Sarim-Hash
commited on
Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +1 -0
- cuda_code/04matrix_transposed.cu +77 -0
- cuda_code/11-convolution.cu +50 -0
- cuda_code/1d1.cu +105 -0
- cuda_code/28-pyrup-pyrdown.cu +90 -0
- cuda_code/2d_xyWENOADV_p.cu +169 -0
- cuda_code/2mm.cu +244 -0
- cuda_code/ACNetHDNL3.cu +1653 -0
- cuda_code/Activation_27.cu +587 -0
- cuda_code/AimetOpUtilsGpu_4.cu +76 -0
- cuda_code/ArrayManip_1.cu +70 -0
- cuda_code/BE_L1D_HIT.cu +179 -0
- cuda_code/BE_L1D_MISS_L2D_HIT_13.cu +189 -0
- cuda_code/BE_L1D_MISS_L2D_HIT_19.cu +171 -0
- cuda_code/BE_MEM_SHRD_Acss.cu +174 -0
- cuda_code/BE_SP_FP_DIV_1.cu +220 -0
- cuda_code/BE_SP_INT_ADD_l32_1.cu +184 -0
- cuda_code/BE_SP_INT_MUL_3.cu +225 -0
- cuda_code/BK5_1.cu +812 -0
- cuda_code/BatchNormalization_8.cu +99 -0
- cuda_code/BlockSelectFloat_1.cu +122 -0
- cuda_code/BounceBackNVEGPU_6.cu +103 -0
- cuda_code/COOtoCSR_2.cu +74 -0
- cuda_code/CPU_GPU_time.cu +110 -0
- cuda_code/CUAPI_Asyn_PoissonGravitySolver_8.cu +473 -0
- cuda_code/CUFLU_Shared_FullStepUpdate_1.cu +188 -0
- cuda_code/Col2Im_9.cu +207 -0
- cuda_code/CommunicatorGridGPU_1.cu +191 -0
- cuda_code/CompareEQKernel.cu +28 -0
- cuda_code/CompareGEKernel_3.cu +29 -0
- cuda_code/CompareGTKernel.cu +28 -0
- cuda_code/CompressKernel_8.cu +2022 -0
- cuda_code/ComputeProductKernel.cu +90 -0
- cuda_code/ConstraintEllipsoidGPU_1.cu +103 -0
- cuda_code/CopySurface.cu +52 -0
- cuda_code/Copy_15.cu +225 -0
- cuda_code/CudaAllocator_2.cu +343 -0
- cuda_code/CudaKernel.cu +12 -0
- cuda_code/CudaKernel_11.cu +105 -0
- cuda_code/CudnnMaxPool_2.cu +210 -0
- cuda_code/CustomPi.cu +42 -0
- cuda_code/DReductor.cu +130 -0
- cuda_code/DepthmapDenoiseWeightedHuber.cu +942 -0
- cuda_code/DepthwiseGEMM_64.cu +38 -0
- cuda_code/DeviceMemory_2.cu +650 -0
- cuda_code/Distance_14.cu +472 -0
- cuda_code/DistributionExponentialKernel.cu +37 -0
- cuda_code/DistributionExponentialKernel_1.cu +15 -0
- cuda_code/DnDHgels.cu +67 -0
- cuda_code/DnSXgels.cu +67 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
push.sh
|
cuda_code/04matrix_transposed.cu
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <assert.h>
|
2 |
+
#include <stdio.h>
|
3 |
+
#include "Error.h"
|
4 |
+
|
5 |
+
#define N 4
|
6 |
+
|
7 |
+
__global__ void transposedMatrixKernel(int* d_a, int* d_b) {
|
8 |
+
int i = threadIdx.x + blockDim.x * blockIdx.x;
|
9 |
+
int j = threadIdx.y + blockDim.y * blockIdx.y;
|
10 |
+
|
11 |
+
d_b[i * N + j] = d_a[j * N + i];
|
12 |
+
}
|
13 |
+
|
14 |
+
void onDevice(int h_a[][N], int h_b[][N]) {
|
15 |
+
// declare GPU memory pointers
|
16 |
+
int *d_a, *d_b;
|
17 |
+
|
18 |
+
const int ARRAY_BYTES = N * N * sizeof(int);
|
19 |
+
|
20 |
+
// allocate memory on the GPU
|
21 |
+
HANDLER_ERROR_ERR(cudaMalloc((void**)&d_a, ARRAY_BYTES));
|
22 |
+
HANDLER_ERROR_ERR(cudaMalloc((void**)&d_b, ARRAY_BYTES));
|
23 |
+
|
24 |
+
// copy data from CPU the GPU
|
25 |
+
HANDLER_ERROR_ERR(
|
26 |
+
cudaMemcpy(d_a, h_a, ARRAY_BYTES, cudaMemcpyHostToDevice));
|
27 |
+
HANDLER_ERROR_ERR(
|
28 |
+
cudaMemcpy(d_b, h_b, ARRAY_BYTES, cudaMemcpyHostToDevice));
|
29 |
+
|
30 |
+
// execution configuration
|
31 |
+
dim3 GridBlocks(1, 1);
|
32 |
+
dim3 ThreadsBlocks(4, 4);
|
33 |
+
|
34 |
+
// run the kernel
|
35 |
+
transposedMatrixKernel<<<GridBlocks, ThreadsBlocks>>>(d_a, d_b);
|
36 |
+
HANDLER_ERROR_MSG("kernel panic!!!");
|
37 |
+
|
38 |
+
// copy data back from the GPU to the CPU
|
39 |
+
HANDLER_ERROR_ERR(
|
40 |
+
cudaMemcpy(h_b, d_b, ARRAY_BYTES, cudaMemcpyDeviceToHost));
|
41 |
+
|
42 |
+
// free GPU memory
|
43 |
+
HANDLER_ERROR_ERR(cudaFree(d_a));
|
44 |
+
HANDLER_ERROR_ERR(cudaFree(d_b));
|
45 |
+
}
|
46 |
+
|
47 |
+
void test(int h_a[][N], int h_b[][N]) {
|
48 |
+
// test result
|
49 |
+
for (int i = 0; i < N; i++) {
|
50 |
+
for (int j = 0; j < N; j++) {
|
51 |
+
assert(h_a[j][i] == h_b[i][j]);
|
52 |
+
}
|
53 |
+
}
|
54 |
+
|
55 |
+
printf("-: successful execution :-\n");
|
56 |
+
}
|
57 |
+
|
58 |
+
void onHost() {
|
59 |
+
int i, j, k = 0;
|
60 |
+
int h_a[N][N], h_b[N][N];
|
61 |
+
|
62 |
+
for (i = 0; i < N; i++) {
|
63 |
+
for (j = 0; j < N; j++) {
|
64 |
+
h_a[i][j] = k;
|
65 |
+
h_b[i][j] = 0;
|
66 |
+
k++;
|
67 |
+
}
|
68 |
+
}
|
69 |
+
|
70 |
+
// call device configuration
|
71 |
+
onDevice(h_a, h_b);
|
72 |
+
test(h_a, h_b);
|
73 |
+
}
|
74 |
+
|
75 |
+
int main() {
|
76 |
+
onHost();
|
77 |
+
}
|
cuda_code/11-convolution.cu
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
extern "C" {
|
2 |
+
//#define Mask_width 5
|
3 |
+
//#define Mask_radius Mask_width/2
|
4 |
+
#define O_TILE_WIDTH 12
|
5 |
+
#define BLOCK_WIDTH (O_TILE_WIDTH+4)
|
6 |
+
#define clamp(x, start, end) min(max(x, start), end)
|
7 |
+
__global__ void convolution_2D_kernel(float*P,float*N,int height,int width,int channels,const float* __restrict__ M,int Mask_width){
|
8 |
+
int Mask_radius = Mask_width/2;
|
9 |
+
__shared__ float Ns[BLOCK_WIDTH][BLOCK_WIDTH*3];
|
10 |
+
int tx=threadIdx.x;
|
11 |
+
int ty=threadIdx.y;
|
12 |
+
int row_o=blockIdx.y*O_TILE_WIDTH+ty;
|
13 |
+
int col_o=blockIdx.x*O_TILE_WIDTH+tx;
|
14 |
+
|
15 |
+
int row_i=row_o-2;
|
16 |
+
int col_i=col_o-2;
|
17 |
+
|
18 |
+
int i=0;
|
19 |
+
int j=0;
|
20 |
+
int k=0;
|
21 |
+
if((row_i>=0)&&(row_i<height)&&(col_i>=0)&&(col_i<width)){
|
22 |
+
for(k=0;k<channels;++k){
|
23 |
+
Ns[ty][tx*channels+k]=P[(row_i*width+col_i)*channels+k];
|
24 |
+
}
|
25 |
+
}else{
|
26 |
+
for(k=0;k<channels;++k){
|
27 |
+
Ns[ty][tx*channels+k]=0.0f;
|
28 |
+
}
|
29 |
+
}
|
30 |
+
|
31 |
+
__syncthreads();
|
32 |
+
float output=0.0f;
|
33 |
+
if(ty<O_TILE_WIDTH&&tx<O_TILE_WIDTH){
|
34 |
+
for(k=0;k<channels;++k){
|
35 |
+
output=0.0f;
|
36 |
+
for(i=0;i<Mask_width;++i){
|
37 |
+
for(j=0;j<Mask_width;++j){
|
38 |
+
output+=M[i*Mask_width+j]*Ns[i+ty][(j+tx)*channels+k];
|
39 |
+
}
|
40 |
+
}
|
41 |
+
if(row_o<height&&col_o<width){
|
42 |
+
N[(row_o*width+col_o)*channels+k]=output;
|
43 |
+
}
|
44 |
+
}
|
45 |
+
}
|
46 |
+
}
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
}
|
cuda_code/1d1.cu
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <stdio.h>
|
2 |
+
#include <stdlib.h>
|
3 |
+
#include <sys/time.h>
|
4 |
+
#include <cuda_runtime.h>
|
5 |
+
#define N 1024 * 1024 * 128
|
6 |
+
#define KN 9
|
7 |
+
#define THREADSPERBLOCK 1024
|
8 |
+
#define BLOCKSPERGRID 1
|
9 |
+
|
10 |
+
float data[N];
|
11 |
+
float kernel[KN];
|
12 |
+
float output[N-KN+1];
|
13 |
+
float output_from_device[N-KN+1];
|
14 |
+
|
15 |
+
__global__ void conv( float *data_cuda, float *kernel, float *output ){
|
16 |
+
int tid = threadIdx.x;
|
17 |
+
while (tid < N - KN + 1) {
|
18 |
+
for(int i = 0; i < KN; i++) {
|
19 |
+
output[tid] += data_cuda[tid + i] * kernel[i];
|
20 |
+
}
|
21 |
+
tid += blockDim.x;
|
22 |
+
}
|
23 |
+
}
|
24 |
+
|
25 |
+
int main(){
|
26 |
+
int cpu = true;
|
27 |
+
int pass = 1;
|
28 |
+
cudaError_t cuError = cudaSuccess ;
|
29 |
+
|
30 |
+
double elapsedTimeCPU;
|
31 |
+
struct timespec t_start, t_end;
|
32 |
+
|
33 |
+
float elapsedTime;
|
34 |
+
cudaEvent_t start, stop;
|
35 |
+
cudaEventCreate(&start);
|
36 |
+
cudaEventCreate(&stop);
|
37 |
+
|
38 |
+
// generate dummy data
|
39 |
+
srand(time(NULL));
|
40 |
+
for (int i = 0; i < KN; i++) {
|
41 |
+
kernel[i] = rand() / (float)RAND_MAX;
|
42 |
+
}
|
43 |
+
|
44 |
+
srand(time(NULL));
|
45 |
+
for (int i = 0; i < N; i++) {
|
46 |
+
data[i] = rand() / (float)RAND_MAX;
|
47 |
+
}
|
48 |
+
|
49 |
+
// CPU
|
50 |
+
if (cpu) {
|
51 |
+
clock_gettime( CLOCK_REALTIME, &t_start);
|
52 |
+
for (int i = 0; i < N-KN+1; i++) {
|
53 |
+
output[i] = 0;
|
54 |
+
for (int j = 0; j < KN; j++) {
|
55 |
+
output[i] += kernel[j] * data[i+j];
|
56 |
+
}
|
57 |
+
}
|
58 |
+
clock_gettime( CLOCK_REALTIME, &t_end);
|
59 |
+
elapsedTimeCPU = (t_end.tv_sec - t_start.tv_sec) * 1000.0;
|
60 |
+
elapsedTimeCPU += (t_end.tv_nsec - t_start.tv_nsec) / 1000000.0;
|
61 |
+
printf("CPU elapsedTime: %lf ms\n", elapsedTimeCPU);
|
62 |
+
}
|
63 |
+
|
64 |
+
// GPU
|
65 |
+
float *d_kernel, *d_data, *d_output;
|
66 |
+
if (cudaMalloc( (void**)&d_kernel, KN * sizeof(float) ) != cudaSuccess) return 1;
|
67 |
+
if (cudaMalloc( (void**)&d_data, N * sizeof(float) ) != cudaSuccess) return 1;
|
68 |
+
if (cudaMalloc( (void**)&d_output, (N-KN+1) * sizeof(float) ) != cudaSuccess) return 1;
|
69 |
+
if (cudaMemcpy( d_kernel, kernel, KN * sizeof(float), cudaMemcpyHostToDevice ) != cudaSuccess) return 1;
|
70 |
+
if (cudaMemcpy( d_data, data, N * sizeof(float), cudaMemcpyHostToDevice ) != cudaSuccess) return 1;
|
71 |
+
|
72 |
+
cudaEventRecord(start, 0);
|
73 |
+
conv<<<BLOCKSPERGRID, THREADSPERBLOCK>>>(d_data, d_kernel, d_output);
|
74 |
+
cudaEventRecord(stop, 0);
|
75 |
+
cudaEventSynchronize(stop);
|
76 |
+
cudaEventElapsedTime(&elapsedTime, start, stop);
|
77 |
+
printf("GPU time: %13f msec\n", elapsedTime);
|
78 |
+
|
79 |
+
cudaMemcpy( output_from_device, d_output, (N-KN+1) * sizeof(float), cudaMemcpyDeviceToHost );
|
80 |
+
cudaEventDestroy(start);
|
81 |
+
cudaEventDestroy(stop);
|
82 |
+
|
83 |
+
if (cudaGetLastError() != cudaSuccess)
|
84 |
+
{
|
85 |
+
printf ("Failed in kernel launch and reason is %s\n", cudaGetErrorString(cuError)) ;
