOCKS(n)), dim3(CAFFE_CUDA_NUM_THREADS), 0, context->cuda_stream(), n, a, x, b, y); } template <> void Axpby<double, CUDAContext>( const int n, const double a, const double* x, const double b, double* y, CUDAContext* context) { hipLaunchKernelGGL(( AxpbyKernel<double>), dim3(CAFFE_GET_BLOCKS(n)), dim3(CAFFE_CUDA_NUM_THREADS), 0, context->cuda_stream(), n, a, x, b, y); } namespace { template <typename T> __global__ void im2col_gpu_kernel_nchw(const int n, const T* data_im, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_t, const int pad_l, const int stride_h, const int stride_w, const int height_col, const int width_col, T* data_col) { CUDA_1D_KERNEL_LOOP(index, n) { int w_out = index % width_col; int h_index = index / width_col; int h_out = h_index % height_col; int channel_in = h_index / height_col; int channel_out = channel_in * kernel_h * kernel_w; int h_in = h_out * stride_h - pad_t; int w_in = w_out * stride_w - pad_l; T* data_col_ptr = data_col; data_col_ptr += (channel_out * height_col + h_out) * width_col + w_out; const T* data_im_ptr = data_im; data_im_ptr += (channel_in * height + h_in) * width + w_in; for (int i = 0; i < kernel_h; ++i) { for (int j = 0; j < kernel_w; ++j) { int h = h_in + i; int w = w_in + j; *data_col_ptr = (h >= 0 && w >= 0 && h < height && w < width) ? data_im_ptr[i * width + j] : 0; data_col_ptr += height_col * width_col; } } } } template <typename T> __global__ void im2col_gpu_kernel_nhwc(const int n, const T* data_im, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_t, const int pad_l, const int stride_h, const int stride_w, const int width_col, const int channels, T* data_col) { CUDA_1D_KERNEL_LOOP(index, n) { int channel_in = index % channels; int w_out = index / channels % width_col; int h_out = index / channels / width_col; int h_in = h_out * stride_h - pad_t; int w_in = w_out * stride_w - pad_l; T* local_data_col = data_col + ((h_out * width_col) + w_out) * channels * kernel_h * kernel_w + channel_in; for (int i = 0; i < kernel_h; ++i) { int h = h_in + i; for (int j = 0; j < kernel_w; ++j) { int w = w_in + j; *local_data_col = (h >= 0 && w >= 0 && h < height && w < width) ? data_im[(h * width + w) * channels + channel_in] : 0; local_data_col += channels; } } } } template <typename T> __global__ void col2im_gpu_kernel_nchw(const int n, const T* data_col, const int height, const int width, const int patch_h, const int patch_w, const int pad_t, const int pad_l, const int stride_h, const int stride_w, const int height_col, const int width_col, T* data_im) { CUDA_1D_KERNEL_LOOP(index, n) { T val = 0; int w = index % width + pad_l; int h = (index / width) % height + pad_t; int c = index / (width * height); // compute the start and end of the output int w_col_start = (w < patch_w) ? 0 : (w - patch_w) / stride_w + 1; int w_col_end = min(w / stride_w + 1, width_col); int h_col_start = (h < patch_h) ? 0 : (h - patch_h) / stride_h + 1; int h_col_end = min(h / stride_h + 1, height_col); int offset = (c * patch_h * patch_w + h * patch_w + w) * height_col * width_col; int coeff_h_col = (1 - stride_h * patch_w * height_col) * width_col; int coeff_w_col = (1 - stride_w * height_col * width_col); for (int h_col = h_col_start; h_col < h_col_end; ++h_col) { for (int w_col = w_col_start; w_col < w_col_end; ++w_col) { val += data_col[offset + h_col * coeff_h_col + w_col * coeff_w_col]; } } data_im[index] = val; } } template <typename T> __global__ void col2im_gpu_kernel_nhwc(const int n, const T* data_col, const int width, const int channels, const int patch_h, const int patch_w, const int pad_t, const int pad_l, const int stride_h, const int stride_w, const int height_col, const int width_col, T* data_im) { CUDA_1D_KERNEL_LOOP(index, n) { T val = 0; int c = index % channels; int w = index / channels % width + pad_l; int h = index / channels / width + pad_t; // compute the start and end of the output int w_col_start = (w < patch_w) ? 0 : (w - patch_w) / stride_w + 1; int w_col_end = min(w / stride_w + 1, width_col); int h_col_start = (h < patch_h) ? 0 : (h - patch_h) / stride_h + 1; int h_col_end = min(h / stride_h + 1, height_col); int channels_col = patch_h * patch_w * channels; /* for (int h_col = h_col_start; h_col < h_col_end; ++h_col) { for (int w_col = w_col_start; w_col < w_col_end; ++w_col) { int c_col = ((h - h_col * stride_h) * patch_w + w - w_col * stride_w) * channels + c; val += data_col[(h_col * width_col + w_col) * channels_col + c_col]; } } */ // Equivalent of above int offset = (h * patch_w + w) * channels + c; int coeff_h_col = width_col * channels_col - stride_h * patch_w * channels; int coeff_w_col = channels_col - stride_w * channels; for (int h_col = h_col_start; h_col < h_col_end; ++h_col) { for (int w_col = w_col_start; w_col < w_col_end; ++w_col) { val += data_col[offset + h_col * coeff_h_col + w_col * coeff_w_col]; } } data_im[index] = val; } } } // namespace template <> void Im2col<float, CUDAContext, StorageOrder::NCHW>( const float* data_im, const int channels, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_t, const int pad_l, const int pad_b, const int pad_r, const int stride_h, const int stride_w, float* data_col, CUDAContext* context) { // We are going to launch channels * height_col * width_col kernels, each // kernel responsible for copying a single-channel grid. int height_col = (height + pad_t + pad_b - kernel_h) / stride_h + 1; int width_col = (width + pad_l + pad_r - kernel_w) / stride_w + 1; int num_kernels = channels * height_col * width_col; // NOLINT_NEXT_LINE(whitespace/operators) hipLaunchKernelGGL(( im2col_gpu_kernel_nchw<float>), dim3(CAFFE_GET_BLOCKS(num_kernels)), dim3(CAFFE_CUDA_NUM_THREADS), 0, context->cuda_stream(), num_kernels, data_im, height, width, kernel_h, kernel_w, pad_t, pad_l, stride_h, stride_w, height_col, width_col, data_col); } template <> void Im2col<float, CUDAContext, StorageOrder::NHWC>( const float* data_im, const int channels, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_t, const int pad_l, const int pad_b, const int pad_r, const int stride_h, const int stride_w, float* data_col, CUDAContext* context) { // We are going to launch height_col * width_col * channels kernels, each // kernel responsible for copying a single-channel grid. int height_col = (height + pad_t + pad_b - kernel_h) / stride_h + 1; int width_col = (width + pad_l + pad_r - kernel_w) / stride_w + 1; int num_kernels = height_col * width_col * channels; // NOLINT_NEXT_LINE(whitespace/operators) hipLaunchKernelGGL(( im2col_gpu_kernel_nhwc<float>), dim3(CAFFE_GET_BLOCKS(num_kernels)), dim3(CAFFE_CUDA_NUM_THREADS), 0, context->cuda_stream(), num_kernels, data_im, height, width, kernel_h, kernel_w, pad_t, pad_l, stride_h, stride_w, width_col, channels, data_col); } template <> void Col2im<float, CUDAContext, StorageOrder::NCHW>( const float* data_col, const int channels, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_t, const int pad_l, const int pad_b, const int pad_r, const int stride_h, const int stride_w, float* data_im, CUDAContext* context) { int height_col = (height + pad_t + pad_b - kernel_h) / stride_h + 1; int width_col = (width + pad_l + pad_r - kernel_w) / stride_w + 1; int num_kernels = channels * height * width; // To avoid involving atomic operations, we will launch one kernel per // bottom dimension, and then in the kernel add up the top dimensions. hipLaunchKernelGGL(( col2im_gpu_kernel_nchw<float>), dim3(CAFFE_GET_BLOCKS(num_kernels)), dim3(CAFFE_CUDA_NUM_THREADS), 0, context->cuda_stream(), num_kernels, data_col, height, width, kernel_h, kernel_w, pad_t, pad_l, stride_h, stride_w, height_col, width_col, data_im); } template <> void Col2im<float, CUDAContext, StorageOrder::NHWC>( const float* data_col, const int channels, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_t, const int pad_l, const int pad_b, const int pad_r, const int stride_h, const int stride_w, float* data_im, CUDAContext* context) { int height_col = (height + pad_t + pad_b - kernel_h) / stride_h + 1; int width_col = (width + pad_l + pad_r - kernel_w) / stride_w + 1; int num_kernels = height * width * channels; // To avoid involving atomic operations, we will launch one kernel per // bottom dimension, and then in the kernel add up the top dimensions. hipLaunchKernelGGL(( col2im_gpu_kernel_nhwc<float>), dim3(CAFFE_GET_BLOCKS(num_kernels)), dim3(CAFFE_CUDA_NUM_THREADS), 0, context->cuda_stream(), num_kernels, data_col, width, channels, kernel_h, kernel_w, pad_t, pad_l, stride_h, stride_w, height_col, width_col, data_im); } namespace { __global__ void CopyMatrixKernel( const int M, const int N, const char* A, const int lda, char* B, const int ldb) { CUDA_1D_KERNEL_LOOP(i, M * N) { int r = i / N; int c = i % N; B[r * ldb + c] = A[r * lda + c]; } } } // namespace template <> void CopyMatrix<CUDAContext>( const size_t itemsize, const int M, const int N, const void* A, const int lda, void* B, const int ldb, CUDAContext* context) { hipLaunchKernelGGL(( CopyMatrixKernel), dim3(CAFFE_GET_BLOCKS(M * N)), dim3(CAFFE_CUDA_NUM_THREADS), 0, context->cuda_stream(), M, N * itemsize, static_cast<const char*>(A), lda * itemsize, static_cast<char*>(B), ldb * itemsize); } } // namespace math } // namespace caffe2
86c4b5fb86d2ee917933d1f410c50a4d4491ec89.cu
// Implementes the math functions for CPU. #include <thrust/device_ptr.h> #include <thrust/reduce.h> #include <thrust/system/cuda/detail/par.h> #include <thrust/version.h> #include "math.h" #include "context_gpu.h" static_assert(THRUST_VERSION >= 100800, "kurff requires a thrust version > 1.8."); namespace kurff { namespace math { // TODO(Yangqing): Yuck again. Maybe change it to templated functors? #define DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(T, Funcname, function) \ __global__ \ void _Kernel_##T##_##Funcname(const int N, const T* x, T* y) { \ CUDA_1D_KERNEL_LOOP(i, N) { \ y[i] = function(x[i]); \ } \ } \ template <> \ void Funcname<T, CUDAContext>( \ const int N, const T* x, T* y, \ CUDAContext* context) { \ _Kernel_##T##_##Funcname<<<CAFFE_GET_BLOCKS(N), CAFFE_CUDA_NUM_THREADS, \ 0, context->cuda_stream()>>>( \ N, x, y); \ } DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Exp, expf) DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(double, Exp, exp) DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Log, logf) DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(double, Log, log) __device__ float cuda_sqrf(const float x) { return x * x; } __device__ double cuda_sqr(const double x) { return x * x; } DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Sqr, cuda_sqrf) DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(double, Sqr, cuda_sqr) #define DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(T, Funcname, function) \ __global__ \ void _Kernel_##T##_##Funcname( \ const int N, const T* a, const T* b, T* y) { \ CUDA_1D_KERNEL_LOOP(i, N) { \ y[i] = function(a[i], b[i]); \ } \ } \ template <> \ void Funcname<T, CUDAContext>( \ const int N, const T* a, const T* b, T* y, \ CUDAContext* context) { \ _Kernel_##T##_##Funcname<<<CAFFE_GET_BLOCKS(N), CAFFE_CUDA_NUM_THREADS, \ 0, context->cuda_stream()>>>( \ N, a, b, y); \ } #define CAFFE_MATH_CUDA_ADD(x, y) (x + y) #define CAFFE_MATH_CUDA_SUB(x, y) (x - y) #define CAFFE_MATH_CUDA_MUL(x, y) (x * y) #define CAFFE_MATH_CUDA_DIV(x, y) (x / y) DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(float, Add, CAFFE_MATH_CUDA_ADD) DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(double, Add, CAFFE_MATH_CUDA_ADD) DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(float, Sub, CAFFE_MATH_CUDA_SUB) DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(double, Sub, CAFFE_MATH_CUDA_SUB) DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(float, Mul, CAFFE_MATH_CUDA_MUL) DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(double, Mul, CAFFE_MATH_CUDA_MUL) DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(float, Div, CAFFE_MATH_CUDA_DIV) DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(double, Div, CAFFE_MATH_CUDA_DIV) /* #define CAFFE2_SPECIALIZED_ROWWISEMAX(T) \ template <> \ void RowwiseMax<T, CPUContext>( \ const int N, const int D, const T* x, T* y, CPUContext* context) { \ for (int i = 0; i < N; ++i) { \ y[i] = x[i*D]; \ for (int j = 1; j < D; ++j) { \ y[i] = std::max(y[i], x[i * D + j]); \ } \ } \ } CAFFE2_SPECIALIZED_ROWWISEMAX(float) #define CAFFE2_SPECIALIZED_COLWISEMAX(T) \ template <> \ void ColwiseMax<T, CPUContext>( \ const int N, const int D, const T* x, T* y, CPUContext* context) { \ memcpy(y, x, sizeof(T) * D); \ for (int i = 1; i < N; ++i) { \ for (int j = 0; j < D; ++j) { \ y[j] = std::max(y[j], x[i * D + j]); \ } \ } \ } CAFFE2_SPECIALIZED_COLWISEMAX(float) */ namespace { template<typename T> __global__ void AddToRowKernel(const int M, const int N, const T* x, T* y) { CUDA_1D_KERNEL_LOOP(i, M * N) { y[i] += x[i % N]; } } template<typename T> __global__ void AddToColKernel(const int M, const int N, const T* x, T* y) { CUDA_1D_KERNEL_LOOP(i, M * N) { y[i] += x[i % M]; } } } // namespace template <> void AddToRow<float, CUDAContext>( const int M, const int N, const float* x, float* y, CUDAContext* context) { AddToRowKernel<float><<<CAFFE_GET_BLOCKS(M * N), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(M, N, x, y); } template <> void AddToCol<float, CUDAContext>( const int M, const int N, const float* x, float* y, CUDAContext* context) { AddToColKernel<float><<<CAFFE_GET_BLOCKS(M * N), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(M, N, x, y); } // Caffe2 gemm provides a simpler interface to the gemm functions, with the // limitation that the data has to be contiguous in memory. template <> void Gemm<float, CUDAContext>( const CBLAS_TRANSPOSE TransA, const CBLAS_TRANSPOSE TransB, const int M, const int N, const int K, const float alpha, const float* A, const float* B, const float beta, float* C, CUDAContext* context) { // Note that cublas follows fortran order, so the order is different from // the cblas convention. int lda = (TransA == CblasNoTrans) ? K : M; int ldb = (TransB == CblasNoTrans) ? N : K; cublasOperation_t cuTransA = (TransA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; cublasOperation_t cuTransB = (TransB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; CUBLAS_CHECK(cublasSgemm(context->cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, N)); } template <> void Gemv<float, CUDAContext>( const CBLAS_TRANSPOSE TransA, const int M, const int N, const float alpha, const float* A, const float* x, const float beta, float* y, CUDAContext* context) { cublasOperation_t cuTransA = (TransA == CblasNoTrans) ? CUBLAS_OP_T : CUBLAS_OP_N; CUBLAS_CHECK(cublasSgemv(context->cublas_handle(), cuTransA, N, M, &alpha, A, N, x, 1, &beta, y, 1)); } namespace { template <typename T> __global__ void SetKernel(const int N, const T alpha, T* Y) { CUDA_1D_KERNEL_LOOP(i, N) { Y[i] = alpha; } } } // namespace #define CAFFE2_SPECIALIZED_CUDA_SET(T) \ template <> \ void Set<T, CUDAContext>(const int N, const T alpha, T *Y, \ CUDAContext* context) { \ SetKernel<<<CAFFE_GET_BLOCKS(N), CAFFE_CUDA_NUM_THREADS, \ 0, context->cuda_stream()>>>(N, alpha, Y); \ } CAFFE2_SPECIALIZED_CUDA_SET(float); CAFFE2_SPECIALIZED_CUDA_SET(double); CAFFE2_SPECIALIZED_CUDA_SET(int); #undef CAFFE2_SPECIALIZED_CUDA_SET namespace { template <typename T> __global__ void UniformShift(const int N, const T min, const T max, T* x) { T scale = max - min; CUDA_1D_KERNEL_LOOP(i, N) { x[i] = x[i] * scale + min; } } } // namespace template <> void RandUniform<float, CUDAContext>( const int n, const float min, const float max, float* r, CUDAContext* context) { CURAND_CHECK(curandGenerateUniform(context->curand_generator(), r, n)); UniformShift<float><<<CAFFE_GET_BLOCKS(n), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(n, min, max, r); } template <> void RandUniform<double, CUDAContext>( const int n, const double min, const double max, double* r, CUDAContext* context) { CURAND_CHECK(curandGenerateUniformDouble(context->curand_generator(), r, n)); UniformShift<double><<<CAFFE_GET_BLOCKS(n), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(n, min, max, r); } template <> void RandGaussian<float, CUDAContext>( const int n, const float mean, const float std, float* r, CUDAContext* context) { CURAND_CHECK(curandGenerateNormal( context->curand_generator(), r, n, mean, std)); } template <> void RandGaussian<double, CUDAContext>( const int n, const double mean, const double std, double* r, CUDAContext* context) { CURAND_CHECK(curandGenerateNormalDouble( context->curand_generator(), r, n, mean, std)); } template<> void Dot<float, CUDAContext>( const int n, const float* a, const float* b, float* y, CUDAContext* context) { float result; CUBLAS_CHECK(cublasSdot(context->cublas_handle(), n, a, 1, b, 1, &result)); context->Copy<float, CPUContext, CUDAContext>(1, &result, y); } template<> void Dot<double, CUDAContext>( const int n, const double* a, const double* b, double* y, CUDAContext* context) { double result; CUBLAS_CHECK(cublasDdot(context->cublas_handle(), n, a, 1, b, 1, y)); context->Copy<double, CPUContext, CUDAContext>(1, &result, y); } #define CAFFE2_MATH_SUM_FUNC(T) \ template<> \ void Sum<T, CUDAContext>(const int N, const T* x, T* y, CUDAContext* context) {\ thrust::device_ptr<const T> dev_ptr(x); \ T result = thrust::reduce( \ thrust::cuda::par.on(context->cuda_stream()), \ dev_ptr, dev_ptr + N, static_cast<T>(0), thrust::plus<T>()); \ context->Copy<T, CPUContext, CUDAContext>(1, &result, y); \ } CAFFE2_MATH_SUM_FUNC(float) CAFFE2_MATH_SUM_FUNC(double) #undef CAFFE2_MATH_SUM_FUNC namespace { template <typename T> __global__ void SelectKernel( const int N, const int D, const float* x, const int* idx, float* y) { CUDA_1D_KERNEL_LOOP(i, N) { y[i] = x[i * D + idx[i]]; } } } // namespace template <> void Select<float, CUDAContext>( const int N, const int D, const float* x, const int* idx, float* y, CUDAContext* context) { SelectKernel<float><<<CAFFE_GET_BLOCKS(N), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(N, D, x, idx, y); } namespace { template <typename T> __global__ void ScaleKernel( const int n, const T alpha, const T* x, T* y) { CUDA_1D_KERNEL_LOOP(i, n) { y[i] = x[i] * alpha; } } template <typename T> __global__ void ScaleKernelDeviceAlpha( const int n, const T* alpha, const T* x, T* y) { CUDA_1D_KERNEL_LOOP(i, n) { y[i] = x[i] * (*alpha); } } } // namespace template <> void Scale<float, CUDAContext>( const int n, const float alpha, const float *x, float* y, CUDAContext* context) { ScaleKernel<float><<<CAFFE_GET_BLOCKS(n), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(n, alpha, x, y); } template <> void Scale<double, CUDAContext>( const int n, const double alpha, const double *x, double* y, CUDAContext* context) { ScaleKernel<double><<< CAFFE_GET_BLOCKS(n), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>( n, alpha, x, y); } template <> void Scale<float, CUDAContext>( const int n, const float* alpha, const float *x, float* y, CUDAContext* context) { ScaleKernelDeviceAlpha<float><<< CAFFE_GET_BLOCKS(n), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>( n, alpha, x, y); } template <> void Scale<double, CUDAContext>( const int n, const double* alpha, const double *x, double* y, CUDAContext* context) { ScaleKernelDeviceAlpha<double><<<CAFFE_GET_BLOCKS(n), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(n, alpha, x, y); } template <> void Axpy<float, CUDAContext>(const int N, const float alpha, const float* X, float* Y, CUDAContext* context) { CUBLAS_CHECK(cublasSaxpy(context->cublas_handle(), N, &alpha, X, 1, Y, 1)); } template <> void Axpy<double, CUDAContext>( const int N, const double alpha, const double* X, double* Y, CUDAContext* context) { CUBLAS_CHECK(cublasDaxpy(context->cublas_handle(), N, &alpha, X, 1, Y, 1)); } namespace { template <typename T> __global__ void AxpyKernel(const int n, const T* a, const T* x, T* y) { CUDA_1D_KERNEL_LOOP(index, n) { y[index] += x[index] * (*a); } } } // namespace template <> void Axpy<float, CUDAContext>( const int n, const float* alpha, const float* X, float* Y, CUDAContext* context) { AxpyKernel<float><<<CAFFE_GET_BLOCKS(n), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(n, alpha, X, Y); } template <> void Axpy<double, CUDAContext>( const int n, const double* alpha, const double* X, double* Y, CUDAContext* context) { AxpyKernel<double><<<CAFFE_GET_BLOCKS(n), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(n, alpha, X, Y); } namespace { template <typename T> __global__ void AxpbyKernel(const int n, const T a, const T* x, const T b, T* y) { CUDA_1D_KERNEL_LOOP(index, n) { y[index] = x[index] * a + y[index] * b; } } } // namespace template <> void Axpby<float, CUDAContext>( const int n, const float a, const float* x, const float b, float* y, CUDAContext* context) { AxpbyKernel<float><<<CAFFE_GET_BLOCKS(n), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(n, a, x, b, y); } template <> void Axpby<double, CUDAContext>( const int n, const double a, const double* x, const double b, double* y, CUDAContext* context) { AxpbyKernel<double><<<CAFFE_GET_BLOCKS(n), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(n, a, x, b, y); } namespace { template <typename T> __global__ void im2col_gpu_kernel_nchw(const int n, const T* data_im, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_t, const int pad_l, const int stride_h, const int stride_w, const int height_col, const int width_col, T* data_col) { CUDA_1D_KERNEL_LOOP(index, n) { int w_out = index % width_col; int h_index = index / width_col; int h_out = h_index % height_col; int channel_in = h_index / height_col; int channel_out = channel_in * kernel_h * kernel_w; int h_in = h_out * stride_h - pad_t; int w_in = w_out * stride_w - pad_l; T* data_col_ptr = data_col; data_col_ptr += (channel_out * height_col + h_out) * width_col + w_out; const T* data_im_ptr = data_im; data_im_ptr += (channel_in * height + h_in) * width + w_in; for (int i = 0; i < kernel_h; ++i) { for (int j = 0; j < kernel_w; ++j) { int h = h_in + i; int w = w_in + j; *data_col_ptr = (h >= 0 && w >= 0 && h < height && w < width) ? data_im_ptr[i * width + j] : 0; data_col_ptr += height_col * width_col; } } } } template <typename T> __global__ void im2col_gpu_kernel_nhwc(const int n, const T* data_im, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_t, const int pad_l, const int stride_h, const int stride_w, const int width_col, const int channels, T* data_col) { CUDA_1D_KERNEL_LOOP(index, n) { int channel_in = index % channels; int w_out = index / channels % width_col; int h_out = index / channels / width_col; int h_in = h_out * stride_h - pad_t; int w_in = w_out * stride_w - pad_l; T* local_data_col = data_col + ((h_out * width_col) + w_out) * channels * kernel_h * kernel_w + channel_in; for (int i = 0; i < kernel_h; ++i) { int h = h_in + i; for (int j = 0; j < kernel_w; ++j) { int w = w_in + j; *local_data_col = (h >= 0 && w >= 0 && h < height && w < width) ? data_im[(h * width + w) * channels + channel_in] : 0; local_data_col += channels; } } } } template <typename T> __global__ void col2im_gpu_kernel_nchw(const int n, const T* data_col, const int height, const int width, const int patch_h, const int patch_w, const int pad_t, const int pad_l, const int stride_h, const int stride_w, const int height_col, const int width_col, T* data_im) { CUDA_1D_KERNEL_LOOP(index, n) { T val = 0; int w = index % width + pad_l; int h = (index / width) % height + pad_t; int c = index / (width * height); // compute the start and end of the output int w_col_start = (w < patch_w) ? 0 : (w - patch_w) / stride_w + 1; int w_col_end = min(w / stride_w + 1, width_col); int h_col_start = (h < patch_h) ? 0 : (h - patch_h) / stride_h + 1; int h_col_end = min(h / stride_h + 1, height_col); int offset = (c * patch_h * patch_w + h * patch_w + w) * height_col * width_col; int coeff_h_col = (1 - stride_h * patch_w * height_col) * width_col; int coeff_w_col = (1 - stride_w * height_col * width_col); for (int h_col = h_col_start; h_col < h_col_end; ++h_col) { for (int w_col = w_col_start; w_col < w_col_end; ++w_col) { val += data_col[offset + h_col * coeff_h_col + w_col * coeff_w_col]; } } data_im[index] = val; } } template <typename T> __global__ void col2im_gpu_kernel_nhwc(const int n, const T* data_col, const int width, const int channels, const int patch_h, const int patch_w, const int pad_t, const int pad_l, const int stride_h, const int stride_w, const int height_col, const int width_col, T* data_im) { CUDA_1D_KERNEL_LOOP(index, n) { T val = 0; int c = index % channels; int w = index / channels % width + pad_l; int h = index / channels / width + pad_t; // compute the start and end of the output int w_col_start = (w < patch_w) ? 0 : (w - patch_w) / stride_w + 1; int w_col_end = min(w / stride_w + 1, width_col); int h_col_start = (h < patch_h) ? 0 : (h - patch_h) / stride_h + 1; int h_col_end = min(h / stride_h + 1, height_col); int channels_col = patch_h * patch_w * channels; /* for (int h_col = h_col_start; h_col < h_col_end; ++h_col) { for (int w_col = w_col_start; w_col < w_col_end; ++w_col) { int c_col = ((h - h_col * stride_h) * patch_w + w - w_col * stride_w) * channels + c; val += data_col[(h_col * width_col + w_col) * channels_col + c_col]; } } */ // Equivalent of above int offset = (h * patch_w + w) * channels + c; int coeff_h_col = width_col * channels_col - stride_h * patch_w * channels; int coeff_w_col = channels_col - stride_w * channels; for (int h_col = h_col_start; h_col < h_col_end; ++h_col) { for (int w_col = w_col_start; w_col < w_col_end; ++w_col) { val += data_col[offset + h_col * coeff_h_col + w_col * coeff_w_col]; } } data_im[index] = val; } } } // namespace template <> void Im2col<float, CUDAContext, StorageOrder::NCHW>( const float* data_im, const int channels, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_t, const int pad_l, const int pad_b, const int pad_r, const int stride_h, const int stride_w, float* data_col, CUDAContext* context) { // We are going to launch channels * height_col * width_col kernels, each // kernel responsible for copying a single-channel grid. int height_col = (height + pad_t + pad_b - kernel_h) / stride_h + 1; int width_col = (width + pad_l + pad_r - kernel_w) / stride_w + 1; int num_kernels = channels * height_col * width_col; // NOLINT_NEXT_LINE(whitespace/operators) im2col_gpu_kernel_nchw<float><<<CAFFE_GET_BLOCKS(num_kernels), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>( num_kernels, data_im, height, width, kernel_h, kernel_w, pad_t, pad_l, stride_h, stride_w, height_col, width_col, data_col); } template <> void Im2col<float, CUDAContext, StorageOrder::NHWC>( const float* data_im, const int channels, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_t, const int pad_l, const int pad_b, const int pad_r, const int stride_h, const int stride_w, float* data_col, CUDAContext* context) { // We are going to launch height_col * width_col * channels kernels, each // kernel responsible for copying a single-channel grid. int height_col = (height + pad_t + pad_b - kernel_h) / stride_h + 1; int width_col = (width + pad_l + pad_r - kernel_w) / stride_w + 1; int num_kernels = height_col * width_col * channels; // NOLINT_NEXT_LINE(whitespace/operators) im2col_gpu_kernel_nhwc<float><<<CAFFE_GET_BLOCKS(num_kernels), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>( num_kernels, data_im, height, width, kernel_h, kernel_w, pad_t, pad_l, stride_h, stride_w, width_col, channels, data_col); } template <> void Col2im<float, CUDAContext, StorageOrder::NCHW>( const float* data_col, const int channels, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_t, const int pad_l, const int pad_b, const int pad_r, const int stride_h, const int stride_w, float* data_im, CUDAContext* context) { int height_col = (height + pad_t + pad_b - kernel_h) / stride_h + 1; int width_col = (width + pad_l + pad_r - kernel_w) / stride_w + 1; int num_kernels = channels * height * width; // To avoid involving atomic operations, we will launch one kernel per // bottom dimension, and then in the kernel add up the top dimensions. col2im_gpu_kernel_nchw<float><<<CAFFE_GET_BLOCKS(num_kernels), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>( num_kernels, data_col, height, width, kernel_h, kernel_w, pad_t, pad_l, stride_h, stride_w, height_col, width_col, data_im); } template <> void Col2im<float, CUDAContext, StorageOrder::NHWC>( const float* data_col, const int channels, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_t, const int pad_l, const int pad_b, const int pad_r, const int stride_h, const int stride_w, float* data_im, CUDAContext* context) { int height_col = (height + pad_t + pad_b - kernel_h) / stride_h + 1; int width_col = (width + pad_l + pad_r - kernel_w) / stride_w + 1; int num_kernels = height * width * channels; // To avoid involving atomic operations, we will launch one kernel per // bottom dimension, and then in the kernel add up the top dimensions. col2im_gpu_kernel_nhwc<float><<<CAFFE_GET_BLOCKS(num_kernels), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>( num_kernels, data_col, width, channels, kernel_h, kernel_w, pad_t, pad_l, stride_h, stride_w, height_col, width_col, data_im); } namespace { __global__ void CopyMatrixKernel( const int M, const int N, const char* A, const int lda, char* B, const int ldb) { CUDA_1D_KERNEL_LOOP(i, M * N) { int r = i / N; int c = i % N; B[r * ldb + c] = A[r * lda + c]; } } } // namespace template <> void CopyMatrix<CUDAContext>( const size_t itemsize, const int M, const int N, const void* A, const int lda, void* B, const int ldb, CUDAContext* context) { CopyMatrixKernel<<<CAFFE_GET_BLOCKS(M * N), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>( M, N * itemsize, static_cast<const char*>(A), lda * itemsize, static_cast<char*>(B), ldb * itemsize); } } // namespace math } // namespace caffe2