|
86 |
+
return 1 ;
|
87 |
+
}
|
88 |
+
|
89 |
+
//check correctness
|
90 |
+
if (cpu) {
|
91 |
+
for (int i = 0; i < N-KN+1; i++){
|
92 |
+
if((output_from_device[i] - output[i]) > 0.001){
|
93 |
+
printf("CPU:%lf GPU:%lf\n",output[i], output_from_device[i] );
|
94 |
+
pass = 0;
|
95 |
+
break;
|
96 |
+
}
|
97 |
+
}
|
98 |
+
if(pass == 1) {
|
99 |
+
printf("Test pass!\n");
|
100 |
+
printf("GPU / CPU = %f\n", elapsedTimeCPU / elapsedTime);
|
101 |
+
}
|
102 |
+
else
|
103 |
+
printf("Test fail!\n");
|
104 |
+
}
|
105 |
+
}
|
cuda_code/28-pyrup-pyrdown.cu
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
extern "C" {
|
2 |
+
|
3 |
+
__global__ void pyrup_rgb_kernel(unsigned char *d_in,unsigned char *d_out,int colorWidthStep,int aabhas,int height,int width)
|
4 |
+
{
|
5 |
+
const int xIndex = blockIdx.x * blockDim.x + threadIdx.x;
|
6 |
+
const int yIndex = blockIdx.y * blockDim.y + threadIdx.y;
|
7 |
+
const int color_tid = (xIndex)* aabhas + (3 * (yIndex));
|
8 |
+
const int color_tid1= (xIndex/2)* colorWidthStep + (3 * (yIndex/2));
|
9 |
+
if(yIndex >=width || xIndex>=height)
|
10 |
+
{
|
11 |
+
return;
|
12 |
+
}
|
13 |
+
|
14 |
+
if(yIndex%2==0 &&xIndex%2==0)
|
15 |
+
{
|
16 |
+
d_out[color_tid]=d_in[color_tid1];
|
17 |
+
d_out[color_tid+1]=d_in[color_tid1+1];
|
18 |
+
d_out[color_tid+2]=d_in[color_tid1+2];
|
19 |
+
}
|
20 |
+
else
|
21 |
+
{
|
22 |
+
d_out[color_tid]=0;
|
23 |
+
d_out[color_tid+1]=0;//d_in[color_tid1+1];
|
24 |
+
d_out[color_tid+2]=0;//d_in[color_tid1+2];
|
25 |
+
|
26 |
+
}
|
27 |
+
}
|
28 |
+
|
29 |
+
__global__ void pyrup_gray_kernel(unsigned char *d_in,unsigned char *d_out,int colorWidthStep,int aabhas,int height,int width)
|
30 |
+
{
|
31 |
+
const int xIndex = blockIdx.x * blockDim.x + threadIdx.x;
|
32 |
+
const int yIndex = blockIdx.y * blockDim.y + threadIdx.y;
|
33 |
+
const int color_tid = (xIndex)* aabhas + yIndex;
|
34 |
+
const int color_tid1= (xIndex/2)* colorWidthStep + yIndex/2;
|
35 |
+
if(yIndex >=width || xIndex>=height)
|
36 |
+
{
|
37 |
+
return;
|
38 |
+
}
|
39 |
+
|
40 |
+
if(yIndex%2==0 &&xIndex%2==0)
|
41 |
+
{
|
42 |
+
d_out[color_tid]=d_in[color_tid1];
|
43 |
+
//d_out[color_tid+1]=d_in[color_tid1+1];
|
44 |
+
//d_out[color_tid+2]=d_in[color_tid1+2];
|
45 |
+
}
|
46 |
+
else
|
47 |
+
{
|
48 |
+
d_out[color_tid]=255;
|
49 |
+
//d_out[color_tid+1]=0;//d_in[color_tid1+1];
|
50 |
+
//d_out[color_tid+2]=0;//d_in[color_tid1+2];
|
51 |
+
|
52 |
+
}
|
53 |
+
}
|
54 |
+
|
55 |
+
|
56 |
+
__global__ void pyrdown_rgb_kernel(unsigned char *d_in,unsigned char *d_out,int colorWidthStep,int aabhas,int height,int width)
|
57 |
+
{
|
58 |
+
const int xIndex = blockIdx.x * blockDim.x + threadIdx.x;
|
59 |
+
const int yIndex = blockIdx.y * blockDim.y + threadIdx.y;
|
60 |
+
const int color_tid = (xIndex)* aabhas + (3 * (yIndex));
|
61 |
+
const int color_tid1= (2*xIndex)* colorWidthStep + (3 * (2*yIndex));
|
62 |
+
if(yIndex >=width || xIndex>=height)
|
63 |
+
{
|
64 |
+
|
65 |
+
return;
|
66 |
+
}
|
67 |
+
|
68 |
+
d_out[color_tid]=d_in[color_tid1];
|
69 |
+
d_out[color_tid+1]=d_in[color_tid1+1];
|
70 |
+
d_out[color_tid+2]=d_in[color_tid1+2];
|
71 |
+
}
|
72 |
+
|
73 |
+
__global__ void pyrdown_gray_kernel(unsigned char *d_in,unsigned char *d_out,int colorWidthStep,int aabhas,int height,int width)
|
74 |
+
{
|
75 |
+
const int xIndex = blockIdx.x * blockDim.x + threadIdx.x;
|
76 |
+
const int yIndex = blockIdx.y * blockDim.y + threadIdx.y;
|
77 |
+
const int color_tid = (xIndex)* aabhas + yIndex;
|
78 |
+
const int color_tid1= (2*xIndex)* colorWidthStep + 2*yIndex;
|
79 |
+
if(yIndex >=width || xIndex>=height)
|
80 |
+
{
|
81 |
+
|
82 |
+
return;
|
83 |
+
}
|
84 |
+
|
85 |
+
d_out[color_tid]=d_in[color_tid1];
|
86 |
+
//d_out[color_tid+1]=d_in[color_tid1+1];
|
87 |
+
//d_out[color_tid+2]=d_in[color_tid1+2];
|
88 |
+
}
|
89 |
+
|
90 |
+
}
|
cuda_code/2d_xyWENOADV_p.cu
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Andrew Gloster
|
2 |
+
// November 2018
|
3 |
+
// Example of advection in 2D with upwinding WENO
|
4 |
+
|
5 |
+
// Copyright 2018 Andrew Gloster
|
6 |
+
|
7 |
+
// Licensed under the Apache License, Version 2.0 (the "License");
|
8 |
+
// you may not use this file except in compliance with the License.
|
9 |
+
// You may obtain a copy of the License at
|
10 |
+
|
11 |
+
// http://www.apache.org/licenses/LICENSE-2.0
|
12 |
+
|
13 |
+
// Unless required by applicable law or agreed to in writing, software
|
14 |
+
// distributed under the License is distributed on an "AS IS" BASIS,
|
15 |
+
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
16 |
+
// See the License for the specific language governing permissions and
|
17 |
+
// limitations under the License.
|
18 |
+
|
19 |
+
|
20 |
+
// ---------------------------------------------------------------------
|
21 |
+
// Standard Libraries and Headers
|
22 |
+
// ---------------------------------------------------------------------
|
23 |
+
|
24 |
+
#include <cmath>
|
25 |
+
#include <iostream>
|
26 |
+
#include <cstdio>
|
27 |
+
#include "cuda.h"
|
28 |
+
|
29 |
+
// ---------------------------------------------------------------------
|
30 |
+
// cuSten - Note the file position is relative
|
31 |
+
// ---------------------------------------------------------------------
|
32 |
+
|
33 |
+
#include "../../cuSten/cuSten.h"
|
34 |
+
|
35 |
+
// ---------------------------------------------------------------------
|
36 |
+
// MACROS
|
37 |
+
// ---------------------------------------------------------------------
|
38 |
+
|
39 |
+
#define BLOCK_X 32
|
40 |
+
#define BLOCK_Y 32
|
41 |
+
|
42 |
+
// ---------------------------------------------------------------------
|
43 |
+
// Main Program
|
44 |
+
// ---------------------------------------------------------------------
|
45 |
+
|
46 |
+
int main()
|
47 |
+
{
|
48 |
+
// Set the device number
|
49 |
+
int deviceNum = 0;
|
50 |
+
|
51 |
+
// Declare Domain Size
|
52 |
+
int nx = 8192;
|
53 |
+
int ny = 8192;
|
54 |
+
|
55 |
+
double lx = 2 * M_PI;
|
56 |
+
double ly = 2 * M_PI;
|
57 |
+
|
58 |
+
// Domain spacings
|
59 |
+
double dx = lx / (double) (nx);
|
60 |
+
double dy = ly / (double) (ny);
|
61 |
+
|
62 |
+
// Set the number of tiles per device
|
63 |
+
int numTiles = 4;
|
64 |
+
|
65 |
+
// Initial Conditions
|
66 |
+
double* dataInput;
|
67 |
+
double* dataOutput;
|
68 |
+
double* u;
|
69 |
+
double* v;
|
70 |
+
|
71 |
+
// -----------------------------
|
72 |
+
// Allocate the memory
|
73 |
+
// -----------------------------
|
74 |
+
|
75 |
+
cudaMallocManaged(&dataInput, nx * ny * sizeof(double));
|
76 |
+
cudaMallocManaged(&dataOutput, nx * ny * sizeof(double));
|
77 |
+
|
78 |
+
cudaMallocManaged(&u, nx * ny * sizeof(double));
|
79 |
+
cudaMallocManaged(&v, nx * ny * sizeof(double));
|
80 |
+
|
81 |
+
// -----------------------------
|
82 |
+
// Set the initial conditions
|
83 |
+
// -----------------------------
|
84 |
+
|
85 |
+
// Indexing
|
86 |
+
int temp;
|
87 |
+
int index;
|
88 |
+
|
89 |
+
for (int j = 0; j < ny; j++)
|
90 |
+
{
|
91 |
+
temp = j * nx;
|
92 |
+
|
93 |
+
for (int i = 0; i < nx; i++)
|
94 |
+
{
|
95 |
+
index = temp + i;
|
96 |
+
|
97 |
+
dataInput[index] = cos(i * dx) * sin(j * dy);
|
98 |
+
dataOutput[index] = 0.0;
|
99 |
+
|
100 |
+
u[index] = sin(j * dy);
|
101 |
+
v[index] = - sin(i * dx);
|
102 |
+
}
|
103 |
+
}
|
104 |
+
|
105 |
+
// Ensure all the above is completed
|
106 |
+
cudaDeviceSynchronize();
|
107 |
+
|
108 |
+
// -----------------------------
|
109 |
+
// Set up device
|
110 |
+
// -----------------------------
|
111 |
+
|
112 |
+
// Set up the compute device structs
|
113 |
+
cuSten_t xyWENOCompute;
|
114 |
+
|
115 |
+
// Initialise the instance of the stencil
|
116 |
+
cuStenCreate2DXYWENOADVp(
|
117 |
+
&xyWENOCompute,
|
118 |
+
|
119 |
+
deviceNum,
|
120 |
+
|
121 |
+
numTiles,
|
122 |
+
|
123 |
+
nx,
|
124 |
+
ny,
|
125 |
+
|
126 |
+
BLOCK_X,
|
127 |
+
BLOCK_Y,
|
128 |
+
|
129 |
+
dx,
|
130 |
+
dy,
|
131 |
+
|
132 |
+
u,
|
133 |
+
v,
|
134 |
+
|
135 |
+
dataOutput,
|
136 |
+
|
137 |
+
dataInput
|
138 |
+
);
|
139 |
+
|
140 |
+
// Synchronise to ensure everything initialised
|
141 |
+
cudaDeviceSynchronize();
|
142 |
+
|
143 |
+
// -----------------------------
|
144 |
+
// Compute
|
145 |
+
// -----------------------------
|
146 |
+
|
147 |
+
// Run the computation
|
148 |
+
cuStenCompute2DXYWENOADVp(&xyWENOCompute, HOST);
|
149 |
+
|
150 |
+
// // Synchronise at the end to ensure everything is complete
|
151 |
+
cudaDeviceSynchronize();
|
152 |
+
|
153 |
+
// -----------------------------
|
154 |
+
// Destroy struct and free memory
|
155 |
+
// -----------------------------
|
156 |
+
|
157 |
+
// Destroy struct
|
158 |
+
cuStenDestroy2DXYWENOADVp(&xyWENOCompute);
|
159 |
+
|
160 |
+
// Free memory at the end
|
161 |
+
cudaFree(dataInput);
|
162 |
+
cudaFree(dataOutput);
|
163 |
+
|
164 |
+
cudaFree(u);
|
165 |
+
cudaFree(v);
|
166 |
+
|
167 |
+
// Return 0 when the program completes
|
168 |
+
return 0;
|
169 |
+
}
|
cuda_code/2mm.cu
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/**
|
2 |
+
* 2mm.cu: This file is part of the PolyBench/GPU 1.0 test suite.
|
3 |
+
*
|
4 |
+
*
|
5 |
+
* Contact: Scott Grauer-Gray <[email protected]>
|
6 |
+
* Louis-Noel Pouchet <[email protected]>
|
7 |
+
* Web address: http://www.cse.ohio-state.edu/~pouchet/software/polybench/GPU
|
8 |
+
*/
|
9 |
+
|
10 |
+
#include <stdio.h>
|
11 |
+
#include <stdlib.h>
|
12 |
+
#include <math.h>
|
13 |
+
#include <assert.h>
|
14 |
+
#include <unistd.h>
|
15 |
+
#include <sys/time.h>
|
16 |
+
#include <cuda.h>
|
17 |
+
|
18 |
+
#include "../../../common/polybenchUtilFuncts.h"
|
19 |
+
|
20 |
+
//define the error threshold for the results "not matching"
|
21 |
+
#define PERCENT_DIFF_ERROR_THRESHOLD 0.05
|
22 |
+
|
23 |
+
#define GPU_DEVICE 0
|
24 |
+
|
25 |
+
/* Problem size. */
|
26 |
+
# define NI 2048 * 4
|
27 |
+
# define NJ 2048 * 4
|
28 |
+
# define NK 2048 * 4
|
29 |
+
# define NL 2048 * 4
|
30 |
+
|
31 |
+
/* Thread block dimensions */
|
32 |
+
#define DIM_THREAD_BLOCK_X 32
|
33 |
+
#define DIM_THREAD_BLOCK_Y 8
|
34 |
+
|
35 |
+
/* Can switch DATA_TYPE between float and double */
|
36 |
+
typedef float DATA_TYPE;
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
void init_array(DATA_TYPE* A, DATA_TYPE* B, DATA_TYPE* C, DATA_TYPE* D, DATA_TYPE* A_gpu, DATA_TYPE* B_gpu, DATA_TYPE* C_gpu, DATA_TYPE* D_gpu)
|
41 |
+
{
|
42 |
+
int i, j;
|
43 |
+
|
44 |
+
for (i = 0; i < NI; i++)
|
45 |
+
{
|
46 |
+
for (j = 0; j < NK; j++)
|
47 |
+
{
|
48 |
+
A[i*NI + j] = ((DATA_TYPE) i*j) / NI;
|
49 |
+
A_gpu[i*NI + j] = ((DATA_TYPE) i*j) / NI;
|
50 |
+
}
|
51 |
+
}
|
52 |
+
|
53 |
+
for (i = 0; i < NK; i++)
|
54 |
+
{
|
55 |
+
for (j = 0; j < NJ; j++)
|
56 |
+
{
|
57 |
+
B[i*NK + j] = ((DATA_TYPE) i*(j+1)) / NJ;
|
58 |
+
B_gpu[i*NK + j] = ((DATA_TYPE) i*(j+1)) / NJ;
|
59 |
+
}
|
60 |
+
}
|
61 |
+
|
62 |
+
for (i = 0; i < NL; i++)
|
63 |
+
{
|
64 |
+
for (j = 0; j < NJ; j++)
|
65 |
+
{
|
66 |
+
C[i*NL + j] = ((DATA_TYPE) i*(j+3)) / NL;
|
67 |
+
C_gpu[i*NL + j] = ((DATA_TYPE) i*(j+3)) / NL;
|
68 |
+
}
|
69 |
+
}
|
70 |
+
|
71 |
+
for (i = 0; i < NI; i++)
|
72 |
+
{
|
73 |
+
for (j = 0; j < NL; j++)
|
74 |
+
{
|
75 |
+
D[i*NL + j] = ((DATA_TYPE) i*(j+2)) / NK;
|
76 |
+
D_gpu[i*NL + j] = ((DATA_TYPE) i*(j+2)) / NK;
|
77 |
+
}
|
78 |
+
}
|
79 |
+
}
|
80 |
+
|
81 |
+
|
82 |
+
void compareResults(DATA_TYPE *E, DATA_TYPE *E_outputFromGpu)
|
83 |
+
{
|
84 |
+
int i,j,fail;
|
85 |
+
fail = 0;
|
86 |
+
|
87 |
+
for (i=0; i < NL; i++)
|
88 |
+
{
|
89 |
+
for (j=0; j < NI; j++)
|
90 |
+
{
|
91 |
+
if (percentDiff(E[i*NI + j], E_outputFromGpu[i*NI + j]) > PERCENT_DIFF_ERROR_THRESHOLD)
|
92 |
+
{
|
93 |
+
fail++;
|
94 |
+
}
|
95 |
+
}
|
96 |
+
}
|
97 |
+
|
98 |
+
// print results
|
99 |
+
printf("Non-Matching CPU-GPU Outputs Beyond Error Threshold of %4.2f Percent: %d\n", PERCENT_DIFF_ERROR_THRESHOLD, fail);
|
100 |
+
}
|
101 |
+
|
102 |
+
|
103 |
+
void GPU_argv_init()
|
104 |
+
{
|
105 |
+
cudaDeviceProp deviceProp;
|
106 |
+
cudaGetDeviceProperties(&deviceProp, GPU_DEVICE);
|
107 |
+
printf("setting device %d with name %s\n",GPU_DEVICE,deviceProp.name);
|
108 |
+
cudaSetDevice( GPU_DEVICE );
|
109 |
+
}
|
110 |
+
|
111 |
+
|
112 |
+
__global__ void mm2_kernel1(DATA_TYPE *A, DATA_TYPE *B, DATA_TYPE *C)
|
113 |
+
{
|
114 |
+
int j = blockIdx.x * blockDim.x + threadIdx.x;
|
115 |
+
int i = blockIdx.y * blockDim.y + threadIdx.y;
|
116 |
+
|
117 |
+
if ((i < NI) && (j < NJ))
|
118 |
+
{
|
119 |
+
int k;
|
120 |
+
for (k = 0; k < NK; k++)
|
121 |
+
{
|
122 |
+
C[i * NJ + j] += A[i * NK + k] * B[k * NJ + j];
|
123 |
+
}
|
124 |
+
}
|
125 |
+
}
|
126 |
+
|
127 |
+
|
128 |
+
__global__ void mm2_kernel2(DATA_TYPE *C, DATA_TYPE *D, DATA_TYPE *E)
|
129 |
+
{
|
130 |
+
int j = blockIdx.x * blockDim.x + threadIdx.x;
|
131 |
+
int i = blockIdx.y * blockDim.y + threadIdx.y;
|
132 |
+
|
133 |
+
if ((i < NI) && (j < NL))
|
134 |
+
{
|
135 |
+
int k;
|
136 |
+
for (k = 0; k < NJ; k++)
|
137 |
+
{
|
138 |
+
E[i * NL + j] += C[i * NJ + k] * D[k * NL + j];
|
139 |
+
}
|
140 |
+
}
|
141 |
+
}
|
142 |
+
|
143 |
+
|
144 |
+
void mm2_cpu(DATA_TYPE* A, DATA_TYPE* B, DATA_TYPE* C, DATA_TYPE* D, DATA_TYPE* E)
|
145 |
+
{
|
146 |
+
int i, j, k;
|
147 |
+
|
148 |
+
for (i = 0; i < NI; i++)
|
149 |
+
{
|
150 |
+
for (j = 0; j < NJ; j++)
|
151 |
+
{
|
152 |
+
C[i*NJ + j] = 0.0;
|
153 |
+
for (k = 0; k < NK; ++k)
|
154 |
+
{
|
155 |
+
C[i*NJ + j] += A[i*NK + k] * B[k*NJ + j];
|
156 |
+
}
|
157 |
+
}
|
158 |
+
}
|
159 |
+
|
160 |
+
for (i = 0; i < NI; i++)
|
161 |
+
{
|
162 |
+
for (j = 0; j < NL; j++)
|
163 |
+
{
|
164 |
+
E[i*NL + j] = 0.0;
|
165 |
+
for (k = 0; k < NJ; ++k)
|
166 |
+
{
|
167 |
+
E[i*NL + j] += C[i*NJ + k] * D[k*NL + j];
|
168 |
+
}
|
169 |
+
}
|
170 |
+
}
|
171 |
+
}
|
172 |
+
|
173 |
+
|
174 |
+
void mm2Cuda(DATA_TYPE* A_gpu, DATA_TYPE* B_gpu, DATA_TYPE* C_gpu, DATA_TYPE* D_gpu, DATA_TYPE* E_gpu)
|
175 |
+
{
|
176 |
+
double t_start, t_end;
|
177 |
+
dim3 block(DIM_THREAD_BLOCK_X, DIM_THREAD_BLOCK_Y);
|
178 |
+
dim3 grid1((size_t)ceil( ((float)NJ) / ((float)block.x) ), (size_t)ceil( ((float)NI) / ((float)block.y)) );
|
179 |
+
dim3 grid2((size_t)ceil( ((float)NL) / ((float)block.x) ), (size_t)ceil( ((float)NI) / ((float)block.y)) );
|
180 |
+
t_start = rtclock();
|
181 |
+
mm2_kernel1<<<grid1,block>>>(A_gpu, B_gpu, C_gpu);
|
182 |
+
cudaDeviceSynchronize();
|
183 |
+
mm2_kernel2<<<grid2,block>>>(C_gpu, D_gpu, E_gpu);
|
184 |
+
cudaDeviceSynchronize();
|
185 |
+
t_end = rtclock();
|
186 |
+
fprintf(stdout, "GPU Runtime: %0.6lfs\n", t_end - t_start);
|
187 |
+
}
|
188 |
+
|
189 |
+
|
190 |
+
int main(int argc, char** argv)
|
191 |
+
{
|
192 |
+
double t_start, t_end;
|
193 |
+
|
194 |
+
DATA_TYPE* C;
|
195 |
+
DATA_TYPE* A;
|
196 |
+
DATA_TYPE* B;
|
197 |
+
DATA_TYPE* D;
|
198 |
+
DATA_TYPE* E;
|
199 |
+
|
200 |
+
DATA_TYPE *A_gpu;
|
201 |
+
DATA_TYPE *B_gpu;
|
202 |
+
DATA_TYPE *C_gpu;
|
203 |
+
DATA_TYPE *D_gpu;
|
204 |
+
DATA_TYPE *E_gpu;
|
205 |
+
|
206 |
+
C = (DATA_TYPE*)malloc(NI*NJ*sizeof(DATA_TYPE));
|
207 |
+
A = (DATA_TYPE*)malloc(NI*NK*sizeof(DATA_TYPE));
|
208 |
+
B = (DATA_TYPE*)malloc(NK*NJ*sizeof(DATA_TYPE));
|
209 |
+
D = (DATA_TYPE*)malloc(NJ*NL*sizeof(DATA_TYPE));
|
210 |
+
E = (DATA_TYPE*)malloc(NI*NL*sizeof(DATA_TYPE));
|
211 |
+
|
212 |
+
|
213 |
+
cudaMallocManaged(&A_gpu, sizeof(DATA_TYPE) * NI * NK);
|
214 |
+
cudaMallocManaged(&B_gpu, sizeof(DATA_TYPE) * NK * NJ);
|
215 |
+
cudaMallocManaged(&C_gpu, sizeof(DATA_TYPE) * NI * NJ);
|
216 |
+
cudaMallocManaged(&D_gpu, sizeof(DATA_TYPE) * NJ * NL);
|
217 |
+
cudaMallocManaged(&E_gpu, sizeof(DATA_TYPE) * NI * NL);
|
218 |
+
|
219 |
+
|
220 |
+
init_array(A, B, C, D, A_gpu, B_gpu, C_gpu, D_gpu);
|
221 |
+
GPU_argv_init();
|
222 |
+
|
223 |
+
mm2Cuda(A_gpu, B_gpu, C_gpu, D_gpu, E_gpu);
|
224 |
+
|
225 |
+
t_start = rtclock();
|
226 |
+
mm2_cpu(A, B, C, D, E);
|
227 |
+
t_end = rtclock();
|
228 |
+
fprintf(stdout, "CPU Runtime: %0.6lfs\n", t_end - t_start);
|
229 |
+
|
230 |
+
compareResults(E, E_gpu);
|
231 |
+
|
232 |
+
free(C);
|
233 |
+
free(A);
|
234 |
+
free(B);
|
235 |
+
free(D);
|
236 |
+
free(E);
|
237 |
+
cudaFree(A_gpu);
|
238 |
+
cudaFree(B_gpu);
|
239 |
+
cudaFree(C_gpu);
|
240 |
+
cudaFree(D_gpu);
|
241 |
+
cudaFree(E_gpu);
|
242 |
+
return 0;
|
243 |
+
}
|
244 |
+
|
cuda_code/ACNetHDNL3.cu
ADDED
@@ -0,0 +1,1653 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include "CudaHelper.cuh"