e0dab058fe93e0302d99ffe3edfb8945cea2554b.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /* * Copyright (c) 2019, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "orc_common.h" #include "orc_gpu.h" #if (__CUDACC_VER_MAJOR__ >= 9) #define SHFL0(v) __shfl_sync(~0, v, 0) #define SHFL(v, t) __shfl_sync(~0, v, t) #define SYNCWARP() __syncwarp() #define BALLOT(v) __ballot_sync(~0, v) #else #define SHFL0(v) __shfl(v, 0) #define SHFL(v, t) __shfl(v, t) #define SYNCWARP() #define BALLOT(v) __ballot(v) #endif namespace cudf { namespace io { namespace orc { namespace gpu { struct compressed_stream_s { CompressedStreamInfo info; }; // blockDim {128,1,1} extern "C" __global__ void __launch_bounds__(128, 8) gpuParseCompressedStripeData(CompressedStreamInfo *strm_info, int32_t num_streams, uint32_t block_size, uint32_t log2maxcr) { __shared__ compressed_stream_s strm_g[4]; volatile compressed_stream_s * const s = &strm_g[threadIdx.x >> 5]; int strm_id = blockIdx.x * 4 + (threadIdx.x >> 5); int t = threadIdx.x & 0x1f; if (strm_id < num_streams && t < sizeof(CompressedStreamInfo) / sizeof(uint32_t)) { // NOTE: Assumes that sizeof(CompressedStreamInfo) <= 128 ((uint32_t *)&s->info)[t] = ((const uint32_t *)&strm_info[strm_id])[t]; } __syncthreads(); if (strm_id < num_streams) { // Walk through the compressed blocks const uint8_t *cur = s->info.compressed_data; const uint8_t *end = cur + s->info.compressed_data_size; gpu_inflate_input_s *decctl = s->info.decctl; uint8_t *uncompressed = s->info.uncompressed_data; size_t max_uncompressed_size = 0; uint32_t num_compressed_blocks = 0; while (cur + 3 < end) { uint32_t block_len = SHFL0((t == 0) ? cur[0] | (cur[1] << 8) | (cur[2] << 16) : 0); uint32_t is_uncompressed = block_len & 1; uint32_t uncompressed_size; block_len >>= 1; cur += 3; if (block_len > block_size || cur + block_len > end) { // Fatal num_compressed_blocks = 0; max_uncompressed_size = 0; break; } // TBD: For some codecs like snappy, it wouldn't be too difficult to get the actual uncompressed size and avoid waste due to block size alignment // For now, rely on the max compression ratio to limit waste for the most extreme cases (small single-block streams) uncompressed_size = (is_uncompressed) ? block_len : (block_len < (block_size >> log2maxcr)) ? block_len << log2maxcr : block_size; if (is_uncompressed) { // Copy the uncompressed data to output (not very efficient, but should only occur for small blocks and probably faster than decompression) if (uncompressed && max_uncompressed_size + uncompressed_size <= s->info.max_uncompressed_size) { for (int i = t; i < uncompressed_size; i += 32) { uncompressed[max_uncompressed_size + i] = cur[i]; } } } else if (decctl && !t && num_compressed_blocks < s->info.max_compressed_blocks) { decctl[num_compressed_blocks].srcDevice = const_cast<uint8_t *>(cur); decctl[num_compressed_blocks].srcSize = block_len; decctl[num_compressed_blocks].dstDevice = uncompressed + max_uncompressed_size; decctl[num_compressed_blocks].dstSize = uncompressed_size; } cur += block_len; max_uncompressed_size += uncompressed_size; num_compressed_blocks += 1 - is_uncompressed; } if (!t) { s->info.num_compressed_blocks = num_compressed_blocks; s->info.max_uncompressed_size = max_uncompressed_size; } } __syncthreads(); if (strm_id < num_streams && t < sizeof(CompressedStreamInfo) / sizeof(uint32_t)) { // NOTE: Assumes that sizeof(CompressedStreamInfo) <= 128 ((uint32_t *)&strm_info[strm_id])[t] = ((uint32_t *)&s->info)[t]; } } // blockDim {128,1,1} extern "C" __global__ void __launch_bounds__(128, 8) gpuPostDecompressionReassemble(CompressedStreamInfo *strm_info, int32_t num_streams) { __shared__ compressed_stream_s strm_g[4]; volatile compressed_stream_s * const s = &strm_g[threadIdx.x >> 5]; int strm_id = blockIdx.x * 4 + (threadIdx.x >> 5); int t = threadIdx.x & 0x1f; if (strm_id < num_streams && t < sizeof(CompressedStreamInfo) / sizeof(uint32_t)) { // NOTE: Assumes that sizeof(CompressedStreamInfo) <= 128 ((uint32_t *)&s->info)[t] = ((const uint32_t *)&strm_info[strm_id])[t]; } __syncthreads(); if (strm_id < num_streams && s->info.max_compressed_blocks > 0 && s->info.max_uncompressed_size > 0) { // Walk through the compressed blocks const uint8_t *cur = s->info.compressed_data; const uint8_t *end = cur + s->info.compressed_data_size; const gpu_inflate_input_s *dec_in = s->info.decctl; const gpu_inflate_status_s *dec_out = s->info.decstatus; uint8_t *uncompressed_actual = s->info.uncompressed_data; uint8_t *uncompressed_estimated = uncompressed_actual; uint32_t num_compressed_blocks = 0; uint32_t max_compressed_blocks = min(s->info.num_compressed_blocks, s->info.max_compressed_blocks); while (cur + 3 < end) { uint32_t block_len = SHFL0((t == 0) ? cur[0] | (cur[1] << 8) | (cur[2] << 16) : 0); uint32_t is_uncompressed = block_len & 1; uint32_t uncompressed_size_est, uncompressed_size_actual; block_len >>= 1; cur += 3; if (cur + block_len > end) { break; } if (is_uncompressed) { uncompressed_size_est = block_len; uncompressed_size_actual = block_len; } else { if (num_compressed_blocks > max_compressed_blocks) { break; } if (SHFL0((t == 0) ? dec_out[num_compressed_blocks].status : 0) != 0) { // Decompression failed, not much point in doing anything else break; } uncompressed_size_est = SHFL0((t == 0) ? *(const uint32_t *)&dec_in[num_compressed_blocks].dstSize : 0); uncompressed_size_actual = SHFL0((t == 0) ? *(const uint32_t *)&dec_out[num_compressed_blocks].bytes_written : 0); } // In practice, this should never happen with a well-behaved writer, as we would expect the uncompressed size to always be equal to // the compression block size except for the last block if (uncompressed_actual < uncompressed_estimated) { // warp-level memmove for (int i = t; i < (int)uncompressed_size_actual; i += 32) { uncompressed_actual[i] = uncompressed_estimated[i]; } } cur += block_len; num_compressed_blocks += 1 - is_uncompressed; uncompressed_estimated += uncompressed_size_est; uncompressed_actual += uncompressed_size_actual; } // Update info with actual uncompressed size if (!t) { size_t total_uncompressed_size = uncompressed_actual - s->info.uncompressed_data; // Set uncompressed size to zero if there were any errors strm_info[strm_id].max_uncompressed_size = (num_compressed_blocks == s->info.num_compressed_blocks) ? total_uncompressed_size : 0; } } } /** * @brief Shared mem state for gpuParseRowGroupIndex * */ struct rowindex_state_s { ColumnDesc chunk; uint32_t rowgroup_start; uint32_t rowgroup_end; int is_compressed; uint32_t row_index_entry[3][CI_PRESENT]; // NOTE: Assumes CI_PRESENT follows CI_DATA and CI_DATA2 CompressedStreamInfo strm_info[2]; RowGroup rowgroups[128]; uint32_t compressed_offset[128][2]; }; #define PB_ROWINDEXENTRY_ID ((1*8) + PB_TYPE_FIXEDLEN) enum row_entry_state_e { NOT_FOUND = 0, GET_LENGTH, SKIP_VARINT, SKIP_FIXEDLEN, STORE_INDEX0, STORE_INDEX1, STORE_INDEX2, }; /** * @brief Decode a single row group index entry * * @param[in,out] s row group index state * @param[in] start start position in byte stream * @param[in] end end of byte stream * @return bytes consumed * **/ static uint32_t __device__ ProtobufParseRowIndexEntry(rowindex_state_s *s, const uint8_t *start, const uint8_t *end) { const uint8_t *cur = start; row_entry_state_e state = NOT_FOUND; uint32_t length = 0, strm_idx_id = s->chunk.skip_count >> 8, idx_id = 1, ci_id = CI_PRESENT, pos_end = 0; while (cur < end) { uint32_t v = 0; for (uint32_t l = 0; l <= 28; l += 7) { uint32_t c = (cur < end) ? *cur++ : 0; v |= (c & 0x7f) << l; if (c <= 0x7f) break; } switch (state) { case NOT_FOUND: if (v == PB_ROWINDEXENTRY_ID) { state = GET_LENGTH; } else { v &= 7; if (v == PB_TYPE_FIXED64) cur += 8; else if (v == PB_TYPE_FIXED32) cur += 4; else if (v == PB_TYPE_VARINT) state = SKIP_VARINT; else if (v == PB_TYPE_FIXEDLEN) state = SKIP_FIXEDLEN; } break; case SKIP_VARINT: state = NOT_FOUND; break; case SKIP_FIXEDLEN: cur += v; state = NOT_FOUND; break; case GET_LENGTH: if (length == 0) { length = (uint32_t)(cur + v - start); state = NOT_FOUND; // Scan for positions (same field id & low-level type as RowIndexEntry entry) } else { pos_end = min((uint32_t)(cur + v - start), length); state = STORE_INDEX0; } break; case STORE_INDEX0: ci_id = (idx_id == (strm_idx_id & 0xff)) ? CI_DATA : (idx_id == ((strm_idx_id >> 8) & 0xff)) ? CI_DATA2 : CI_PRESENT; idx_id++; if (s->is_compressed) { if (ci_id < CI_PRESENT) s->row_index_entry[0][ci_id] = v; if (cur >= start + pos_end) return length; state = STORE_INDEX1; break; } else { if (ci_id < CI_PRESENT) s->row_index_entry[0][ci_id] = 0; // Fall through to STORE_INDEX1 for uncompressed (always block0) } case STORE_INDEX1: if (ci_id < CI_PRESENT) s->row_index_entry[1][ci_id] = v; if (cur >= start + pos_end) return length; state = (ci_id == CI_DATA && s->chunk.encoding_kind != DICTIONARY && s->chunk.encoding_kind != DICTIONARY_V2 && (s->chunk.type_kind == STRING || s->chunk.type_kind == BINARY || s->chunk.type_kind == VARCHAR || s->chunk.type_kind == CHAR || s->chunk.type_kind == DECIMAL || s->chunk.type_kind == FLOAT || s->chunk.type_kind == DOUBLE)) ? STORE_INDEX0 : STORE_INDEX2; break; case STORE_INDEX2: if (ci_id < CI_PRESENT) s->row_index_entry[2][ci_id] = v; // Boolean columns have an extra byte to indicate the position of the bit within the byte // TODO: Currently assuming rowIndexStride is a multiple of 8 and ignoring this value if (ci_id == CI_PRESENT || s->chunk.type_kind == BOOLEAN) cur++; if (cur >= start + pos_end) return length; state = STORE_INDEX0; break; } } return (uint32_t)(end - start); } /** * @brief Decode row group index entries * * @param[in,out] s row group index state * @param[in] num_rowgroups Number of index entries to read * **/ static __device__ void gpuReadRowGroupIndexEntries(rowindex_state_s *s, int num_rowgroups) { const uint8_t *index_data = s->chunk.streams[CI_INDEX]; int index_data_len = s->chunk.strm_len[CI_INDEX]; for (int i = 0; i < num_rowgroups; i++) { s->row_index_entry[0][0] = 0; s->row_index_entry[0][1] = 0; s->row_index_entry[1][0] = 0; s->row_index_entry[1][1] = 0; s->row_index_entry[2][0] = 0; s->row_index_entry[2][1] = 0; if (index_data_len > 0) { int len = ProtobufParseRowIndexEntry(s, index_data, index_data + index_data_len); index_data += len; index_data_len = max(index_data_len - len, 0); for (int j = 0; j < 2; j++) { s->rowgroups[i].strm_offset[j] = s->row_index_entry[1][j]; s->rowgroups[i].run_pos[j] = s->row_index_entry[2][j]; s->compressed_offset[i][j] = s->row_index_entry[0][j]; } } } s->chunk.streams[CI_INDEX] = index_data; s->chunk.strm_len[CI_INDEX] = index_data_len; } /** * @brief Translate block+offset compressed position into an uncompressed offset * * @param[in,out] s row group index state * @param[in] ci_id index to convert (CI_DATA or CI_DATA2) * @param[in] num_rowgroups Number of index entries * @param[in] t thread id * **/ static __device__ void gpuMapRowIndexToUncompressed(rowindex_state_s *s, int ci_id, int num_rowgroups, int t) { int32_t strm_len = s->chunk.strm_len[ci_id]; if (strm_len > 0) { int32_t compressed_offset = (t < num_rowgroups) ? s->compressed_offset[t][ci_id] : 0; if (compressed_offset > 0) { const uint8_t *start = s->strm_info[ci_id].compressed_data; const uint8_t *cur = start; const uint8_t *end = cur + s->strm_info[ci_id].compressed_data_size; gpu_inflate_status_s *decstatus = s->strm_info[ci_id].decstatus; uint32_t uncomp_offset = 0; for (;;) { uint32_t block_len, is_uncompressed; if (cur + 3 > end || cur + 3 >= start + compressed_offset) { break; } block_len = cur[0] | (cur[1] << 8) | (cur[2] << 16); cur += 3; is_uncompressed = block_len & 1; block_len >>= 1; cur += block_len; if (cur > end) { break; } if (is_uncompressed) { uncomp_offset += block_len; } else { uncomp_offset += decstatus->bytes_written; decstatus++; } } s->rowgroups[t].strm_offset[ci_id] += uncomp_offset; } } } /** * @brief Decode index streams * * @param[out] row_groups RowGroup device array [rowgroup][column] * @param[in] strm_info List of compressed streams (or NULL if uncompressed) * @param[in] chunks ColumnDesc device array [stripe][column] * @param[in] num_columns Number of columns * @param[in] num_stripes Number of stripes * @param[in] num_rowgroups Number of row groups * **/ // blockDim {128,1,1} extern "C" __global__ void __launch_bounds__(128, 8) gpuParseRowGroupIndex(RowGroup *row_groups, CompressedStreamInfo *strm_info, ColumnDesc *chunks, uint32_t num_columns, uint32_t num_stripes, uint32_t num_rowgroups, uint32_t rowidx_stride) { __shared__ __align__(16) rowindex_state_s state_g; rowindex_state_s * const s = &state_g; uint32_t chunk_id = blockIdx.y * num_columns + blockIdx.x; int t = threadIdx.x; if (t < sizeof(ColumnDesc) / sizeof(uint32_t)) { // NOTE: Assumes that sizeof(ColumnDesc) <= 128x4 ((volatile uint32_t *)&s->chunk)[t] = ((const uint32_t *)&chunks[chunk_id])[t]; } __syncthreads(); if (strm_info) { int strm_len = s->chunk.strm_len[t >> 6]; int strm_id = s->chunk.strm_id[t >> 6]; int t6 = t & 0x3f; if (strm_len > 0 && t6 < sizeof(CompressedStreamInfo) / sizeof(uint32_t)) { ((volatile uint32_t *)&s->strm_info[t >> 6])[t6] = ((const uint32_t *)&strm_info[strm_id])[t6]; } } if (t == 0) { uint32_t rowgroups_in_chunk = (rowidx_stride > 0) ? (s->chunk.num_rows + rowidx_stride - 1) / rowidx_stride : 1; s->rowgroup_start = s->chunk.rowgroup_id; s->rowgroup_end = s->rowgroup_start + rowgroups_in_chunk; s->is_compressed = (strm_info != NULL); } __syncthreads(); while (s->rowgroup_start < s->rowgroup_end) { int num_rowgroups = min(s->rowgroup_end - s->rowgroup_start, 128); int rowgroup_size4, t4, t32; s->rowgroups[t].chunk_id = chunk_id; if (t == 0) { gpuReadRowGroupIndexEntries(s, num_rowgroups); } __syncthreads(); if (s->is_compressed) { // Convert the block + blk_offset pair into a raw offset into the decompressed stream if (s->chunk.strm_len[CI_DATA] > 0) { gpuMapRowIndexToUncompressed(s, CI_DATA, num_rowgroups, t); } if (s->chunk.strm_len[CI_DATA2] > 0) { gpuMapRowIndexToUncompressed(s, CI_DATA2, num_rowgroups, t); } __syncthreads(); } rowgroup_size4 = sizeof(RowGroup) / sizeof(uint32_t); t4 = t & 3; t32 = t >> 2; for (int i = t32; i < num_rowgroups; i += 32) { for (int j = t4; j < rowgroup_size4; j += 4) { ((uint32_t *)&row_groups[(s->rowgroup_start + i) * num_columns + blockIdx.x])[j] = ((volatile uint32_t *)&s->rowgroups[i])[j]; } } __syncthreads(); if (t == 0) { s->rowgroup_start += num_rowgroups; } __syncthreads(); } } hipError_t __host__ ParseCompressedStripeData(CompressedStreamInfo *strm_info, int32_t num_streams, uint32_t compression_block_size, uint32_t log2maxcr, hipStream_t stream) { dim3 dim_block(128, 1); dim3 dim_grid((num_streams + 3) >> 2, 1); // 1 stream per warp, 4 warps per block hipLaunchKernelGGL(( gpuParseCompressedStripeData) , dim3(dim_grid), dim3(dim_block), 0, stream , strm_info, num_streams, compression_block_size, log2maxcr); return hipSuccess; } hipError_t __host__ PostDecompressionReassemble(CompressedStreamInfo *strm_info, int32_t num_streams, hipStream_t stream) { dim3 dim_block(128, 1); dim3 dim_grid((num_streams + 3) >> 2, 1); // 1 stream per warp, 4 warps per block hipLaunchKernelGGL(( gpuPostDecompressionReassemble) , dim3(dim_grid), dim3(dim_block), 0, stream , strm_info, num_streams); return hipSuccess; } /** * @brief Launches kernel for constructing rowgroup from index streams * * @param[out] row_groups RowGroup device array [rowgroup][column] * @param[in] strm_info List of compressed streams (or NULL if uncompressed) * @param[in] chunks ColumnDesc device array [stripe][column] * @param[in] num_columns Number of columns * @param[in] num_stripes Number of stripes * @param[in] num_rowgroups Number of row groups * @param[in] stream CUDA stream to use, default 0 * * @return hipSuccess if successful, a CUDA error code otherwise **/ hipError_t __host__ ParseRowGroupIndex(RowGroup *row_groups, CompressedStreamInfo *strm_info, ColumnDesc *chunks, uint32_t num_columns, uint32_t num_stripes, uint32_t num_rowgroups, uint32_t rowidx_stride, hipStream_t stream) { dim3 dim_block(128, 1); dim3 dim_grid(num_columns, num_stripes); // 1 column chunk per block hipLaunchKernelGGL(( gpuParseRowGroupIndex) , dim3(dim_grid), dim3(dim_block), 0, stream , row_groups, strm_info, chunks, num_columns, num_stripes, num_rowgroups, rowidx_stride); return hipSuccess; } } // namespace gpu } // namespace orc } // namespace io } // namespace cudf
e0dab058fe93e0302d99ffe3edfb8945cea2554b.cu
/* * Copyright (c) 2019, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "orc_common.h" #include "orc_gpu.h" #if (__CUDACC_VER_MAJOR__ >= 9) #define SHFL0(v) __shfl_sync(~0, v, 0) #define SHFL(v, t) __shfl_sync(~0, v, t) #define SYNCWARP() __syncwarp() #define BALLOT(v) __ballot_sync(~0, v) #else #define SHFL0(v) __shfl(v, 0) #define SHFL(v, t) __shfl(v, t) #define SYNCWARP() #define BALLOT(v) __ballot(v) #endif namespace cudf { namespace io { namespace orc { namespace gpu { struct compressed_stream_s { CompressedStreamInfo info; }; // blockDim {128,1,1} extern "C" __global__ void __launch_bounds__(128, 8) gpuParseCompressedStripeData(CompressedStreamInfo *strm_info, int32_t num_streams, uint32_t block_size, uint32_t log2maxcr) { __shared__ compressed_stream_s strm_g[4]; volatile compressed_stream_s * const s = &strm_g[threadIdx.x >> 5]; int strm_id = blockIdx.x * 4 + (threadIdx.x >> 5); int t = threadIdx.x & 0x1f; if (strm_id < num_streams && t < sizeof(CompressedStreamInfo) / sizeof(uint32_t)) { // NOTE: Assumes that sizeof(CompressedStreamInfo) <= 128 ((uint32_t *)&s->info)[t] = ((const uint32_t *)&strm_info[strm_id])[t]; } __syncthreads(); if (strm_id < num_streams) { // Walk through the compressed blocks const uint8_t *cur = s->info.compressed_data; const uint8_t *end = cur + s->info.compressed_data_size; gpu_inflate_input_s *decctl = s->info.decctl; uint8_t *uncompressed = s->info.uncompressed_data; size_t max_uncompressed_size = 0; uint32_t num_compressed_blocks = 0; while (cur + 3 < end) { uint32_t block_len = SHFL0((t == 0) ? cur[0] | (cur[1] << 8) | (cur[2] << 16) : 0); uint32_t is_uncompressed = block_len & 1; uint32_t uncompressed_size; block_len >>= 1; cur += 3; if (block_len > block_size || cur + block_len > end) { // Fatal num_compressed_blocks = 0; max_uncompressed_size = 0; break; } // TBD: For some codecs like snappy, it wouldn't be too difficult to get the actual uncompressed size and avoid waste due to block size alignment // For now, rely on the max compression ratio to limit waste for the most extreme cases (small single-block streams) uncompressed_size = (is_uncompressed) ? block_len : (block_len < (block_size >> log2maxcr)) ? block_len << log2maxcr : block_size; if (is_uncompressed) { // Copy the uncompressed data to output (not very efficient, but should only occur for small blocks and probably faster than decompression) if (uncompressed && max_uncompressed_size + uncompressed_size <= s->info.max_uncompressed_size) { for (int i = t; i < uncompressed_size; i += 32) { uncompressed[max_uncompressed_size + i] = cur[i]; } } } else if (decctl && !t && num_compressed_blocks < s->info.max_compressed_blocks) { decctl[num_compressed_blocks].srcDevice = const_cast<uint8_t *>(cur); decctl[num_compressed_blocks].srcSize = block_len; decctl[num_compressed_blocks].dstDevice = uncompressed + max_uncompressed_size; decctl[num_compressed_blocks].dstSize = uncompressed_size; } cur += block_len; max_uncompressed_size += uncompressed_size; num_compressed_blocks += 1 - is_uncompressed; } if (!t) { s->info.num_compressed_blocks = num_compressed_blocks; s->info.max_uncompressed_size = max_uncompressed_size; } } __syncthreads(); if (strm_id < num_streams && t < sizeof(CompressedStreamInfo) / sizeof(uint32_t)) { // NOTE: Assumes that sizeof(CompressedStreamInfo) <= 128 ((uint32_t *)&strm_info[strm_id])[t] = ((uint32_t *)&s->info)[t]; } } // blockDim {128,1,1} extern "C" __global__ void __launch_bounds__(128, 8) gpuPostDecompressionReassemble(CompressedStreamInfo *strm_info, int32_t num_streams) { __shared__ compressed_stream_s strm_g[4]; volatile compressed_stream_s * const s = &strm_g[threadIdx.x >> 5]; int strm_id = blockIdx.x * 4 + (threadIdx.x >> 5); int t = threadIdx.x & 0x1f; if (strm_id < num_streams && t < sizeof(CompressedStreamInfo) / sizeof(uint32_t)) { // NOTE: Assumes that sizeof(CompressedStreamInfo) <= 128 ((uint32_t *)&s->info)[t] = ((const uint32_t *)&strm_info[strm_id])[t]; } __syncthreads(); if (strm_id < num_streams && s->info.max_compressed_blocks > 0 && s->info.max_uncompressed_size > 0) { // Walk through the compressed blocks const uint8_t *cur = s->info.compressed_data; const uint8_t *end = cur + s->info.compressed_data_size; const gpu_inflate_input_s *dec_in = s->info.decctl; const gpu_inflate_status_s *dec_out = s->info.decstatus; uint8_t *uncompressed_actual = s->info.uncompressed_data; uint8_t *uncompressed_estimated = uncompressed_actual; uint32_t num_compressed_blocks = 0; uint32_t max_compressed_blocks = min(s->info.num_compressed_blocks, s->info.max_compressed_blocks); while (cur + 3 < end) { uint32_t block_len = SHFL0((t == 0) ? cur[0] | (cur[1] << 8) | (cur[2] << 16) : 0); uint32_t is_uncompressed = block_len & 1; uint32_t uncompressed_size_est, uncompressed_size_actual; block_len >>= 1; cur += 3; if (cur + block_len > end) { break; } if (is_uncompressed) { uncompressed_size_est = block_len; uncompressed_size_actual = block_len; } else { if (num_compressed_blocks > max_compressed_blocks) { break; } if (SHFL0((t == 0) ? dec_out[num_compressed_blocks].status : 0) != 0) { // Decompression failed, not much point in doing anything else break; } uncompressed_size_est = SHFL0((t == 0) ? *(const uint32_t *)&dec_in[num_compressed_blocks].dstSize : 0); uncompressed_size_actual = SHFL0((t == 0) ? *(const uint32_t *)&dec_out[num_compressed_blocks].bytes_written : 0); } // In practice, this should never happen with a well-behaved writer, as we would expect the uncompressed size to always be equal to // the compression block size except for the last block if (uncompressed_actual < uncompressed_estimated) { // warp-level memmove for (int i = t; i < (int)uncompressed_size_actual; i += 32) { uncompressed_actual[i] = uncompressed_estimated[i]; } } cur += block_len; num_compressed_blocks += 1 - is_uncompressed; uncompressed_estimated += uncompressed_size_est; uncompressed_actual += uncompressed_size_actual; } // Update info with actual uncompressed size if (!t) { size_t total_uncompressed_size = uncompressed_actual - s->info.uncompressed_data; // Set uncompressed size to zero if there were any errors strm_info[strm_id].max_uncompressed_size = (num_compressed_blocks == s->info.num_compressed_blocks) ? total_uncompressed_size : 0; } } } /** * @brief Shared mem state for gpuParseRowGroupIndex * */ struct rowindex_state_s { ColumnDesc chunk; uint32_t rowgroup_start; uint32_t rowgroup_end; int is_compressed; uint32_t row_index_entry[3][CI_PRESENT]; // NOTE: Assumes CI_PRESENT follows CI_DATA and CI_DATA2 CompressedStreamInfo strm_info[2]; RowGroup rowgroups[128]; uint32_t compressed_offset[128][2]; }; #define PB_ROWINDEXENTRY_ID ((1*8) + PB_TYPE_FIXEDLEN) enum row_entry_state_e { NOT_FOUND = 0, GET_LENGTH, SKIP_VARINT, SKIP_FIXEDLEN, STORE_INDEX0, STORE_INDEX1, STORE_INDEX2, }; /** * @brief Decode a single row group index entry * * @param[in,out] s row group index state * @param[in] start start position in byte stream * @param[in] end end of byte stream * @return bytes consumed * **/ static uint32_t __device__ ProtobufParseRowIndexEntry(rowindex_state_s *s, const uint8_t *start, const uint8_t *end) { const uint8_t *cur = start; row_entry_state_e state = NOT_FOUND; uint32_t length = 0, strm_idx_id = s->chunk.skip_count >> 8, idx_id = 1, ci_id = CI_PRESENT, pos_end = 0; while (cur < end) { uint32_t v = 0; for (uint32_t l = 0; l <= 28; l += 7) { uint32_t c = (cur < end) ? *cur++ : 0; v |= (c & 0x7f) << l; if (c <= 0x7f) break; } switch (state) { case NOT_FOUND: if (v == PB_ROWINDEXENTRY_ID) { state = GET_LENGTH; } else { v &= 7; if (v == PB_TYPE_FIXED64) cur += 8; else if (v == PB_TYPE_FIXED32) cur += 4; else if (v == PB_TYPE_VARINT) state = SKIP_VARINT; else if (v == PB_TYPE_FIXEDLEN) state = SKIP_FIXEDLEN; } break; case SKIP_VARINT: state = NOT_FOUND; break; case SKIP_FIXEDLEN: cur += v; state = NOT_FOUND; break; case GET_LENGTH: if (length == 0) { length = (uint32_t)(cur + v - start); state = NOT_FOUND; // Scan for positions (same field id & low-level type as RowIndexEntry entry) } else { pos_end = min((uint32_t)(cur + v - start), length); state = STORE_INDEX0; } break; case STORE_INDEX0: ci_id = (idx_id == (strm_idx_id & 0xff)) ? CI_DATA : (idx_id == ((strm_idx_id >> 8) & 0xff)) ? CI_DATA2 : CI_PRESENT; idx_id++; if (s->is_compressed) { if (ci_id < CI_PRESENT) s->row_index_entry[0][ci_id] = v; if (cur >= start + pos_end) return length; state = STORE_INDEX1; break; } else { if (ci_id < CI_PRESENT) s->row_index_entry[0][ci_id] = 0; // Fall through to STORE_INDEX1 for uncompressed (always block0) } case STORE_INDEX1: if (ci_id < CI_PRESENT) s->row_index_entry[1][ci_id] = v; if (cur >= start + pos_end) return length; state = (ci_id == CI_DATA && s->chunk.encoding_kind != DICTIONARY && s->chunk.encoding_kind != DICTIONARY_V2 && (s->chunk.type_kind == STRING || s->chunk.type_kind == BINARY || s->chunk.type_kind == VARCHAR || s->chunk.type_kind == CHAR || s->chunk.type_kind == DECIMAL || s->chunk.type_kind == FLOAT || s->chunk.type_kind == DOUBLE)) ? STORE_INDEX0 : STORE_INDEX2; break; case STORE_INDEX2: if (ci_id < CI_PRESENT) s->row_index_entry[2][ci_id] = v; // Boolean columns have an extra byte to indicate the position of the bit within the byte // TODO: Currently assuming rowIndexStride is a multiple of 8 and ignoring this value if (ci_id == CI_PRESENT || s->chunk.type_kind == BOOLEAN) cur++; if (cur >= start + pos_end) return length; state = STORE_INDEX0; break; } } return (uint32_t)(end - start); } /** * @brief Decode row group index entries * * @param[in,out] s row group index state * @param[in] num_rowgroups Number of index entries to read * **/ static __device__ void gpuReadRowGroupIndexEntries(rowindex_state_s *s, int num_rowgroups) { const uint8_t *index_data = s->chunk.streams[CI_INDEX]; int index_data_len = s->chunk.strm_len[CI_INDEX]; for (int i = 0; i < num_rowgroups; i++) { s->row_index_entry[0][0] = 0; s->row_index_entry[0][1] = 0; s->row_index_entry[1][0] = 0; s->row_index_entry[1][1] = 0; s->row_index_entry[2][0] = 0; s->row_index_entry[2][1] = 0; if (index_data_len > 0) { int len = ProtobufParseRowIndexEntry(s, index_data, index_data + index_data_len); index_data += len; index_data_len = max(index_data_len - len, 0); for (int j = 0; j < 