|
2 |
+
#include "CudaInterface.hpp"
|
3 |
+
|
4 |
+
__device__ __constant__ static const float kernelsL1[9 * 8] =
|
5 |
+
{
|
6 |
+
-0.0461f, 0.1274f, 0.2976f,
|
7 |
+
-0.0393f, -0.1251f, 0.2527f,
|
8 |
+
0.0791f, 0.0600f, -0.0303f,
|
9 |
+
-0.0520f, -0.5039f, -0.3305f,
|
10 |
+
-0.0115f, 0.0456f, 0.4370f,
|
11 |
+
0.0601f, 0.0780f, 0.3106f,
|
12 |
+
-0.0017f, -0.0018f, -0.0017f,
|
13 |
+
-0.0017f, -0.0018f, -0.0018f,
|
14 |
+
-0.0017f, -0.0017f, -0.0017f,
|
15 |
+
0.2666f, 0.1687f, 0.2303f,
|
16 |
+
-0.1901f, 0.3825f, 0.3024f,
|
17 |
+
0.1811f, 0.0581f, 0.2080f,
|
18 |
+
-0.1246f, 0.0155f, -0.4075f,
|
19 |
+
0.1156f, 0.5929f, 0.1449f,
|
20 |
+
-0.1080f, -0.0171f, -0.0516f,
|
21 |
+
-0.0817f, 0.2247f, 0.0472f,
|
22 |
+
0.0394f, 0.1085f, 0.1435f,
|
23 |
+
-0.0480f, -0.0135f, -0.0606f,
|
24 |
+
-0.0083f, 0.2045f, 0.1056f,
|
25 |
+
-0.2239f, 0.2823f, -0.1926f,
|
26 |
+
0.2581f, 0.1362f, -0.1914f,
|
27 |
+
-0.0833f, 0.0702f, 0.0234f,
|
28 |
+
0.3616f, 0.3789f, -0.1840f,
|
29 |
+
0.0128f, 0.1347f, -0.0187f
|
30 |
+
};
|
31 |
+
__device__ __constant__ static const float biasL1[8] =
|
32 |
+
{
|
33 |
+
-0.1329f, -0.0431f, -0.0031f, -0.0129f, 0.2294f, -0.2595f, -0.2370f, -0.0499f
|
34 |
+
};
|
35 |
+
__device__ __constant__ static const float kernelsL[8][9 * 8 * 8] =
|
36 |
+
{
|
37 |
+
{
|
38 |
+
1.4090e-01f, -1.8985e-02f, -6.8589e-02f,
|
39 |
+
6.6491e-02f, 1.4360e-02f, 8.5223e-02f,
|
40 |
+
1.8782e-01f, 9.8042e-02f, -3.4558e-02f,
|
41 |
+
2.5606e-01f, 2.2027e-01f, 2.7603e-01f,
|
42 |
+
1.9424e-01f, 3.4537e-02f, 9.5975e-02f,
|
43 |
+
1.1223e-02f, -4.3377e-01f, -1.4760e-01f,
|
44 |
+
-3.4293e-40f, -5.5421e-40f, -4.4763e-41f,
|
45 |
+
-6.3322e-40f, -3.1495e-40f, -7.8264e-41f,
|
46 |
+
-1.5375e-40f, -3.3656e-40f, 5.2441e-40f,
|
47 |
+
1.2413e-01f, 1.5682e-01f, 1.1465e-01f,
|
48 |
+
1.6683e-02f, 7.8382e-02f, 1.0110e-01f,
|
49 |
+
1.4902e-01f, 1.3608e-01f, 1.1674e-01f,
|
50 |
+
-6.5160e-02f, 7.7748e-02f, 2.1773e-02f,
|
51 |
+
2.0652e-02f, 2.7245e-01f, 1.0297e-01f,
|
52 |
+
-2.0953e-02f, 6.1685e-02f, 4.4128e-02f,
|
53 |
+
6.1538e-02f, -1.9746e-02f, -1.2785e-02f,
|
54 |
+
2.5931e-02f, 1.2740e-01f, 9.0033e-02f,
|
55 |
+
8.6448e-02f, 2.0684e-01f, 9.8063e-02f,
|
56 |
+
-7.8384e-03f, 6.3277e-02f, 7.6751e-03f,
|
57 |
+
3.5956e-02f, 1.0555e-01f, 4.2728e-02f,
|
58 |
+
7.1578e-02f, 1.3253e-01f, 1.1171e-01f,
|
59 |
+
-2.7538e-02f, 1.5836e-01f, 1.0014e-01f,
|
60 |
+
-4.9113e-02f, 1.6911e-01f, 2.7329e-01f,
|
61 |
+
7.9170e-03f, 9.5440e-02f, 1.3922e-01f,
|
62 |
+
8.0151e-02f, 4.3438e-02f, 5.5314e-02f,
|
63 |
+
3.4896e-02f, 1.6816e-01f, -4.5783e-03f,
|
64 |
+
-1.4579e-03f, 2.0493e-01f, 2.6238e-02f,
|
65 |
+
2.6499e-02f, 3.9490e-01f, -1.1582e-02f,
|
66 |
+
3.5790e-01f, 1.4317e-01f, -2.1775e-01f,
|
67 |
+
4.1794e-03f, -3.2513e-01f, -1.6729e-01f,
|
68 |
+
3.4040e-41f, -6.2960e-42f, -1.0067e-40f,
|
69 |
+
5.5978e-41f, -1.2353e-40f, -1.1347e-40f,
|
70 |
+
5.4572e-40f, -6.4384e-40f, -4.1234e-40f,
|
71 |
+
-9.3690e-02f, 1.7765e-01f, 1.1275e-01f,
|
72 |
+
9.1159e-03f, 1.7375e-01f, 1.1427e-01f,
|
73 |
+
-7.8385e-02f, 1.5658e-01f, -3.8399e-02f,
|
74 |
+
-1.0756e-01f, 5.9943e-02f, -6.7273e-02f,
|
75 |
+
-1.1117e-01f, 1.5267e-01f, 1.1563e-01f,
|
76 |
+
-1.2964e-01f, -3.8604e-02f, -2.4532e-02f,
|
77 |
+
1.6324e-02f, 1.3112e-01f, 6.1679e-03f,
|
78 |
+
-7.7703e-03f, 2.6311e-01f, 8.9427e-02f,
|
79 |
+
-2.8948e-02f, 1.9341e-01f, 4.4339e-02f,
|
80 |
+
6.4559e-03f, -6.8885e-02f, 1.1481e-01f,
|
81 |
+
-1.0665e-01f, 3.8613e-02f, 7.0410e-02f,
|
82 |
+
-6.1680e-02f, -1.7374e-02f, 9.5475e-03f,
|
83 |
+
-4.0081e-02f, -3.1549e-02f, 2.8311e-01f,
|
84 |
+
-1.2178e-01f, -1.3848e-01f, 1.7416e-01f,
|
85 |
+
-8.1756e-02f, -1.7718e-01f, 7.9533e-02f,
|
86 |
+
-3.1299e-03f, -3.2305e-03f, -3.2094e-03f,
|
87 |
+
-3.1548e-03f, -3.2553e-03f, -3.2453e-03f,
|
88 |
+
-3.1459e-03f, -3.2278e-03f, -3.2076e-03f,
|
89 |
+
-3.6554e-05f, -3.6715e-05f, -3.1284e-05f,
|
90 |
+
-1.4927e-05f, -1.4357e-05f, -1.2185e-05f,
|
91 |
+
-1.5771e-09f, -1.1439e-09f, -6.4952e-10f,
|
92 |
+
3.7723e-40f, 4.9166e-40f, -2.1946e-40f,
|
93 |
+
-4.7599e-40f, -4.3356e-40f, -8.3928e-41f,
|
94 |
+
2.6127e-40f, 4.8634e-40f, 2.7720e-40f,
|
95 |
+
-5.4972e-03f, -5.6409e-03f, -5.6919e-03f,
|
96 |
+
-5.5818e-03f, -5.7079e-03f, -5.7542e-03f,
|
97 |
+
-5.6338e-03f, -5.7437e-03f, -5.7600e-03f,
|
98 |
+
-3.7940e-03f, -3.8853e-03f, -3.8693e-03f,
|
99 |
+
-3.8995e-03f, -3.9616e-03f, -3.8945e-03f,
|
100 |
+
-3.8438e-03f, -3.9156e-03f, -3.8269e-03f,
|
101 |
+
-7.2342e-05f, -7.8682e-05f, -4.7701e-05f,
|
102 |
+
-1.1126e-04f, -1.1918e-04f, -7.8931e-05f,
|
103 |
+
-1.1644e-04f, -1.2418e-04f, -8.2350e-05f,
|
104 |
+
-2.3881e-04f, -3.7971e-04f, -3.9448e-04f,
|
105 |
+
-2.4112e-04f, -3.8395e-04f, -4.0189e-04f,
|
106 |
+
-2.3451e-04f, -3.7525e-04f, -3.9222e-04f,
|
107 |
+
-3.9853e-03f, -4.0748e-03f, -4.1134e-03f,
|
108 |
+
-4.0685e-03f, -4.1456e-03f, -4.1548e-03f,
|
109 |
+
-4.0547e-03f, -4.1388e-03f, -4.1357e-03f,
|
110 |
+
5.3008e-02f, 2.2252e-02f, -7.1158e-02f,
|
111 |
+
-6.6411e-02f, -3.0015e-02f, -2.2526e-02f,
|
112 |
+
1.2259e-01f, -6.2488e-02f, 5.6190e-02f,
|
113 |
+
1.5981e-02f, -7.6832e-02f, 1.7908e-02f,
|
114 |
+
2.7618e-01f, 5.4054e-02f, 8.7282e-02f,
|
115 |
+
1.5212e-02f, -1.1097e-01f, -2.2265e-02f,
|
116 |
+
-6.8532e-41f, -6.0539e-40f, 4.6269e-40f,
|
117 |
+
-2.9221e-40f, -3.8468e-40f, -4.6656e-40f,
|
118 |
+
6.4572e-40f, -6.1625e-40f, 6.4545e-40f,
|
119 |
+
3.5920e-02f, 9.0955e-02f, -1.7626e-02f,
|
120 |
+
4.7826e-02f, 1.8832e-01f, -4.4043e-02f,
|
121 |
+
-3.8405e-02f, 5.9176e-02f, 6.8182e-02f,
|
122 |
+
3.7657e-03f, 2.6441e-02f, -2.5585e-01f,
|
123 |
+
1.0969e-01f, 2.3914e-01f, 3.5120e-02f,
|
124 |
+
-1.6252e-01f, 3.4371e-02f, -2.7501e-01f,
|
125 |
+
4.9289e-02f, 2.2088e-02f, -1.4588e-02f,
|
126 |
+
1.6384e-01f, -8.1421e-03f, -6.9613e-02f,
|
127 |
+
1.0820e-01f, 1.1137e-01f, 7.2648e-03f,
|
128 |
+
1.5243e-01f, 1.3659e-01f, 2.7553e-02f,
|
129 |
+
1.3966e-01f, 1.1019e-01f, 1.9817e-02f,
|
130 |
+
1.1420e-01f, -5.1386e-03f, 6.8617e-03f,
|
131 |
+
-1.3264e-02f, 2.1508e-01f, 4.8430e-02f,
|
132 |
+
5.1149e-02f, 2.9165e-01f, 2.8077e-01f,
|
133 |
+
2.9288e-03f, 9.0611e-02f, 8.1538e-02f,
|
134 |
+
-1.1812e-01f, 1.5603e-02f, 1.1571e-01f,
|
135 |
+
-3.4958e-02f, -1.6688e-03f, -4.6619e-02f,
|
136 |
+
-1.0417e-02f, -3.1802e-02f, 1.8357e-02f,
|
137 |
+
1.1064e-01f, 1.8397e-01f, 4.8449e-02f,
|
138 |
+
-8.3336e-03f, 1.6029e-01f, 3.9490e-02f,
|
139 |
+
-4.0959e-01f, -2.6134e-01f, 2.0766e-02f,
|
140 |
+
6.6073e-41f, -6.7490e-40f, -5.1131e-41f,
|
141 |
+
-4.3320e-41f, -3.7194e-40f, 2.0674e-40f,
|
142 |
+
-5.2359e-40f, -3.4006e-40f, -4.9257e-40f,
|
143 |
+
-4.7260e-02f, 2.8518e-03f, -2.7764e-01f,
|
144 |
+
6.9182e-03f, 1.3938e-01f, -1.3162e-01f,
|
145 |
+
-6.0901e-03f, 1.0339e-01f, 6.0419e-02f,
|
146 |
+
-1.4449e-01f, -3.2043e-02f, -9.1466e-02f,
|
147 |
+
-1.4022e-02f, 3.1703e-01f, 5.8166e-02f,
|
148 |
+
-1.5243e-02f, 1.4521e-01f, 2.0790e-04f,
|
149 |
+
-1.0255e-01f, -7.8766e-02f, -1.2395e-01f,
|
150 |
+
7.9894e-03f, 3.7079e-03f, -3.2134e-02f,
|
151 |
+
1.1663e-01f, 1.4808e-01f, 2.0431e-01f,
|
152 |
+
7.4026e-02f, 6.9632e-02f, 1.7156e-01f,
|
153 |
+
-3.0385e-02f, 2.3218e-01f, 7.3855e-02f,
|
154 |
+
-8.8530e-02f, -5.9224e-02f, 2.3431e-02f,
|
155 |
+
1.4596e-02f, 3.2442e-02f, -1.1308e-01f,
|
156 |
+
-6.3734e-02f, 2.5270e-01f, 7.8081e-02f,
|
157 |
+
1.0468e-02f, 1.5473e-01f, 3.8676e-02f,
|
158 |
+
-1.0842e-01f, 8.6778e-03f, 1.4985e-01f,
|
159 |
+
8.1757e-03f, -8.2109e-02f, 8.5471e-02f,
|
160 |
+
-2.1437e-01f, -6.1173e-02f, 4.8163e-02f,
|
161 |
+
2.8965e-01f, 1.9748e-01f, 4.2651e-02f,
|
162 |
+
1.8196e-01f, 3.3932e-01f, 3.9594e-01f,
|
163 |
+
3.9657e-01f, 4.2167e-01f, 2.9290e-01f,
|
164 |
+
7.4011e-41f, 6.5220e-40f, -5.9885e-40f,
|
165 |
+
7.4011e-41f, 6.2047e-40f, -7.1533e-40f,
|
166 |
+
4.1950e-40f, -1.1886e-40f, -5.9922e-40f,
|
167 |
+
1.9662e-01f, 2.1402e-01f, 3.1041e-02f,
|
168 |
+
-1.1079e-01f, 1.3361e-01f, -2.1608e-01f,
|
169 |
+
-1.7962e-01f, -8.0576e-02f, -3.1277e-01f,
|
170 |
+
1.0620e-02f, 2.4024e-01f, 1.0657e-01f,
|
171 |
+
-7.9906e-05f, 2.8760e-01f, 4.1231e-02f,
|
172 |
+
-1.3261e-02f, -1.0868e-01f, -1.1267e-01f,
|
173 |
+
-1.0659e-02f, -2.6051e-02f, -4.5389e-02f,
|
174 |
+
5.8261e-02f, 4.0288e-02f, 6.7050e-02f,
|
175 |
+
-2.6462e-01f, -1.7846e-01f, -1.0002e-01f,
|
176 |
+
-6.2904e-02f, 1.5275e-01f, 4.4282e-03f,
|
177 |
+
1.4446e-01f, 1.1814e-01f, -8.0349e-02f,
|
178 |
+
2.0331e-02f, 3.3014e-02f, 1.2710e-01f,
|
179 |
+
1.6084e-01f, 3.8819e-01f, 1.0854e-01f,
|
180 |
+
-6.8126e-03f, 3.5673e-01f, 1.8938e-01f,
|
181 |
+
-1.1660e-01f, -5.7694e-02f, -2.9194e-01f,
|
182 |
+
1.2775e-02f, -3.2769e-02f, 1.7228e-02f,
|
183 |
+
1.8324e-01f, 1.1983e-01f, -1.6944e-02f,
|
184 |
+
1.0593e-01f, 1.3451e-01f, 5.2536e-02f,
|
185 |
+
1.9147e-01f, 1.3875e-01f, 1.0298e-01f,
|
186 |
+
-2.0871e-01f, -1.7197e-01f, 1.1342e-01f,
|
187 |
+
-1.7581e-01f, 4.0972e-02f, 2.9796e-01f,
|
188 |
+
3.2588e-40f, -4.3663e-40f, -2.6518e-40f,
|
189 |
+
3.2588e-40f, -4.3663e-40f, -2.6518e-40f,
|
190 |
+
4.1600e-40f, -4.4350e-40f, -4.8744e-41f,
|
191 |
+
3.7289e-02f, 8.1769e-03f, 1.7059e-02f,
|
192 |
+
3.7735e-02f, 6.6571e-02f, -6.6137e-02f,
|
193 |
+
-5.8890e-02f, -7.7019e-03f, -6.2128e-02f,
|
194 |
+
-4.0751e-02f, 1.1710e-01f, -1.1586e-01f,
|
195 |
+
-1.2999e-01f, -1.6384e-02f, -2.1858e-01f,
|
196 |
+
-2.8028e-01f, -6.0443e-02f, -1.1880e-01f,
|
197 |
+
1.8152e-01f, 1.5364e-01f, 1.1781e-01f,
|
198 |
+
2.9010e-01f, 2.4612e-01f, 1.3170e-01f,
|
199 |
+
1.9022e-01f, 1.8117e-01f, 1.6483e-01f,
|
200 |
+
9.3342e-02f, 2.6607e-01f, 1.4679e-01f,
|
201 |
+
1.6729e-01f, 2.5374e-01f, 1.1954e-01f,
|
202 |
+
6.3258e-02f, 1.0557e-01f, 6.7221e-02f,
|
203 |
+
-5.2017e-02f, 1.9628e-01f, 1.7243e-01f,
|
204 |
+
-3.2667e-02f, 1.5756e-01f, 1.9347e-01f,
|
205 |
+
-9.5252e-02f, -3.7525e-02f, -3.4543e-04f,
|
206 |
+
-4.9759e-02f, 4.0383e-02f, -2.0231e-02f,
|
207 |
+
-1.1776e-01f, 3.4182e-02f, 3.6720e-02f,
|
208 |
+
-1.4822e-02f, -4.1658e-02f, -1.3729e-02f,
|
209 |
+
-1.9215e-02f, 2.4427e-02f, -9.0638e-02f,
|
210 |
+
-1.4438e-01f, -2.1785e-01f, -5.1789e-02f,
|
211 |
+
-2.0279e-01f, -3.3918e-01f, -1.6871e-01f,
|
212 |
+
6.1262e-41f, 2.4066e-40f, 6.6851e-40f,
|
213 |
+
5.3430e-40f, -3.2335e-40f, -3.7400e-40f,
|
214 |
+
-6.3256e-40f, -4.7491e-40f, 2.2854e-40f,
|
215 |
+
-6.8701e-03f, -1.4849e-02f, 8.6332e-02f,
|
216 |
+
1.1686e-01f, 1.8346e-01f, 1.8797e-01f,
|
217 |
+
-2.3251e-02f, 7.3973e-02f, 1.0532e-01f,
|
218 |
+
-6.1838e-02f, 5.6667e-02f, 8.1584e-02f,
|
219 |
+
-3.8900e-02f, 7.0927e-02f, 9.5606e-02f,
|
220 |
+
-4.5098e-02f, -1.0829e-01f, -1.2224e-01f,
|
221 |
+
3.5047e-03f, 3.2898e-02f, 3.5622e-02f,
|
222 |
+
1.6170e-02f, 4.3721e-02f, 9.7496e-02f,
|
223 |
+
2.3445e-03f, 6.0417e-02f, 1.3482e-01f,
|
224 |
+
6.0570e-02f, -5.7139e-03f, -1.0883e-03f,
|
225 |
+
2.2701e-02f, -2.9113e-02f, 7.9178e-03f,
|
226 |
+
8.1214e-02f, -4.1408e-02f, 1.3616e-02f,
|
227 |
+
-4.7985e-02f, 1.0304e-02f, -3.3236e-02f,
|
228 |
+
-1.6334e-02f, -8.1538e-02f, 1.8629e-02f,
|
229 |
+
-9.3720e-02f, -1.2920e-01f, -4.0836e-02f
|
230 |
+
}
|
231 |
+
,
|
232 |
+
{
|
233 |
+
1.0443e-01f, 1.5461e-01f, -1.4743e-01f,
|
234 |
+
1.6716e-01f, 1.0532e-01f, -2.3088e-01f,
|
235 |
+
1.0218e-01f, 1.2393e-01f, -9.6646e-02f,
|
236 |
+
1.7659e-01f, -7.3279e-02f, 1.9627e-02f,
|
237 |
+
1.7721e-01f, -1.4329e-01f, -1.2533e-01f,
|
238 |
+
1.6551e-01f, -3.4616e-01f, 9.5618e-02f,
|
239 |
+
4.5827e-09f, 9.3413e-09f, 1.7015e-08f,
|
240 |
+
1.2245e-08f, 9.9727e-09f, 6.7108e-09f,
|
241 |
+
1.9612e-07f, 3.9479e-08f, 1.1537e-09f,
|
242 |
+
2.2127e-02f, 9.2715e-02f, -1.2150e-01f,
|
243 |
+
7.5652e-02f, 1.1548e-01f, -1.2420e-01f,
|
244 |
+
-1.0693e-03f, -7.2839e-02f, -1.9664e-01f,
|
245 |
+
1.4466e-01f, -1.8552e-03f, -1.3575e-01f,
|
246 |
+
2.0699e-01f, 8.0396e-02f, -1.9651e-01f,
|
247 |
+
-4.7075e-02f, -5.1259e-02f, -8.2593e-02f,
|
248 |
+
-2.2385e-01f, 3.0066e-03f, -2.2659e-02f,
|
249 |
+
6.1827e-02f, 2.5331e-02f, -5.3898e-02f,
|
250 |
+
2.7091e-01f, 1.0991e-01f, -3.3600e-01f,
|
251 |
+
-8.9499e-02f, -9.3821e-03f, 2.2675e-02f,
|
252 |
+
1.1213e-01f, 1.3276e-01f, 2.0368e-02f,
|
253 |
+
6.5408e-02f, 4.1598e-02f, -4.7917e-02f,
|
254 |
+
6.0740e-03f, 1.2236e-04f, -1.0659e-01f,
|
255 |
+
-1.8072e-02f, -9.1082e-02f, -9.0414e-02f,
|
256 |
+
4.9052e-02f, -1.4298e-01f, -3.9721e-02f,
|
257 |
+
1.1840e-01f, 2.2503e-01f, 2.4587e-02f,
|
258 |
+
9.3023e-02f, 6.9650e-02f, 1.6798e-01f,
|
259 |
+
-1.5640e-03f, 1.6300e-02f, 6.3585e-02f,
|
260 |
+
1.4431e-01f, 3.7885e-02f, 1.6692e-02f,
|
261 |
+
1.7345e-01f, 7.2315e-02f, 1.8942e-02f,
|
262 |
+
1.1081e-01f, 8.2973e-02f, -9.7717e-02f,
|
263 |
+
-5.2264e-03f, -5.2641e-03f, -5.2727e-03f,
|
264 |
+
-5.2809e-03f, -5.3125e-03f, -5.3153e-03f,
|
265 |
+
-5.2915e-03f, -5.3251e-03f, -5.3231e-03f,
|
266 |
+
6.0008e-02f, 2.0268e-01f, 1.3396e-01f,
|
267 |
+
-2.5202e-03f, -1.7750e-02f, -1.2019e-02f,
|
268 |
+
1.1806e-01f, -2.2306e-02f, 3.6464e-02f,
|
269 |
+
7.9324e-02f, 3.1883e-02f, 1.5483e-02f,
|
270 |
+
-4.3537e-02f, 1.2204e-02f, 1.8905e-02f,
|
271 |
+
-8.1581e-02f, -1.1307e-01f, -6.0718e-02f,
|
272 |
+
-2.4865e-01f, -1.0199e-01f, 1.9886e-02f,
|
273 |
+
-1.0519e-02f, 6.9972e-02f, 4.8012e-02f,
|
274 |
+
-1.5282e-02f, 1.1979e-01f, 8.7968e-02f,
|
275 |
+
-3.6752e-02f, 1.9523e-02f, 7.1321e-02f,
|
276 |
+
-5.8295e-02f, 5.3242e-02f, 1.2773e-01f,
|
277 |
+
-7.9671e-02f, 8.3249e-04f, 7.4904e-02f,
|
278 |
+
1.1792e-01f, 2.2135e-03f, -9.0963e-03f,
|
279 |
+
-2.8356e-03f, -4.2661e-02f, 6.9497e-02f,
|
280 |
+
9.3561e-02f, 1.0475e-01f, 5.4745e-02f,
|
281 |
+
-8.5901e-02f, -2.1969e-01f, -1.5572e-01f,
|
282 |
+
3.6473e-02f, 1.1097e-01f, -2.6830e-02f,
|
283 |
+
1.2199e-02f, 1.8917e-01f, 1.1906e-01f,
|
284 |
+
1.0664e-01f, -2.7005e-01f, 1.5492e-01f,
|
285 |
+
-4.1771e-02f, -1.6580e-01f, 2.9234e-02f,
|
286 |
+
-1.9854e-02f, 2.1436e-01f, -1.1100e-01f,
|
287 |
+
4.5382e-04f, 4.2085e-04f, 5.6852e-04f,
|
288 |
+
3.4951e-04f, 3.7354e-04f, 3.2786e-04f,
|
289 |
+
2.0790e-04f, 2.8606e-04f, 3.2415e-04f,
|
290 |
+
-1.5500e-02f, 2.2865e-02f, -3.0070e-01f,
|
291 |
+
1.8467e-01f, 2.4899e-01f, 1.4812e-02f,
|
292 |
+
-1.2318e-01f, 2.3175e-01f, 7.2244e-02f,
|
293 |
+
1.6713e-01f, 1.9089e-02f, -2.7494e-01f,
|
294 |
+
1.0202e-01f, 2.9200e-01f, -3.6055e-03f,
|
295 |
+
1.3265e-01f, 2.2551e-01f, 1.9897e-01f,
|
296 |
+
-3.9474e-02f, 1.6262e-01f, 1.6726e-01f,
|
297 |
+
-8.6222e-02f, 2.0573e-01f, -7.3247e-01f,
|
298 |
+
-9.5391e-02f, 3.8933e-01f, 1.5861e-01f,
|
299 |
+
-1.2202e-01f, -6.4735e-02f, -1.1762e-01f,
|
300 |
+
-2.2427e-02f, -1.9171e-01f, -1.6092e-01f,
|
301 |
+
3.2356e-01f, -2.2234e-01f, -1.3743e-01f,
|
302 |
+
-1.1493e-01f, -2.4936e-02f, 2.9212e-02f,
|
303 |
+
-9.8112e-02f, -1.8021e-02f, -1.0507e-01f,
|
304 |
+