2; j++) { s->rowgroups[i].strm_offset[j] = s->row_index_entry[1][j]; s->rowgroups[i].run_pos[j] = s->row_index_entry[2][j]; s->compressed_offset[i][j] = s->row_index_entry[0][j]; } } } s->chunk.streams[CI_INDEX] = index_data; s->chunk.strm_len[CI_INDEX] = index_data_len; } /** * @brief Translate block+offset compressed position into an uncompressed offset * * @param[in,out] s row group index state * @param[in] ci_id index to convert (CI_DATA or CI_DATA2) * @param[in] num_rowgroups Number of index entries * @param[in] t thread id * **/ static __device__ void gpuMapRowIndexToUncompressed(rowindex_state_s *s, int ci_id, int num_rowgroups, int t) { int32_t strm_len = s->chunk.strm_len[ci_id]; if (strm_len > 0) { int32_t compressed_offset = (t < num_rowgroups) ? s->compressed_offset[t][ci_id] : 0; if (compressed_offset > 0) { const uint8_t *start = s->strm_info[ci_id].compressed_data; const uint8_t *cur = start; const uint8_t *end = cur + s->strm_info[ci_id].compressed_data_size; gpu_inflate_status_s *decstatus = s->strm_info[ci_id].decstatus; uint32_t uncomp_offset = 0; for (;;) { uint32_t block_len, is_uncompressed; if (cur + 3 > end || cur + 3 >= start + compressed_offset) { break; } block_len = cur[0] | (cur[1] << 8) | (cur[2] << 16); cur += 3; is_uncompressed = block_len & 1; block_len >>= 1; cur += block_len; if (cur > end) { break; } if (is_uncompressed) { uncomp_offset += block_len; } else { uncomp_offset += decstatus->bytes_written; decstatus++; } } s->rowgroups[t].strm_offset[ci_id] += uncomp_offset; } } } /** * @brief Decode index streams * * @param[out] row_groups RowGroup device array [rowgroup][column] * @param[in] strm_info List of compressed streams (or NULL if uncompressed) * @param[in] chunks ColumnDesc device array [stripe][column] * @param[in] num_columns Number of columns * @param[in] num_stripes Number of stripes * @param[in] num_rowgroups Number of row groups * **/ // blockDim {128,1,1} extern "C" __global__ void __launch_bounds__(128, 8) gpuParseRowGroupIndex(RowGroup *row_groups, CompressedStreamInfo *strm_info, ColumnDesc *chunks, uint32_t num_columns, uint32_t num_stripes, uint32_t num_rowgroups, uint32_t rowidx_stride) { __shared__ __align__(16) rowindex_state_s state_g; rowindex_state_s * const s = &state_g; uint32_t chunk_id = blockIdx.y * num_columns + blockIdx.x; int t = threadIdx.x; if (t < sizeof(ColumnDesc) / sizeof(uint32_t)) { // NOTE: Assumes that sizeof(ColumnDesc) <= 128x4 ((volatile uint32_t *)&s->chunk)[t] = ((const uint32_t *)&chunks[chunk_id])[t]; } __syncthreads(); if (strm_info) { int strm_len = s->chunk.strm_len[t >> 6]; int strm_id = s->chunk.strm_id[t >> 6]; int t6 = t & 0x3f; if (strm_len > 0 && t6 < sizeof(CompressedStreamInfo) / sizeof(uint32_t)) { ((volatile uint32_t *)&s->strm_info[t >> 6])[t6] = ((const uint32_t *)&strm_info[strm_id])[t6]; } } if (t == 0) { uint32_t rowgroups_in_chunk = (rowidx_stride > 0) ? (s->chunk.num_rows + rowidx_stride - 1) / rowidx_stride : 1; s->rowgroup_start = s->chunk.rowgroup_id; s->rowgroup_end = s->rowgroup_start + rowgroups_in_chunk; s->is_compressed = (strm_info != NULL); } __syncthreads(); while (s->rowgroup_start < s->rowgroup_end) { int num_rowgroups = min(s->rowgroup_end - s->rowgroup_start, 128); int rowgroup_size4, t4, t32; s->rowgroups[t].chunk_id = chunk_id; if (t == 0) { gpuReadRowGroupIndexEntries(s, num_rowgroups); } __syncthreads(); if (s->is_compressed) { // Convert the block + blk_offset pair into a raw offset into the decompressed stream if (s->chunk.strm_len[CI_DATA] > 0) { gpuMapRowIndexToUncompressed(s, CI_DATA, num_rowgroups, t); } if (s->chunk.strm_len[CI_DATA2] > 0) { gpuMapRowIndexToUncompressed(s, CI_DATA2, num_rowgroups, t); } __syncthreads(); } rowgroup_size4 = sizeof(RowGroup) / sizeof(uint32_t); t4 = t & 3; t32 = t >> 2; for (int i = t32; i < num_rowgroups; i += 32) { for (int j = t4; j < rowgroup_size4; j += 4) { ((uint32_t *)&row_groups[(s->rowgroup_start + i) * num_columns + blockIdx.x])[j] = ((volatile uint32_t *)&s->rowgroups[i])[j]; } } __syncthreads(); if (t == 0) { s->rowgroup_start += num_rowgroups; } __syncthreads(); } } cudaError_t __host__ ParseCompressedStripeData(CompressedStreamInfo *strm_info, int32_t num_streams, uint32_t compression_block_size, uint32_t log2maxcr, cudaStream_t stream) { dim3 dim_block(128, 1); dim3 dim_grid((num_streams + 3) >> 2, 1); // 1 stream per warp, 4 warps per block gpuParseCompressedStripeData <<< dim_grid, dim_block, 0, stream >>>(strm_info, num_streams, compression_block_size, log2maxcr); return cudaSuccess; } cudaError_t __host__ PostDecompressionReassemble(CompressedStreamInfo *strm_info, int32_t num_streams, cudaStream_t stream) { dim3 dim_block(128, 1); dim3 dim_grid((num_streams + 3) >> 2, 1); // 1 stream per warp, 4 warps per block gpuPostDecompressionReassemble <<< dim_grid, dim_block, 0, stream >>>(strm_info, num_streams); return cudaSuccess; } /** * @brief Launches kernel for constructing rowgroup from index streams * * @param[out] row_groups RowGroup device array [rowgroup][column] * @param[in] strm_info List of compressed streams (or NULL if uncompressed) * @param[in] chunks ColumnDesc device array [stripe][column] * @param[in] num_columns Number of columns * @param[in] num_stripes Number of stripes * @param[in] num_rowgroups Number of row groups * @param[in] stream CUDA stream to use, default 0 * * @return cudaSuccess if successful, a CUDA error code otherwise **/ cudaError_t __host__ ParseRowGroupIndex(RowGroup *row_groups, CompressedStreamInfo *strm_info, ColumnDesc *chunks, uint32_t num_columns, uint32_t num_stripes, uint32_t num_rowgroups, uint32_t rowidx_stride, cudaStream_t stream) { dim3 dim_block(128, 1); dim3 dim_grid(num_columns, num_stripes); // 1 column chunk per block gpuParseRowGroupIndex <<< dim_grid, dim_block, 0, stream >>>(row_groups, strm_info, chunks, num_columns, num_stripes, num_rowgroups, rowidx_stride); return cudaSuccess; } } // namespace gpu } // namespace orc } // namespace io } // namespace cudf
48b5a465f85ab4b6cc15069e5447ec0a2a68fde4.hip
// !!! This is a file automatically generated by hipify!!! #include <hip/hip_runtime.h> #include <hiprand/hiprand.h> #include <rocblas.h> #include "convolutional_layer.h" #include "batchnorm_layer.h" #include "gemm.h" #include "blas.h" #include "im2col.h" #include "col2im.h" #include "utils.h" #include "dark_cuda.h" #include "box.h" __global__ void binarize_kernel(float *x, int n, float *binary) { int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; if (i >= n) return; binary[i] = (x[i] >= 0) ? 1 : -1; } void binarize_gpu(float *x, int n, float *binary) { hipLaunchKernelGGL(( binarize_kernel), dim3(cuda_gridsize(n)), dim3(BLOCK), 0, get_cuda_stream() , x, n, binary); CHECK_CUDA(hipPeekAtLastError()); } __global__ void binarize_input_kernel(float *input, int n, int size, float *binary) { int s = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; if (s >= size) return; int i = 0; float mean = 0; for(i = 0; i < n; ++i){ mean += fabs(input[i*size + s]); } mean = mean / n; for(i = 0; i < n; ++i){ binary[i*size + s] = (input[i*size + s] > 0) ? mean : -mean; } } void binarize_input_gpu(float *input, int n, int size, float *binary) { hipLaunchKernelGGL(( binarize_input_kernel), dim3(cuda_gridsize(size)), dim3(BLOCK), 0, get_cuda_stream() , input, n, size, binary); CHECK_CUDA(hipPeekAtLastError()); } __global__ void binarize_weights_kernel(float *weights, int n, int size, float *binary) { int f = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; if (f >= n) return; int i = 0; float mean = 0; for (i = 0; i < size; ++i) { mean += fabs(weights[f*size + i]); } mean = mean / size; for (i = 0; i < size; ++i) { binary[f*size + i] = (weights[f*size + i] > 0) ? mean : -mean; //binary[f*size + i] = weights[f*size + i]; } } void binarize_weights_gpu(float *weights, int n, int size, float *binary) { binarize_weights_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> >(weights, n, size, binary); CHECK_CUDA(hipPeekAtLastError()); } __global__ void set_zero_kernel(float *src, int size) { int i = blockIdx.x * blockDim.x + threadIdx.x; if (i < size) src[i] = 0; } __inline__ __device__ float warpAllReduceSum(float val) { for (int mask = WARP_SIZE / 2; mask > 0; mask /= 2) #if CUDART_VERSION >= 9000 val += __shfl_xor_sync(0xffffffff, val, mask); #else val += __shfl_xor(val, mask); #endif return val; } // only if (size % 32 == 0) __global__ void reduce_kernel(float *weights, int n, int size, float *mean_arr_gpu) { int i = blockIdx.x * blockDim.x + threadIdx.x; int f = i / size; if (f >= n) return; float warp_mean = warpAllReduceSum(fabs(weights[i])); if(i % 32 == 0) atomicAdd(&mean_arr_gpu[f], warp_mean / size); } __global__ void binarize_weights_mean_kernel(float *weights, int n, int size, float *binary, float *mean_arr_gpu) { int i = blockIdx.x * blockDim.x + threadIdx.x; int f = i / size; if (f >= n) return; float mean = mean_arr_gpu[f]; binary[i] = (weights[i] > 0) ? mean : -mean; } void fast_binarize_weights_gpu(float *weights, int n, int size, float *binary, float *mean_arr_gpu) { if (size % 32 == 0) { size_t gridsize = n * size; const int num_blocks = get_number_of_blocks(gridsize, BLOCK);// gridsize / BLOCK + 1; set_zero_kernel << <(n/BLOCK + 1), BLOCK, 0, get_cuda_stream() >> > (mean_arr_gpu, n); reduce_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (weights, n, size, mean_arr_gpu); binarize_weights_mean_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (weights, n, size, binary, mean_arr_gpu); CHECK_CUDA(hipPeekAtLastError()); } else { binarize_weights_gpu(weights, n, size, binary); } } __global__ void cuda_f32_to_f16(float* input_f32, size_t size, half *output_f16) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < size) output_f16[idx] = __float2half(input_f32[idx]); //if (idx < size) output_f16[idx] = __float2half_rn(input_f32[idx]); // can't be compiled on Linux without casting // __float2half_ru, __float2half_rd, __float2half_rz, __float2half_rn //if (idx < size) *((unsigned short *)output_f16 + idx) = __float2half(input_f32[idx]); } void cuda_convert_f32_to_f16(float* input_f32, size_t size, float *output_f16) { hipLaunchKernelGGL(( cuda_f32_to_f16) , dim3(get_number_of_blocks(size, BLOCK)), dim3(BLOCK), 0, get_cuda_stream() , input_f32, size, (half *)output_f16); CHECK_CUDA(hipPeekAtLastError()); } __global__ void cuda_f16_to_f32(half* input_f16, size_t size, float *output_f32) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < size) output_f32[idx] = __half2float(input_f16[idx]); //if (idx < size) output_f32[idx] = __half2float(*((unsigned short *)input_f16 + idx)); } void cuda_convert_f16_to_f32(float* input_f16, size_t size, float *output_f32) { hipLaunchKernelGGL(( cuda_f16_to_f32) , dim3(get_number_of_blocks(size, BLOCK)), dim3(BLOCK), 0, get_cuda_stream() , (half *)input_f16, size, output_f32); CHECK_CUDA(hipPeekAtLastError()); } half *cuda_make_f16_from_f32_array(float *src, size_t n) { half *dst16; size_t size = sizeof(half)*n; CHECK_CUDA(hipMalloc((void **)&dst16, size)); if (src) { assert(n > 0); cuda_convert_f32_to_f16(src, n, (float *)dst16); } if (!dst16) error("Cuda malloc failed", DARKNET_LOC); return dst16; } void forward_convolutional_layer_gpu(convolutional_layer l, network_state state) { if (l.train == 0) state.train = 0; if (l.stream >= 0) { switch_stream(l.stream); } if (l.wait_stream_id >= 0) { wait_stream(l.wait_stream_id); } //fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1); if(l.binary){ binarize_weights_gpu(l.weights_gpu, l.n, (l.c / l.groups)*l.size*l.size, l.binary_weights_gpu); swap_binary(&l); } if(l.xnor){ if (!l.align_bit_weights_gpu || state.train) { //binarize_weights_gpu(l.weights_gpu, l.n, (l.c / l.groups)*l.size*l.size, l.binary_weights_gpu); fast_binarize_weights_gpu(l.weights_gpu, l.n, (l.c / l.groups)*l.size*l.size, l.binary_weights_gpu, l.mean_arr_gpu); } if (l.align_bit_weights_gpu && !state.train && l.c >= 32 && l.stride_x == l.stride_y) { //return; //hipError_t status = hipSuccess; //int input_size = l.c*l.h*l.w*l.batch; int m = l.n / l.groups; int k = l.size*l.size*l.c / l.groups; int n = l.out_w*l.out_h; //float * a = l.weights_gpu; // int i, j; // for(i = 0; i < l.batch; ++i){ // for (j = 0; j < l.groups; ++j) { int ldb_align = l.lda_align; size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8; //size_t t_intput_size = new_ldb * n; //size_t t_bit_input_size = t_intput_size / 8;// +1; if (l.c % 32 == 0) { //printf("\n\n l.index = %d, l.w = %d, l.c = %d, l.n = %d, l.stride = %d, l.pad = %d - new XNOR \n", l.index, l.w, l.c, l.n, l.stride, l.pad); //printf("l.align_workspace_size = %d, (l.c * l.w * l.h) = %d \n", l.align_workspace_size, (l.c * l.w * l.h)); //float *intput_cpu = (float *)calloc(l.inputs, sizeof(float)); // state.input //hipMemcpy(intput_cpu, state.input, l.inputs * sizeof(float), hipMemcpyDefault); int ldb_align = l.lda_align; size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8; //size_t t_intput_size = new_ldb * l.bit_align;// n; //size_t t_bit_input_size = t_intput_size / 8;// +1; const int new_c = l.c / 32; //float *re_packed_input = (float *)calloc(l.c * l.w * l.h, sizeof(float)); //uint32_t *bin_re_packed_input = (uint32_t *)calloc(new_c * l.w * l.h + 1, sizeof(uint32_t)); // float32x4 by channel (as in cuDNN) //repack_input(intput_cpu, re_packed_input, l.w, l.h, l.c); // 32 x floats -> 1 x uint32_t //float_to_bit(re_packed_input, (uint8_t *)bin_re_packed_input, l.c * l.w * l.h); //hipDeviceSynchronize(); //start_timer(); repack_input_gpu_bin(state.input, (uint32_t *)l.align_workspace_gpu, l.w, l.h, l.c); //repack_input_gpu(state.input, state.workspace, l.w, l.h, l.c); // 32 x floats -> 1 x uint32_t //float_to_bit_gpu(state.workspace, (unsigned char *)l.align_workspace_gpu, l.c * l.w * l.h);// l.align_workspace_size); //hipDeviceSynchronize(); //stop_timer_and_show_name("repack_input_gpu + float_to_bit_gpu"); //free(re_packed_input); // slow - convolution the packed inputs and weights: float x 32 by channel (as in cuDNN) //convolution_repacked((uint32_t *)bin_re_packed_input, (uint32_t *)l.align_bit_weights, l.output, // l.w, l.h, l.c, l.n, l.size, l.pad, l.new_lda, l.mean_arr); // // then exit from if() //float *b = state.workspace; //float *b = (float *)calloc(100 * 1024 * 1024, sizeof(float)); //float *c = l.output; //memset(c, 0, l.outputs * sizeof(float)); //im2col_cpu_custom((float *)bin_re_packed_input, new_c, l.h, l.w, l.size, l.stride, l.pad, b); //hipMemcpy(l.align_workspace_gpu, bin_re_packed_input, (new_c * l.w * l.h + 1) * sizeof(uint32_t), hipMemcpyDefault); //start_timer(); im2col_ongpu(l.align_workspace_gpu, new_c, l.h, l.w, l.size, l.stride, l.pad, state.workspace); //hipDeviceSynchronize(); //stop_timer_and_show_name("im2col_ongpu"); //free(bin_re_packed_input); int new_k = l.size*l.size*l.c / 32; // good for (l.c == 64) //gemm_nn_bin_32bit_packed(m, n, new_k, 1, // l.align_bit_weights, l.new_lda/32, // b, n, // c, n, l.mean_arr); // // then exit from if() //size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8; //size_t t_intput_size = new_ldb * l.bit_align;// n; //size_t t_bit_input_size = t_intput_size / 8;// +1; //char *t_bit_input = (char *)calloc(t_bit_input_size, sizeof(char)); //transpose_uint32((uint32_t *)b, (uint32_t *)t_bit_input, new_k, n, n, new_ldb); //hipMemcpy(l.transposed_align_workspace_gpu, t_bit_input, t_bit_input_size * sizeof(char), hipMemcpyDefault); //hipMemcpy(state.workspace, b, t_bit_input_size * sizeof(char), hipMemcpyDefault); //printf("\n n = %d, n % 32 = %d, new_ldb = %d, new_ldb % 32 = %d \n", n, n % 32, new_ldb, new_ldb % 32); //start_timer(); transpose_uint32_gpu((uint32_t *)state.workspace, (uint32_t *)l.transposed_align_workspace_gpu, new_k, n, n, new_ldb); //hipDeviceSynchronize(); //stop_timer_and_show_name("transpose_uint32_gpu"); //hipDeviceSynchronize(); //stop_timer_and_show_name("repack_input_gpu_bin + im2col_ongpu + transpose_uint32_gpu_2"); //start_timer(); gemm_nn_custom_bin_mean_transposed_gpu(m, n, k, (unsigned char *)l.align_bit_weights_gpu, new_ldb, (unsigned char *)l.transposed_align_workspace_gpu, new_ldb, l.output_gpu, n, l.mean_arr_gpu, l.biases_gpu, l.activation == LEAKY, l.bin_conv_shortcut_in_gpu, l.bin_conv_shortcut_out_gpu); //hipDeviceSynchronize(); //stop_timer_and_show_name("gemm_nn_custom_bin_mean_transposed_gpu"); // the main GEMM function //gemm_nn_custom_bin_mean_transposed(m, n, k, 1, (uint8_t *)l.align_bit_weights, new_ldb, (uint8_t *)t_bit_input, new_ldb, c, n, l.mean_arr); //add_bias(l.output, l.biases, l.batch, l.n, l.out_h*l.out_w); //hipMemcpy(l.output_gpu, l.output, l.outputs * sizeof(float), hipMemcpyDefault); // // alternative GEMM //gemm_nn_bin_transposed_32bit_packed(m, n, new_k, 1, // l.align_bit_weights, l.new_lda/32, // t_bit_input, new_ldb / 32, // c, n, l.mean_arr); //free(t_bit_input); //free(b); } else { //printf("\n\n l.index = %d, l.w = %d, l.c = %d, l.n = %d, l.stride = %d, l.pad = %d - old XNOR \n", l.index, l.w, l.c, l.n, l.stride, l.pad); //hipDeviceSynchronize(); int i = 0; /* // if (l.stride == 1 && l.c >= 256 && l.size > 1) if (l.stride == 1 && l.c >= 1024 && l.size > 1 && 0)// && l.w >= 13) // disabled { // stride=1 only //start_timer(); im2col_align_bin_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, state.workspace, l.bit_align); //hipDeviceSynchronize(); //stop_timer_and_show_name("im2col_align_bin_ongpu"); } else*/ { //start_timer(); im2col_align_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, l.align_workspace_gpu, l.bit_align); //hipDeviceSynchronize(); //stop_timer_and_show_name("im2col_align_ongpu"); //getchar(); // should be optimized //start_timer(); float_to_bit_gpu(l.align_workspace_gpu, (unsigned char *)state.workspace, l.align_workspace_size); //hipDeviceSynchronize(); //stop_timer_and_show_name("float_to_bit_gpu"); } //start_timer(); transpose_bin_gpu((unsigned char *)state.workspace, (unsigned char *)l.transposed_align_workspace_gpu, k, n, l.bit_align, new_ldb, 8); //hipDeviceSynchronize(); //stop_timer_and_show_name("transpose_bin_gpu"); //hipDeviceSynchronize(); //stop_timer_and_show_name("im2col_align_ongpu + float_to_bit_gpu + transpose_bin_gpu"); // should be optimized //if(0) {//if (k > 1000) { // sequentially input-shared - BAD // gemm_nn_custom_bin_mean_transposed_sequentially_gpu(m, n, k, // (unsigned char *)l.align_bit_weights_gpu, new_ldb, (unsigned char *)l.transposed_align_workspace_gpu, new_ldb, l.output_gpu, n, l.mean_arr_gpu); //} //else { // coalescing & weights-shared-memory - GOOD //start_timer(); gemm_nn_custom_bin_mean_transposed_gpu(m, n, k, (unsigned char *)l.align_bit_weights_gpu, new_ldb, (unsigned char *)l.transposed_align_workspace_gpu, new_ldb, l.output_gpu, n, l.mean_arr_gpu, l.biases_gpu, l.activation == LEAKY, l.bin_conv_shortcut_in_gpu, l.bin_conv_shortcut_out_gpu); //hipDeviceSynchronize(); //stop_timer_and_show_name("gemm_nn_custom_bin_mean_transposed_gpu"); //} //hipDeviceSynchronize(); //check_error(status); //getchar(); } /* { float_to_bit_gpu(state.input, (unsigned char *)l.align_workspace_gpu, input_size); convolve_bin_gpu(l.align_workspace_gpu, (float *)l.align_bit_weights_gpu, l.output_gpu, l.w, l.h, l.c, l.n, l.size, l.pad, l.new_lda, l.mean_arr_gpu); //convolve_gpu(state.input, l.weights_gpu, l.output_gpu, l.w, l.h, l.c, l.n, l.size, l.pad); //hipDeviceSynchronize(); //check_error(status); add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h); } */ //add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h); if (l.activation == SWISH) activate_array_swish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.output_gpu); else if (l.activation == MISH) activate_array_mish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.output_gpu); else if (l.activation == HARD_MISH) activate_array_hard_mish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.output_gpu); else if (l.activation == NORM_CHAN) activate_array_normalize_channels_ongpu(l.output_gpu, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output_gpu); else if (l.activation == NORM_CHAN_SOFTMAX) activate_array_normalize_channels_softmax_ongpu(l.output_gpu, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output_gpu, 0); else if (l.activation == NORM_CHAN_SOFTMAX_MAXVAL) activate_array_normalize_channels_softmax_ongpu(l.output_gpu, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output_gpu, 1); else if (l.activation != LINEAR && l.activation != LEAKY) activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation); //if(l.activation != LINEAR && l.activation != LEAKY) activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation); //if (l.binary || l.xnor) swap_binary(&l); //hipDeviceSynchronize(); return; } } if (l.xnor) { swap_binary(&l); binarize_gpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input_gpu); state.input = l.binary_input_gpu; } //fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1); #ifdef CUDNN //float one = 1; // alpha[0], beta[0] is float for HALF and FLOAT float alpha = 1, beta = 0; //#ifdef CUDNN_HALF //if (state.use_mixed_precision) { int iteration_num = get_current_iteration(state.net); // (*state.net.seen) / (state.net.batch*state.net.subdivisions); if (state.index != 0 && state.net.cudnn_half && !l.xnor && (!state.train || (iteration_num > 3 * state.net.burn_in) && state.net.loss_scale != 1) && (l.c / l.groups) % 8 == 0 && l.n % 8 == 0 && l.groups <= 1 && l.size > 1) { //printf("\n CUDNN_HALF!!! state.index = %d \n", state.index); // Note: For improved performance it is advised to use beta[0] = 0.0. // For Tensor Core: cudnnSetConvolutionMathType() where cudnnMathType_t mathType = CUDNN_TENSOR_OP_MATH; // 1. or CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM and use CUDNN_DATA_HALF // 2. or CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED // More: http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor_ops const size_t input16_size = l.batch*l.c*l.w*l.h; const size_t output16_size = l.batch*l.out_c*l.out_h*l.out_w; if (*state.net.max_input16_size < input16_size) { //printf("\n input16_size: cur = %zu \t max = %zu \n", input16_size, *state.net.max_input16_size); *state.net.max_input16_size = input16_size; if (*state.net.input16_gpu) cuda_free(*state.net.input16_gpu); assert(*state.net.max_input16_size > 0); *state.net.input16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_input16_size); } float *input16 = *state.net.input16_gpu; if (*state.net.max_output16_size < output16_size) { *state.net.max_output16_size = output16_size; if (*state.net.output16_gpu) cuda_free(*state.net.output16_gpu); assert(*state.net.max_output16_size > 0); *state.net.output16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_output16_size); } float *output16 = *state.net.output16_gpu; assert(input16_size > 0); cuda_convert_f32_to_f16(state.input, input16_size, input16); //fill_ongpu(output16_size / 2, 0, (float *)output16, 1); CHECK_CUDNN(cudnnConvolutionForward(cudnn_handle(), &alpha, l.srcTensorDesc16, input16, l.weightDesc16, l.weights_gpu16, l.convDesc, l.fw_algo16, state.workspace, l.workspace_size, &beta, l.dstTensorDesc16, output16)); if (l.batch_normalize) { if (state.train && !state.net.adversarial) // Training { simple_copy_ongpu(l.outputs*l.batch / 2, output16, l.x_gpu); //copy_ongpu(l.outputs*l.batch / 2, output16, 1, l.x_gpu, 1); //hipMemcpyAsync(l.x_gpu, output16, l.outputs*l.batch*sizeof(half), hipMemcpyDefault, get_cuda_stream()); float one = 1.0f; float zero = 0.0f; // Batch-normalization can still take FP16 inputs and outputs, saving half the bandwidth // compared to FP32, it's just that the statistics and value adjustment should be done in FP32. CHECK_CUDNN(cudnnBatchNormalizationForwardTraining(cudnn_handle(), CUDNN_BATCHNORM_SPATIAL, &one, &zero, l.normDstTensorDescF16, l.x_gpu, // input l.normDstTensorDescF16, output16, // output l.normTensorDesc, l.scales_gpu, // input l.biases_gpu, // input .01, l.rolling_mean_gpu, // input/output (should be FP32) l.rolling_variance_gpu, // input/output (should be FP32) .00001, l.mean_gpu, // output (should be FP32) - optional cache to speedup cudnnBatchNormalizationBackward() l.variance_gpu)); // output (should be FP32) - optional cache to speedup cudnnBatchNormalizationBackward() cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu); //forward_batchnorm_layer_gpu(l, state); } else // Detection { cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu); normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w); scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w); add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h); } } else // BIAS only { cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu); add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h); } } else { //#else /* int input_nan_inf = is_nan_or_inf(state.input, l.inputs * l.batch); printf("\n is_nan_or_inf(state.input) = %d \n", input_nan_inf); if (input_nan_inf) getchar(); int weights_nan_inf = is_nan_or_inf(l.weights_gpu, l.nweights); printf("\n is_nan_or_inf(l.weights_gpu) = %d \n", weights_nan_inf); if (weights_nan_inf) getchar(); */ CHECK_CUDNN(cudnnConvolutionForward(cudnn_handle(), &alpha, //&one, l.srcTensorDesc, state.input, l.weightDesc, l.weights_gpu, l.convDesc, l.fw_algo, state.workspace, l.workspace_size, &beta, //&one, l.dstTensorDesc, l.output_gpu)); //hipDeviceSynchronize(); if (l.batch_normalize) { forward_batchnorm_layer_gpu(l, state); } else { add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h); } //#endif // CUDNN_HALF } #else fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1); int i, j; int m = l.n / l.groups; int k = l.size*l.size*l.c / l.groups; int n = l.out_w*l.out_h; for(i = 0; i < l.batch; ++i){ for (j = 0; j < l.groups; ++j) { //float *im = state.input + i*l.c*l.h*l.w; float *im = state.input + (i*l.groups + j)*l.c / l.groups*l.h*l.w; float *a = l.weights_gpu + j*l.nweights / l.groups; float *b = state.workspace; float *c = l.output_gpu + (i*l.groups + j)*n*m; if (l.size == 1 && l.stride == 1 && l.dilation == 1) { b = im; } else { //im2col_ongpu(im, l.c / l.groups, l.h, l.w, l.size, l.stride, l.pad, state.workspace); im2col_gpu_ext(im, // input l.c / l.groups, // input channels l.h, l.w, // input size (h, w) l.size, l.size, // kernel size (h, w) l.pad * l.dilation, l.pad * l.dilation, // padding (h, w) l.stride_y, l.stride_x, // stride (h, w) l.dilation, l.dilation, // dilation (h, w) state.workspace); // output } //gemm_ongpu(0, 0, m, n, k, 1., a, k, b, n, 1., c + i*m*n, n); gemm_ongpu(0, 0, m, n, k, 1, a, k, b, n, 1, c, n); } } if (l.batch_normalize) { forward_batchnorm_layer_gpu(l, state); } else { add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h); } #endif //#ifndef CUDNN_HALF //#endif // no CUDNN_HALF if (l.activation == SWISH) activate_array_swish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.output_gpu); else if (l.activation == MISH) activate_array_mish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.output_gpu); else if (l.activation == HARD_MISH) activate_array_hard_mish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.output_gpu); else if (l.activation == NORM_CHAN) activate_array_normalize_channels_ongpu(l.output_gpu, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output_gpu); else if (l.activation == NORM_CHAN_SOFTMAX) activate_array_normalize_channels_softmax_ongpu(l.output_gpu, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output_gpu, 0); else if (l.activation == NORM_CHAN_SOFTMAX_MAXVAL) activate_array_normalize_channels_softmax_ongpu(l.output_gpu, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output_gpu, 1); else if (l.activation != LINEAR) activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation); //if(l.dot > 0) dot_error_gpu(l); if(l.binary || l.xnor) swap_binary(&l); //hipDeviceSynchronize(); // for correct profiling of performance if (state.net.try_fix_nan) { fix_nan_and_inf(l.output_gpu, l.outputs*l.batch); } if(l.assisted_excitation && state.train) assisted_excitation_forward_gpu(l, state); if (l.antialiasing) { network_state s = { 0 }; s.train = state.train; s.workspace = state.workspace; s.net = state.net; if (!state.train) s.index = state.index; // don't use TC for training (especially without cuda_convert_f32_to_f16() ) s.input = l.output_gpu; forward_convolutional_layer_gpu(*(l.input_layer), s); simple_copy_ongpu(l.outputs*l.batch, l.output_gpu, l.input_antialiasing_gpu); simple_copy_ongpu(l.input_layer->outputs*l.input_layer->batch, l.input_layer->output_gpu, l.output_gpu); } if (l.coordconv) { coord_conv_gpu(l.output_gpu, l.outputs*l.batch, l.out_w, l.out_h, l.out_c, l.batch, 0); } } void backward_convolutional_layer_gpu(convolutional_layer l, network_state state) { if (l.coordconv) { coord_conv_gpu(l.delta_gpu, l.outputs*l.batch, l.out_w, l.out_h, l.out_c, l.batch, 1); } if (l.antialiasing) { network_state s = { 0 }; s.train = state.train; s.workspace = state.workspace; s.net = state.net; s.delta = l.delta_gpu; // s.delta will be returned to l.delta_gpu s.input = l.input_antialiasing_gpu; //if (!state.train) s.index = state.index; // don't use TC for training (especially without cuda_convert_f32_to_f16() ) simple_copy_ongpu(l.input_layer->outputs*l.input_layer->batch, l.delta_gpu, l.input_layer->delta_gpu); backward_convolutional_layer_gpu(*(l.input_layer), s); simple_copy_ongpu(l.outputs*l.batch, l.input_antialiasing_gpu, l.output_gpu); } if(state.net.try_fix_nan) constrain_ongpu(l.outputs*l.batch, 1, l.delta_gpu, 1); if (l.activation == SWISH) gradient_array_swish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.delta_gpu); else if (l.activation == MISH) gradient_array_mish_ongpu(l.outputs*l.batch, l.activation_input_gpu, l.delta_gpu); else if (l.activation == HARD_MISH) gradient_array_hard_mish_ongpu(l.outputs*l.batch, l.activation_input_gpu, l.delta_gpu); else if (l.activation == NORM_CHAN_SOFTMAX || l.activation == NORM_CHAN_SOFTMAX_MAXVAL) gradient_array_normalize_channels_softmax_ongpu(l.output_gpu, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.delta_gpu); else if (l.activation == NORM_CHAN) gradient_array_normalize_channels_ongpu(l.output_gpu, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.delta_gpu); else gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu); if (!l.batch_normalize) backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h); //#ifndef CUDNN_HALF //if(l.batch_normalize){ // backward_batchnorm_layer_gpu(l, state); //} else { // //backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h); //} //#endif // no CUDNN_HALF float *original_input = state.input; if(l.xnor) state.input = l.binary_input_gpu; #ifdef CUDNN float one = 1.f; float alpha = 1, beta = 0; //#ifdef CUDNN_HALF int iteration_num = get_current_iteration(state.net); //(*state.net.seen) / (state.net.batch*state.net.subdivisions); if (state.index != 0 && state.net.cudnn_half && !l.xnor && (!state.train || (iteration_num > 3 * state.net.burn_in) && state.net.loss_scale != 1) && (l.c / l.groups) % 8 == 0 && l.n % 8 == 0 && l.groups <= 1 && l.size > 1) { const size_t input16_size = l.batch*l.c*l.w*l.h; const size_t delta16_size = l.batch*l.n*l.out_w*l.out_h; if (*state.net.max_input16_size < input16_size) { *state.net.max_input16_size = input16_size; if (*state.net.input16_gpu) cuda_free(*state.net.input16_gpu); assert(*state.net.max_input16_size > 0); *state.net.input16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_input16_size); } float *input16 = *state.net.input16_gpu; if (*state.net.max_output16_size < delta16_size) { *state.net.max_output16_size = delta16_size; if (*state.net.output16_gpu) cuda_free(*state.net.output16_gpu); assert(*state.net.max_output16_size > 0); *state.net.output16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_output16_size); } float *delta16 = *state.net.output16_gpu; assert(input16_size > 0); assert(delta16_size > 0); cuda_convert_f32_to_f16(state.input, input16_size, input16); cuda_convert_f32_to_f16(l.delta_gpu, delta16_size, delta16); if (l.batch_normalize) { //if (!state.train) { // l.mean_gpu = l.rolling_mean_gpu; // l.variance_gpu = l.rolling_variance_gpu; //} float one = 1.0f; float zero = 0.0f; CHECK_CUDNN(cudnnBatchNormalizationBackward(cudnn_handle(), CUDNN_BATCHNORM_SPATIAL, &one, &zero, &one, &one, l.normDstTensorDescF16, l.x_gpu, // input (input in BN-forward-inference) l.normDstTensorDescF16, delta16, // input l.normDstTensorDescF16, l.output_gpu, //l.x_norm_gpu, // output (new delta) l.normTensorDesc, l.scales_gpu, // input (should be FP32) l.scale_updates_gpu, // output (should be FP32) l.bias_updates_gpu, // output (should be FP32) .00001, l.mean_gpu, // input (should be FP32) l.variance_gpu)); // input (should be FP32) simple_copy_ongpu(l.outputs*l.batch / 2, l.output_gpu, delta16); //copy_ongpu(l.outputs*l.batch / 2, l.x_norm_gpu, 1, delta16, 1); //hipMemcpyAsync(delta16, l.x_norm_gpu, l.outputs*l.batch * sizeof(half), hipMemcpyDefault, get_cuda_stream()); } else { //backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h); } // convert input: state.input (x), l.delta_gpu (y) from fp32 to fp16 // get output: l.weight_updates_gpu (dw) and convert it to fp32 (ONLY if it is fp16) // calculate conv weight updates // Already: l.weight_updates_gpu = (l.weight_updates_gpu - l.weight*decay*batch*subdivision)*momentum // so we should copy f32 to f16, or compute: f16=(w_up - w*d*b*s)*m assert((l.nweights) > 0); cuda_convert_f32_to_f16(l.weight_updates_gpu, l.nweights, l.weight_updates_gpu16); if (!state.net.adversarial && !l.train_only_bn) { CHECK_CUDNN(cudnnConvolutionBackwardFilter(cudnn_handle(), &one, l.srcTensorDesc16, input16, //state.input, l.ddstTensorDesc16, delta16, //l.delta_gpu, l.convDesc, l.bf_algo16, state.workspace, l.workspace_size, &one, l.dweightDesc16, l.weight_updates_gpu16)); // l.weight_updates_gpu); cuda_convert_f16_to_f32(l.weight_updates_gpu16, l.nweights, l.weight_updates_gpu); } if (state.delta) { if (l.binary || l.xnor) swap_binary(&l); // http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData // calculate delta for the next layer // convert input: l.weights_gpu (w), l.delta_gpu (dy) from fp32 to fp16 // get output: state.delta (dx) and convert it to fp32 (ONLY if it is fp16) CHECK_CUDNN(cudnnConvolutionBackwardData(cudnn_handle(), &alpha, l.weightDesc16, l.weights_gpu16, //l.weights_gpu, l.ddstTensorDesc16, delta16, //l.delta_gpu, l.convDesc, l.bd_algo16, state.workspace, l.workspace_size, &beta, l.dsrcTensorDesc16, input16)); // state.delta); cuda_convert_f16_to_f32(input16, input16_size, state.delta); if (l.binary || l.xnor) swap_binary(&l); if (l.xnor) gradient_array_ongpu(original_input, l.batch*l.c*l.h*l.w, HARDTAN, state.delta); } } else { //#else // CUDNN_HALF if(l.batch_normalize){ backward_batchnorm_layer_gpu(l, state); } if (!state.net.adversarial && !l.train_only_bn) { float *old_input = state.input; /* if (l.reverse) { if (*state.net.max_output16_size < l.inputs*l.batch) { *state.net.max_output16_size = l.inputs*l.batch; if (*state.net.output16_gpu) cuda_free(*state.net.output16_gpu); assert(*state.net.max_output16_size > 0); *state.net.output16_gpu = cuda_make_array(NULL, *state.net.max_output16_size); } float clip = 0.0; float divider = 1.0; float abs_add = 1.0; mult_inverse_array_gpu(state.input, *state.net.output16_gpu, l.inputs*l.batch, l.reverse, divider, clip, abs_add); state.input = *state.net.output16_gpu; } */ // calculate conv weight updates // if used: beta=1 then loss decreases faster CHECK_CUDNN(cudnnConvolutionBackwardFilter(cudnn_handle(), &one, l.srcTensorDesc, state.input, l.ddstTensorDesc, l.delta_gpu, l.convDesc, l.bf_algo, state.workspace, l.workspace_size, &one, l.dweightDesc, l.weight_updates_gpu)); state.input = old_input; } if (state.delta) { if (l.binary || l.xnor) swap_binary(&l); float *old_weights = l.weights_gpu; /* if (l.reverse) { if (*state.net.max_output16_size < l.nweights) { *state.net.max_output16_size = l.nweights; if (*state.net.output16_gpu && *state.net.max_output16_size > 0) cuda_free(*state.net.output16_gpu); assert(*state.net.max_output16_size > 0); *state.net.output16_gpu = cuda_make_array(NULL, l.nweights); } float clip = 0.0; float divider = 1.0; float abs_add = 1.0; mult_inverse_array_gpu(l.weights_gpu, *state.net.output16_gpu, l.nweights, l.reverse, divider, clip, abs_add); l.weights_gpu = *state.net.output16_gpu; } */ // http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData // calculate delta for the next layer CHECK_CUDNN(cudnnConvolutionBackwardData(cudnn_handle(), &one, l.weightDesc, l.weights_gpu, l.ddstTensorDesc, l.delta_gpu, l.convDesc, l.bd_algo, state.workspace, l.workspace_size, &one, l.dsrcTensorDesc, state.delta)); l.weights_gpu = old_weights; if (l.binary || l.xnor) swap_binary(&l); if (l.xnor) gradient_array_ongpu(original_input, l.batch*l.c*l.h*l.w, HARDTAN, state.delta); } } //#endif // CUDNN_HALF #else // CUDNN if (l.batch_normalize) { backward_batchnorm_layer_gpu(l, state); } int m = l.n / l.groups; int n = l.size*l.size*l.c / l.groups; int k = l.out_w*l.out_h; int i, j; for(i = 0; i < l.batch; ++i){ for (j = 0; j < l.groups; ++j) { float * a = l.delta_gpu + (i*l.groups + j)*m*k; float * b = state.workspace; float * c = l.weight_updates_gpu + j*l.nweights / l.groups; float *im = state.input + (i*l.groups + j)*l.c / l.groups*l.h*l.w; if (!state.net.adversarial && !l.train_only_bn) { //im2col_ongpu(im, l.c / l.groups, l.h, l.w, l.size, l.stride, l.pad, state.workspace); im2col_gpu_ext(im, // input l.c / l.groups, // input channels l.h, l.w, // input size (h, w) l.size, l.size, // kernel size (h, w) l.pad * l.dilation, l.pad * l.dilation, // padding (h, w) l.stride_y, l.stride_x, // stride (h, w) l.dilation, l.dilation, // dilation (h, w) state.workspace); // output //gemm_ongpu(0, 1, m, n, k, 1, a + i*m*k, k, b, k, 1, c, n); gemm_ongpu(0, 1, m, n, k, 1, a, k, b, k, 1, c, n); } if (state.delta) { if (l.binary || l.xnor) swap_binary(&l); float * a = l.weights_gpu + j*l.nweights / l.groups; float * b = l.delta_gpu + (i*l.groups + j)*m*k; float * c = state.workspace; //gemm_ongpu(1, 0, n, k, m, 1, a, n, b + i*k*m, k, 0, c, k); gemm_ongpu(1, 0, n, k, m, 1, a, n, b, k, 0, c, k); float *delta = state.delta + (i*l.groups + j)*l.c / l.groups*l.h*l.w; //col2im_ongpu(state.workspace, l.c / l.groups, l.h, l.w, l.size, l.stride, l.pad, delta); col2im_gpu_ext( state.workspace, // input l.c / l.groups, // input channels l.h, l.w, // input size (h, w) l.size, l.size, // kernel size (h, w) l.pad * l.dilation, l.pad * l.dilation, // padding size (h, w) l.stride_y, l.stride_x, // stride size (h, w) l.dilation, l.dilation, // dilation size (h, w) delta); // output (delta) if (l.binary || l.xnor) { swap_binary(&l); } if (l.xnor) gradient_array_ongpu(original_input + i*l.c*l.h*l.w, l.c*l.h*l.w, HARDTAN, state.delta + i*l.c*l.h*l.w); } } } #endif if (state.net.try_fix_nan) { if (state.delta) { reset_nan_and_inf(state.delta, l.inputs * l.batch); } int size = l.nweights; reset_nan_and_inf(l.weight_updates_gpu, size); fix_nan_and_inf(l.weights_gpu, size); } } __global__ void calc_avg_activation_kernel(float *src, float *dst, int size, int channels, int batches) { int i = blockIdx.x * blockDim.x + threadIdx.x; int xy = i % size; int b = i / size; if (i < size*batches) { dst[i] = 0; for (int c = 0; c < channels; ++c) { dst[i] += src[xy + size*(c + channels*b)]; } dst[i] = dst[i] / channels; } } void calc_avg_activation_gpu(float *src, float *dst, int size, int channels, int batches) { const int num_blocks = get_number_of_blocks(size*batches, BLOCK); calc_avg_activation_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (src, dst, size, channels, batches); } __global__ void assisted_activation_kernel(float alpha, float *output, float *gt_gpu, float *a_avg_gpu, int size, int channels, int batches) { int i = blockIdx.x * blockDim.x + threadIdx.x; int xy = i % size; int b = i / size; if (b < batches) { for (int c = 0; c < channels; ++c) { output[xy + size*(c + channels*b)] += alpha * gt_gpu[i] * a_avg_gpu[i]; //output[xy + size*(c + channels*b)] += gt_gpu[i] * a_avg_gpu[i]; //output[xy + size*(c + channels*b)] += gt_gpu[i] * output[xy + size*(c + channels*b)]; //output[xy + size*(c + channels*b)] = a_avg_gpu[i]; } } } void assisted_activation_gpu(float alpha, float *output, float *gt_gpu, float *a_avg_gpu, int size, int channels, int batches) { const int num_blocks = get_number_of_blocks(size*batches, BLOCK); assisted_activation_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (alpha, output, gt_gpu, a_avg_gpu, size, channels, batches); } __global__ void assisted_activation2_kernel(float alpha, float *output, float *gt_gpu, float *a_avg_gpu, int size, int channels, int batches) { int i = blockIdx.x * blockDim.x + threadIdx.x; int xy = i % size; int b = i / size; float beta = 1 - alpha; if (b < batches) { for (int c = 0; c < channels; ++c) { if(gt_gpu[i] == 0) output[xy + size*(c + channels*b)] *= beta; } } } void assisted_activation2_gpu(float alpha, float *output, float *gt_gpu, float *a_avg_gpu, int size, int channels, int batches) { const int num_blocks = get_number_of_blocks(size*batches, BLOCK); assisted_activation2_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (alpha, output, gt_gpu, a_avg_gpu, size, channels, batches); } void assisted_excitation_forward_gpu(convolutional_layer l, network_state state) { const int iteration_num = get_current_iteration(state.net); //(*state.net.seen) / (state.net.batch*state.net.subdivisions); // epoch //const float epoch = (float)(*state.net.seen) / state.net.train_images_num; // calculate alpha //const float alpha = (1 + cos(3.141592 * iteration_num)) / (2 * state.net.max_batches); //const float alpha = (1 + cos(3.141592 * epoch)) / (2 * state.net.max_batches); float alpha = (1 + cos(3.141592 * iteration_num / state.net.max_batches)) / 2; //float alpha = (1 + cos(3.141592 * iteration_num / state.net.max_batches)); if (l.assisted_excitation == 1) { if (iteration_num > state.net.max_batches / 2) return; } else { if (iteration_num < state.net.burn_in) return; else if (iteration_num > l.assisted_excitation) return; else alpha = (1 + cos(3.141592 * iteration_num / (state.net.burn_in + l.assisted_excitation))) / 2; // from 1 to 0 } //printf("\n epoch = %f, alpha = %f, seen = %d, max_batches = %d, train_images_num = %d \n", // epoch, alpha, (*state.net.seen), state.net.max_batches, state.net.train_images_num); //const int size = l.outputs * l.batch; float *a_avg = (float *)calloc(l.out_w * l.out_h * l.batch, sizeof(float)); float *gt = (float *)calloc(l.out_w * l.out_h * l.batch, sizeof(float)); int b; int w, h; l.max_boxes = state.net.num_boxes; l.truths = l.max_boxes*(4 + 1); int num_truth = l.batch*l.truths; float *truth_cpu = (float *)calloc(num_truth, sizeof(float)); cuda_pull_array(state.truth, truth_cpu, num_truth); //hipStreamSynchronize(get_cuda_stream()); //CHECK_CUDA(hipPeekAtLastError()); for (b = 0; b < l.batch; ++b) { // calculate G int t; for (t = 0; t < state.net.num_boxes; ++t) { box truth = float_to_box_stride(truth_cpu + t*(4 + 1) + b*l.truths, 1); if (!truth.x) break; // continue; float beta = 0; //float beta = 1 - alpha; // from 0 to 1 float dw = (1 - truth.w) * beta; float dh = (1 - truth.h) * beta; //printf(" alpha = %f, beta = %f, truth.w = %f, dw = %f, tw+dw = %f, l.out_w = %d \n", alpha, beta, truth.w, dw, truth.w+dw, l.out_w); int left = floorf((truth.x - (dw + truth.w) / 2) * l.out_w); int right = ceilf((truth.x + (dw + truth.w) / 2) * l.out_w); int top = floorf((truth.y - (dh + truth.h) / 2) * l.out_h); int bottom = ceilf((truth.y + (dh + truth.h) / 2) * l.out_h); if (left < 0) left = 0; if (top < 0) top = 0; if (right > l.out_w) right = l.out_w; if (bottom > l.out_h) bottom = l.out_h; for (w = left; w <= right; w++) { for (h = top; h < bottom; h++) { gt[w + l.out_w * h + l.out_w*l.out_h*b] = 1; } } } } cuda_push_array(l.gt_gpu, gt, l.out_w * l.out_h * l.batch); //hipStreamSynchronize(get_cuda_stream()); //CHECK_CUDA(hipPeekAtLastError()); // calc avg_output on GPU - for whole batch calc_avg_activation_gpu(l.output_gpu, l.a_avg_gpu, l.out_w * l.out_h, l.out_c, l.batch); //hipStreamSynchronize(get_cuda_stream()); //CHECK_CUDA(hipPeekAtLastError()); // calc new output //assisted_activation2_gpu(1, l.output_gpu, l.gt_gpu, l.a_avg_gpu, l.out_w * l.out_h, l.out_c, l.batch); // AE3: gt increases (beta = 1 - alpha = 0) //assisted_activation2_gpu(alpha, l.output_gpu, l.gt_gpu, l.a_avg_gpu, l.out_w * l.out_h, l.out_c, l.batch); assisted_activation_gpu(alpha, l.output_gpu, l.gt_gpu, l.a_avg_gpu, l.out_w * l.out_h, l.out_c, l.batch); //hipStreamSynchronize(get_cuda_stream()); //CHECK_CUDA(hipPeekAtLastError()); /* for (b = 0; b < l.batch; ++b) { // calculate average A for (w = 0; w < l.out_w; w++) { for (h = 0; h < l.out_h; h++) { for (c = 0; c < l.out_c; c++) { a_avg[w + l.out_w*(h + l.out_h*b)] += l.output[w + l.out_w*(h + l.out_h*(c + l.out_c*b))]; } a_avg[w + l.out_w*(h + l.out_h*b)] /= l.out_c; // a_avg / d } } } // change activation for (b = 0; b < l.batch; ++b) { for (w = 0; w < l.out_w; w++) { for (h = 0; h < l.out_h; h++) { for (c = 0; c < l.out_c; c++) { // a = a + alpha(t) + e(c,i,j) = a + alpha(t) + g(i,j) * avg_a(i,j) / channels l.output[w + l.out_w*(h + l.out_h*(c + l.out_c*b))] += alpha * g[w + l.out_w*(h + l.out_h*b)] * a_avg[w + l.out_w*(h + l.out_h*b)]; //l.output[w + l.out_w*(h + l.out_h*(c + l.out_c*b))] = // alpha * g[w + l.out_w*(h + l.out_h*b)] * a_avg[w + l.out_w*(h + l.out_h*b)]; } } } } */ if (0) // visualize ground truth { #ifdef OPENCV cuda_pull_array(l.output_gpu, l.output, l.outputs * l.batch); hipStreamSynchronize(get_cuda_stream()); CHECK_CUDA(hipPeekAtLastError()); for (b = 0; b < l.batch; ++b) { printf(" Assisted Excitation alpha = %f \n", alpha); image img = float_to_image(l.out_w, l.out_h, 1, &gt[l.out_w*l.out_h*b]); char buff[100]; sprintf(buff, "a_excitation_gt_%d", b); show_image_cv(img, buff); //image img2 = float_to_image(l.out_w, l.out_h, 1, &l.output[l.out_w*l.out_h*l.out_c*b]); image img2 = float_to_image_scaled(l.out_w, l.out_h, 1, &l.output[l.out_w*l.out_h*l.out_c*b]); char buff2[100]; sprintf(buff2, "a_excitation_output_%d", b); show_image_cv(img2, buff2); /* int c = l.out_c; if (c > 4) c = 4; image img3 = float_to_image(l.out_w, l.out_h, c, &l.output[l.out_w*l.out_h*l.out_c*b]); image dc = collapse_image_layers(img3, 1); char buff3[100]; sprintf(buff3, "a_excitation_act_collapsed_%d", b); show_image_cv(dc, buff3); */ wait_key_cv(5); } wait_until_press_key_cv(); #endif // OPENCV } free(truth_cpu); free(gt); free(a_avg); } void pull_convolutional_layer(convolutional_layer l) { cuda_pull_array_async(l.weights_gpu, l.weights, l.nweights); cuda_pull_array_async(l.biases_gpu, l.biases, l.n); if (l.weight_updates_gpu) cuda_pull_array_async(l.weight_updates_gpu, l.weight_updates, l.nweights); if (l.bias_updates_gpu) cuda_pull_array_async(l.bias_updates_gpu, l.bias_updates, l.n); if (l.batch_normalize){ cuda_pull_array_async(l.scales_gpu, l.scales, l.n); cuda_pull_array_async(l.rolling_mean_gpu, l.rolling_mean, l.n); cuda_pull_array_async(l.rolling_variance_gpu, l.rolling_variance, l.n); } if (l.adam){ cuda_pull_array_async(l.m_gpu, l.m, l.nweights); cuda_pull_array_async(l.v_gpu, l.v, l.nweights); } CHECK_CUDA(hipPeekAtLastError()); hipStreamSynchronize(get_cuda_stream()); } void push_convolutional_layer(convolutional_layer l) { cuda_push_array(l.weights_gpu, l.weights, l.nweights); #ifdef CUDNN_HALF assert(l.nweights > 0); cuda_convert_f32_to_f16(l.weights_gpu, l.nweights, l.weights_gpu16); #endif cuda_push_array(l.biases_gpu, l.biases, l.n); if (l.train) { cuda_push_array(l.weight_updates_gpu, l.weight_updates, l.nweights); cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.n); } if (l.batch_normalize){ cuda_push_array(l.scales_gpu, l.scales, l.n); cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.n); cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.n); } if (l.adam){ cuda_push_array(l.m_gpu, l.m, l.nweights); cuda_push_array(l.v_gpu, l.v, l.nweights); } CHECK_CUDA(hipPeekAtLastError()); } void update_convolutional_layer_gpu(layer l, int batch, float learning_rate_init, float momentum, float decay, float loss_scale) { /* for (int angle = 0; angle < 360; angle++) { printf(" angle = %d \n", angle); smooth_rotate_weights_kernel(l.weights_gpu, l.weight_deform_gpu, l.nweights, l.n, l.size, angle, 0); cuda_pull_array(l.weight_deform_gpu, l.weights, l.nweights); visualize_convolutional_layer(l, "weights", NULL); wait_key_cv(10); } */ if (l.deform) { //for (l.angle = 0; l.angle < 360; l.angle += 1) //{ //stretch_weights_gpu(l.weight_updates_gpu, l.weight_deform_gpu, l.nweights, l.n, l.size, l.angle/180, 1); //else simple_copy_ongpu(l.nweights, l.weight_updates_gpu, l.weight_deform_gpu); if (l.rotate) rotate_weights_gpu(l.weight_updates_gpu, l.weight_deform_gpu, l.nweights, l.n, l.size, 1); else if (l.sway) sway_and_flip_weights_gpu(l.weight_updates_gpu, l.weight_deform_gpu, l.nweights, l.n, l.size, l.angle, 1); else if (l.stretch) stretch_weights_gpu(l.weight_updates_gpu, l.weight_deform_gpu, l.nweights, l.n, l.size, 0, 1); else if (l.stretch_sway) stretch_sway_flip_weights_gpu(l.weight_updates_gpu, l.weight_deform_gpu, l.nweights, l.n, l.size, l.angle, 1); //simple_copy_ongpu(l.nweights, l.weight_updates_gpu, l.weight_deform_gpu); reduce_and_expand_array_gpu(l.weight_deform_gpu, l.weight_updates_gpu, l.nweights, 4); //printf(" angle = %f \n", l.angle); //cuda_pull_array(l.weight_deform_gpu, l.weights, l.nweights); //visualize_convolutional_layer(l, "weights", NULL); //wait_key_cv(10); //} } // Loss scale for Mixed-Precision on Tensor-Cores float learning_rate = learning_rate_init*l.learning_rate_scale / loss_scale; //float momentum = a.momentum; //float decay = a.decay; //int batch = a.batch; reset_nan_and_inf(l.weight_updates_gpu, l.nweights); fix_nan_and_inf(l.weights_gpu, l.nweights); // Gradient Centralization if (l.grad_centr && l.batch_normalize) { // weights[filters][channels][height][width] // for(filters) w[f] = w[f] - mean(w[c][h][w]) gradient_centralization_gpu(l.size, l.size, l.c / l.groups, l.n, l.weight_updates_gpu); } if (l.adam) { //adam_update_gpu(l.weights_gpu, l.weight_updates_gpu, l.m_gpu, l.v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.nweights, batch, a.t); adam_update_gpu(l.weights_gpu, l.weight_updates_gpu, l.m_gpu, l.v_gpu, l.B1, l.B2, l.eps, decay, learning_rate, l.nweights, batch, l.t); adam_update_gpu(l.biases_gpu, l.bias_updates_gpu, l.bias_m_gpu, l.bias_v_gpu, l.B1, l.B2, l.eps, decay, learning_rate, l.n, batch, l.t); if (l.scales_gpu) { adam_update_gpu(l.scales_gpu, l.scale_updates_gpu, l.scale_m_gpu, l.scale_v_gpu, l.B1, l.B2, l.eps, decay, learning_rate, l.n, batch, l.t); } } else { //axpy_ongpu(l.nweights, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1); //axpy_ongpu(l.nweights, learning_rate / batch, l.weight_updates_gpu, 1, l.weights_gpu, 1); //scal_ongpu(l.nweights, momentum, l.weight_updates_gpu, 1); float *old_weight_updates_gpu = l.weight_updates_gpu; if (l.reverse) { float clip = 0.0; float divider = 1.0; float abs_add = 1.0; mult_inverse_array_gpu(l.weight_updates_gpu, l.output_gpu, l.inputs*l.batch, l.reverse, divider, clip, abs_add); l.weight_updates_gpu = l.output_gpu; } axpy_ongpu(l.nweights, -decay*batch*loss_scale, l.weights_gpu, 1, l.weight_updates_gpu, 1); axpy_ongpu(l.nweights, learning_rate / batch, l.weight_updates_gpu, 1, l.weights_gpu, 1); l.weight_updates_gpu = old_weight_updates_gpu; scal_ongpu(l.nweights, momentum, l.weight_updates_gpu, 1); axpy_ongpu(l.n, learning_rate / batch, l.bias_updates_gpu, 1, l.biases_gpu, 1); scal_ongpu(l.n, momentum, l.bias_updates_gpu, 1); if (l.scales_gpu) { axpy_ongpu(l.n, learning_rate / batch, l.scale_updates_gpu, 1, l.scales_gpu, 1); scal_ongpu(l.n, momentum, l.scale_updates_gpu, 1); } } if (l.deform) { //for (l.angle = 0; l.angle < 360; l.angle += 4) //{ expand_array_gpu(l.weights_gpu, l.weight_deform_gpu, l.nweights, 4); //simple_copy_ongpu(l.nweights, l.weight_deform_gpu, l.weights_gpu); if (l.rotate) rotate_weights_gpu(l.weight_deform_gpu, l.weights_gpu, l.nweights, l.n, l.size, 0); else if (l.sway) sway_and_flip_weights_gpu(l.weight_deform_gpu, l.weights_gpu, l.nweights, l.n, l.size, l.angle, 0); else if (l.stretch) stretch_weights_gpu(l.weight_deform_gpu, l.weights_gpu, l.nweights, l.n, l.size, 0, 0); else if (l.stretch_sway) stretch_sway_flip_weights_gpu(l.weight_deform_gpu, l.weights_gpu, l.nweights, l.n, l.size, l.angle, 0); //printf(" angle = %f, reverse = %d \n", l.angle, 0); //cuda_pull_array(l.weights_gpu, l.weights, l.nweights); //visualize_convolutional_layer(l, "weights", NULL); //wait_key_cv(10); //} } if (l.clip) { constrain_ongpu(l.nweights, l.clip, l.weights_gpu, 1); } } /* void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay) { int size = layer.size*layer.size*layer.c*layer.n; axpy_ongpu(layer.n, learning_rate/batch, layer.bias_updates_gpu, 1, layer.biases_gpu, 1); scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1); if(layer.scales_gpu){ axpy_ongpu(layer.n, learning_rate/batch, layer.scale_updates_gpu, 1, layer.scales_gpu, 1); scal_ongpu(layer.n, momentum, layer.scale_updates_gpu, 1); } if(layer.adam){ scal_ongpu(size, layer.B1, layer.m_gpu, 1); scal_ongpu(size, layer.B2, layer.v_gpu, 1); axpy_ongpu(size, -decay*batch, layer.weights_gpu, 1, layer.weight_updates_gpu, 1); axpy_ongpu(size, -(1-layer.B1), layer.weight_updates_gpu, 1, layer.m_gpu, 1); mul_ongpu(size, layer.weight_updates_gpu, 1, layer.weight_updates_gpu, 1); axpy_ongpu(size, (1-layer.B2), layer.weight_updates_gpu, 1, layer.v_gpu, 1); adam_gpu(size, layer.weights_gpu, layer.m_gpu, layer.v_gpu, layer.B1, layer.B2, learning_rate/batch, layer.eps, layer.t+1); fill_ongpu(size, 0, layer.weight_updates_gpu, 1); }else{ axpy_ongpu(size, -decay*batch, layer.weights_gpu, 1, layer.weight_updates_gpu, 1); // wu = wu - w*decay*batch axpy_ongpu(size, learning_rate/batch, layer.weight_updates_gpu, 1, layer.weights_gpu, 1); // w = w + wu*lr/batch scal_ongpu(size, momentum, layer.weight_updates_gpu, 1); // wu = wu*momentum // wu = (wu - w*decay*batch)*momentum // w = w + (wu - w*decay*batch)*lr/batch = w + wu*lr/batch - w*decay*lr = w*(1-decay*lr) + wu*lr/batch //wu_prev = (wu_old - w_old*decay*batch)*momentum //weights_update = weights_update_new + (weights_update_old - weights_old*decay*batch)*momentum - weights_new*decay*batch = // = weights_update_new + weights_update_old*momentum - weights_old*decay*batch*momentum - weights_new*decay*batch // = weights_update_new + weights_update_old*momentum - (weights_old*momentum + weights_new)*decay*batch //------------- RESULT -------------- // weights_update = weights_update_new + weights_update_old*momentum - (weights_old*momentum + weights_new)*decay*batch //----------------------------------- // weights_newest = weights_new + (weights_update_new + weights_update_old*momentum - (weights_old*momentum + weights_new)*decay*batch)*lr/batch // = weights_new + weights_update_new*lr/batch + weights_update_old*momentum*lr/batch - weights_old*momentum*decay*batch*lr/batch - weights_new*decay*batch*lr/batch // = weights_new + weights_update_new*lr/batch + weights_update_old*momentum*lr/batch - weights_old*momentum*decay*lr - weights_new*decay*lr // = weights_new*(1 - decay*lr) - weights_old*momentum*decay*lr + (weights_update_new + weights_update_old*momentum)*lr/batch //------------- RESULT -------------- // weights_newest = weights_new*(1 - decay*lr) - weights_old*momentum*(decay*lr) + (weights_update_new + weights_update_old*momentum)*lr/batch = // = weights_new - (weights_new + weights_old*momentum)*decay*lr + (weights_update_new + weights_update_old*momentum)*lr / batch //----------------------------------- } } */
48b5a465f85ab4b6cc15069e5447ec0a2a68fde4.cu