-1.0168e-01f, 1.1759e-01f, -9.8203e-02f,
|
305 |
+
-2.8871e-02f, 1.3249e-01f, 7.8378e-02f,
|
306 |
+
-1.1012e-01f, -4.0596e-02f, 5.4202e-02f,
|
307 |
+
4.9022e-02f, -1.1744e-01f, 9.8888e-02f,
|
308 |
+
1.3343e-02f, 1.4358e-01f, -8.7142e-02f,
|
309 |
+
1.9952e-01f, 3.3708e-02f, 2.0721e-02f,
|
310 |
+
2.6527e-02f, -2.3822e-01f, 2.4706e-01f,
|
311 |
+
-3.2750e-04f, -2.8475e-04f, -6.3494e-05f,
|
312 |
+
-2.2378e-04f, -1.8046e-04f, -1.9242e-05f,
|
313 |
+
-4.2124e-05f, -2.2062e-05f, 4.5500e-07f,
|
314 |
+
1.1692e-01f, 4.0366e-01f, -1.8709e-02f,
|
315 |
+
8.2700e-02f, 1.7884e-01f, -1.3520e-01f,
|
316 |
+
3.7758e-02f, 3.7048e-02f, -2.8109e-01f,
|
317 |
+
-2.3438e-01f, 5.9423e-02f, -1.7300e-01f,
|
318 |
+
1.0343e-02f, 7.2307e-02f, -4.3852e-01f,
|
319 |
+
-5.7429e-02f, -4.9136e-02f, -8.0327e-02f,
|
320 |
+
8.1094e-02f, 2.9118e-02f, 1.6677e-01f,
|
321 |
+
1.2155e-01f, 6.5358e-01f, 2.4544e-01f,
|
322 |
+
3.1163e-02f, 3.7463e-02f, -2.6613e-01f,
|
323 |
+
1.2723e-01f, 1.2541e-01f, 1.4319e-02f,
|
324 |
+
1.9055e-01f, -5.7441e-02f, 1.1146e-01f,
|
325 |
+
-1.0690e-02f, -1.7567e-01f, -1.2238e-01f,
|
326 |
+
-2.0879e-01f, -6.5278e-02f, -7.9327e-02f,
|
327 |
+
-1.6564e-01f, -1.3659e-01f, -2.6231e-01f,
|
328 |
+
-3.1916e-01f, -2.6553e-01f, -9.8647e-02f,
|
329 |
+
-1.0617e-01f, 1.2782e-01f, -2.1053e-02f,
|
330 |
+
-1.2329e-01f, 1.4952e-01f, -1.7466e-02f,
|
331 |
+
-1.6969e-01f, 3.6980e-02f, -6.7732e-02f,
|
332 |
+
-3.1220e-02f, 4.0615e-02f, -1.5251e-01f,
|
333 |
+
-2.0017e-01f, 2.2421e-01f, -2.5682e-02f,
|
334 |
+
-6.5873e-02f, 1.8346e-01f, 1.2982e-02f,
|
335 |
+
1.4021e-06f, -1.6929e-05f, -8.4696e-05f,
|
336 |
+
1.9580e-05f, 2.9943e-06f, 3.0084e-06f,
|
337 |
+
2.0769e-04f, 1.4661e-05f, 2.9503e-06f,
|
338 |
+
-1.4485e-01f, 1.8841e-01f, -1.7954e-01f,
|
339 |
+
2.1551e-01f, 2.2601e-01f, -8.6689e-03f,
|
340 |
+
8.6926e-02f, -6.8989e-02f, -1.2683e-01f,
|
341 |
+
-8.7712e-02f, 6.3176e-02f, 1.1983e-01f,
|
342 |
+
1.0790e-01f, 6.6418e-02f, 6.5849e-02f,
|
343 |
+
1.2483e-01f, 1.2428e-01f, 4.4994e-02f,
|
344 |
+
1.5139e-01f, -1.2116e-01f, -3.5497e-01f,
|
345 |
+
-6.1889e-02f, 3.4088e-01f, 1.3148e-01f,
|
346 |
+
-1.6478e-01f, 4.4477e-02f, -1.1979e-01f,
|
347 |
+
3.8343e-02f, 1.7992e-01f, 3.6790e-01f,
|
348 |
+
3.0426e-01f, 1.1235e-01f, 4.9815e-01f,
|
349 |
+
2.6290e-01f, 1.9703e-01f, 1.5881e-01f,
|
350 |
+
-6.4678e-03f, 2.4401e-01f, 1.9266e-01f,
|
351 |
+
-1.4089e-01f, 1.2323e-01f, 4.4340e-02f,
|
352 |
+
-8.8856e-02f, 8.4036e-02f, -9.8488e-02f,
|
353 |
+
-1.7377e-03f, -1.7654e-03f, -1.7223e-03f,
|
354 |
+
-1.7651e-03f, -1.7919e-03f, -1.7491e-03f,
|
355 |
+
-1.7172e-03f, -1.7446e-03f, -1.7041e-03f,
|
356 |
+
-3.0384e-04f, -2.9297e-04f, -2.4838e-04f,
|
357 |
+
-3.2961e-04f, -3.1678e-04f, -2.7009e-04f,
|
358 |
+
-3.1665e-04f, -3.0492e-04f, -2.6122e-04f,
|
359 |
+
3.7109e-40f, -3.7915e-40f, -5.2536e-40f,
|
360 |
+
5.8286e-41f, -5.6108e-40f, 4.3331e-40f,
|
361 |
+
-3.0184e-42f, -4.8987e-40f, -5.1788e-40f,
|
362 |
+
-4.0457e-04f, -4.3257e-04f, -4.1616e-04f,
|
363 |
+
-4.2268e-04f, -4.5118e-04f, -4.3407e-04f,
|
364 |
+
-3.9446e-04f, -4.2199e-04f, -4.0650e-04f,
|
365 |
+
-1.1253e-16f, -1.1328e-14f, -2.0489e-14f,
|
366 |
+
-3.0346e-19f, -1.7189e-16f, -4.5141e-16f,
|
367 |
+
-2.4957e-30f, -1.8191e-23f, -3.5882e-22f,
|
368 |
+
-3.1610e-36f, -1.7544e-24f, -2.2187e-21f,
|
369 |
+
-4.2887e-19f, -1.5526e-15f, -1.5160e-14f,
|
370 |
+
-1.7750e-16f, -6.8066e-14f, -3.3764e-13f,
|
371 |
+
-6.9570e-24f, -5.1139e-23f, -2.9335e-23f,
|
372 |
+
-1.9091e-22f, -1.0323e-21f, -4.5931e-22f,
|
373 |
+
-2.0010e-22f, -9.3710e-22f, -3.5622e-22f,
|
374 |
+
-2.9470e-04f, -2.9081e-04f, -2.5958e-04f,
|
375 |
+
-3.2290e-04f, -3.1810e-04f, -2.8461e-04f,
|
376 |
+
-3.1795e-04f, -3.1356e-04f, -2.8121e-04f,
|
377 |
+
6.1623e-02f, 1.7057e-01f, 8.0478e-02f,
|
378 |
+
1.2624e-01f, 1.8468e-01f, 2.1901e-02f,
|
379 |
+
7.6033e-02f, 1.3455e-01f, 8.4037e-02f,
|
380 |
+
8.4434e-02f, -1.7069e-02f, -7.8318e-02f,
|
381 |
+
4.9244e-02f, 4.4782e-02f, -6.9747e-02f,
|
382 |
+
1.2915e-01f, 1.1453e-01f, -6.5243e-02f,
|
383 |
+
-5.0985e-03f, -5.1407e-03f, -5.1687e-03f,
|
384 |
+
-5.1185e-03f, -5.1511e-03f, -5.1712e-03f,
|
385 |
+
-5.0986e-03f, -5.1272e-03f, -5.1409e-03f,
|
386 |
+
-1.8186e-02f, 6.2680e-02f, 3.3235e-02f,
|
387 |
+
1.3398e-02f, 1.6497e-01f, 4.3523e-02f,
|
388 |
+
-2.4101e-02f, 1.3316e-01f, 1.8373e-02f,
|
389 |
+
-6.2677e-04f, 6.5026e-03f, 2.5948e-02f,
|
390 |
+
6.6542e-02f, 1.2352e-01f, 1.5155e-02f,
|
391 |
+
-8.6237e-02f, -2.0907e-02f, 1.0237e-02f,
|
392 |
+
-1.7807e-01f, -8.6196e-02f, -3.2408e-02f,
|
393 |
+
-8.1946e-03f, -1.3957e-02f, -1.6733e-01f,
|
394 |
+
2.6269e-02f, 1.6817e-01f, 9.4029e-02f,
|
395 |
+
3.4005e-02f, -1.2833e-02f, -1.2038e-01f,
|
396 |
+
-4.8950e-02f, 3.9857e-02f, 1.4048e-02f,
|
397 |
+
-6.4758e-02f, 9.9603e-02f, 1.0748e-01f,
|
398 |
+
-1.0850e-02f, 9.8875e-02f, -4.4439e-02f,
|
399 |
+
9.1219e-02f, 6.6400e-02f, -6.7693e-02f,
|
400 |
+
5.3318e-02f, 1.1838e-02f, -1.5164e-01f,
|
401 |
+
-5.8568e-02f, 1.1249e-01f, -3.8286e-02f,
|
402 |
+
-7.1122e-02f, 9.5799e-02f, 3.8521e-02f,
|
403 |
+
-1.3846e-01f, 1.4167e-01f, -3.5500e-03f,
|
404 |
+
-1.0343e-01f, -3.3025e-02f, 3.7186e-02f,
|
405 |
+
-2.0769e-03f, 1.3558e-01f, -1.3009e-01f,
|
406 |
+
1.0167e-02f, 1.5358e-02f, -9.8009e-02f,
|
407 |
+
2.4123e-05f, -1.1800e-05f, -1.4180e-04f,
|
408 |
+
3.5217e-05f, -6.3838e-06f, -1.2243e-04f,
|
409 |
+
8.5525e-05f, 2.1599e-06f, -5.3290e-05f,
|
410 |
+
-1.4471e-01f, 2.0111e-02f, -1.2449e-01f,
|
411 |
+
5.3368e-02f, 3.2918e-01f, 1.4034e-01f,
|
412 |
+
-1.1833e-01f, -1.9225e-02f, -1.2658e-01f,
|
413 |
+
-2.6966e-01f, 1.1751e-01f, 9.7072e-02f,
|
414 |
+
-1.9929e-01f, 9.7986e-02f, -5.1240e-02f,
|
415 |
+
-9.5073e-02f, -6.8070e-02f, -2.1318e-01f,
|
416 |
+
9.5305e-02f, -4.0551e-02f, -1.0936e-01f,
|
417 |
+
5.2687e-02f, 4.5340e-01f, 2.3531e-01f,
|
418 |
+
-1.3385e-02f, 1.5922e-01f, -1.8371e-01f,
|
419 |
+
-1.2203e-01f, -7.2567e-02f, -3.0000e-01f,
|
420 |
+
-3.4356e-02f, -1.3471e-01f, -9.0995e-02f,
|
421 |
+
-2.5230e-01f, -2.4846e-01f, -1.8529e-01f,
|
422 |
+
-1.6962e-01f, 1.0905e-01f, 1.1557e-01f,
|
423 |
+
-1.4405e-01f, 8.9191e-02f, 1.1715e-01f,
|
424 |
+
-1.3237e-01f, 5.2092e-02f, -1.2227e-01f
|
425 |
+
}
|
426 |
+
,
|
427 |
+
{
|
428 |
+
2.0013e-01f, 2.2105e-01f, 1.9196e-01f,
|
429 |
+
6.8158e-02f, 1.7154e-01f, -8.6677e-02f,
|
430 |
+
9.2652e-02f, 1.0789e-01f, 1.6745e-01f,
|
431 |
+
-2.9254e-01f, -7.6815e-02f, 5.8812e-02f,
|
432 |
+
-4.6466e-02f, 1.3941e-02f, 2.3353e-01f,
|
433 |
+
-1.5033e-01f, 7.5167e-02f, 1.4433e-01f,
|
434 |
+
2.8008e-02f, 3.1625e-01f, 3.2877e-02f,
|
435 |
+
-5.8835e-02f, -1.7305e-01f, -6.1558e-02f,
|
436 |
+
-1.2227e-01f, 3.9931e-02f, 3.0300e-02f,
|
437 |
+
2.3004e-01f, 4.1834e-02f, -5.7790e-02f,
|
438 |
+
-2.2861e-01f, 2.9314e-01f, 1.6884e-01f,
|
439 |
+
-2.8009e-02f, 4.7550e-02f, -4.4542e-02f,
|
440 |
+
-2.4674e-01f, -1.5483e-01f, 3.2653e-02f,
|
441 |
+
-2.1574e-01f, 3.1083e-01f, -1.4025e-03f,
|
442 |
+
1.7354e-02f, 5.6417e-02f, 1.0844e-01f,
|
443 |
+
-4.2681e-40f, 4.5893e-42f, -7.4234e-40f,
|
444 |
+
1.7665e-40f, 4.0151e-40f, 4.6269e-40f,
|
445 |
+
2.5452e-40f, -7.0179e-40f, -1.2338e-40f,
|
446 |
+
-1.4957e-01f, -1.9087e-02f, 7.1170e-02f,
|
447 |
+
-1.4435e-01f, 8.9560e-02f, 1.3879e-01f,
|
448 |
+
-3.6992e-02f, 5.9822e-02f, 1.9241e-02f,
|
449 |
+
-2.4402e-03f, 1.5097e-01f, 6.3958e-02f,
|
450 |
+