#include <cuda_runtime.h> #include <curand.h> #include <cublas_v2.h> #include "convolutional_layer.h" #include "batchnorm_layer.h" #include "gemm.h" #include "blas.h" #include "im2col.h" #include "col2im.h" #include "utils.h" #include "dark_cuda.h" #include "box.h" __global__ void binarize_kernel(float *x, int n, float *binary) { int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; if (i >= n) return; binary[i] = (x[i] >= 0) ? 1 : -1; } void binarize_gpu(float *x, int n, float *binary) { binarize_kernel<<<cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >>>(x, n, binary); CHECK_CUDA(cudaPeekAtLastError()); } __global__ void binarize_input_kernel(float *input, int n, int size, float *binary) { int s = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; if (s >= size) return; int i = 0; float mean = 0; for(i = 0; i < n; ++i){ mean += fabs(input[i*size + s]); } mean = mean / n; for(i = 0; i < n; ++i){ binary[i*size + s] = (input[i*size + s] > 0) ? mean : -mean; } } void binarize_input_gpu(float *input, int n, int size, float *binary) { binarize_input_kernel<<<cuda_gridsize(size), BLOCK, 0, get_cuda_stream() >>>(input, n, size, binary); CHECK_CUDA(cudaPeekAtLastError()); } __global__ void binarize_weights_kernel(float *weights, int n, int size, float *binary) { int f = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; if (f >= n) return; int i = 0; float mean = 0; for (i = 0; i < size; ++i) { mean += fabs(weights[f*size + i]); } mean = mean / size; for (i = 0; i < size; ++i) { binary[f*size + i] = (weights[f*size + i] > 0) ? mean : -mean; //binary[f*size + i] = weights[f*size + i]; } } void binarize_weights_gpu(float *weights, int n, int size, float *binary) { binarize_weights_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> >(weights, n, size, binary); CHECK_CUDA(cudaPeekAtLastError()); } __global__ void set_zero_kernel(float *src, int size) { int i = blockIdx.x * blockDim.x + threadIdx.x; if (i < size) src[i] = 0; } __inline__ __device__ float warpAllReduceSum(float val) { for (int mask = WARP_SIZE / 2; mask > 0; mask /= 2) #if CUDART_VERSION >= 9000 val += __shfl_xor_sync(0xffffffff, val, mask); #else val += __shfl_xor(val, mask); #endif return val; } // only if (size % 32 == 0) __global__ void reduce_kernel(float *weights, int n, int size, float *mean_arr_gpu) { int i = blockIdx.x * blockDim.x + threadIdx.x; int f = i / size; if (f >= n) return; float warp_mean = warpAllReduceSum(fabs(weights[i])); if(i % 32 == 0) atomicAdd(&mean_arr_gpu[f], warp_mean / size); } __global__ void binarize_weights_mean_kernel(float *weights, int n, int size, float *binary, float *mean_arr_gpu) { int i = blockIdx.x * blockDim.x + threadIdx.x; int f = i / size; if (f >= n) return; float mean = mean_arr_gpu[f]; binary[i] = (weights[i] > 0) ? mean : -mean; } void fast_binarize_weights_gpu(float *weights, int n, int size, float *binary, float *mean_arr_gpu) { if (size % 32 == 0) { size_t gridsize = n * size; const int num_blocks = get_number_of_blocks(gridsize, BLOCK);// gridsize / BLOCK + 1; set_zero_kernel << <(n/BLOCK + 1), BLOCK, 0, get_cuda_stream() >> > (mean_arr_gpu, n); reduce_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (weights, n, size, mean_arr_gpu); binarize_weights_mean_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (weights, n, size, binary, mean_arr_gpu); CHECK_CUDA(cudaPeekAtLastError()); } else { binarize_weights_gpu(weights, n, size, binary); } } __global__ void cuda_f32_to_f16(float* input_f32, size_t size, half *output_f16) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < size) output_f16[idx] = __float2half(input_f32[idx]); //if (idx < size) output_f16[idx] = __float2half_rn(input_f32[idx]); // can't be compiled on Linux without casting // __float2half_ru, __float2half_rd, __float2half_rz, __float2half_rn //if (idx < size) *((unsigned short *)output_f16 + idx) = __float2half(input_f32[idx]); } void cuda_convert_f32_to_f16(float* input_f32, size_t size, float *output_f16) { cuda_f32_to_f16 <<< get_number_of_blocks(size, BLOCK), BLOCK, 0, get_cuda_stream() >>> (input_f32, size, (half *)output_f16); CHECK_CUDA(cudaPeekAtLastError()); } __global__ void cuda_f16_to_f32(half* input_f16, size_t size, float *output_f32) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < size) output_f32[idx] = __half2float(input_f16[idx]); //if (idx < size) output_f32[idx] = __half2float(*((unsigned short *)input_f16 + idx)); } void cuda_convert_f16_to_f32(float* input_f16, size_t size, float *output_f32) { cuda_f16_to_f32 <<< get_number_of_blocks(size, BLOCK), BLOCK, 0, get_cuda_stream() >>> ((half *)input_f16, size, output_f32); CHECK_CUDA(cudaPeekAtLastError()); } half *cuda_make_f16_from_f32_array(float *src, size_t n) { half *dst16; size_t size = sizeof(half)*n; CHECK_CUDA(cudaMalloc((void **)&dst16, size)); if (src) { assert(n > 0); cuda_convert_f32_to_f16(src, n, (float *)dst16); } if (!dst16) error("Cuda malloc failed", DARKNET_LOC); return dst16; } void forward_convolutional_layer_gpu(convolutional_layer l, network_state state) { if (l.train == 0) state.train = 0; if (l.stream >= 0) { switch_stream(l.stream); } if (l.wait_stream_id >= 0) { wait_stream(l.wait_stream_id); } //fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1); if(l.binary){ binarize_weights_gpu(l.weights_gpu, l.n, (l.c / l.groups)*l.size*l.size, l.binary_weights_gpu); swap_binary(&l); } if(l.xnor){ if (!l.align_bit_weights_gpu || state.train) { //binarize_weights_gpu(l.weights_gpu, l.n, (l.c / l.groups)*l.size*l.size, l.binary_weights_gpu); fast_binarize_weights_gpu(l.weights_gpu, l.n, (l.c / l.groups)*l.size*l.size, l.binary_weights_gpu, l.mean_arr_gpu); } if (l.align_bit_weights_gpu && !state.train && l.c >= 32 && l.stride_x == l.stride_y) { //return; //cudaError_t status = cudaSuccess; //int input_size = l.c*l.h*l.w*l.batch; int m = l.n / l.groups; int k = l.size*l.size*l.c / l.groups; int n = l.out_w*l.out_h; //float * a = l.weights_gpu; // int i, j; // for(i = 0; i < l.batch; ++i){ // for (j = 0; j < l.groups; ++j) { int ldb_align = l.lda_align; size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8; //size_t t_intput_size = new_ldb * n; //size_t t_bit_input_size = t_intput_size / 8;// +1; if (l.c % 32 == 0) { //printf("\n\n l.index = %d, l.w = %d, l.c = %d, l.n = %d, l.stride = %d, l.pad = %d - new XNOR \n", l.index, l.w, l.c, l.n, l.stride, l.pad); //printf("l.align_workspace_size = %d, (l.c * l.w * l.h) = %d \n", l.align_workspace_size, (l.c * l.w * l.h)); //float *intput_cpu = (float *)calloc(l.inputs, sizeof(float)); // state.input //cudaMemcpy(intput_cpu, state.input, l.inputs * sizeof(float), cudaMemcpyDefault); int ldb_align = l.lda_align; size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8; //size_t t_intput_size = new_ldb * l.bit_align;// n; //size_t t_bit_input_size = t_intput_size / 8;// +1; const int new_c = l.c / 32; //float *re_packed_input = (float *)calloc(l.c * l.w * l.h, sizeof(float)); //uint32_t *bin_re_packed_input = (uint32_t *)calloc(new_c * l.w * l.h + 1, sizeof(uint32_t)); // float32x4 by channel (as in cuDNN) //repack_input(intput_cpu, re_packed_input, l.w, l.h, l.c); // 32 x floats -> 1 x uint32_t //float_to_bit(re_packed_input, (uint8_t *)bin_re_packed_input, l.c * l.w * l.h); //cudaDeviceSynchronize(); //start_timer(); repack_input_gpu_bin(state.input, (uint32_t *)l.align_workspace_gpu, l.w, l.h, l.c); //repack_input_gpu(state.input, state.workspace, l.w, l.h, l.c); // 32 x floats -> 1 x uint32_t //float_to_bit_gpu(state.workspace, (unsigned char *)l.align_workspace_gpu, l.c * l.w * l.h);// l.align_workspace_size); //cudaDeviceSynchronize(); //stop_timer_and_show_name("repack_input_gpu + float_to_bit_gpu"); //free(re_packed_input); // slow - convolution the packed inputs and weights: float x 32 by channel (as in cuDNN) //convolution_repacked((uint32_t *)bin_re_packed_input, (uint32_t *)l.align_bit_weights, l.output, // l.w, l.h, l.c, l.n, l.size, l.pad, l.new_lda, l.mean_arr); // // then exit from if() //float *b = state.workspace; //float *b = (float *)calloc(100 * 1024 * 1024, sizeof(float)); //float *c = l.output; //memset(c, 0, l.outputs * sizeof(float)); //im2col_cpu_custom((float *)bin_re_packed_input, new_c, l.h, l.w, l.size, l.stride, l.pad, b); //cudaMemcpy(l.align_workspace_gpu, bin_re_packed_input, (new_c * l.w * l.h + 1) * sizeof(uint32_t), cudaMemcpyDefault); //start_timer(); im2col_ongpu(l.align_workspace_gpu, new_c, l.h, l.w, l.size, l.stride, l.pad, state.workspace); //cudaDeviceSynchronize(); //stop_timer_and_show_name("im2col_ongpu"); //free(bin_re_packed_input); int new_k = l.size*l.size*l.c / 32; // good for (l.c == 64) //gemm_nn_bin_32bit_packed(m, n, new_k, 1, // l.align_bit_weights, l.new_lda/32, // b, n, // c, n, l.mean_arr); // // then exit from if() //size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8; //size_t t_intput_size = new_ldb * l.bit_align;// n; //size_t t_bit_input_size = t_intput_size / 8;// +1; //char *t_bit_input = (char *)calloc(t_bit_input_size, sizeof(char)); //transpose_uint32((uint32_t *)b, (uint32_t *)t_bit_input, new_k, n, n, new_ldb); //cudaMemcpy(l.transposed_align_workspace_gpu, t_bit_input, t_bit_input_size * sizeof(char), cudaMemcpyDefault); //cudaMemcpy(state.workspace, b, t_bit_input_size * sizeof(char), cudaMemcpyDefault); //printf("\n n = %d, n % 32 = %d, new_ldb = %d, new_ldb % 32 = %d \n", n, n % 32, new_ldb, new_ldb % 32); //start_timer(); transpose_uint32_gpu((uint32_t *)state.workspace, (uint32_t *)l.transposed_align_workspace_gpu, new_k, n, n, new_ldb); //cudaDeviceSynchronize(); //stop_timer_and_show_name("transpose_uint32_gpu"); //cudaDeviceSynchronize(); //stop_timer_and_show_name("repack_input_gpu_bin + im2col_ongpu + transpose_uint32_gpu_2"); //start_timer(); gemm_nn_custom_bin_mean_transposed_gpu(m, n, k, (unsigned char *)l.align_bit_weights_gpu, new_ldb, (unsigned char *)l.transposed_align_workspace_gpu, new_ldb, l.output_gpu, n, l.mean_arr_gpu, l.biases_gpu, l.activation == LEAKY, l.bin_conv_shortcut_in_gpu, l.bin_conv_shortcut_out_gpu); //cudaDeviceSynchronize(); //stop_timer_and_show_name("gemm_nn_custom_bin_mean_transposed_gpu"); // the main GEMM function //gemm_nn_custom_bin_mean_transposed(m, n, k, 1, (uint8_t *)l.align_bit_weights, new_ldb, (uint8_t *)t_bit_input, new_ldb, c, n, l.mean_arr); //add_bias(l.output, l.biases, l.batch, l.n, l.out_h*l.out_w); //cudaMemcpy(l.output_gpu, l.output, l.outputs * sizeof(float), cudaMemcpyDefault); // // alternative GEMM //gemm_nn_bin_transposed_32bit_packed(m, n, new_k, 1, // l.align_bit_weights, l.new_lda/32, // t_bit_input, new_ldb / 32, // c, n, l.mean_arr); //free(t_bit_input); //free(b); } else { //printf("\n\n l.index = %d, l.w = %d, l.c = %d, l.n = %d, l.stride = %d, l.pad = %d - old XNOR \n", l.index, l.w, l.c, l.n, l.stride, l.pad); //cudaDeviceSynchronize(); int i = 0; /* // if (l.stride == 1 && l.c >= 256 && l.size > 1) if (l.stride == 1 && l.c >= 1024 && l.size > 1 && 0)// && l.w >= 13) // disabled { // stride=1 only //start_timer(); im2col_align_bin_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, state.workspace, l.bit_align); //cudaDeviceSynchronize(); //stop_timer_and_show_name("im2col_align_bin_ongpu"); } else*/ { //start_timer(); im2col_align_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, l.align_workspace_gpu, l.bit_align); //cudaDeviceSynchronize(); //stop_timer_and_show_name("im2col_align_ongpu"); //getchar(); // should be optimized //start_timer(); float_to_bit_gpu(l.align_workspace_gpu, (unsigned char *)state.workspace, l.align_workspace_size); //cudaDeviceSynchronize(); //stop_timer_and_show_name("float_to_bit_gpu"); } //start_timer(); transpose_bin_gpu((unsigned char *)state.workspace, (unsigned char *)l.transposed_align_workspace_gpu, k, n, l.bit_align, new_ldb, 8); //cudaDeviceSynchronize(); //stop_timer_and_show_name("transpose_bin_gpu"); //cudaDeviceSynchronize(); //stop_timer_and_show_name("im2col_align_ongpu + float_to_bit_gpu + transpose_bin_gpu"); // should be optimized //if(0) {//if (k > 1000) { // sequentially input-shared - BAD // gemm_nn_custom_bin_mean_transposed_sequentially_gpu(m, n, k, // (unsigned char *)l.align_bit_weights_gpu, new_ldb, (unsigned char *)l.transposed_align_workspace_gpu, new_ldb, l.output_gpu, n, l.mean_arr_gpu); //} //else { // coalescing & weights-shared-memory - GOOD //start_timer(); gemm_nn_custom_bin_mean_transposed_gpu(m, n, k, (unsigned char *)l.align_bit_weights_gpu, new_ldb, (unsigned char *)l.transposed_align_workspace_gpu, new_ldb, l.output_gpu, n, l.mean_arr_gpu, l.biases_gpu, l.activation == LEAKY, l.bin_conv_shortcut_in_gpu, l.bin_conv_shortcut_out_gpu); //cudaDeviceSynchronize(); //stop_timer_and_show_name("gemm_nn_custom_bin_mean_transposed_gpu"); //} //cudaDeviceSynchronize(); //check_error(status); //getchar(); } /* { float_to_bit_gpu(state.input, (unsigned char *)l.align_workspace_gpu, input_size); convolve_bin_gpu(l.align_workspace_gpu, (float *)l.align_bit_weights_gpu, l.output_gpu, l.w, l.h, l.c, l.n, l.size, l.pad, l.new_lda, l.mean_arr_gpu); //convolve_gpu(state.input, l.weights_gpu, l.output_gpu, l.w, l.h, l.c, l.n, l.size, l.pad); //cudaDeviceSynchronize(); //check_error(status); add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h); } */ //add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h); if (l.activation == SWISH) activate_array_swish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.output_gpu); else if (l.activation == MISH) activate_array_mish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.output_gpu); else if (l.activation == HARD_MISH) activate_array_hard_mish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.output_gpu); else if (l.activation == NORM_CHAN) activate_array_normalize_channels_ongpu(l.output_gpu, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output_gpu); else if (l.activation == NORM_CHAN_SOFTMAX) activate_array_normalize_channels_softmax_ongpu(l.output_gpu, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output_gpu, 0); else if (l.activation == NORM_CHAN_SOFTMAX_MAXVAL) activate_array_normalize_channels_softmax_ongpu(l.output_gpu, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output_gpu, 1); else if (l.activation != LINEAR && l.activation != LEAKY) activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation); //if(l.activation != LINEAR && l.activation != LEAKY) activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation); //if (l.binary || l.xnor) swap_binary(&l); //cudaDeviceSynchronize(); return; } } if (l.xnor) { swap_binary(&l); binarize_gpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input_gpu); state.input = l.binary_input_gpu; } //fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1); #ifdef CUDNN //float one = 1; // alpha[0], beta[0] is float for HALF and FLOAT float alpha = 1, beta = 0; //#ifdef CUDNN_HALF //if (state.use_mixed_precision) { int iteration_num = get_current_iteration(state.net); // (*state.net.seen) / (state.net.batch*state.net.subdivisions); if (state.index != 0 && state.net.cudnn_half && !l.xnor && (!state.train || (iteration_num > 3 * state.net.burn_in) && state.net.loss_scale != 1) && (l.c / l.groups) % 8 == 0 && l.n % 8 == 0 && l.groups <= 1 && l.size > 1) { //printf("\n CUDNN_HALF!!! state.index = %d \n", state.index); // Note: For improved performance it is advised to use beta[0] = 0.0. // For Tensor Core: cudnnSetConvolutionMathType() where cudnnMathType_t mathType = CUDNN_TENSOR_OP_MATH; // 1. or CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM and use CUDNN_DATA_HALF // 2. or CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED // More: http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor_ops const size_t input16_size = l.batch*l.c*l.w*l.h; const size_t output16_size = l.batch*l.out_c*l.out_h*l.out_w; if (*state.net.max_input16_size < input16_size) { //printf("\n input16_size: cur = %zu \t max = %zu \n", input16_size, *state.net.max_input16_size); *state.net.max_input16_size = input16_size; if (*state.net.input16_gpu) cuda_free(*state.net.input16_gpu); assert(*state.net.max_input16_size > 0); *state.net.input16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_input16_size); } float *input16 = *state.net.input16_gpu; if (*state.net.max_output16_size < output16_size) { *state.net.max_output16_size = output16_size; if (*state.net.output16_gpu) cuda_free(*state.net.output16_gpu); assert(*state.net.max_output16_size > 0); *state.net.output16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_output16_size); } float *output16 = *state.net.output16_gpu; assert(input16_size > 0); cuda_convert_f32_to_f16(state.input, input16_size, input16); //fill_ongpu(output16_size / 2, 0, (float *)output16, 1); CHECK_CUDNN(cudnnConvolutionForward(cudnn_handle(), &alpha, l.srcTensorDesc16, input16, l.weightDesc16, l.weights_gpu16, l.convDesc, l.fw_algo16, state.workspace, l.workspace_size, &beta, l.dstTensorDesc16, output16)); if (l.batch_normalize) { if (state.train && !state.net.adversarial) // Training { simple_copy_ongpu(l.outputs*l.batch / 2, output16, l.x_gpu); //copy_ongpu(l.outputs*l.batch / 2, output16, 1, l.x_gpu, 1); //cudaMemcpyAsync(l.x_gpu, output16, l.outputs*l.batch*sizeof(half), cudaMemcpyDefault, get_cuda_stream()); float one = 1.0f; float zero = 0.0f; // Batch-normalization can still take FP16 inputs and outputs, saving half the bandwidth // compared to FP32, it's just that the statistics and value adjustment should be done in FP32. CHECK_CUDNN(cudnnBatchNormalizationForwardTraining(cudnn_handle(), CUDNN_BATCHNORM_SPATIAL, &one, &zero, l.normDstTensorDescF16, l.x_gpu, // input l.normDstTensorDescF16, output16, // output l.normTensorDesc, l.scales_gpu, // input l.biases_gpu, // input .01, l.rolling_mean_gpu, // input/output (should be FP32) l.rolling_variance_gpu, // input/output (should be FP32) .00001, l.mean_gpu, // output (should be FP32) - optional cache to speedup cudnnBatchNormalizationBackward() l.variance_gpu)); // output (should be FP32) - optional cache to speedup cudnnBatchNormalizationBackward() cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu); //forward_batchnorm_layer_gpu(l, state); } else // Detection { cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu); normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w); scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w); add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h); } } else // BIAS only { cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu); add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h); } } else { //#else /* int input_nan_inf = is_nan_or_inf(state.input, l.inputs * l.batch); printf("\n is_nan_or_inf(state.input) = %d \n", input_nan_inf); if (input_nan_inf) getchar(); int weights_nan_inf = is_nan_or_inf(l.weights_gpu, l.nweights); printf("\n is_nan_or_inf(l.weights_gpu) = %d \n", weights_nan_inf); if (weights_nan_inf) getchar(); */ CHECK_CUDNN(cudnnConvolutionForward(cudnn_handle(), &alpha, //&one, l.srcTensorDesc, state.input, l.weightDesc, l.weights_gpu, l.convDesc, l.fw_algo, state.workspace, l.workspace_size, &beta, //&one, l.dstTensorDesc, l.output_gpu)); //cudaDeviceSynchronize(); if (l.batch_normalize) { forward_batchnorm_layer_gpu(l, state); } else { add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h); } //#endif // CUDNN_HALF } #else fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1); int i, j; int m = l.n / l.groups; int k = l.size*l.size*l.c / l.groups; int n = l.out_w*l.out_h; for(i = 0; i < l.batch; ++i){ for (j = 0; j < l.groups; ++j) { //float *im = state.input + i*l.c*l.h*l.w; float *im = state.input + (i*l.groups + j)*l.c / l.groups*l.h*l.w; float *a = l.weights_gpu + j*l.nweights / l.groups; float *b = state.workspace; float *c = l.output_gpu + (i*l.groups + j)*n*m; if (l.size == 1 && l.stride == 1 && l.dilation == 1) { b = im; } else { //im2col_ongpu(im, l.c / l.groups, l.h, l.w, l.size, l.stride, l.pad, state.workspace); im2col_gpu_ext(im, // input l.c / l.groups, // input channels l.h, l.w, // input size (h, w) l.size, l.size, // kernel size (h, w) l.pad * l.dilation, l.pad * l.dilation, // padding (h, w) l.stride_y, l.stride_x, // stride (h, w) l.dilation, l.dilation, // dilation (h, w) state.workspace); // output } //gemm_ongpu(0, 0, m, n, k, 1., a, k, b, n, 1., c + i*m*n, n); gemm_ongpu(0, 0, m, n, k, 1, a, k, b, n, 1, c, n); } } if (l.batch_normalize) { forward_batchnorm_layer_gpu(l, state); } else { add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h); } #endif //#ifndef CUDNN_HALF //#endif // no CUDNN_HALF if (l.activation == SWISH) activate_array_swish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.output_gpu); else if (l.activation == MISH) activate_array_mish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.output_gpu); else if (l.activation == HARD_MISH) activate_array_hard_mish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.output_gpu); else if (l.activation == NORM_CHAN) activate_array_normalize_channels_ongpu(l.output_gpu, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output_gpu); else if (l.activation == NORM_CHAN_SOFTMAX) activate_array_normalize_channels_softmax_ongpu(l.output_gpu, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output_gpu, 0); else if (l.activation == NORM_CHAN_SOFTMAX_MAXVAL) activate_array_normalize_channels_softmax_ongpu(l.output_gpu, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output_gpu, 1); else if (l.activation != LINEAR) activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation); //if(l.dot > 0) dot_error_gpu(l); if(l.binary || l.xnor) swap_binary(&l); //cudaDeviceSynchronize(); // for correct profiling of performance if (state.net.try_fix_nan) { fix_nan_and_inf(l.output_gpu, l.outputs*l.batch); } if(l.assisted_excitation && state.train) assisted_excitation_forward_gpu(l, state); if (l.antialiasing) { network_state s = { 0 }; s.train = state.train; s.workspace = state.workspace; s.net = state.net; if (!state.train) s.index = state.index; // don't use TC for training (especially without cuda_convert_f32_to_f16() ) s.input = l.output_gpu; forward_convolutional_layer_gpu(*(l.input_layer), s); simple_copy_ongpu(l.outputs*l.batch, l.output_gpu, l.input_antialiasing_gpu); simple_copy_ongpu(l.input_layer->outputs*l.input_layer->batch, l.input_layer->output_gpu, l.output_gpu); } if (l.coordconv) { coord_conv_gpu(l.output_gpu, l.outputs*l.batch, l.out_w, l.out_h, l.out_c, l.batch, 0); } } void backward_convolutional_layer_gpu(convolutional_layer l, network_state state) { if (l.coordconv) { coord_conv_gpu(l.delta_gpu, l.outputs*l.batch, l.out_w, l.out_h, l.out_c, l.batch, 1); } if (l.antialiasing) { network_state s = { 0 }; s.train = state.train; s.workspace = state.workspace; s.net = state.net; s.delta = l.delta_gpu; // s.delta will be returned to l.delta_gpu s.input = l.input_antialiasing_gpu; //if (!state.train) s.index = state.index; // don't use TC for training (especially without cuda_convert_f32_to_f16() ) simple_copy_ongpu(l.input_layer->outputs*l.input_layer->batch, l.delta_gpu, l.input_layer->delta_gpu); backward_convolutional_layer_gpu(*(l.input_layer), s); simple_copy_ongpu(l.outputs*l.batch, l.input_antialiasing_gpu, l.output_gpu); } if(state.net.try_fix_nan) constrain_ongpu(l.outputs*l.batch, 1, l.delta_gpu, 1); if (l.activation == SWISH) gradient_array_swish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.delta_gpu); else if (l.activation == MISH) gradient_array_mish_ongpu(l.outputs*l.batch, l.activation_input_gpu, l.delta_gpu); else if (l.activation == HARD_MISH) gradient_array_hard_mish_ongpu(l.outputs*l.batch, l.activation_input_gpu, l.delta_gpu); else if (l.activation == NORM_CHAN_SOFTMAX || l.activation == NORM_CHAN_SOFTMAX_MAXVAL) gradient_array_normalize_channels_softmax_ongpu(l.output_gpu, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.delta_gpu); else if (l.activation == NORM_CHAN) gradient_array_normalize_channels_ongpu(l.output_gpu, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.delta_gpu); else gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu); if (!l.batch_normalize) backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h); //#ifndef CUDNN_HALF //if(l.batch_normalize){ // backward_batchnorm_layer_gpu(l, state); //} else { // //backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h); //} //#endif // no CUDNN_HALF float *original_input = state.input; if(l.xnor) state.input = l.binary_input_gpu; #ifdef CUDNN float one = 1.f; float alpha = 1, beta = 0; //#ifdef CUDNN_HALF int iteration_num = get_current_iteration(state.net); //(*state.net.seen) / (state.net.batch*state.net.subdivisions); if (state.index != 0 && state.net.cudnn_half && !l.xnor && (!state.train || (iteration_num > 3 * state.net.burn_in) && state.net.loss_scale != 1) && (l.c / l.groups) % 8 == 0 && l.n % 8 == 0 && l.groups <= 1 && l.size > 1) { const size_t input16_size = l.batch*l.c*l.w*l.h; const size_t delta16_size = l.batch*l.n*l.out_w*l.out_h; if (*state.net.max_input16_size < input16_size) { *state.net.max_input16_size = input16_size; if (*state.net.input16_gpu) cuda_free(*state.net.input16_gpu); assert(*state.net.max_input16_size > 0); *state.net.input16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_input16_size); } float *input16 = *state.net.input16_gpu; if (*state.net.max_output16_size < delta16_size) { *state.net.max_output16_size = delta16_size; if (*state.net.output16_gpu) cuda_free(*state.net.output16_gpu); assert(*state.net.max_output16_size > 0); *state.net.output16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_output16_size); } float *delta16 = *state.net.output16_gpu; assert(input16_size > 0); assert(delta16_size > 0); cuda_convert_f32_to_f16(state.input, input16_size, input16); cuda_convert_f32_to_f16(l.delta_gpu, delta16_size, delta16); if (l.batch_normalize) { //if (!state.train) { // l.mean_gpu = l.rolling_mean_gpu; // l.variance_gpu = l.rolling_variance_gpu; //} float one = 1.0f; float zero = 0.0f; CHECK_CUDNN(cudnnBatchNormalizationBackward(cudnn_handle(), CUDNN_BATCHNORM_SPATIAL, &one, &zero, &one, &one, l.normDstTensorDescF16, l.x_gpu, // input (input in BN-forward-inference) l.normDstTensorDescF16, delta16, // input l.normDstTensorDescF16, l.output_gpu, //l.x_norm_gpu, // output (new delta) l.normTensorDesc, l.scales_gpu, // input (should be FP32) l.scale_updates_gpu, // output (should be FP32) l.bias_updates_gpu, // output (should be FP32) .00001, l.mean_gpu, // input (should be FP32) l.variance_gpu)); // input (should be FP32) simple_copy_ongpu(l.outputs*l.batch / 2, l.output_gpu, delta16); //copy_ongpu(l.outputs*l.batch / 2, l.x_norm_gpu, 1, delta16, 1); //cudaMemcpyAsync(delta16, l.x_norm_gpu, l.outputs*l.batch * sizeof(half), cudaMemcpyDefault, get_cuda_stream()); } else { //backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h); } // convert input: state.input (x), l.delta_gpu (y) from fp32 to fp16 // get output: l.weight_updates_gpu (dw) and convert it to fp32 (ONLY if it is fp16) // calculate conv weight updates // Already: l.weight_updates_gpu = (l.weight_updates_gpu - l.weight*decay*batch*subdivision)*momentum // so we should copy f32 to f16, or compute: f16=(w_up - w*d*b*s)*m assert((l.nweights) > 0); cuda_convert_f32_to_f16(l.weight_updates_gpu, l.nweights, l.weight_updates_gpu16); if (!state.net.adversarial && !l.train_only_bn) { CHECK_CUDNN(cudnnConvolutionBackwardFilter(cudnn_handle(), &one, l.srcTensorDesc16, input16, //state.input, l.ddstTensorDesc16, delta16, //l.delta_gpu, l.convDesc, l.bf_algo16, state.workspace, l.workspace_size, &one, l.dweightDesc16, l.weight_updates_gpu16)); // l.weight_updates_gpu); cuda_convert_f16_to_f32(l.weight_updates_gpu16, l.nweights, l.weight_updates_gpu); } if (state.delta) { if (l.binary || l.xnor) swap_binary(&l); // http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData // calculate delta for the next layer // convert input: l.weights_gpu (w), l.delta_gpu (dy) from fp32 to fp16 // get output: state.delta (dx) and convert it to fp32 (ONLY if it is fp16) CHECK_CUDNN(cudnnConvolutionBackwardData(cudnn_handle(), &alpha, l.weightDesc16, l.weights_gpu16, //l.weights_gpu, l.ddstTensorDesc16, delta16, //l.delta_gpu, l.convDesc, l.bd_algo16, state.workspace, l.workspace_size, &beta, l.dsrcTensorDesc16, input16)); // state.delta); cuda_convert_f16_to_f32(input16, input16_size, state.delta); if (l.binary || l.xnor) swap_binary(&l); if (l.xnor) gradient_array_ongpu(original_input, l.batch*l.c*l.h*l.w, HARDTAN, state.delta); } } else { //#else // CUDNN_HALF if(l.batch_normalize){ backward_batchnorm_layer_gpu(l, state); } if (!state.net.adversarial && !l.train_only_bn) { float *old_input = state.input; /* if (l.reverse) { if (*state.net.max_output16_size < l.inputs*l.batch) { *state.net.max_output16_size = l.inputs*l.batch; if (*state.net.output16_gpu) cuda_free(*state.net.output16_gpu); assert(*state.net.max_output16_size > 0); *state.net.output16_gpu = cuda_make_array(NULL, *state.net.max_output16_size); } float clip = 0.0; float divider = 1.0; float abs_add = 1.0; mult_inverse_array_gpu(state.input, *state.net.output16_gpu, l.inputs*l.batch, l.reverse, divider, clip, abs_add); state.input = *state.net.output16_gpu; } */ // calculate conv weight updates // if used: beta=1 then loss decreases faster CHECK_CUDNN(cudnnConvolutionBackwardFilter(cudnn_handle(), &one, l.srcTensorDesc, state.input, l.ddstTensorDesc, l.delta_gpu, l.convDesc, l.bf_algo, state.workspace, l.workspace_size, &one, l.dweightDesc, l.weight_updates_gpu)); state.input = old_input; } if (state.delta) { if (l.binary || l.xnor) swap_binary(&l); float *old_weights = l.weights_gpu; /* if (l.reverse) { if (*state.net.max_output16_size < l.nweights) { *state.net.max_output16_size = l.nweights; if (*state.net.output16_gpu && *state.net.max_output16_size > 0) cuda_free(*state.net.output16_gpu); assert(*state.net.max_output16_size > 0); *state.net.output16_gpu = cuda_make_array(NULL, l.nweights); } float clip = 0.0; float divider = 1.0; float abs_add = 1.0; mult_inverse_array_gpu(l.weights_gpu, *state.net.output16_gpu, l.nweights, l.reverse, divider, clip, abs_add); l.weights_gpu = *state.net.output16_gpu; } */ // http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData // calculate delta for the next layer CHECK_CUDNN(cudnnConvolutionBackwardData(cudnn_handle(), &one, l.weightDesc, l.weights_gpu, l.ddstTensorDesc, l.delta_gpu, l.convDesc, l.bd_algo, state.workspace, l.workspace_size, &one, l.dsrcTensorDesc, state.delta)); l.weights_gpu = old_weights; if (l.binary || l.xnor) swap_binary(&l); if (l.xnor) gradient_array_ongpu(original_input, l.batch*l.c*l.h*l.w, HARDTAN, state.delta); } } //#endif // CUDNN_HALF #else // CUDNN if (l.batch_normalize) { backward_batchnorm_layer_gpu(l, state); } int m = l.n / l.groups; int n = l.size*l.size*l.c / l.groups; int k = l.out_w*l.out_h; int i, j; for(i = 0; i < l.batch; ++i){ for (j = 0; j < l.groups; ++j) { float * a = l.delta_gpu + (i*l.groups + j)*m*k; float * b = state.workspace; float * c = l.weight_updates_gpu + j*l.nweights / l.groups; float *im = state.input + (i*l.groups + j)*l.c / l.groups*l.h*l.w; if (!state.net.adversarial && !l.train_only_bn) { //im2col_ongpu(im, l.c / l.groups, l.h, l.w, l.size, l.stride, l.pad, state.workspace); im2col_gpu_ext(im, // input l.c / l.groups, // input channels l.h, l.w, // input size (h, w) l.size, l.size, // kernel size (h, w) l.pad * l.dilation, l.pad * l.dilation, // padding (h, w) l.stride_y, l.stride_x, // stride (h, w) l.dilation, l.dilation, // dilation (h, w) state.workspace); // output //gemm_ongpu(0, 1, m, n, k, 1, a + i*m*k, k, b, k, 1, c, n); gemm_ongpu(0, 1, m, n, k, 1, a, k, b, k, 1, c, n); } if (state.delta) { if (l.binary || l.xnor) swap_binary(&l); float * a = l.weights_gpu + j*l.nweights / l.groups; float * b = l.delta_gpu + (i*l.groups + j)*m*k; float * c = state.workspace; //gemm_ongpu(1, 0, n, k, m, 1, a, n, b + i*k*m, k, 0, c, k); gemm_ongpu(1, 0, n, k, m, 1, a, n, b, k, 0, c, k); float *delta = state.delta + (i*l.groups + j)*l.c / l.groups*l.h*l.w; //col2im_ongpu(state.workspace, l.c / l.groups, l.h, l.w, l.size, l.stride, l.pad, delta); col2im_gpu_ext( state.workspace, // input l.c / l.groups, // input channels l.h, l.w, // input size (h, w) l.size, l.size, // kernel size (h, w) l.pad * l.dilation, l.pad * l.dilation, // padding size (h, w) l.stride_y, l.stride_x, // stride size (h, w) l.dilation, l.dilation, // dilation size (h, w) delta); // output (delta) if (l.binary || l.xnor) { swap_binary(&l); } if (l.xnor) gradient_array_ongpu(original_input + i*l.c*l.h*l.w, l.c*l.h*l.w, HARDTAN, state.delta + i*l.c*l.h*l.w); } } } #endif if (state.net.try_fix_nan) { if (state.delta) { reset_nan_and_inf(state.delta, l.inputs * l.batch); } int size = l.nweights; reset_nan_and_inf(l.weight_updates_gpu, size); fix_nan_and_inf(l.weights_gpu, size); } } __global__ void calc_avg_activation_kernel(float *src, float *dst, int size, int channels, int batches) { int i = blockIdx.x * blockDim.x + threadIdx.x; int xy = i % size; int b = i / size; if (i < size*batches) { dst[i] = 0; for (int c = 0; c < channels; ++c) { dst[i] += src[xy + size*(c + channels*b)]; } dst[i] = dst[i] / channels; } } void calc_avg_activation_gpu(float *src, float *dst, int size, int channels, int batches) { const int num_blocks = get_number_of_blocks(size*batches, BLOCK); calc_avg_activation_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (src, dst, size, channels, batches); } __global__ void assisted_activation_kernel(float alpha, float *output, float *gt_gpu, float *a_avg_gpu, int size, int channels, int batches) { int i = blockIdx.x * blockDim.x + threadIdx.x; int xy = i % size; int b = i / size; if (b < batches) { for (int c = 0; c < channels; ++c) { output[xy + size*(c + channels*b)] += alpha * gt_gpu[i] * a_avg_gpu[i]; //output[xy + size*(c + channels*b)] += gt_gpu[i] * a_avg_gpu[i]; //output[xy + size*(c + channels*b)] += gt_gpu[i] * output[xy + size*(c + channels*b)]; //output[xy + size*(c + channels*b)] = a_avg_gpu[i]; } } } void assisted_activation_gpu(float alpha, float *output, float *gt_gpu, float *a_avg_gpu, int size, int channels, int batches) { const int num_blocks = get_number_of_blocks(size*batches, BLOCK); assisted_activation_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (alpha, output, gt_gpu, a_avg_gpu, size, channels, batches); } __global__ void assisted_activation2_kernel(float alpha, float *output, float *gt_gpu, float *a_avg_gpu, int size, int channels, int batches) { int i = blockIdx.x * blockDim.x + threadIdx.x; int xy = i % size; int b = i / size; float beta = 1 - alpha; if (b < batches) { for (int c = 0; c < channels; ++c) { if(gt_gpu[i] == 0) output[xy + size*(c + channels*b)] *= beta; } } } void assisted_activation2_gpu(float alpha, float *output, float *gt_gpu, float *a_avg_gpu, int size, int channels, int batches) { const int num_blocks = get_number_of_blocks(size*batches, BLOCK); assisted_activation2_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (alpha, output, gt_gpu, a_avg_gpu, size, channels, batches); } void assisted_excitation_forward_gpu(convolutional_layer l, network_state state) { const int iteration_num = get_current_iteration(state.net); //(*state.net.seen) / (state.net.batch*state.net.subdivisions); // epoch //const float epoch = (float)(*state.net.seen) / state.net.train_images_num; // calculate alpha //const float alpha = (1 + cos(3.141592 * iteration_num)) / (2 * state.net.max_batches); //const float alpha = (1 + cos(3.141592 * epoch)) / (2 * state.net.max_batches); float alpha = (1 + cos(3.141592 * iteration_num / state.net.max_batches)) / 2; //float alpha = (1 + cos(3.141592 * iteration_num / state.net.max_batches)); if (l.assisted_excitation == 1) { if (iteration_num > state.net.max_batches / 2) return; } else { if (iteration_num < state.net.burn_in) return; else if (iteration_num > l.assisted_excitation) return; else alpha = (1 + cos(3.141592 * iteration_num / (state.net.burn_in + l.assisted_excitation))) / 2; // from 1 to 0 } //printf("\n epoch = %f, alpha = %f, seen = %d, max_batches = %d, train_images_num = %d \n", // epoch, alpha, (*state.net.seen), state.net.max_batches, state.net.train_images_num); //const int size = l.outputs * l.batch; float *a_avg = (float *)calloc(l.out_w * l.out_h * l.batch, sizeof(float)); float *gt = (float *)calloc(l.out_w * l.out_h * l.batch, sizeof(float)); int b; int w, h; l.max_boxes = state.net.num_boxes; l.truths = l.max_boxes*(4 + 1); int num_truth = l.batch*l.truths; float *truth_cpu = (float *)calloc(num_truth, sizeof(float)); cuda_pull_array(state.truth, truth_cpu, num_truth); //cudaStreamSynchronize(get_cuda_stream()); //CHECK_CUDA(cudaPeekAtLastError()); for (b = 0; b < l.batch; ++b) { // calculate G int t; for (t = 0; t < state.net.num_boxes; ++t) { box truth = float_to_box_stride(truth_cpu + t*(4 + 1) + b*l.truths, 1); if (!truth.x) break; // continue; float beta = 0; //float beta = 1 - alpha; // from 0 to 1 float dw = (1 - truth.w) * beta; float dh = (1 - truth.h) * beta; //printf(" alpha = %f, beta = %f, truth.w = %f, dw = %f, tw+dw = %f, l.out_w = %d \n", alpha, beta, truth.w, dw, truth.w+dw, l.out_w); int left = floorf((truth.x - (dw + truth.w) / 2) * l.out_w); int right = ceilf((truth.x + (dw + truth.w) / 2) * l.out_w); int top = floorf((truth.y - (dh + truth.h) / 2) * l.out_h); int bottom = ceilf((truth.y + (dh + truth.h) / 2) * l.out_h); if (left < 0) left = 0; if (top < 0) top = 0; if (right > l.out_w) right = l.out_w; if (bottom > l.out_h) bottom = l.out_h; for (w = left; w <= right; w++) { for (h = top; h < bottom; h++) { gt[w + l.out_w * h + l.out_w*l.out_h*b] = 1; } } } } cuda_push_array(l.gt_gpu, gt, l.out_w * l.out_h * l.batch); //cudaStreamSynchronize(get_cuda_stream()); //CHECK_CUDA(cudaPeekAtLastError()); // calc avg_output on GPU - for whole batch calc_avg_activation_gpu(l.output_gpu, l.a_avg_gpu, l.out_w * l.out_h, l.out_c, l.batch); //cudaStreamSynchronize(get_cuda_stream()); //CHECK_CUDA(cudaPeekAtLastError()); // calc new output //assisted_activation2_gpu(1, l.output_gpu, l.gt_gpu, l.a_avg_gpu, l.out_w * l.out_h, l.out_c, l.batch); // AE3: gt increases (beta = 1 - alpha = 0) //assisted_activation2_gpu(alpha, l.output_gpu, l.gt_gpu, l.a_avg_gpu, l.out_w * l.out_h, l.out_c, l.batch); assisted_activation_gpu(alpha, l.output_gpu, l.gt_gpu, l.a_avg_gpu, l.out_w * l.out_h, l.out_c, l.batch); //cudaStreamSynchronize(get_cuda_stream()); //CHECK_CUDA(cudaPeekAtLastError()); /* for (b = 0; b < l.batch; ++b) { // calculate average A for (w = 0; w < l.out_w; w++) { for (h = 0; h < l.out_h; h++) { for (c = 0; c < l.out_c; c++) { a_avg[w + l.out_w*(h + l.out_h*b)] += l.output[w + l.out_w*(h + l.out_h*(c + l.out_c*b))]; } a_avg[w + l.out_w*(h + l.out_h*b)] /= l.out_c; // a_avg / d } } } // change activation for (b = 0; b < l.batch; ++b) { for (w = 0; w < l.out_w; w++) { for (h = 0; h < l.out_h; h++) { for (c = 0; c < l.out_c; c++) { // a = a + alpha(t) + e(c,i,j) = a + alpha(t) + g(i,j) * avg_a(i,j) / channels l.output[w + l.out_w*(h + l.out_h*(c + l.out_c*b))] += alpha * g[w + l.out_w*(h + l.out_h*b)] * a_avg[w + l.out_w*(h + l.out_h*b)]; //l.output[w + l.out_w*(h + l.out_h*(c + l.out_c*b))] = // alpha * g[w + l.out_w*(h + l.out_h*b)] * a_avg[w + l.out_w*(h + l.out_h*b)]; } } } } */ if (0) // visualize ground truth { #ifdef OPENCV cuda_pull_array(l.output_gpu, l.output, l.outputs * l.batch); cudaStreamSynchronize(get_cuda_stream()); CHECK_CUDA(cudaPeekAtLastError()); for (b = 0; b < l.batch; ++b) { printf(" Assisted Excitation alpha = %f \n", alpha); image img = float_to_image(l.out_w, l.out_h, 1, &gt[l.out_w*l.out_h*b]); char buff[100]; sprintf(buff, "a_excitation_gt_%d", b); show_image_cv(img, buff); //image img2 = float_to_image(l.out_w, l.out_h, 1, &l.output[l.out_w*l.out_h*l.out_c*b]); image img2 = float_to_image_scaled(l.out_w, l.out_h, 1, &l.output[l.out_w*l.out_h*l.out_c*b]); char buff2[100]; sprintf(buff2, "a_excitation_output_%d", b); show_image_cv(img2, buff2); /* int c = l.out_c; if (c > 4) c = 4; image img3 = float_to_image(l.out_w, l.out_h, c, &l.output[l.out_w*l.out_h*l.out_c*b]); image dc = collapse_image_layers(img3, 1); char buff3[100]; sprintf(buff3, "a_excitation_act_collapsed_%d", b); show_image_cv(dc, buff3); */ wait_key_cv(5); } wait_until_press_key_cv(); #endif // OPENCV } free(truth_cpu); free(gt); free(a_avg); } void pull_convolutional_layer(convolutional_layer l) { cuda_pull_array_async(l.weights_gpu, l.weights, l.nweights); cuda_pull_array_async(l.biases_gpu, l.biases, l.n); if (l.weight_updates_gpu) cuda_pull_array_async(l.weight_updates_gpu, l.weight_updates, l.nweights); if (l.bias_updates_gpu) cuda_pull_array_async(l.bias_updates_gpu, l.bias_updates, l.n); if (l.batch_normalize){ cuda_pull_array_async(l.scales_gpu, l.scales, l.n); cuda_pull_array_async(l.rolling_mean_gpu, l.rolling_mean, l.n); cuda_pull_array_async(l.rolling_variance_gpu, l.rolling_variance, l.n); } if (l.adam){ cuda_pull_array_async(l.m_gpu, l.m, l.nweights); cuda_pull_array_async(l.v_gpu, l.v, l.nweights); } CHECK_CUDA(cudaPeekAtLastError()); cudaStreamSynchronize(get_cuda_stream()); } void push_convolutional_layer(convolutional_layer l) { cuda_push_array(l.weights_gpu, l.weights, l.nweights); #ifdef CUDNN_HALF assert(l.nweights > 0); cuda_convert_f32_to_f16(l.weights_gpu, l.nweights, l.weights_gpu16); #endif cuda_push_array(l.biases_gpu, l.biases, l.n); if (l.train) { cuda_push_array(l.weight_updates_gpu, l.weight_updates, l.nweights); cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.n); } if (l.batch_normalize){ cuda_push_array(l.scales_gpu, l.scales, l.n); cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.n); cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.n); } if (l.adam){ cuda_push_array(l.m_gpu, l.m, l.nweights); cuda_push_array(l.v_gpu, l.v, l.nweights); } CHECK_CUDA(cudaPeekAtLastError()); } void update_convolutional_layer_gpu(layer l, int batch, float learning_rate_init, float momentum, float decay, float loss_scale) { /* for (int angle = 0; angle < 360; angle++) { printf(" angle = %d \n", angle); smooth_rotate_weights_kernel(l.weights_gpu, l.weight_deform_gpu, l.nweights, l.n, l.size, angle, 0); cuda_pull_array(l.weight_deform_gpu, l.weights, l.nweights); visualize_convolutional_layer(l, "weights", NULL); wait_key_cv(10); } */ if (l.deform) { //for (l.angle = 0; l.angle < 360; l.angle += 1) //{ //stretch_weights_gpu(l.weight_updates_gpu, l.weight_deform_gpu, l.nweights, l.n, l.size, l.angle/180, 1); //else simple_copy_ongpu(l.nweights, l.weight_updates_gpu, l.weight_deform_gpu); if (l.rotate) rotate_weights_gpu(l.weight_updates_gpu, l.weight_deform_gpu, l.nweights, l.n, l.size, 1); else if (l.sway) sway_and_flip_weights_gpu(l.weight_updates_gpu, l.weight_deform_gpu, l.nweights, l.n, l.size, l.angle, 1); else if (l.stretch) stretch_weights_gpu(l.weight_updates_gpu, l.weight_deform_gpu, l.nweights, l.n, l.size, 0, 1); else if (l.stretch_sway) stretch_sway_flip_weights_gpu(l.weight_updates_gpu, l.weight_deform_gpu, l.nweights, l.n, l.size, l.angle, 1); //simple_copy_ongpu(l.nweights, l.weight_updates_gpu, l.weight_deform_gpu); reduce_and_expand_array_gpu(l.weight_deform_gpu, l.weight_updates_gpu, l.nweights, 4); //printf(" angle = %f \n", l.angle); //cuda_pull_array(l.weight_deform_gpu, l.weights, l.nweights); //visualize_convolutional_layer(l, "weights", NULL); //wait_key_cv(10); //} } // Loss scale for Mixed-Precision on Tensor-Cores float learning_rate = learning_rate_init*l.learning_rate_scale / loss_scale; //float momentum = a.momentum; //float decay = a.decay; //int batch = a.batch; reset_nan_and_inf(l.weight_updates_gpu, l.nweights); fix_nan_and_inf(l.weights_gpu, l.nweights); // Gradient Centralization if (l.grad_centr && l.batch_normalize) { // weights[filters][channels][height][width] // for(filters) w[f] = w[f] - mean(w[c][h][w]) gradient_centralization_gpu(l.size, l.size, l.c / l.groups, l.n, l.weight_updates_gpu); } if (l.adam) { //adam_update_gpu(l.weights_gpu, l.weight_updates_gpu, l.m_gpu, l.v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.nweights, batch, a.t); adam_update_gpu(l.weights_gpu, l.weight_updates_gpu, l.m_gpu, l.v_gpu, l.B1, l.B2, l.eps, decay, learning_rate, l.nweights, batch, l.t); adam_update_gpu(l.biases_gpu, l.bias_updates_gpu, l.bias_m_gpu, l.bias_v_gpu, l.B1, l.B2, l.eps, decay, learning_rate, l.n, batch, l.t); if (l.scales_gpu) { adam_update_gpu(l.scales_gpu, l.scale_updates_gpu, l.scale_m_gpu, l.scale_v_gpu, l.B1, l.B2, l.eps, decay, learning_rate, l.n, batch, l.t); } } else { //axpy_ongpu(l.nweights, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1); //axpy_ongpu(l.nweights, learning_rate / batch, l.weight_updates_gpu, 1, l.weights_gpu, 1); //scal_ongpu(l.nweights, momentum, l.weight_updates_gpu, 1); float *old_weight_updates_gpu = l.weight_updates_gpu; if (l.reverse) { float clip = 0.0; float divider = 1.0; float abs_add = 1.0; mult_inverse_array_gpu(l.weight_updates_gpu, l.output_gpu, l.inputs*l.batch, l.reverse, divider, clip, abs_add); l.weight_updates_gpu = l.output_gpu; } axpy_ongpu(l.nweights, -decay*batch*loss_scale, l.weights_gpu, 1, l.weight_updates_gpu, 1); axpy_ongpu(l.nweights, learning_rate / batch, l.weight_updates_gpu, 1, l.weights_gpu, 1); l.weight_updates_gpu = old_weight_updates_gpu; scal_ongpu(l.nweights, momentum, l.weight_updates_gpu, 1); axpy_ongpu(l.n, learning_rate / batch, l.bias_updates_gpu, 1, l.biases_gpu, 1); scal_ongpu(l.n, momentum, l.bias_updates_gpu, 1); if (l.scales_gpu) { axpy_ongpu(l.n, learning_rate / batch, l.scale_updates_gpu, 1, l.scales_gpu, 1); scal_ongpu(l.n, momentum, l.scale_updates_gpu, 1); } } if (l.deform) { //for (l.angle = 0; l.angle < 360; l.angle += 4) //{ expand_array_gpu(l.weights_gpu, l.weight_deform_gpu, l.nweights, 4); //simple_copy_ongpu(l.nweights, l.weight_deform_gpu, l.weights_gpu); if (l.rotate) rotate_weights_gpu(l.weight_deform_gpu, l.weights_gpu, l.nweights, l.n, l.size, 0); else if (l.sway) sway_and_flip_weights_gpu(l.weight_deform_gpu, l.weights_gpu, l.nweights, l.n, l.size, l.angle, 0); else if (l.stretch) stretch_weights_gpu(l.weight_deform_gpu, l.weights_gpu, l.nweights, l.n, l.size, 0, 0); else if (l.stretch_sway) stretch_sway_flip_weights_gpu(l.weight_deform_gpu, l.weights_gpu, l.nweights, l.n, l.size, l.angle, 0); //printf(" angle = %f, reverse = %d \n", l.angle, 0); //cuda_pull_array(l.weights_gpu, l.weights, l.nweights); //visualize_convolutional_layer(l, "weights", NULL); //wait_key_cv(10); //} } if (l.clip) { constrain_ongpu(l.nweights, l.clip, l.weights_gpu, 1); } } /* void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay) { int size = layer.size*layer.size*layer.c*layer.n; axpy_ongpu(layer.n, learning_rate/batch, layer.bias_updates_gpu, 1, layer.biases_gpu, 1); scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1); if(layer.scales_gpu){ axpy_ongpu(layer.n, learning_rate/batch, layer.scale_updates_gpu, 1, layer.scales_gpu, 1); scal_ongpu(layer.n, momentum, layer.scale_updates_gpu, 1); } if(layer.adam){ scal_ongpu(size, layer.B1, layer.m_gpu, 1); scal_ongpu(size, layer.B2, layer.v_gpu, 1); axpy_ongpu(size, -decay*batch, layer.weights_gpu, 1, layer.weight_updates_gpu, 1); axpy_ongpu(size, -(1-layer.B1), layer.weight_updates_gpu, 1, layer.m_gpu, 1); mul_ongpu(size, layer.weight_updates_gpu, 1, layer.weight_updates_gpu, 1); axpy_ongpu(size, (1-layer.B2), layer.weight_updates_gpu, 1, layer.v_gpu, 1); adam_gpu(size, layer.weights_gpu, layer.m_gpu, layer.v_gpu, layer.B1, layer.B2, learning_rate/batch, layer.eps, layer.t+1); fill_ongpu(size, 0, layer.weight_updates_gpu, 1); }else{ axpy_ongpu(size, -decay*batch, layer.weights_gpu, 1, layer.weight_updates_gpu, 1); // wu = wu - w*decay*batch axpy_ongpu(size, learning_rate/batch, layer.weight_updates_gpu, 1, layer.weights_gpu, 1); // w = w + wu*lr/batch scal_ongpu(size, momentum, layer.weight_updates_gpu, 1); // wu = wu*momentum // wu = (wu - w*decay*batch)*momentum // w = w + (wu - w*decay*batch)*lr/batch = w + wu*lr/batch - w*decay*lr = w*(1-decay*lr) + wu*lr/batch //wu_prev = (wu_old - w_old*decay*batch)*momentum //weights_update = weights_update_new + (weights_update_old - weights_old*decay*batch)*momentum - weights_new*decay*batch = // = weights_update_new + weights_update_old*momentum - weights_old*decay*batch*momentum - weights_new*decay*batch // = weights_update_new + weights_update_old*momentum - (weights_old*momentum + weights_new)*decay*batch //------------- RESULT -------------- // weights_update = weights_update_new + weights_update_old*momentum - (weights_old*momentum + weights_new)*decay*batch //----------------------------------- // weights_newest = weights_new + (weights_update_new + weights_update_old*momentum - (weights_old*momentum + weights_new)*decay*batch)*lr/batch // = weights_new + weights_update_new*lr/batch + weights_update_old*momentum*lr/batch - weights_old*momentum*decay*batch*lr/batch - weights_new*decay*batch*lr/batch // = weights_new + weights_update_new*lr/batch + weights_update_old*momentum*lr/batch - weights_old*momentum*decay*lr - weights_new*decay*lr // = weights_new*(1 - decay*lr) - weights_old*momentum*decay*lr + (weights_update_new + weights_update_old*momentum)*lr/batch //------------- RESULT -------------- // weights_newest = weights_new*(1 - decay*lr) - weights_old*momentum*(decay*lr) + (weights_update_new + weights_update_old*momentum)*lr/batch = // = weights_new - (weights_new + weights_old*momentum)*decay*lr + (weights_update_new + weights_update_old*momentum)*lr / batch //----------------------------------- } } */
0285718f25b9e2bee79a821d6d9202b411c62c1d.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /** * @brief Implementation file for matrix broadcasting * * @file matrix_broadcast.cu * @author David Chan * @date 2018-04-04 * Copyright (c) 2018, Regents of the University of California */ #include "include/util/matrix_broadcast_utils.h" // Performs the operation matrix[i, :] = binary_op(matrix[i, :], // alpha * vector) for each row i in the matrix template<typename BinaryFunction, typename T> __global__ void tsnecuda::util::BroadcastRowVector( T * __restrict__ d_matrix, const T * __restrict__ d_vector, const int N, const int M, BinaryFunction binary_operation, const T alpha) { const int TID = threadIdx.x + blockIdx.x * blockDim.x; const int i = TID % N; const int j = TID / N; if (j < M) d_matrix[j * N + i] = binary_operation(d_matrix[j * N + i], alpha * d_vector[j]); } // Performs the operation matrix[:, j] = binary_op(matrix[:, j], // alpha * vector) for each col i in the matrix template<typename BinaryFunction, typename T> __global__ void tsnecuda::util::BroadcastColumnVector( T * __restrict__ d_matrix, const T * __restrict__ d_vector, const int N, const int M, BinaryFunction binary_operation, const T alpha) { const int TID = threadIdx.x + blockIdx.x * blockDim.x; const int i = TID % N; const int j = TID / N; if (j < M) d_matrix[j * N + i] = binary_operation(d_matrix[j * N + i], alpha * d_vector[i]); } template<typename BinaryFunction, typename T> void tsnecuda::util::BroadcastMatrixVector( thrust::device_vector<T> &d_matrix, const thrust::device_vector<T> &d_vector, const int N, const int M, BinaryFunction binary_operation, const int axis, const T alpha) { // Checks to make sure dimensions are correct assert(d_matrix.size() >= N * M); assert((axis == 0 && d_vector.size() >= N) || (axis == 1 && d_vector.size() >= M)); const int kBlockSize = 32; const int kNumBlocks = iDivUp(N * M, kBlockSize); if (axis == 0) { hipLaunchKernelGGL(( tsnecuda::util::BroadcastColumnVector), dim3(kNumBlocks), dim3(kBlockSize), 0, 0, thrust::raw_pointer_cast(d_matrix.data()), thrust::raw_pointer_cast(d_vector.data()), N, M, binary_operation, alpha); } else { hipLaunchKernelGGL(( tsnecuda::util::BroadcastRowVector), dim3(kNumBlocks), dim3(kBlockSize), 0, 0, thrust::raw_pointer_cast(d_matrix.data()), thrust::raw_pointer_cast(d_vector.data()), N, M, binary_operation, alpha); } } // Explicit instantiations of the method template void tsnecuda::util::BroadcastMatrixVector<thrust::divides<float>, float>( thrust::device_vector<float> &d_matrix, const thrust::device_vector<float> &d_vector, const int N, const int M, thrust::divides<float> binary_operation, const int axis, const float alpha); template void tsnecuda::util::BroadcastMatrixVector<thrust::minus<float>, float>( thrust::device_vector<float> &d_matrix, const thrust::device_vector<float> &d_vector, const int N, const int M, thrust::minus<float> binary_operation, const int axis, const float alpha);
0285718f25b9e2bee79a821d6d9202b411c62c1d.cu
/** * @brief Implementation file for matrix broadcasting * * @file matrix_broadcast.cu * @author David Chan * @date 2018-04-04 * Copyright (c) 2018, Regents of the University of California */ #include "include/util/matrix_broadcast_utils.h" // Performs the operation matrix[i, :] = binary_op(matrix[i, :], // alpha * vector) for each row i in the matrix template<typename BinaryFunction, typename T> __global__ void tsnecuda::util::BroadcastRowVector( T * __restrict__ d_matrix, const T * __restrict__ d_vector, const int N, const int M, BinaryFunction binary_operation, const T alpha) { const int TID = threadIdx.x + blockIdx.x * blockDim.x; const int i = TID % N; const int j = TID / N; if (j < M) d_matrix[j * N + i] = binary_operation(d_matrix[j * N + i], alpha * d_vector[j]); } // Performs the operation matrix[:, j] = binary_op(matrix[:, j], // alpha * vector) for each col i in the matrix template<typename BinaryFunction, typename T> __global__ void tsnecuda::util::BroadcastColumnVector( T * __restrict__ d_matrix, const T * __restrict__ d_vector, const int N, const int M, BinaryFunction binary_operation, const T alpha) { const int TID = threadIdx.x + blockIdx.x * blockDim.x; const int i = TID % N; const int j = TID / N; if (j < M) d_matrix[j * N + i] = binary_operation(d_matrix[j * N + i], alpha * d_vector[i]); } template<typename BinaryFunction, typename T> void tsnecuda::util::BroadcastMatrixVector( thrust::device_vector<T> &d_matrix, const thrust::device_vector<T> &d_vector, const int N, const int M, BinaryFunction binary_operation, const int axis, const T alpha) { // Checks to make sure dimensions are correct assert(d_matrix.size() >= N * M); assert((axis == 0 && d_vector.size() >= N) || (axis == 1 && d_vector.size() >= M)); const int kBlockSize = 32; const int kNumBlocks = iDivUp(N * M, kBlockSize); if (axis == 0) { tsnecuda::util::BroadcastColumnVector<<<kNumBlocks, kBlockSize>>>( thrust::raw_pointer_cast(d_matrix.data()), thrust::raw_pointer_cast(d_vector.data()), N, M, binary_operation, alpha); } else { tsnecuda::util::BroadcastRowVector<<<kNumBlocks, kBlockSize>>>( thrust::raw_pointer_cast(d_matrix.data()), thrust::raw_pointer_cast(d_vector.data()), N, M, binary_operation, alpha); } } // Explicit instantiations of the method template void tsnecuda::util::BroadcastMatrixVector<thrust::divides<float>, float>( thrust::device_vector<float> &d_matrix, const thrust::device_vector<float> &d_vector, const int N, const int M, thrust::divides<float> binary_operation, const int axis, const float alpha); template void tsnecuda::util::BroadcastMatrixVector<thrust::minus<float>, float>( thrust::device_vector<float> &d_matrix, const thrust::device_vector<float> &d_vector, const int N, const int M, thrust::minus<float> binary_operation, const int axis, const float alpha);