-1.7630e-01f, 3.6009e-01f, -2.0383e-01f,
|
451 |
+
-8.5106e-03f, 4.0863e-03f, -2.7575e-02f,
|
452 |
+
7.8942e-02f, -1.8640e-01f, -6.7715e-02f,
|
453 |
+
7.2777e-02f, -1.3804e-01f, -7.0332e-02f,
|
454 |
+
1.5185e-01f, -4.3530e-02f, 1.4502e-01f,
|
455 |
+
-3.2928e-02f, -3.0583e-02f, 9.2061e-02f,
|
456 |
+
1.2493e-01f, 1.0400e-01f, 1.3780e-01f,
|
457 |
+
1.4438e-01f, 8.2051e-02f, 1.6159e-02f,
|
458 |
+
2.7478e-02f, 1.7768e-01f, 2.5945e-01f,
|
459 |
+
-3.4662e-01f, 2.0330e-03f, 8.8118e-02f,
|
460 |
+
-2.9628e-01f, -1.3212e-01f, -1.8145e-02f,
|
461 |
+
-1.9330e-01f, 3.9238e-02f, -4.6944e-02f,
|
462 |
+
-1.5668e-01f, -5.7104e-02f, 1.9558e-01f,
|
463 |
+
6.5305e-02f, 5.9933e-02f, 7.7337e-02f,
|
464 |
+
-2.4906e-02f, -1.1235e-01f, 1.3822e-02f,
|
465 |
+
-3.9988e-02f, -9.1882e-03f, 1.9204e-02f,
|
466 |
+
1.0504e-01f, 4.6820e-03f, -2.1836e-02f,
|
467 |
+
-2.6953e-40f, 2.5334e-40f, -1.3028e-40f,
|
468 |
+
1.4110e-41f, 5.6841e-40f, 3.6368e-40f,
|
469 |
+
-1.1746e-41f, -7.0658e-41f, -3.9413e-40f,
|
470 |
+
1.5025e-02f, 7.4419e-02f, 9.5652e-02f,
|
471 |
+
5.0297e-02f, 6.6704e-02f, 5.7316e-02f,
|
472 |
+
2.5102e-02f, 1.1985e-01f, 2.6043e-02f,
|
473 |
+
3.3297e-02f, -7.7374e-02f, -1.1114e-01f,
|
474 |
+
-7.5586e-02f, -1.9338e-02f, -1.3739e-02f,
|
475 |
+
4.5616e-02f, -6.4946e-02f, -6.9372e-02f,
|
476 |
+
-7.5874e-03f, -1.1141e-01f, -2.9135e-02f,
|
477 |
+
-6.9436e-03f, -1.4418e-02f, 1.6436e-03f,
|
478 |
+
-1.3051e-01f, -1.3324e-01f, -9.3934e-02f,
|
479 |
+
1.2184e-01f, 1.9386e-01f, 1.7995e-01f,
|
480 |
+
-2.7452e-02f, 9.9736e-02f, 1.0020e-01f,
|
481 |
+
-6.3290e-02f, -2.1447e-02f, -1.7005e-01f,
|
482 |
+
1.3857e-01f, 2.3338e-01f, 2.5410e-01f,
|
483 |
+
2.3002e-01f, 1.9551e-01f, 1.4452e-01f,
|
484 |
+
4.7040e-01f, 2.2647e-01f, 1.5215e-01f,
|
485 |
+
2.6927e-02f, -2.1304e-01f, -1.4762e-01f,
|
486 |
+
-5.6998e-02f, 2.9064e-01f, 1.8085e-01f,
|
487 |
+
8.9393e-02f, -1.7463e-01f, -2.7095e-01f,
|
488 |
+
3.8434e-02f, 1.7198e-01f, -1.8122e-02f,
|
489 |
+
-1.3857e-01f, 1.9418e-01f, 1.5019e-01f,
|
490 |
+
-5.6337e-02f, -5.3265e-01f, 3.2122e-01f,
|
491 |
+
-2.4484e-40f, -5.3707e-40f, 1.5854e-41f,
|
492 |
+
5.1791e-40f, -4.1875e-41f, 5.6732e-40f,
|
493 |
+
1.3048e-40f, 1.6452e-40f, -4.5028e-40f,
|
494 |
+
-3.0692e-02f, 1.8569e-01f, 2.0327e-01f,
|
495 |
+
-7.4756e-02f, -5.1765e-02f, 4.2475e-02f,
|
496 |
+
-9.0675e-02f, -3.0438e-01f, -3.5088e-01f,
|
497 |
+
-1.9129e-02f, -1.5663e-03f, 4.9895e-02f,
|
498 |
+
-1.9441e-02f, 9.3237e-02f, 1.2910e-01f,
|
499 |
+
-2.3919e-02f, -4.0539e-01f, 2.8167e-02f,
|
500 |
+
2.0203e-01f, 3.3424e-02f, 1.7927e-02f,
|
501 |
+
4.1923e-02f, -1.6967e-01f, 2.5656e-02f,
|
502 |
+
-1.5869e-01f, -1.8727e-01f, 2.7860e-03f,
|
503 |
+
-4.0276e-02f, -6.7792e-03f, 3.3699e-02f,
|
504 |
+
-6.7044e-03f, 1.7686e-02f, 2.9786e-02f,
|
505 |
+
-1.5623e-02f, 3.7904e-02f, 2.4737e-02f,
|
506 |
+
-1.2282e-01f, -3.6563e-02f, 4.1976e-02f,
|
507 |
+
-9.9622e-03f, 8.8981e-02f, 2.1364e-02f,
|
508 |
+
-8.5668e-02f, -1.6803e-01f, -4.4974e-02f,
|
509 |
+
1.3164e-01f, 4.1294e-01f, 1.8897e-01f,
|
510 |
+
2.1991e-01f, 1.6247e-02f, 1.1569e-01f,
|
511 |
+
-3.0142e-02f, 1.4069e-02f, 3.6646e-02f,
|
512 |
+
-2.6816e-02f, -3.9767e-02f, 1.4061e-01f,
|
513 |
+
-1.3603e-01f, -2.0649e-01f, 7.5837e-02f,
|
514 |
+
-1.6984e-02f, -8.3800e-03f, 2.3652e-04f,
|
515 |
+
1.5049e-40f, 4.6504e-40f, 1.3625e-40f,
|
516 |
+
-7.5358e-40f, -3.4257e-40f, 9.9763e-41f,
|
517 |
+
4.7243e-40f, 7.4890e-40f, -7.9440e-42f,
|
518 |
+
-5.9692e-02f, -2.8047e-02f, 2.3795e-02f,
|
519 |
+
-3.5284e-02f, 1.1448e-02f, 5.0302e-04f,
|
520 |
+
-3.5066e-02f, 4.6185e-02f, 1.2167e-02f,
|
521 |
+
3.7583e-02f, -3.6598e-02f, 1.0206e-01f,
|
522 |
+
-9.6229e-02f, -1.5977e-01f, 4.9157e-02f,
|
523 |
+
3.7293e-02f, 5.8766e-02f, 1.0448e-02f,
|
524 |
+
1.1490e-01f, 1.4459e-01f, 8.6936e-02f,
|
525 |
+
2.8609e-01f, -4.8108e-02f, 9.0023e-02f,
|
526 |
+
6.7941e-02f, -5.7148e-03f, 1.0021e-01f,
|
527 |
+
7.3816e-02f, 7.3794e-02f, 8.0970e-03f,
|
528 |
+
2.8307e-02f, 3.6635e-03f, -1.1769e-01f,
|
529 |
+
4.1374e-02f, 3.9933e-02f, -4.4292e-02f,
|
530 |
+
5.9423e-02f, 1.9009e-01f, -2.3735e-01f,
|
531 |
+
-2.6670e-01f, 5.8789e-01f, -2.0048e-01f,
|
532 |
+
-3.7082e-01f, 1.8045e-01f, 5.4820e-02f,
|
533 |
+
-6.3567e-01f, 2.0098e-01f, 1.0653e-01f,
|
534 |
+
-2.5056e-01f, 6.5065e-01f, -4.0471e-01f,
|
535 |
+
5.4715e-02f, 2.4375e-01f, -2.7402e-01f,
|
536 |
+
1.5982e-01f, 1.0923e-01f, 2.1566e-01f,
|
537 |
+
2.0239e-01f, -9.0221e-02f, -4.4606e-01f,
|
538 |
+
1.0550e-01f, 5.4666e-02f, -2.7134e-01f,
|
539 |
+
-4.6424e-40f, 2.9137e-40f, 7.4968e-41f,
|
540 |
+
1.2376e-41f, -5.6213e-40f, -6.3457e-40f,
|
541 |
+
2.5404e-40f, 2.0013e-40f, 3.5611e-40f,
|
542 |
+
5.5423e-02f, 3.9843e-02f, -1.7509e-01f,
|
543 |
+
5.4480e-02f, 5.0331e-02f, -1.6793e-01f,
|
544 |
+
6.6093e-02f, 3.0163e-02f, -8.2023e-02f,
|
545 |
+
-1.5490e-01f, 1.7457e-01f, 2.7832e-01f,
|
546 |
+
1.1482e-01f, 2.5759e-01f, -2.4199e-01f,
|
547 |
+
-9.3891e-02f, 9.1921e-02f, -6.4480e-03f,
|
548 |
+
1.9266e-01f, 5.2907e-02f, 7.0289e-02f,
|
549 |
+
1.3582e-01f, 6.4246e-02f, 1.4989e-01f,
|
550 |
+
6.2013e-03f, -6.8884e-02f, 6.8734e-02f,
|
551 |
+
-1.0483e-01f, -7.7134e-02f, -3.6204e-02f,
|
552 |
+
1.7590e-02f, 5.0844e-02f, 1.4234e-01f,
|
553 |
+
7.2913e-02f, 6.0726e-02f, 6.4414e-02f,
|
554 |
+
-8.5021e-02f, -1.0621e-03f, 5.5851e-02f,
|
555 |
+
2.4666e-01f, 6.5652e-02f, -1.8180e-02f,
|
556 |
+
1.5225e-01f, 1.2928e-01f, 3.1578e-03f,
|
557 |
+
1.1468e-01f, 1.9544e-01f, 6.6637e-02f,
|
558 |
+
6.3430e-02f, 2.0542e-01f, 7.0876e-02f,
|
559 |
+
3.4779e-02f, 1.0037e-02f, -2.2134e-02f,
|
560 |
+
-6.9304e-02f, 1.1184e-01f, -3.7015e-02f,
|
561 |
+
-1.7634e-01f, 1.2475e-01f, 9.1947e-02f,
|
562 |
+
-6.0550e-02f, -1.3904e-01f, 7.5192e-02f,
|
563 |
+
-2.2871e-40f, 4.7367e-41f, -1.0711e-40f,
|
564 |
+
-2.8662e-40f, 4.0542e-41f, 3.3067e-40f,
|
565 |
+
-4.4395e-41f, -7.2684e-41f, 1.8695e-40f,
|
566 |
+
-1.6702e-01f, -2.6654e-01f, 8.7902e-03f,
|
567 |
+
-2.0108e-01f, -3.8093e-01f, -8.3700e-02f,
|
568 |
+
-7.5433e-02f, -2.0689e-01f, 2.7951e-02f,
|
569 |
+
2.9938e-03f, 1.1378e-01f, 7.1598e-02f,
|
570 |
+
-1.6031e-01f, 1.3475e-01f, 1.5800e-01f,
|
571 |
+
-7.2019e-02f, -1.1663e-01f, 8.0692e-02f,
|
572 |
+
1.0610e-01f, 1.1163e-02f, -1.4959e-01f,
|
573 |
+
-1.1576e-01f, -8.5645e-02f, 4.0414e-02f,
|
574 |
+
5.6245e-02f, 1.7056e-01f, 2.5734e-01f,
|
575 |
+
-6.1086e-02f, -7.0851e-02f, 7.6851e-02f,
|
576 |
+
-2.7595e-02f, -6.0890e-02f, 4.7472e-02f,
|
577 |
+
7.1059e-03f, 6.0942e-05f, 7.4915e-02f,
|
578 |
+
1.9350e-01f, -1.8458e-02f, -2.3040e-02f,
|
579 |
+
6.3477e-02f, 1.1923e-01f, 9.9319e-02f,
|
580 |
+
6.4839e-02f, 2.7973e-01f, 1.2902e-01f,
|
581 |
+
-1.7829e-01f, 5.7083e-03f, -6.1680e-03f,
|
582 |
+
-1.1256e-01f, -2.7951e-02f, -2.1544e-01f,
|
583 |
+
-2.1614e-02f, -7.1468e-02f, -2.2054e-02f,
|
584 |
+
-8.7543e-02f, -1.2982e-01f, 1.9386e-01f,
|
585 |
+
-5.7157e-03f, -1.0108e-01f, 1.4467e-01f,
|
586 |
+
-6.5742e-02f, -7.2054e-02f, 1.7924e-01f,
|
587 |
+
7.5418e-40f, 6.3043e-40f, 4.9815e-40f,
|
588 |
+
-1.0952e-40f, 3.0327e-40f, -2.3848e-40f,
|
589 |
+
4.1302e-40f, 2.0150e-40f, -1.6509e-40f,
|
590 |
+
-1.3985e-02f, -1.0550e-01f, 5.8772e-02f,
|
591 |
+
-1.7108e-02f, -7.3644e-02f, 3.3014e-02f,
|
592 |
+
-1.8224e-03f, 2.8931e-03f, 9.2762e-02f,
|
593 |
+
4.1531e-02f, -1.5139e-01f, -1.7773e-01f,
|
594 |
+
9.6548e-02f, -1.1914e-01f, -4.6536e-02f,