6453d0218d29d6381b08bbdbf418f446f0be8d8f.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /* * Copyright 1993-2010 NVIDIA Corporation. All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. * */ /* This example demonstrates how to use the Cuda OpenGL bindings with the * runtime API. * Device code. */ // #ifndef _SIMPLEGL_KERNEL_H_ #define _SIMPLEGL_KERNEL_H_ /////////////////////////////////////////////////////////////////////////////// //! Simple kernel to modify vertex positions in sine wave pattern //! @param data data in global memory /////////////////////////////////////////////////////////////////////////////// __global__ void setup_kernel(float4* pos, float4* vel,unsigned int width, unsigned int height, unsigned int depth,float time) { unsigned int x = blockIdx.x*blockDim.x + threadIdx.x; unsigned int y = blockIdx.y*blockDim.y + threadIdx.y; unsigned int z = blockIdx.z*blockDim.z + threadIdx.z; // calculate uv coordinates float u = x / (float) width; float v = y / (float) height; u = u*2.0f - 1.0f; v = v*2.0f - 1.0f; // calculate simple sine wave pattern float freq = 4.0f; float w = (z / (float) depth); //sinf(u*freq + time) * cosf(v*freq + time) * 0.5f; w = w*2.0f-1.0f; pos[(x*depth +y)*width+z] = make_float4( 1+u*4,1+v*4,1+w*4, 1 ); vel[(x*depth +y)*width+z] = make_float4( 0, 0, 0, 0); return; } /////////////////////////////////////////////////////////////////////////////// //! Simple kernel to modify vertex positions in sine wave pattern //! @param data data in global memory /////////////////////////////////////////////////////////////////////////////// __global__ void kernel(float4* pos, float4* vel,unsigned int width, unsigned int height, unsigned int depth,float time, bool init) { unsigned int x = blockIdx.x*blockDim.x + threadIdx.x; unsigned int y = blockIdx.y*blockDim.y + threadIdx.y; unsigned int z = blockIdx.z*blockDim.z + threadIdx.z; // calculate uv coordinates float u = x / (float) width; float v = y / (float) height; u = u*2.0f - 1.0f; v = v*2.0f - 1.0f; // calculate simple sine wave pattern float freq = 4.0f; float w = (z / (float) depth); //sinf(u*freq + time) * cosf(v*freq + time) * 0.5f; w = w*2.0f-1.0f; float angle_rad = 2*3.14159*u; float radius = v; if( init ) { pos[(x*depth +y)*width+z] = make_float4( 1+u*4,1+v*4,1+w*4, 1 ); vel[(x*depth +y)*width+z] = make_float4( 0, 0, 0, 0); return; } else { float4 old_pos = pos[(x*depth +y)*width+z]; float4 old_vel = vel[(x*depth +y)*width+z]; float radius_squared = old_pos.x * old_pos.x + old_pos.y * old_pos.y + old_pos.z * old_pos.z; /*float4 accel = make_float4(-old_pos.x / (radius_squared), -old_pos.y / (radius_squared), -old_pos.z / (radius_squared), 0); */ float4 accel = make_float4(-old_pos.x / (radius_squared*1000000), -old_pos.y / (radius_squared*1000000), -old_pos.z / (radius_squared*1000000), 0); // accel.x -= v*0.0001;// (0.001)*(cos(angle_rad+0.01)-cos(angle_rad)); // accel.y += u*0.0001;//(0.001)*(sin(angle_rad+0.01)-sin(angle_rad)); //vel[y*width+x] = make_float4( (v)*cos(angle_rad+0.001)-v*cos(angle_rad), (v)*sin(angle_rad+0.001) - v*sin(angle_rad), 0, 1); float4 new_vel = make_float4(old_vel.x + accel.x*time, old_vel.y + accel.y*time, old_vel.z + accel.z*time,0); float4 new_pos = make_float4( old_pos.x + old_vel.x * time + 0.5 * accel.x*time*time, old_pos.y + old_vel.y * time+ 0.5 * accel.y*time*time, old_pos.z + old_vel.z * time+ 0.5 * accel.z*time*time, 1); /* float4 new_pos = make_float4( old_pos.x + old_vel.x / 100000, old_pos.y+ old_vel.y / 100000, w, 1);*/ pos[(x*depth +y)*width+z] = new_pos; vel[(x*depth +y)*width+z] = new_vel; } } /////////////////////////////////////////////////////////////////////////////// //! Simple kernel to modify vertex positions in sine wave pattern //! @param data data in global memory /////////////////////////////////////////////////////////////////////////////// __global__ void kernel_EM(float4* pos, float4* vel,unsigned int width, unsigned int height, unsigned int depth,float time, bool init) { unsigned int x = blockIdx.x*blockDim.x + threadIdx.x; unsigned int y = blockIdx.y*blockDim.y + threadIdx.y; unsigned int z = blockIdx.z*blockDim.z + threadIdx.z; // calculate uv coordinates float u = x / (float) width; float v = y / (float) height; u = u*2.0f - 1.0f; v = v*2.0f - 1.0f; // calculate simple sine wave pattern float freq = 4.0f; float w = (z / (float) depth); //sinf(u*freq + time) * cosf(v*freq + time) * 0.5f; w = w*2.0f-1.0f; float angle_rad = 2*3.14159*u; float radius = v; if( init ) { pos[(z*depth +y)*width+x] = make_float4( u/2,v/2,w/2, 1 ); vel[(z*depth +y)*width+x] = make_float4( 0, 0, 0, 0); return; } else { float4 old_pos = pos[(z*depth +y)*width+x]; float4 old_vel = vel[(z*depth +y)*width+x]; /* non random way of reinjecting particles that are out of "meaningful" range if( old_pos.x >= 5 || old_pos.y >= 5 || old_pos.z >= 5 ) { float4 new_pos = make_float4(0.0f, 0.5f, 2.0f, 0.0f ); float4 new_vel = make_float4(0.0002f, 0.0f, 0.0002f, 0.0f); pos[(z*depth +y)*width+x] = new_pos; vel[(z*depth +y)*width+x] = new_vel; } else*/ if( old_pos.x >= 5 || old_pos.y >= 5 || old_pos.z >= 5 ) { float4 new_pos = make_float4(u, v, w, 0.0f ); float4 new_vel = make_float4(0.0f, 0.0f, 0.0f, 0.0f); pos[(z*depth +y)*width+x] = new_pos; vel[(z*depth +y)*width+x] = new_vel; } else { float radius_squared = old_pos.x * old_pos.x + old_pos.y * old_pos.y + old_pos.z * old_pos.z; /*float4 accel = make_float4(-old_pos.x / (radius_squared), -old_pos.y / (radius_squared), -old_pos.z / (radius_squared), 0); */ // electric field float constant = 1/1000000; float4 accel = make_float4(-old_pos.x / (radius_squared*10000000), -old_pos.y / (radius_squared*10000000), -old_pos.z / (radius_squared*10000000), 0); // magnetic field // F = [constant 1] scalar(q1 * q2 /r^2) * vector( v1 X (v2 X (pq1-pq2))) // the equation can be rephrased as // a = [constant] * (v1 X (v2 X (pq1-pq2)))/ r ^ 2 // with [constant] as [constant 1] * q1*q2 // and [constant 1] from the above equation is 1/ 1000000 // now the field is *generated* by a moving particle and stationary attractors // would not generate any kind of field. // To model the field of a planet we can best approximate by a circular current carrying loop, // it should be obvious that a complete field should be given by the integral of all loops through // the sphere, however in practice such an integral is probably impossible, the field could be modelled // by discrete loops. // or it can be modelled like a bar magnet through the center. This can be treated as 2 attractive fields // 1 positive and 1 negative... // Dipole // for a dipole of 2 point charges of charge +Q and -Q seperated by a distance d on the z axis // the net Potential generated by these point charges is just the sum of the 2 point charges // given V = potential, v1 = [vector from attractor +Q to particle] // v2 = [vector from attractor -Q to particle] // [constant 3] = magnetic field rescaling // r1 = length(v1) // r2 = length(v2) // V = [constant 3] * Q / r1 - [constant 3] * Q / r1 // V = [constant 3] * Q * (r2-r1)/(r2*r1) float4 Q1_pos = make_float4( 0.0f, 0.1f, 0.0f, 0.0f ); // say 10 units upwards float4 Q2_pos = make_float4( 0.0f, -0.1f, 0.0f, 0.0f ); // 10 units downwards float4 Q1_to_part = make_float4( old_pos.x - Q1_pos.x, old_pos.y - Q1_pos.y, old_pos.z - Q1_pos.z, 0.0f); float4 Q2_to_part = make_float4( old_pos.x - Q2_pos.x, old_pos.y - Q2_pos.y, old_pos.z - Q2_pos.z, 0.0f); // now these vectors are important, however the need to take the gradient of the potential to further // improve this forumla is inconvenient, so I am going to computer the attractors using the same forumla // as above, constant * Q / r^2 for each charge, taking into account the signs of the charge. // how this is reinterpreted as a magnetic field will be shown below. float r1_squared = ( Q1_to_part.x*Q1_to_part.x + Q1_to_part.y*Q1_to_part.y + Q1_to_part.z*Q1_to_part.z); float r2_squared = ( Q2_to_part.x*Q2_to_part.x + Q2_to_part.y*Q2_to_part.y + Q2_to_part.z*Q2_to_part.z); constant =1/100000000000; // changing the constant // now I need the lengths of the lines between float4 accel_pre_mag_positive = make_float4(-(Q1_to_part.x) / (r1_squared*1000), -(Q1_to_part.y) / (r1_squared*1000), -(Q1_to_part.z) / (r1_squared*1000), 0); float4 accel_pre_mag_negative = make_float4((Q2_to_part.x) / (r2_squared*1000), (Q2_to_part.y) / (r2_squared*1000), (Q2_to_part.z) / (r2_squared*1000), 0); // summing the 2 fields float4 accel_pre_mag = make_float4( accel_pre_mag_positive.x + accel_pre_mag_negative.x, accel_pre_mag_positive.y + accel_pre_mag_negative.y, accel_pre_mag_positive.z + accel_pre_mag_negative.z, 0.0f); // now that is the field force calculated for the dipole. To mix the magnetic force with the electric // force, we need to use the *Lorentz Force Law* equation // F = qE + q(v X B) // now assuming B[scaled] is given by accel_pre_mag, we need // current_veloctiy [cross] B // using the cross product notation, // |i j k // |a1 a2 a3 // |b1 b2 b3 // float i1 = old_vel.y * accel_pre_mag.z - old_vel.z * accel_pre_mag.y; float j1 = old_vel.x * accel_pre_mag.z - old_vel.z * accel_pre_mag.x; float k1 = old_vel.x * accel_pre_mag.y - old_vel.y * accel_pre_mag.x; //float4 accel = make_float4(accel_pre_mag.x,accel_pre_mag.y,accel_pre_mag.z,1.0f); // now add this to accel to complete the lorentz force... accel.x += i1; accel.y += j1; accel.z += k1; //accel.x += 0.01*accel_pre_mag.x; //accel.y += 0.01*accel_pre_mag.y; //accel.z += 0.01*accel_pre_mag.z; float4 new_vel = make_float4(old_vel.x + accel.x*time, old_vel.y + accel.y*time, old_vel.z + accel.z*time,0); float4 new_pos = make_float4( old_pos.x + old_vel.x * time + 0.5 * accel.x*time*time, old_pos.y + old_vel.y * time+ 0.5 * accel.y*time*time, old_pos.z + old_vel.z * time+ 0.5 * accel.z*time*time, 1); /* float4 new_pos = make_float4( old_pos.x + old_vel.x / 100000, old_pos.y+ old_vel.y / 100000, w, 1);*/ pos[(z*depth +y)*width+x] = new_pos; vel[(z*depth +y)*width+x] = new_vel; } } } // Wrapper for the __global__ call that sets up the kernel call extern "C" void launch_kernel(float4* pos, float4* vel, unsigned int mesh_width, unsigned int mesh_height, unsigned int depth,float time, bool init) { // execute the kernel dim3 block(8, 8, 8); dim3 grid(mesh_width / block.x, mesh_height / block.y, depth/ block.z); //kernel<<< grid, block>>>(pos, vel,mesh_width, mesh_height,depth, time, init); hipLaunchKernelGGL(( kernel_EM), dim3(grid), dim3(block), 0, 0, pos, vel,mesh_width, mesh_height,depth, time, init); } extern "C" void call_setup_kernel(float4* pos, float4* vel,unsigned int width, unsigned int height, unsigned int depth,float time) { // execute the kernel dim3 block(8, 8, 8); dim3 grid(width / block.x, height / block.y, depth/ block.z); //kernel<<< grid, block>>>(pos, vel,mesh_width, mesh_height,depth, time, init); hipLaunchKernelGGL(( setup_kernel), dim3(grid), dim3(block), 0, 0, pos, vel,width, height,depth, time); } #endif // #ifndef _SIMPLEGL_KERNEL_H_
6453d0218d29d6381b08bbdbf418f446f0be8d8f.cu
/* * Copyright 1993-2010 NVIDIA Corporation. All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. * */ /* This example demonstrates how to use the Cuda OpenGL bindings with the * runtime API. * Device code. */ // #ifndef _SIMPLEGL_KERNEL_H_ #define _SIMPLEGL_KERNEL_H_ /////////////////////////////////////////////////////////////////////////////// //! Simple kernel to modify vertex positions in sine wave pattern //! @param data data in global memory /////////////////////////////////////////////////////////////////////////////// __global__ void setup_kernel(float4* pos, float4* vel,unsigned int width, unsigned int height, unsigned int depth,float time) { unsigned int x = blockIdx.x*blockDim.x + threadIdx.x; unsigned int y = blockIdx.y*blockDim.y + threadIdx.y; unsigned int z = blockIdx.z*blockDim.z + threadIdx.z; // calculate uv coordinates float u = x / (float) width; float v = y / (float) height; u = u*2.0f - 1.0f; v = v*2.0f - 1.0f; // calculate simple sine wave pattern float freq = 4.0f; float w = (z / (float) depth); //sinf(u*freq + time) * cosf(v*freq + time) * 0.5f; w = w*2.0f-1.0f; pos[(x*depth +y)*width+z] = make_float4( 1+u*4,1+v*4,1+w*4, 1 ); vel[(x*depth +y)*width+z] = make_float4( 0, 0, 0, 0); return; } /////////////////////////////////////////////////////////////////////////////// //! Simple kernel to modify vertex positions in sine wave pattern //! @param data data in global memory /////////////////////////////////////////////////////////////////////////////// __global__ void kernel(float4* pos, float4* vel,unsigned int width, unsigned int height, unsigned int depth,float time, bool init) { unsigned int x = blockIdx.x*blockDim.x + threadIdx.x; unsigned int y = blockIdx.y*blockDim.y + threadIdx.y; unsigned int z = blockIdx.z*blockDim.z + threadIdx.z; // calculate uv coordinates float u = x / (float) width; float v = y / (float) height; u = u*2.0f - 1.0f; v = v*2.0f - 1.0f; // calculate simple sine wave pattern float freq = 4.0f; float w = (z / (float) depth); //sinf(u*freq + time) * cosf(v*freq + time) * 0.5f; w = w*2.0f-1.0f; float angle_rad = 2*3.14159*u; float radius = v; if( init ) { pos[(x*depth +y)*width+z] = make_float4( 1+u*4,1+v*4,1+w*4, 1 ); vel[(x*depth +y)*width+z] = make_float4( 0, 0, 0, 0); return; } else { float4 old_pos = pos[(x*depth +y)*width+z]; float4 old_vel = vel[(x*depth +y)*width+z]; float radius_squared = old_pos.x * old_pos.x + old_pos.y * old_pos.y + old_pos.z * old_pos.z; /*float4 accel = make_float4(-old_pos.x / (radius_squared), -old_pos.y / (radius_squared), -old_pos.z / (radius_squared), 0); */ float4 accel = make_float4(-old_pos.x / (radius_squared*1000000), -old_pos.y / (radius_squared*1000000), -old_pos.z / (radius_squared*1000000), 0); // accel.x -= v*0.0001;// (0.001)*(cos(angle_rad+0.01)-cos(angle_rad)); // accel.y += u*0.0001;//(0.001)*(sin(angle_rad+0.01)-sin(angle_rad)); //vel[y*width+x] = make_float4( (v)*cos(angle_rad+0.001)-v*cos(angle_rad), (v)*sin(angle_rad+0.001) - v*sin(angle_rad), 0, 1); float4 new_vel = make_float4(old_vel.x + accel.x*time, old_vel.y + accel.y*time, old_vel.z + accel.z*time,0); float4 new_pos = make_float4( old_pos.x + old_vel.x * time + 0.5 * accel.x*time*time, old_pos.y + old_vel.y * time+ 0.5 * accel.y*time*time, old_pos.z + old_vel.z * time+ 0.5 * accel.z*time*time, 1); /* float4 new_pos = make_float4( old_pos.x + old_vel.x / 100000, old_pos.y+ old_vel.y / 100000, w, 1);*/ pos[(x*depth +y)*width+z] = new_pos; vel[(x*depth +y)*width+z] = new_vel; } } /////////////////////////////////////////////////////////////////////////////// //! Simple kernel to modify vertex positions in sine wave pattern //! @param data data in global memory /////////////////////////////////////////////////////////////////////////////// __global__ void kernel_EM(float4* pos, float4* vel,unsigned int width, unsigned int height, unsigned int depth,float time, bool init) { unsigned int x = blockIdx.x*blockDim.x + threadIdx.x; unsigned int y = blockIdx.y*blockDim.y + threadIdx.y; unsigned int z = blockIdx.z*blockDim.z + threadIdx.z; // calculate uv coordinates float u = x / (float) width; float v = y / (float) height; u = u*2.0f - 1.0f; v = v*2.0f - 1.0f; // calculate simple sine wave pattern float freq = 4.0f; float w = (z / (float) depth); //sinf(u*freq + time) * cosf(v*freq + time) * 0.5f; w = w*2.0f-1.0f; float angle_rad = 2*3.14159*u; float radius = v; if( init ) { pos[(z*depth +y)*width+x] = make_float4( u/2,v/2,w/2, 1 ); vel[(z*depth +y)*width+x] = make_float4( 0, 0, 0, 0); return; } else { float4 old_pos = pos[(z*depth +y)*width+x]; float4 old_vel = vel[(z*depth +y)*width+x]; /* non random way of reinjecting particles that are out of "meaningful" range if( old_pos.x >= 5 || old_pos.y >= 5 || old_pos.z >= 5 ) { float4 new_pos = make_float4(0.0f, 0.5f, 2.0f, 0.0f ); float4 new_vel = make_float4(0.0002f, 0.0f, 0.0002f, 0.0f); pos[(z*depth +y)*width+x] = new_pos; vel[(z*depth +y)*width+x] = new_vel; } else*/ if( old_pos.x >= 5 || old_pos.y >= 5 || old_pos.z >= 5 ) { float4 new_pos = make_float4(u, v, w, 0.0f ); float4 new_vel = make_float4(0.0f, 0.0f, 0.0f, 0.0f); pos[(z*depth +y)*width+x] = new_pos; vel[(z*depth +y)*width+x] = new_vel; } else { float radius_squared = old_pos.x * old_pos.x + old_pos.y * old_pos.y + old_pos.z * old_pos.z; /*float4 accel = make_float4(-old_pos.x / (radius_squared), -old_pos.y / (radius_squared), -old_pos.z / (radius_squared), 0); */ // electric field float constant = 1/1000000; float4 accel = make_float4(-old_pos.x / (radius_squared*10000000), -old_pos.y / (radius_squared*10000000), -old_pos.z / (radius_squared*10000000), 0); // magnetic field // F = [constant 1] scalar(q1 * q2 /r^2) * vector( v1 X (v2 X (pq1-pq2))) // the equation can be rephrased as // a = [constant] * (v1 X (v2 X (pq1-pq2)))/ r ^ 2 // with [constant] as [constant 1] * q1*q2 // and [constant 1] from the above equation is 1/ 1000000 // now the field is *generated* by a moving particle and stationary attractors // would not generate any kind of field. // To model the field of a planet we can best approximate by a circular current carrying loop, // it should be obvious that a complete field should be given by the integral of all loops through // the sphere, however in practice such an integral is probably impossible, the field could be modelled // by discrete loops. // or it can be modelled like a bar magnet through the center. This can be treated as 2 attractive fields // 1 positive and 1 negative... // Dipole // for a dipole of 2 point charges of charge +Q and -Q seperated by a distance d on the z axis // the net Potential generated by these point charges is just the sum of the 2 point charges // given V = potential, v1 = [vector from attractor +Q to particle] // v2 = [vector from attractor -Q to particle] // [constant 3] = magnetic field rescaling // r1 = length(v1) // r2 = length(v2) // V = [constant 3] * Q / r1 - [constant 3] * Q / r1 // V = [constant 3] * Q * (r2-r1)/(r2*r1) float4 Q1_pos = make_float4( 0.0f, 0.1f, 0.0f, 0.0f ); // say 10 units upwards float4 Q2_pos = make_float4( 0.0f, -0.1f, 0.0f, 0.0f ); // 10 units downwards float4 Q1_to_part = make_float4( old_pos.x - Q1_pos.x, old_pos.y - Q1_pos.y, old_pos.z - Q1_pos.z, 0.0f); float4 Q2_to_part = make_float4( old_pos.x - Q2_pos.x, old_pos.y - Q2_pos.y, old_pos.z - Q2_pos.z, 0.0f); // now these vectors are important, however the need to take the gradient of the potential to further // improve this forumla is inconvenient, so I am going to computer the attractors using the same forumla // as above, constant * Q / r^2 for each charge, taking into account the signs of the charge. // how this is reinterpreted as a magnetic field will be shown below. float r1_squared = ( Q1_to_part.x*Q1_to_part.x + Q1_to_part.y*Q1_to_part.y + Q1_to_part.z*Q1_to_part.z); float r2_squared = ( Q2_to_part.x*Q2_to_part.x + Q2_to_part.y*Q2_to_part.y + Q2_to_part.z*Q2_to_part.z); constant =1/100000000000; // changing the constant // now I need the lengths of the lines between float4 accel_pre_mag_positive = make_float4(-(Q1_to_part.x) / (r1_squared*1000), -(Q1_to_part.y) / (r1_squared*1000), -(Q1_to_part.z) / (r1_squared*1000), 0); float4 accel_pre_mag_negative = make_float4((Q2_to_part.x) / (r2_squared*1000), (Q2_to_part.y) / (r2_squared*1000), (Q2_to_part.z) / (r2_squared*1000), 0); // summing the 2 fields float4 accel_pre_mag = make_float4( accel_pre_mag_positive.x + accel_pre_mag_negative.x, accel_pre_mag_positive.y + accel_pre_mag_negative.y, accel_pre_mag_positive.z + accel_pre_mag_negative.z, 0.0f); // now that is the field force calculated for the dipole. To mix the magnetic force with the electric // force, we need to use the *Lorentz Force Law* equation // F = qE + q(v X B) // now assuming B[scaled] is given by accel_pre_mag, we need // current_veloctiy [cross] B // using the cross product notation, // |i j k // |a1 a2 a3 // |b1 b2 b3 // float i1 = old_vel.y * accel_pre_mag.z - old_vel.z * accel_pre_mag.y; float j1 = old_vel.x * accel_pre_mag.z - old_vel.z * accel_pre_mag.x; float k1 = old_vel.x * accel_pre_mag.y - old_vel.y * accel_pre_mag.x; //float4 accel = make_float4(accel_pre_mag.x,accel_pre_mag.y,accel_pre_mag.z,1.0f); // now add this to accel to complete the lorentz force... accel.x += i1; accel.y += j1; accel.z += k1; //accel.x += 0.01*accel_pre_mag.x; //accel.y += 0.01*accel_pre_mag.y; //accel.z += 0.01*accel_pre_mag.z; float4 new_vel = make_float4(old_vel.x + accel.x*time, old_vel.y + accel.y*time, old_vel.z + accel.z*time,0); float4 new_pos = make_float4( old_pos.x + old_vel.x * time + 0.5 * accel.x*time*time, old_pos.y + old_vel.y * time+ 0.5 * accel.y*time*time, old_pos.z + old_vel.z * time+ 0.5 * accel.z*time*time, 1); /* float4 new_pos = make_float4( old_pos.x + old_vel.x / 100000, old_pos.y+ old_vel.y / 100000, w, 1);*/ pos[(z*depth +y)*width+x] = new_pos; vel[(z*depth +y)*width+x] = new_vel; } } } // Wrapper for the __global__ call that sets up the kernel call extern "C" void launch_kernel(float4* pos, float4* vel, unsigned int mesh_width, unsigned int mesh_height, unsigned int depth,float time, bool init) { // execute the kernel dim3 block(8, 8, 8); dim3 grid(mesh_width / block.x, mesh_height / block.y, depth/ block.z); //kernel<<< grid, block>>>(pos, vel,mesh_width, mesh_height,depth, time, init); kernel_EM<<< grid, block>>>(pos, vel,mesh_width, mesh_height,depth, time, init); } extern "C" void call_setup_kernel(float4* pos, float4* vel,unsigned int width, unsigned int height, unsigned int depth,float time) { // execute the kernel dim3 block(8, 8, 8); dim3 grid(width / block.x, height / block.y, depth/ block.z); //kernel<<< grid, block>>>(pos, vel,mesh_width, mesh_height,depth, time, init); setup_kernel<<< grid, block>>>(pos, vel,width, height,depth, time); } #endif // #ifndef _SIMPLEGL_KERNEL_H_
09f7ca5135d29f572aa1a51970c1f9ee4cbf6e46.hip
// !!! This is a file automatically generated by hipify!!! #include <stdlib.h> #include "hip/hip_runtime.h" #include "device_launch_parameters.h" #include <stdio.h> #include <iostream> __gloabl__ void f(int *z) { } int main(void) { int z; int *dev_z; hipMalloc((void**)&dev_z, sizeof(int)); hipLaunchKernelGGL(( fun), dim3(1),dim3(1), 0, 0, dev_z); hipMemcpy(&z, dev_z, sizeof(int), hipMemcpyDeviceToHost) hipFree(dev_z); return f(); }
09f7ca5135d29f572aa1a51970c1f9ee4cbf6e46.cu
#include <stdlib.h> #include "cuda_runtime.h" #include "device_launch_parameters.h" #include <stdio.h> #include <iostream> __gloabl__ void f(int *z) { } int main(void) { int z; int *dev_z; cudaMalloc((void**)&dev_z, sizeof(int)); fun<<<1,1>>>(dev_z); cudaMemcpy(&z, dev_z, sizeof(int), cudaMemcpyDeviceToHost); cudaFree(dev_z); return f(); }
c5db6bc3fb33ce2ccfc7a5d8f743eaf962e3bd6a.hip
// !!! This is a file automatically generated by hipify!!! //#include"../crab_cavity.h" #include"crab_cavity.h" //#include"../linear_map.h" #include"linear_map.h" //#include"../Lorentz_boost.h" #include"Lorentz_boost.h" #include"../beam.h" #include"beam.h" #include"gtrack.h" #include<math.h> #include<thrust/device_vector.h> #include<thrust/copy.h> #include<thrust/reduce.h> #include<thrust/for_each.h> #include<thrust/iterator/zip_iterator.h> #include<thrust/tuple.h> #include<iostream> #include<sys/time.h> using std::cout;using std::endl; double now(){ struct timeval tp; gettimeofday(&tp,NULL); return (double)tp.tv_sec+(double)tp.tv_usec*1e-6; } int test(double *x, double *px, double *y, double *py, double *z, double *pz, size_t N){ thrust::device_vector<double> vx(N), vpx(N), vy(N), vpy(N), vz(N), vpz(N); thrust::copy(x,x+N,vx.begin()); thrust::copy(px,px+N,vpx.begin()); thrust::copy(y,y+N,vy.begin()); thrust::copy(py,py+N,vpy.begin()); thrust::copy(z,z+N,vz.begin()); thrust::copy(pz,pz+N,vpz.begin()); auto first=thrust::make_zip_iterator(thrust::make_tuple(vx.begin(),vpx.begin(),vy.begin(),vpy.begin(),vz.begin(),vpz.begin())); auto last=thrust::make_zip_iterator(thrust::make_tuple(vx.end(),vpx.end(),vy.end(),vpy.end(),vz.end(),vpz.end())); gtrack_functor gfun; double strength=tan(12.5e-3)/sqrt(0.9*1300); ThinCrabCavity tcc(strength,200e6); gfun.thin_crab_cavity_before_IP=gThinCrabCavity(tcc); gfun.thin_crab_cavity_after_IP=gThinCrabCavity(tcc); LinearX MX1(0.9,0.0,1300.0,0.0,-M_PI/2.0); LinearX MX2(1300.0,0.0,0.9,0.0, M_PI/2.0); LinearX MX3(0.9,0.0,1300.0,0.0, M_PI/2.0); LinearX MX4(1300.0,0.0,0.9,0.0,-M_PI/2.0); gfun.MX1=gLinearX(MX1);gfun.MX2=gLinearX(MX2); gfun.MX3=gLinearX(MX3);gfun.MX4=gLinearX(MX4); LorentzBoost lb(12.5e-3); gfun.lb=gLorentzBoost(lb); RevLorentzBoost rlb(12.5e-3); gfun.rlb=gRevLorentzBoost(rlb); Linear6D ot({0.9,0.18,0.07/6.6e-4},{0.0,0.0},{0.228,0.210,0.01},{2.0,2.0}); gfun.oneturn=gLinear6D(ot); ThinStrongBeam tsb(-9e-10,{0.7,0.07},{0.0,0.0},{120e-6,20e-6}); GaussianStrongBeam gsb(4,tsb); gsb.set_equal_area(0.02); gfun.gsb=gGaussianStrongBeam(gsb); // test speed cout.precision(16); cout.flags(std::ios::scientific); double t0,t1; t0=now(); /* for(size_t j=0;j<1000;++j){ thrust::for_each(first,last,gfun); hipDeviceSynchronize(); } */ thrust::for_each(first,last,gfun); hipDeviceSynchronize(); t1=now(); cout<<"gpu: "<<t1-t0<<" seconds."<<endl; t0=now(); for(size_t j=0;j<1000;++j){ for(size_t i=0;i<N;++i){ tcc.Pass(x[i],px[i],y[i],py[i],z[i],pz[i]); MX1.Pass(x[i],px[i],y[i],py[i],z[i],pz[i]); MX2.Pass(x[i],px[i],y[i],py[i],z[i],pz[i]); lb.Pass(x[i],px[i],y[i],py[i],z[i],pz[i]); gsb.Pass(x[i],px[i],y[i],py[i],z[i],pz[i]); rlb.Pass(x[i],px[i],y[i],py[i],z[i],pz[i]); MX3.Pass(x[i],px[i],y[i],py[i],z[i],pz[i]); MX4.Pass(x[i],px[i],y[i],py[i],z[i],pz[i]); tcc.Pass(x[i],px[i],y[i],py[i],z[i],pz[i]); ot.Pass(x[i],px[i],y[i],py[i],z[i],pz[i]); } } t1=now(); cout<<"cpu: "<<t1-t0<<" seconds."<<endl; // test correctness double sumx=thrust::reduce(vx.begin(),vx.end()); double sumpx=thrust::reduce(vpx.begin(),vpx.end()); double sumy=thrust::reduce(vy.begin(),vy.end()); double sumpy=thrust::reduce(vpy.begin(),vpy.end()); double sumz=thrust::reduce(vz.begin(),vz.end()); double sumpz=thrust::reduce(vpz.begin(),vpz.end()); cout.precision(16); cout.flags(std::ios::scientific); cout<<sumx<<"\t"<<sumpx<<"\t"<<sumy<<"\t"<<sumpy<<"\t"<<sumz<<"\t"<<sumpz<<endl; sumx=0.0;sumpx=0.0; sumy=0.0;sumpy=0.0; sumz=0.0;sumpz=0.0; for(size_t i=0;i<N;++i){ sumx+=x[i];sumpx+=px[i]; sumy+=y[i];sumpy+=py[i]; sumz+=z[i];sumpz+=pz[i]; } cout<<sumx<<"\t"<<sumpx<<"\t"<<sumy<<"\t"<<sumpy<<"\t"<<sumz<<"\t"<<sumpz<<endl; return 0; }
c5db6bc3fb33ce2ccfc7a5d8f743eaf962e3bd6a.cu
//#include"../crab_cavity.h" #include"crab_cavity.h" //#include"../linear_map.h" #include"linear_map.h" //#include"../Lorentz_boost.h" #include"Lorentz_boost.h" #include"../beam.h" #include"beam.h" #include"gtrack.h" #include<math.h> #include<thrust/device_vector.h> #include<thrust/copy.h> #include<thrust/reduce.h> #include<thrust/for_each.h> #include<thrust/iterator/zip_iterator.h> #include<thrust/tuple.h> #include<iostream> #include<sys/time.h> using std::cout;using std::endl; double now(){ struct timeval tp; gettimeofday(&tp,NULL); return (double)tp.tv_sec+(double)tp.tv_usec*1e-6; } int test(double *x, double *px, double *y, double *py, double *z, double *pz, size_t N){ thrust::device_vector<double> vx(N), vpx(N), vy(N), vpy(N), vz(N), vpz(N); thrust::copy(x,x+N,vx.begin()); thrust::copy(px,px+N,vpx.begin()); thrust::copy(y,y+N,vy.begin()); thrust::copy(py,py+N,vpy.begin()); thrust::copy(z,z+N,vz.begin()); thrust::copy(pz,pz+N,vpz.begin()); auto first=thrust::make_zip_iterator(thrust::make_tuple(vx.begin(),vpx.begin(),vy.begin(),vpy.begin(),vz.begin(),vpz.begin())); auto last=thrust::make_zip_iterator(thrust::make_tuple(vx.end(),vpx.end(),vy.end(),vpy.end(),vz.end(),vpz.end())); gtrack_functor gfun; double strength=tan(12.5e-3)/sqrt(0.9*1300); ThinCrabCavity tcc(strength,200e6); gfun.thin_crab_cavity_before_IP=gThinCrabCavity(tcc); gfun.thin_crab_cavity_after_IP=gThinCrabCavity(tcc); LinearX MX1(0.9,0.0,1300.0,0.0,-M_PI/2.0); LinearX MX2(1300.0,0.0,0.9,0.0, M_PI/2.0); LinearX MX3(0.9,0.0,1300.0,0.0, M_PI/2.0); LinearX MX4(1300.0,0.0,0.9,0.0,-M_PI/2.0); gfun.MX1=gLinearX(MX1);gfun.MX2=gLinearX(MX2); gfun.MX3=gLinearX(MX3);gfun.MX4=gLinearX(MX4); LorentzBoost lb(12.5e-3); gfun.lb=gLorentzBoost(lb); RevLorentzBoost rlb(12.5e-3); gfun.rlb=gRevLorentzBoost(rlb); Linear6D ot({0.9,0.18,0.07/6.6e-4},{0.0,0.0},{0.228,0.210,0.01},{2.0,2.0}); gfun.oneturn=gLinear6D(ot); ThinStrongBeam tsb(-9e-10,{0.7,0.07},{0.0,0.0},{120e-6,20e-6}); GaussianStrongBeam gsb(4,tsb); gsb.set_equal_area(0.02); gfun.gsb=gGaussianStrongBeam(gsb); // test speed cout.precision(16); cout.flags(std::ios::scientific); double t0,t1; t0=now(); /* for(size_t j=0;j<1000;++j){ thrust::for_each(first,last,gfun); cudaDeviceSynchronize(); } */ thrust::for_each(first,last,gfun); cudaDeviceSynchronize(); t1=now(); cout<<"gpu: "<<t1-t0<<" seconds."<<endl; t0=now(); for(size_t j=0;j<1000;++j){ for(size_t i=0;i<N;++i){ tcc.Pass(x[i],px[i],y[i],py[i],z[i],pz[i]); MX1.Pass(x[i],px[i],y[i],py[i],z[i],pz[i]); MX2.Pass(x[i],px[i],y[i],py[i],z[i],pz[i]); lb.Pass(x[i],px[i],y[i],py[i],z[i],pz[i]); gsb.Pass(x[i],px[i],y[i],py[i],z[i],pz[i]); rlb.Pass(x[i],px[i],y[i],py[i],z[i],pz[i]); MX3.Pass(x[i],px[i],y[i],py[i],z[i],pz[i]); MX4.Pass(x[i],px[i],y[i],py[i],z[i],pz[i]); tcc.Pass(x[i],px[i],y[i],py[i],z[i],pz[i]); ot.Pass(x[i],px[i],y[i],py[i],z[i],pz[i]); } } t1=now(); cout<<"cpu: "<<t1-t0<<" seconds."<<endl; // test correctness double sumx=thrust::reduce(vx.begin(),vx.end()); double sumpx=thrust::reduce(vpx.begin(),vpx.end()); double sumy=thrust::reduce(vy.begin(),vy.end()); double sumpy=thrust::reduce(vpy.begin(),vpy.end()); double sumz=thrust::reduce(vz.begin(),vz.end()); double sumpz=thrust::reduce(vpz.begin(),vpz.end()); cout.precision(16); cout.flags(std::ios::scientific); cout<<sumx<<"\t"<<sumpx<<"\t"<<sumy<<"\t"<<sumpy<<"\t"<<sumz<<"\t"<<sumpz<<endl; sumx=0.0;sumpx=0.0; sumy=0.0;sumpy=0.0; sumz=0.0;sumpz=0.0; for(size_t i=0;i<N;++i){ sumx+=x[i];sumpx+=px[i]; sumy+=y[i];sumpy+=py[i]; sumz+=z[i];sumpz+=pz[i]; } cout<<sumx<<"\t"<<sumpx<<"\t"<<sumy<<"\t"<<sumpy<<"\t"<<sumz<<"\t"<<sumpz<<endl; return 0; }
443c589de6a6b8a52041e62210aad50483b2da92.hip
// !!! This is a file automatically generated by hipify!!! /* Molecular dynamics simulation linear code for binary Lennard-Jones liquid under NVE ensemble; Author: You-Liang Zhu, Email: [email protected] Copyright: You-Liang Zhu This code is free: you can redistribute it and/or modify it under the terms of the GNU General Public License.*/ #include <ctype.h> #include <hip/hip_runtime.h> #include <math.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> // check CUDA error void checkCUDAError(const char *msg) { hipError_t err = hipGetLastError(); if (hipSuccess != err) { fprintf(stderr, "Cuda error: %s: %s.\n", msg, hipGetErrorString(err)); exit(-1); } } // parallel reduction extern __shared__ int sdata[]; __global__ void compute_sums_kernel(unsigned int N, int *d_a, int *d_scratch) { int i = blockIdx.x * blockDim.x + threadIdx.x; int data = 0; if (i < N) data = d_a[i]; sdata[threadIdx.x] = data; __syncthreads(); int offs = blockDim.x >> 1; while (offs > 0) { if (threadIdx.x < offs) sdata[threadIdx.x] += sdata[threadIdx.x + offs]; offs >>= 1; __syncthreads(); } if (threadIdx.x == 0) d_scratch[blockIdx.x] = sdata[0]; } // final parallel reduction __global__ void compute_final_kernel(int *d_scratch, unsigned int num_partial_sums) { int final_sum = 0; for (int start = 0; start < num_partial_sums; start += blockDim.x) { __syncthreads(); if (start + threadIdx.x < num_partial_sums) sdata[threadIdx.x] = d_scratch[start + threadIdx.x]; else sdata[threadIdx.x] = 0; __syncthreads(); int offs = blockDim.x >> 1; while (offs > 0) { if (threadIdx.x < offs) { sdata[threadIdx.x] += sdata[threadIdx.x + offs]; } offs >>= 1; __syncthreads(); } if (threadIdx.x == 0) final_sum += sdata[0]; } if (threadIdx.x == 0) d_scratch[0] = final_sum; } int main(int argc, char **argv) { int N = 10000; // the number of integers for reduction int *h_a; // pointer for host memory int *d_a, *d_scratch; // pointer for device memory hipSetDevice(0); // set GPU ID for computation int block_size = 64; // define block size int n_blocks = (int)ceil((float)N / (float)block_size); // define grid size // Part 1 of 5: allocate host and device memory size_t memSize = N * sizeof(int); h_a = (int *)malloc(memSize); hipMalloc((void **)&d_a, memSize); hipMalloc((void **)&d_scratch, n_blocks * sizeof(int)); // Part 2 of 5: initiate array int sum = 0; for (unsigned int i = 0; i < N; i++) { int ran = rand(); h_a[i] = ran; sum += ran; } // Part 3 of 5: copy data from host to device memory hipMemcpy(d_a, h_a, memSize, hipMemcpyHostToDevice); checkCUDAError("hipMemcpy"); // Part 4 of 5: launch kernel dim3 grid(n_blocks, 1, 1); dim3 threads(block_size, 1, 1); unsigned int shared_bytes = sizeof(int) * block_size; hipLaunchKernelGGL(( compute_sums_kernel), dim3(grid), dim3(threads), shared_bytes, 0, N, d_a, d_scratch); // block until the device has completed /* hipDeviceSynchronize(); */ // check if kernel execution generated an error checkCUDAError("kernel execution 1"); int final_block_size = 512; grid = dim3(1, 1, 1); threads = dim3(final_block_size, 1, 1); shared_bytes = sizeof(int) * final_block_size; hipLaunchKernelGGL(( compute_final_kernel), dim3(grid), dim3(threads), shared_bytes, 0, d_scratch, n_blocks); // block until the device has completed /* hipDeviceSynchronize(); */ // check if kernel execution generated an error checkCUDAError("kernel execution 2"); // Part 5 of 5: device to host copy hipMemcpy(h_a, d_scratch, sizeof(int), hipMemcpyDeviceToHost); // Check for any CUDA errors checkCUDAError("hipMemcpy"); // check result from device if (h_a[0] - sum != 0) { fprintf(stderr, "Failed!!! %d %d\n", h_a[0], sum); exit(-1); } // free device memory hipFree(d_a); hipFree(d_scratch); // free host memory free(h_a); // If the program makes it this far, then the results are correct and // there are no run-time errors. Good work! printf("Success!\n"); return 0; }
443c589de6a6b8a52041e62210aad50483b2da92.cu
/* Molecular dynamics simulation linear code for binary Lennard-Jones liquid under NVE ensemble; Author: You-Liang Zhu, Email: [email protected] Copyright: You-Liang Zhu This code is free: you can redistribute it and/or modify it under the terms of the GNU General Public License.*/ #include <ctype.h> #include <cuda_runtime.h> #include <math.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> // check CUDA error void checkCUDAError(const char *msg) { cudaError_t err = cudaGetLastError(); if (cudaSuccess != err) { fprintf(stderr, "Cuda error: %s: %s.\n", msg, cudaGetErrorString(err)); exit(-1); } } // parallel reduction extern __shared__ int sdata[]; __global__ void compute_sums_kernel(unsigned int N, int *d_a, int *d_scratch) { int i = blockIdx.x * blockDim.x + threadIdx.x; int data = 0; if (i < N) data = d_a[i]; sdata[threadIdx.x] = data; __syncthreads(); int offs = blockDim.x >> 1; while (offs > 0) { if (threadIdx.x < offs) sdata[threadIdx.x] += sdata[threadIdx.x + offs]; offs >>= 1; __syncthreads(); } if (threadIdx.x == 0) d_scratch[blockIdx.x] = sdata[0]; } // final parallel reduction __global__ void compute_final_kernel(int *d_scratch, unsigned int num_partial_sums) { int final_sum = 0; for (int start = 0; start < num_partial_sums; start += blockDim.x) { __syncthreads(); if (start + threadIdx.x < num_partial_sums) sdata[threadIdx.x] = d_scratch[start + threadIdx.x]; else sdata[threadIdx.x] = 0; __syncthreads(); int offs = blockDim.x >> 1; while (offs > 0) { if (threadIdx.x < offs) { sdata[threadIdx.x] += sdata[threadIdx.x + offs]; } offs >>= 1; __syncthreads(); } if (threadIdx.x == 0) final_sum += sdata[0]; } if (threadIdx.x == 0) d_scratch[0] = final_sum; } int main(int argc, char **argv) { int N = 10000; // the number of integers for reduction int *h_a; // pointer for host memory int *d_a, *d_scratch; // pointer for device memory cudaSetDevice(0); // set GPU ID for computation int block_size = 64; // define block size int n_blocks = (int)ceil((float)N / (float)block_size); // define grid size // Part 1 of 5: allocate host and device memory size_t memSize = N * sizeof(int); h_a = (int *)malloc(memSize); cudaMalloc((void **)&d_a, memSize); cudaMalloc((void **)&d_scratch, n_blocks * sizeof(int)); // Part 2 of 5: initiate array int sum = 0; for (unsigned int i = 0; i < N; i++) { int ran = rand(); h_a[i] = ran; sum += ran; } // Part 3 of 5: copy data from host to device memory cudaMemcpy(d_a, h_a, memSize, cudaMemcpyHostToDevice); checkCUDAError("cudaMemcpy"); // Part 4 of 5: launch kernel dim3 grid(n_blocks, 1, 1); dim3 threads(block_size, 1, 1); unsigned int shared_bytes = sizeof(int) * block_size; compute_sums_kernel<<<grid, threads, shared_bytes>>>(N, d_a, d_scratch); // block until the device has completed /* cudaThreadSynchronize(); */ // check if kernel execution generated an error checkCUDAError("kernel execution 1"); int final_block_size = 512; grid = dim3(1, 1, 1); threads = dim3(final_block_size, 1, 1); shared_bytes = sizeof(int) * final_block_size; compute_final_kernel<<<grid, threads, shared_bytes>>>(d_scratch, n_blocks); // block until the device has completed /* cudaThreadSynchronize(); */ // check if kernel execution generated an error checkCUDAError("kernel execution 2"); // Part 5 of 5: device to host copy cudaMemcpy(h_a, d_scratch, sizeof(int), cudaMemcpyDeviceToHost); // Check for any CUDA errors checkCUDAError("cudaMemcpy"); // check result from device if (h_a[0] - sum != 0) { fprintf(stderr, "Failed!!! %d %d\n", h_a[0], sum); exit(-1); } // free device memory cudaFree(d_a); cudaFree(d_scratch); // free host memory free(h_a); // If the program makes it this far, then the results are correct and // there are no run-time errors. Good work! printf("Success!\n"); return 0; }
73c937b723e610d6a6ce50eac77d4a9044cb61d4.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "./svd.cuh" #include <rocblas.h> #include <cusolverDn.h> #define STEP(i) printf("Step %d\n", i); #define CCE(errValue) \ do { \ if (errValue != hipSuccess) { \ fprintf(stderr ,"[CUDA-ERROR]-[%s(line:%d)]: %s\n", __FILE__, __LINE__, hipGetErrorString(errValue)); \ exit(0); \ } \ } while(0); // CATCH_CUDA_ERR(hipMalloc(&dev_array, sizeof(int) * used_n)); // CATCH_CUDA_ERR(hipMemcpy(dev_array, array, sizeof(int) * used_n, hipMemcpyHostToDevice)); void copyMatrixFromHostToDevice(Matrix* hostMatrix, Matrix** deviceMatrix, double** deviceMatrixArray, int** deviceDimsArray) { const int n = hostMatrix->n(), m = hostMatrix->m(); Matrix* temp = new Matrix(n, m); delete[] temp->matrix; delete[] temp->real_shape; const int matrix_size = sizeof(double) * n * m; CCE(hipMalloc(&temp->matrix, matrix_size)); CCE(hipMemcpy(temp->matrix, hostMatrix->matrix, matrix_size, hipMemcpyHostToDevice)); const int dims_size = sizeof(int) * 2; CCE(hipMalloc(&temp->real_shape, dims_size)); CCE(hipMemcpy(temp->real_shape, hostMatrix->real_shape, dims_size, hipMemcpyHostToDevice)); CCE(hipMalloc(deviceMatrix, sizeof(Matrix) * 1)); CCE(hipMemcpy(*deviceMatrix, temp, sizeof(Matrix) * 1, hipMemcpyHostToDevice)); *deviceMatrixArray = temp->matrix; *deviceDimsArray = temp->real_shape; temp->matrix = NULL; temp->real_shape = NULL; delete temp; } void copyMatrixFromDeviceToHost(double* deviceMatrixArray, Matrix** hostMatrix, int n, int m) { *hostMatrix = new Matrix(n, m); CCE( hipMemcpy( (*hostMatrix)->matrix, deviceMatrixArray, sizeof(double) * n * m, hipMemcpyDeviceToHost ) ); } /* QRDecompostion is part of SVD and should be called from host Matrix* a - pointer to matrix on host @return pair of Q and R matrix on host */ pair<Matrix*, Matrix*> QRDecompositionNaive(Matrix *a) { int n = a->n(); int m = a->m(); Matrix* Q = new Matrix(n, m); Matrix* R = new Matrix(m, m); for (int i = 0; i < m; i++) { Matrix* ai = subMatrix(a, 0, n + 0, i + 0, i + 1); for (int k = 0; k < i; k++) { Matrix* qk = subMatrix(Q, 0, n + 0, k + 0, k + 1); Matrix* qkt = transpose(qk); Matrix* tempMultiply = multiply(qkt, ai); double v = -1 * tempMultiply->get(0, 0); Matrix* tmp = multiply(qk, v); Matrix* temp_ai = sum(ai, tmp); delete ai; ai = temp_ai; R->set(k, i, -1 * v); delete qk; delete qkt; delete tmp; delete tempMultiply; } R->set(i, i, vectorColLength(ai)); auto nai = vectorColNormalize(ai); for (int k = 0; k < n; k++) { double nk0 = nai->get(k, 0); Q->set(k, i, nk0); } delete ai; delete nai; } return make_pair(Q, R); } Matrix* multiply_wrapper(Matrix* a, Matrix* b) { // Logic // 1. copy matrixes to device // 2. call multiply kernel // 3. copy results to host // 4. free allocated device memory Matrix* ab = new Matrix(a->n(), b->m()); // part 1 start Matrix *a_dev, *b_dev, *ab_dev; double *a_arr, *b_arr, *ab_arr; int *a_dim_arr, *b_dim_arr, *ab_dim_arr; copyMatrixFromHostToDevice(a, &a_dev, &a_arr, &a_dim_arr); copyMatrixFromHostToDevice(b, &b_dev, &b_arr, &b_dim_arr); copyMatrixFromHostToDevice(ab, &ab_dev, &ab_arr, &ab_dim_arr); delete ab; // part 1 end // part 2 start // hipError_t cudaStat; // hipMalloc status // hipblasHandle_t handle; // hipblasStatus_t stat = hipblasCreate(&handle); // CUBLAS functions status // double alpha = 1.0, beta = 0.0; // hipblasDgemm(handle, // HIPBLAS_OP_N, HIPBLAS_OP_N, // a->n, b->m, b->n, // &alpha, // a_arr, a->n, // b_arr, b->n, // &beta, // ab_arr, a->n // ); // CCE(hipDeviceSynchronize()); // CCE(hipGetLastError()) hipLaunchKernelGGL(( multiply), dim3(128), dim3(32), 0, 0, a_dev, b_dev, ab_dev); CCE(hipGetLastError()) // part 2 end // part 3 start copyMatrixFromDeviceToHost(ab_arr, &ab, a->n(), b->m()); // part 3 end // part 4 start CCE(hipFree(a_arr)); CCE(hipFree(a_dev)); CCE(hipFree(b_arr)); CCE(hipFree(b_dev)); CCE(hipFree(ab_arr)); CCE(hipFree(ab_dev)); CCE(hipFree(a_dim_arr)); CCE(hipFree(b_dim_arr)); CCE(hipFree(ab_dim_arr)); // part 4 end return ab; } Triple* SVDDecomposition(Matrix *a, int rank, double eps) { int n = a->n(); int m = a->m(); auto u = randomMatrix(n, rank), sgm = randomMatrix(rank, rank), v = randomMatrix(m, rank); auto at = transpose(a); double err = 1e9; for (; err > eps;) { Matrix* av = multiply_wrapper(a, v); // auto av = multiply(a, v); // show(av, a->n, rank); // show(av_test, a->n, rank); // exit(0); pair<Matrix*, Matrix*> qr_av = QRDecompositionNaive(av); Matrix* u_tmp = subMatrix(qr_av.first, 0, n, 0, rank); delete u; u = u_tmp; Matrix* atu = multiply_wrapper(at, u); // auto atu = multiply(at, u); pair<Matrix*, Matrix*> qr_atu = QRDecompositionNaive(atu); Matrix* v_tmp = subMatrix(qr_atu.first, 0, m, 0, rank); delete v; v = v_tmp; Matrix* sgm_tmp = subMatrix(qr_atu.second, 0, rank, 0, rank); delete sgm; sgm = sgm_tmp; // find error e = || A*V - U*SGM|| // av = multiply(a, v); auto usgm = multiply_wrapper(u, sgm); // auto usgm = multiply(u, sgm); double revert = -1; Matrix* usgmt = multiply(usgm, revert); Matrix* difff = sum(av, usgmt); err = matrixNorm(difff); // double av_diff = diff(av, av_test); printf("Iteration ended, error=%f, diff=%f\n", err, 0.f); delete av; // delete av_test; delete qr_av.first; delete qr_av.second; delete atu; delete qr_atu.first; delete qr_atu.second; delete usgm; delete usgmt; delete difff; } delete at; return new Triple(u, sgm, v); } // Only for rectangal matrix Triple* SVDDecompositionwCUB(Matrix *t) { if (t->shape_length!= 2) { printf("Cannot perform SVD for non rectangular matrix!"); exit(-1); } hipsolverDnHandle_t cusolverH; // cusolver handle cusolverStatus_t cusolvstatus = hipsolverDnCreate(&cusolverH); printf("CUSOLVE %d\n", cusolvstatus); Matrix* a; if (t->n() < t->m()) { a = transpose(t); } else { a = t->copy(); } int rows = a->n(), cols = a->m(); int rank = min(rows, cols); double* a_arr; CCE(hipMalloc(&a_arr, sizeof(double) * rows * cols)); CCE(hipMemcpy(a_arr, a->matrix, sizeof(double) * rows * cols, hipMemcpyHostToDevice)); // Matrix U SIGMA V on host double *U_arr, *VT_arr; CCE(hipMalloc(&U_arr, sizeof(double) * rows * rank)); CCE(hipMalloc(&VT_arr, sizeof(double) * rank * cols)); // array for singular values double* s_arr; CCE(hipMalloc(&s_arr, sizeof(double) * rank)); CCE(hipGetLastError()); int lda = rows; int ldu = rows; int ldvt = cols; int lwork = 0; auto status = hipsolverDnDgesvd_bufferSize(cusolverH, rows, cols, &lwork); printf("Buff size status %d, lwork: %d\n", status, lwork); CCE(hipGetLastError()); double* work; CCE(hipMalloc(&work, sizeof(double) * lwork)); double* d_rwork; CCE(hipMalloc(&d_rwork, sizeof(double) * (rank - 1))); int* info; CCE(hipMalloc(&info, sizeof(int))); cusolverStatus_t cusolver_status; cusolver_status = hipsolverDnDgesvd( cusolverH, 'S', 'S', rows, cols, a_arr, lda, s_arr, U_arr, ldu, VT_arr, ldvt, work, lwork, NULL, info ); CCE(hipGetLastError()); printf("Debug: rows=%d cols=%d, lda=%d ldu=%d ldvt=%d, lwork=%d, \n", rows, cols, lda, ldu, ldvt, lwork); printf("Checks lda!<max(1,rows): %d\n", !(lda < max(1, rows))); printf("Checks ldu!<max(1,rows): %d\n", !(ldu < max(1, rows))); printf("Checks ldv!<max(1,cols): %d\n", !(ldvt < max(1, cols))); printf("cuBLAS SVD result status: %d\n", cusolver_status); // printf("%d %d %d %d\n", CUSOLVER_STATUS_SUCCESS, CUSOLVER_STATUS_NOT_INITIALIZED, CUSOLVER_STATUS_INVALID_VALUE, CUSOLVER_STATUS_ARCH_MISMATCH, CUSOLVER_STATUS_INTERNAL_ERROR); double* s_cpu = new double[rank]; CCE(hipMemcpy(s_cpu, s_arr, sizeof(double) * rank, hipMemcpyDeviceToHost)); Matrix* S = new Matrix(rank, rank); for (int i = 0; i < rank; i++) { S->set(i, i, s_cpu[i]); } delete[] s_cpu; Matrix* U = new Matrix(rows, rank); CCE(hipMemcpy(U->matrix, U_arr, sizeof(double) * rows * rank, hipMemcpyDeviceToHost)); Matrix* VT = new Matrix(rank, cols); CCE(hipMemcpy(VT->matrix, VT_arr, sizeof(double) * rank * cols, hipMemcpyDeviceToHost)); if (t->n() < t->m()) { auto real_U = transpose(VT); auto real_VT = transpose(U); return new Triple(real_U, S, real_VT); } else { return new Triple(U, S, VT); } } vector<Matrix*> TTDecomposition(Matrix* a, double eps) { vector<Matrix *> res; double norm = frobeniousNorm(a); double threshold = norm * eps / sqrt(a->shape_length - 1); int n_left = a->real_shape[0]; int n_right = 1; for (int i = 1; i < a->shape_length; i++) { n_right *= a->real_shape[i]; } int shape[] = { n_left, n_right }; Matrix *M = a->copy(); M->reshape(shape, 2); // U S VT auto svd_m_full = SVDDecompositionwCUB(M); auto svd_m = trunkSVDResultsForTT(svd_m_full, eps); res.push_back(svd_m->first); int r = svd_m->second->real_shape[0]; delete M; M = multiply(svd_m->second, svd_m->third); delete svd_m_full->first; delete svd_m_full->second; delete svd_m_full->third; delete svd_m_full; delete svd_m->second; delete svd_m->third; delete svd_m; for (int i = 1; i < a->shape_length - 1; i++) { n_left = a->real_shape[i]; n_right = n_right / a->real_shape[i]; int next_shape[] = {r * n_left, n_right}; M->reshape(next_shape, 2); auto svd_m_next_full = SVDDecompositionwCUB(M); auto svd_m_next = trunkSVDResultsForTT(svd_m_next_full, eps); int r_cur = svd_m_next->second->real_shape[0]; Matrix *GK = svd_m_next->first; int gk_shape[] = {r, n_left, r_cur}; GK->reshape(gk_shape, 3); res.push_back(GK); r = r_cur; delete M; M = multiply(svd_m_next->second, svd_m_next->third); delete svd_m_next_full->first; delete svd_m_next_full->second; delete svd_m_next_full->third; delete svd_m_next_full; delete svd_m_next->second; delete svd_m_next->third; delete svd_m_next; } res.push_back(M); return res; } // U S VT Triple* trunkSVDResultsForTT(Triple* svd, double eps) { int rank = svd->second->n(); double sum = 0; for (int i = rank - 1; i >= 1; i--) { double val = svd->second->get(i, i); if (sum + val > eps) { break; } sum += val; rank--; } Matrix* U = subMatrix(svd->first, 0, svd->first->n(), 0, rank); Matrix* S = subMatrix(svd->second, 0, rank, 0, rank); Matrix* VT = subMatrix(svd->third, 0, rank, 0, svd->third->m()); return new Triple(U, S, VT); } double getValueFromTrain(vector<Matrix *> m, vector<int> indexes) { Matrix *first = subMatrix(m[0], indexes[0], indexes[0] + 1, 0, m[0]->m()); for (int i = 1; i < m.size() - 1; i++) { Matrix *cur = m[i]->get2DshapeFrom3d(indexes[i]); auto temp_first = multiply(first, cur); delete first; first = temp_first; delete cur; } Matrix *last = subMatrix(m[m.size() - 1], 0, m[m.size() - 1]->n(), indexes[indexes.size() - 1], indexes[indexes.size() - 1] + 1); auto temp_first = multiply(first, last); double res = temp_first->matrix[0]; delete first; delete last; delete temp_first; return res; }
73c937b723e610d6a6ce50eac77d4a9044cb61d4.cu
#include "./svd.cuh" #include <cublas_v2.h> #include <cusolverDn.h> #define STEP(i) printf("Step %d\n", i); #define CCE(errValue) \ do { \ if (errValue != cudaSuccess) { \ fprintf(stderr ,"[CUDA-ERROR]-[%s(line:%d)]: %s\n", __FILE__, __LINE__, cudaGetErrorString(errValue)); \ exit(0); \ } \ } while(0); // CATCH_CUDA_ERR(cudaMalloc(&dev_array, sizeof(int) * used_n)); // CATCH_CUDA_ERR(cudaMemcpy(dev_array, array, sizeof(int) * used_n, cudaMemcpyHostToDevice)); void copyMatrixFromHostToDevice(Matrix* hostMatrix, Matrix** deviceMatrix, double** deviceMatrixArray, int** deviceDimsArray) { const int n = hostMatrix->n(), m = hostMatrix->m(); Matrix* temp = new Matrix(n, m); delete[] temp->matrix; delete[] temp->real_shape; const int matrix_size = sizeof(double) * n * m; CCE(cudaMalloc(&temp->matrix, matrix_size)); CCE(cudaMemcpy(temp->matrix, hostMatrix->matrix, matrix_size, cudaMemcpyHostToDevice)); const int dims_size = sizeof(int) * 2; CCE(cudaMalloc(&temp->real_shape, dims_size)); CCE(cudaMemcpy(temp->real_shape, hostMatrix->real_shape, dims_size, cudaMemcpyHostToDevice)); CCE(cudaMalloc(deviceMatrix, sizeof(Matrix) * 1)); CCE(cudaMemcpy(*deviceMatrix, temp, sizeof(Matrix) * 1, cudaMemcpyHostToDevice)); *deviceMatrixArray = temp->matrix; *deviceDimsArray = temp->real_shape; temp->matrix = NULL; temp->real_shape = NULL; delete temp; } void copyMatrixFromDeviceToHost(double* deviceMatrixArray, Matrix** hostMatrix, int n, int m) { *hostMatrix = new Matrix(n, m); CCE( cudaMemcpy( (*hostMatrix)->matrix, deviceMatrixArray, sizeof(double) * n * m, cudaMemcpyDeviceToHost ) ); } /* QRDecompostion is part of SVD and should be called from host Matrix* a - pointer to matrix on host @return pair of Q and R matrix on host */ pair<Matrix*, Matrix*> QRDecompositionNaive(Matrix *a) { int n = a->n(); int m = a->m(); Matrix* Q = new Matrix(n, m); Matrix* R = new Matrix(m, m); for (int i = 0; i < m; i++) { Matrix* ai = subMatrix(a, 0, n + 0, i + 0, i + 1); for (int k = 0; k < i; k++) { Matrix* qk = subMatrix(Q, 0, n + 0, k + 0, k + 1); Matrix* qkt = transpose(qk); Matrix* tempMultiply = multiply(qkt, ai); double v = -1 * tempMultiply->get(0, 0); Matrix* tmp = multiply(qk, v); Matrix* temp_ai = sum(ai, tmp); delete ai; ai = temp_ai; R->set(k, i, -1 * v); delete qk; delete qkt; delete tmp; delete tempMultiply; } R->set(i, i, vectorColLength(ai)); auto nai = vectorColNormalize(ai); for (int k = 0; k < n; k++) { double nk0 = nai->get(k, 0); Q->set(k, i, nk0); } delete ai; delete nai; } return make_pair(Q, R); } Matrix* multiply_wrapper(Matrix* a, Matrix* b) { // Logic // 1. copy matrixes to device // 2. call multiply kernel // 3. copy results to host // 4. free allocated device memory Matrix* ab = new Matrix(a->n(), b->m()); // part 1 start Matrix *a_dev, *b_dev, *ab_dev; double *a_arr, *b_arr, *ab_arr; int *a_dim_arr, *b_dim_arr, *ab_dim_arr; copyMatrixFromHostToDevice(a, &a_dev, &a_arr, &a_dim_arr); copyMatrixFromHostToDevice(b, &b_dev, &b_arr, &b_dim_arr); copyMatrixFromHostToDevice(ab, &ab_dev, &ab_arr, &ab_dim_arr); delete ab; // part 1 end // part 2 start // cudaError_t cudaStat; // cudaMalloc status // cublasHandle_t handle; // cublasStatus_t stat = cublasCreate(&handle); // CUBLAS functions status // double alpha = 1.0, beta = 0.0; // cublasDgemm(handle, // CUBLAS_OP_N, CUBLAS_OP_N, // a->n, b->m, b->n, // &alpha, // a_arr, a->n, // b_arr, b->n, // &beta, // ab_arr, a->n // ); // CCE(cudaDeviceSynchronize()); // CCE(cudaGetLastError()) multiply<<<128, 32>>>(a_dev, b_dev, ab_dev); CCE(cudaGetLastError()) // part 2 end // part 3 start copyMatrixFromDeviceToHost(ab_arr, &ab, a->n(), b->m()); // part 3 end // part 4 start CCE(cudaFree(a_arr)); CCE(cudaFree(a_dev)); CCE(cudaFree(b_arr)); CCE(cudaFree(b_dev)); CCE(cudaFree(ab_arr)); CCE(cudaFree(ab_dev)); CCE(cudaFree(a_dim_arr)); CCE(cudaFree(b_dim_arr)); CCE(cudaFree(ab_dim_arr)); // part 4 end return ab; } Triple* SVDDecomposition(Matrix *a, int rank, double eps) { int n = a->n(); int m = a->m(); auto u = randomMatrix(n, rank), sgm = randomMatrix(rank, rank), v = randomMatrix(m, rank); auto at = transpose(a); double err = 1e9; for (; err > eps;) { Matrix* av = multiply_wrapper(a, v); // auto av = multiply(a, v); // show(av, a->n, rank); // show(av_test, a->n, rank); // exit(0); pair<Matrix*, Matrix*> qr_av = QRDecompositionNaive(av); Matrix* u_tmp = subMatrix(qr_av.first, 0, n, 0, rank); delete u; u = u_tmp; Matrix* atu = multiply_wrapper(at, u); // auto atu = multiply(at, u); pair<Matrix*, Matrix*> qr_atu = QRDecompositionNaive(atu); Matrix* v_tmp = subMatrix(qr_atu.first, 0, m, 0, rank); delete v; v = v_tmp; Matrix* sgm_tmp = subMatrix(qr_atu.second, 0, rank, 0, rank); delete sgm; sgm = sgm_tmp; // find error e = || A*V - U*SGM|| // av = multiply(a, v); auto usgm = multiply_wrapper(u, sgm); // auto usgm = multiply(u, sgm); double revert = -1; Matrix* usgmt = multiply(usgm, revert); Matrix* difff = sum(av, usgmt); err = matrixNorm(difff); // double av_diff = diff(av, av_test); printf("Iteration ended, error=%f, diff=%f\n", err, 0.f); delete av; // delete av_test; delete qr_av.first; delete qr_av.second; delete atu; delete qr_atu.first; delete qr_atu.second; delete usgm; delete usgmt; delete difff; } delete at; return new Triple(u, sgm, v); } // Only for rectangal matrix Triple* SVDDecompositionwCUB(Matrix *t) { if (t->shape_length!= 2) { printf("Cannot perform SVD for non rectangular matrix!"); exit(-1); } cusolverDnHandle_t cusolverH; // cusolver handle cusolverStatus_t cusolvstatus = cusolverDnCreate(&cusolverH); printf("CUSOLVE %d\n", cusolvstatus); Matrix* a; if (t->n() < t->m()) { a = transpose(t); } else { a = t->copy(); } int rows = a->n(), cols = a->m(); int rank = min(rows, cols); double* a_arr; CCE(cudaMalloc(&a_arr, sizeof(double) * rows * cols)); CCE(cudaMemcpy(a_arr, a->matrix, sizeof(double) * rows * cols, cudaMemcpyHostToDevice)); // Matrix U SIGMA V on host double *U_arr, *VT_arr; CCE(cudaMalloc(&U_arr, sizeof(double) * rows * rank)); CCE(cudaMalloc(&VT_arr, sizeof(double) * rank * cols)); // array for singular values double* s_arr; CCE(cudaMalloc(&s_arr, sizeof(double) * rank)); CCE(cudaGetLastError()); int lda = rows; int ldu = rows; int ldvt = cols; int lwork = 0; auto status = cusolverDnDgesvd_bufferSize(cusolverH, rows, cols, &lwork); printf("Buff size status %d, lwork: %d\n", status, lwork); CCE(cudaGetLastError()); double* work; CCE(cudaMalloc(&work, sizeof(double) * lwork)); double* d_rwork; CCE(cudaMalloc(&d_rwork, sizeof(double) * (rank - 1))); int* info; CCE(cudaMalloc(&info, sizeof(int))); cusolverStatus_t cusolver_status; cusolver_status = cusolverDnDgesvd( cusolverH, 'S', 'S', rows, cols, a_arr, lda, s_arr, U_arr, ldu, VT_arr, ldvt, work, lwork, NULL, info ); CCE(cudaGetLastError()); printf("Debug: rows=%d cols=%d, lda=%d ldu=%d ldvt=%d, lwork=%d, \n", rows, cols, lda, ldu, ldvt, lwork); printf("Checks lda!<max(1,rows): %d\n", !(lda < max(1, rows))); printf("Checks ldu!<max(1,rows): %d\n", !(ldu < max(1, rows))); printf("Checks ldv!<max(1,cols): %d\n", !(ldvt < max(1, cols))); printf("cuBLAS SVD result status: %d\n", cusolver_status); // printf("%d %d %d %d\n", CUSOLVER_STATUS_SUCCESS, CUSOLVER_STATUS_NOT_INITIALIZED, CUSOLVER_STATUS_INVALID_VALUE, CUSOLVER_STATUS_ARCH_MISMATCH, CUSOLVER_STATUS_INTERNAL_ERROR); double* s_cpu = new double[rank]; CCE(cudaMemcpy(s_cpu, s_arr, sizeof(double) * rank, cudaMemcpyDeviceToHost)); Matrix* S = new Matrix(rank, rank); for (int i = 0; i < rank; i++) { S->set(i, i, s_cpu[i]); } delete[] s_cpu; Matrix* U = new Matrix(rows, rank); CCE(cudaMemcpy(U->matrix, U_arr, sizeof(double) * rows * rank, cudaMemcpyDeviceToHost)); Matrix* VT = new Matrix(rank, cols); CCE(cudaMemcpy(VT->matrix, VT_arr, sizeof(double) * rank * cols, cudaMemcpyDeviceToHost)); if (t->n() < t->m()) { auto real_U = transpose(VT); auto real_VT = transpose(U); return new Triple(real_U, S, real_VT); } else { return new Triple(U, S, VT); } } vector<Matrix*> TTDecomposition(Matrix* a, double eps) { vector<Matrix *> res; double norm = frobeniousNorm(a); double threshold = norm * eps / sqrt(a->shape_length - 1); int n_left = a->real_shape[0]; int n_right = 1; for (int i = 1; i < a->shape_length; i++) { n_right *= a->real_shape[i]; } int shape[] = { n_left, n_right }; Matrix *M = a->copy(); M->reshape(shape, 2); // U S VT auto svd_m_full = SVDDecompositionwCUB(M); auto svd_m = trunkSVDResultsForTT(svd_m_full, eps); res.push_back(svd_m->first); int r = svd_m->second->real_shape[0]; delete M; M = multiply(svd_m->second, svd_m->third); delete svd_m_full->first; delete svd_m_full->second; delete svd_m_full->third; delete svd_m_full; delete svd_m->second; delete svd_m->third; delete svd_m; for (int i = 1; i < a->shape_length - 1; i++) { n_left = a->real_shape[i]; n_right = n_right / a->real_shape[i]; int next_shape[] = {r * n_left, n_right}; M->reshape(next_shape, 2); auto svd_m_next_full = SVDDecompositionwCUB(M); auto svd_m_next = trunkSVDResultsForTT(svd_m_next_full, eps); int r_cur = svd_m_next->second->real_shape[0]; Matrix *GK = svd_m_next->first; int gk_shape[] = {r, n_left, r_cur}; GK->reshape(gk_shape, 3); res.push_back(GK); r = r_cur; delete M; M = multiply(svd_m_next->second, svd_m_next->third); delete svd_m_next_full->first; delete svd_m_next_full->second; delete svd_m_next_full->third; delete svd_m_next_full; delete svd_m_next->second; delete svd_m_next->third; delete svd_m_next; } res.push_back(M); return res; } // U S VT Triple* trunkSVDResultsForTT(Triple* svd, double eps) { int rank = svd->second->n(); double sum = 0; for (int i = rank - 1; i >= 1; i--) { double val = svd->second->get(i, i); if (sum + val > eps) { break; } sum += val; rank--; } Matrix* U = subMatrix(svd->first, 0, svd->first->n(), 0, rank); Matrix* S = subMatrix(svd->second, 0, rank, 0, rank); Matrix* VT = subMatrix(svd->third, 0, rank, 0, svd->third->m()); return new Triple(U, S, VT); } double getValueFromTrain(vector<Matrix *> m, vector<int> indexes) { Matrix *first = subMatrix(m[0], indexes[0], indexes[0] + 1, 0, m[0]->m()); for (int i = 1; i < m.size() - 1; i++) { Matrix *cur = m[i]->get2DshapeFrom3d(indexes[i]); auto temp_first = multiply(first, cur); delete first; first = temp_first; delete cur; } Matrix *last = subMatrix(m[m.size() - 1], 0, m[m.size() - 1]->n(), indexes[indexes.size() - 1], indexes[indexes.size() - 1] + 1); auto temp_first = multiply(first, last); double res = temp_first->matrix[0]; delete first; delete last; delete temp_first; return res; }