|
595 |
+
8.6754e-02f, -4.0057e-03f, 1.8983e-01f,
|
596 |
+
1.6545e-01f, -4.7311e-02f, -7.2455e-03f,
|
597 |
+
3.7567e-01f, 1.8883e-01f, -7.4325e-02f,
|
598 |
+
-5.8252e-02f, -1.3811e-02f, -7.0470e-02f,
|
599 |
+
-3.2943e-02f, -7.0770e-02f, -1.4700e-01f,
|
600 |
+
1.7043e-02f, 9.4331e-02f, 4.2857e-03f,
|
601 |
+
4.1247e-03f, 1.6690e-01f, 4.2146e-02f,
|
602 |
+
1.1420e-01f, -7.4456e-02f, -3.8763e-02f,
|
603 |
+
1.6807e-01f, 9.3636e-03f, -1.1796e-01f,
|
604 |
+
1.7703e-01f, 1.1386e-03f, -6.8707e-02f,
|
605 |
+
1.0259e-01f, -1.8918e-02f, 6.5902e-03f,
|
606 |
+
1.2421e-02f, -7.8960e-02f, 2.1766e-02f,
|
607 |
+
1.3062e-01f, 4.6001e-02f, 2.4199e-01f,
|
608 |
+
-1.2955e-02f, -1.9329e-01f, 5.2074e-03f,
|
609 |
+
5.9446e-02f, 1.8832e-01f, 2.2094e-01f,
|
610 |
+
-1.0954e-01f, -8.1867e-02f, -4.3324e-02f,
|
611 |
+
-3.9596e-41f, 2.8677e-40f, -6.5843e-40f,
|
612 |
+
4.2812e-41f, -3.5323e-40f, 4.8298e-40f,
|
613 |
+
7.6351e-40f, -2.4759e-40f, 7.3030e-40f,
|
614 |
+
-1.1284e-01f, -8.4171e-02f, -1.5935e-01f,
|
615 |
+
-3.2299e-02f, 1.5427e-01f, 8.9029e-02f,
|
616 |
+
-3.8815e-02f, 1.3098e-01f, -4.3065e-02f,
|
617 |
+
-2.5276e-01f, -1.7018e-01f, 9.7901e-02f,
|
618 |
+
1.4218e-01f, 3.1236e-01f, 2.9636e-01f,
|
619 |
+
-2.3613e-02f, -5.5258e-02f, -2.0550e-01f
|
620 |
+
}
|
621 |
+
,
|
622 |
+
{
|
623 |
+
0.0333f, 0.1145f, -0.0922f,
|
624 |
+
0.1185f, 0.4533f, -0.2015f,
|
625 |
+
-0.0774f, 0.1759f, -0.0496f,
|
626 |
+
0.0954f, -0.0499f, 0.0824f,
|
627 |
+
0.1059f, 0.0173f, -0.0586f,
|
628 |
+
-0.0666f, -0.0287f, -0.0652f,
|
629 |
+
-0.0558f, -0.1362f, 0.0015f,
|
630 |
+
0.1277f, 0.1020f, -0.1369f,
|
631 |
+
0.0020f, -0.0103f, -0.0804f,
|
632 |
+
0.0507f, 0.1404f, -0.0241f,
|
633 |
+
0.0520f, 0.1239f, 0.0633f,
|
634 |
+
-0.0268f, 0.0335f, 0.0883f,
|
635 |
+
-0.0549f, -0.1022f, -0.0515f,
|
636 |
+
-0.0163f, -0.1167f, -0.0442f,
|
637 |
+
0.0858f, -0.0804f, -0.0014f,
|
638 |
+
0.0354f, -0.0666f, -0.2105f,
|
639 |
+
-0.0950f, 0.1578f, -0.0920f,
|
640 |
+
-0.1303f, 0.0299f, -0.0195f,
|
641 |
+
-0.0281f, -0.1993f, -0.0154f,
|
642 |
+
0.0796f, 0.0503f, 0.0954f,
|
643 |
+
0.0540f, 0.0212f, 0.0389f,
|
644 |
+
-0.1387f, 0.1091f, -0.1212f,
|
645 |
+
0.1556f, 0.3573f, 0.0976f,
|
646 |
+
-0.0587f, -0.2070f, 0.2067f,
|
647 |
+
0.0138f, 0.0051f, -0.1008f,
|
648 |
+
0.2877f, 0.1079f, -0.0681f,
|
649 |
+
0.0953f, -0.0739f, -0.2349f,
|
650 |
+
0.1482f, 0.0657f, 0.0480f,
|
651 |
+
0.1590f, -0.0009f, 0.1402f,
|
652 |
+
0.0700f, 0.0435f, 0.1190f,
|
653 |
+
0.0957f, 0.0117f, -0.1010f,
|
654 |
+
0.1790f, -0.0200f, -0.0765f,
|
655 |
+
0.0797f, 0.1455f, -0.0340f,
|
656 |
+
0.0008f, -0.0267f, 0.0089f,
|
657 |
+
0.0644f, 0.0647f, 0.0397f,
|
658 |
+
0.0463f, -0.0116f, -0.0771f,
|
659 |
+
0.2237f, 0.0324f, 0.0192f,
|
660 |
+
-0.0082f, -0.0345f, 0.0294f,
|
661 |
+
0.0719f, -0.0185f, 0.1008f,
|
662 |
+
-0.0307f, 0.0134f, -0.0747f,
|
663 |
+
0.0776f, -0.1485f, 0.0135f,
|
664 |
+
0.0965f, -0.0665f, -0.1263f,
|
665 |
+
-0.0101f, -0.0097f, -0.0144f,
|
666 |
+
-0.0022f, -0.0083f, 0.0277f,
|
667 |
+
0.0136f, -0.0076f, 0.0314f,
|
668 |
+
-0.0008f, 0.0722f, -0.0704f,
|
669 |
+
0.0053f, 0.0767f, 0.0368f,
|
670 |
+
-0.0189f, -0.1354f, 0.0231f,
|
671 |
+
-0.1416f, 0.1945f, -0.1756f,
|
672 |
+
0.2058f, 0.0401f, -0.1348f,
|
673 |
+
-0.0945f, -0.2530f, -0.3082f,
|
674 |
+
-0.0096f, 0.0871f, 0.0699f,
|
675 |
+
-0.0092f, 0.0423f, 0.0995f,
|
676 |
+
-0.0914f, -0.0570f, -0.0718f,
|
677 |
+
-0.0739f, -0.2749f, -0.2320f,
|
678 |
+
0.1488f, -0.2698f, -0.1977f,
|
679 |
+
0.1445f, -0.1655f, -0.0758f,
|
680 |
+
0.2035f, -0.0138f, 0.0332f,
|
681 |
+
0.0282f, -0.2247f, -0.0945f,
|
682 |
+
-0.0614f, -0.2484f, -0.0595f,
|
683 |
+
-0.1174f, -0.1252f, 0.1969f,
|
684 |
+
-0.1101f, -0.2950f, -0.2164f,
|
685 |
+
-0.0348f, -0.0891f, 0.1250f,
|
686 |
+
0.0195f, 0.0050f, 0.0300f,
|
687 |
+
-0.0508f, -0.0316f, -0.0194f,
|
688 |
+
0.0199f, 0.0345f, 0.0444f,
|
689 |
+
-0.0022f, -0.0529f, 0.1604f,
|
690 |
+
0.0756f, -0.2015f, -0.2117f,
|
691 |
+
-0.0837f, -0.1270f, 0.1330f,
|
692 |
+
0.0286f, 0.0952f, 0.1082f,
|
693 |
+
0.0724f, -0.0446f, -0.1156f,
|
694 |
+
0.0545f, 0.0444f, -0.0291f,
|
695 |
+
0.0759f, 0.1110f, 0.0944f,
|
696 |
+
0.1615f, 0.4302f, -0.1060f,
|
697 |
+
0.0418f, -0.0281f, -0.1378f,
|
698 |
+
-0.0757f, -0.0527f, -0.1578f,
|
699 |
+
0.0123f, -0.0427f, 0.1504f,
|
700 |
+
0.0694f, 0.0690f, 0.0203f,
|
701 |
+
0.2132f, -0.3449f, 0.0936f,
|
702 |
+
0.2491f, 0.0279f, -0.0884f,
|
703 |
+
-0.0447f, 0.1589f, -0.0054f,
|
704 |
+
-0.0246f, 0.1247f, 0.0403f,
|
705 |
+
0.0513f, -0.0541f, -0.1141f,
|
706 |
+
0.0712f, -0.1174f, -0.0051f,
|
707 |
+
0.2304f, 0.2431f, -0.0517f,
|
708 |
+
-0.1548f, -0.0401f, 0.2032f,
|
709 |
+
-0.0087f, -0.1676f, -0.0600f,
|
710 |
+
0.1094f, -0.0329f, 0.0530f,
|
711 |
+
-0.0580f, 0.1499f, -0.0806f,
|
712 |
+
-0.0086f, -0.1400f, -0.0636f,
|
713 |
+
0.0708f, -0.1003f, -0.1113f,
|
714 |
+
-0.0732f, -0.1199f, 0.0060f,
|
715 |
+
-0.0534f, -0.0011f, 0.0965f,
|
716 |
+
-0.0268f, 0.0116f, -0.1161f,
|
717 |
+
0.0787f, 0.3925f, -0.0819f,
|
718 |
+
-0.0041f, -0.0892f, -0.2063f,
|
719 |
+
-0.1296f, 0.0924f, -0.0079f,
|
720 |
+
0.5625f, 0.4013f, 0.1645f,
|
721 |
+
-0.0137f, -0.1935f, 0.2714f,
|
722 |
+
0.0980f, 0.0016f, -0.1461f,
|
723 |
+
0.1576f, 0.0305f, -0.1450f,
|
724 |
+
0.1503f, -0.0303f, -0.1403f,
|
725 |
+
0.0262f, -0.0077f, 0.0459f,
|
726 |
+
0.2718f, 0.0754f, 0.2404f,
|
727 |
+
0.1381f, -0.1499f, 0.0016f,
|
728 |
+
0.1454f, -0.1278f, -0.0085f,
|
729 |
+
0.1674f, -0.0834f, 0.1993f,
|
730 |
+
0.0874f, -0.0598f, -0.0188f,
|
731 |
+
0.2003f, 0.3296f, 0.0153f,
|
732 |
+
-0.0154f, 0.5550f, -0.0945f,
|
733 |
+
0.0489f, 0.0415f, -0.0940f,
|
734 |
+
0.0164f, 0.0791f, 0.1077f,
|
735 |
+
-0.0893f, 0.1231f, 0.0473f,
|
736 |
+
-0.0319f, 0.1444f, 0.1690f,
|
737 |
+
-0.0518f, -0.1404f, -0.1778f,
|
738 |
+
-0.0170f, 0.1395f, -0.0234f,
|
739 |
+
0.0128f, -0.0112f, -0.0472f,
|
740 |
+
0.1039f, 0.1982f, -0.0272f,
|
741 |
+
0.0282f, -0.1199f, -0.2622f,
|
742 |
+
-0.0449f, 0.0239f, -0.1030f,
|
743 |
+
-0.0840f, -0.1044f, -0.0646f,
|
744 |
+
0.0588f, 0.1937f, -0.2494f,
|
745 |
+
0.0180f, 0.0747f, 0.1530f,
|
746 |
+
0.0500f, 0.1756f, 0.0491f,
|
747 |
+
-0.1113f, -0.0079f, 0.0854f,
|
748 |
+
-0.1493f, -0.0559f, -0.0373f,
|
749 |
+
0.1972f, -0.3158f, -0.0500f,
|
750 |
+
0.1932f, 0.3177f, -0.0018f,
|
751 |
+
-0.0516f, -0.1144f, 0.0686f,
|
752 |
+
0.0175f, 0.0598f, 0.0345f,
|
753 |
+
-0.0667f, -0.1078f, 0.0384f,
|
754 |
+
0.0897f, 0.2198f, -0.0531f,
|
755 |
+
-0.2596f, -0.1997f, 0.0195f,
|
756 |
+
0.0332f, 0.4098f, 0.1381f,
|
757 |
+
0.1985f, -0.0669f, -0.1275f,
|
758 |
+
-0.0751f, -0.2388f, -0.0672f,
|
759 |
+
0.0090f, 0.0891f, -0.0362f,
|
760 |
+
0.1392f, -0.0518f, 0.2039f,
|
761 |
+
0.2079f, -0.1202f, 0.0707f,
|
762 |
+
0.0498f, -0.1237f, -0.0665f,
|
763 |
+
-0.0398f, -0.1557f, -0.0928f,
|
764 |
+
0.0505f, 0.1220f, 0.0352f,
|
765 |
+
-0.0674f, -0.1159f, 0.0724f,
|
766 |
+
-0.0331f, -0.1751f, 0.0766f,
|
767 |
+
0.0992f, -0.0763f, 0.0090f,
|
768 |
+
-0.1223f, 0.2621f, -0.2029f,
|
769 |
+
0.0509f, -0.0279f, -0.1061f,
|
770 |
+
0.0598f, 0.0353f, -0.1610f,
|
771 |
+
0.0165f, 0.0835f, 0.0704f,
|
772 |
+
-0.0079f, -0.0982f, 0.0187f,
|
773 |
+
0.2331f, -0.1929f, 0.0684f,
|
774 |
+
-0.0507f, 0.1476f, -0.0886f,
|
775 |
+
-0.0275f, 0.1658f, 0.0697f,
|
776 |
+
-0.1123f, -0.0069f, -0.0851f,
|
777 |
+
-0.0377f, -0.0917f, -0.0629f,
|
778 |
+
-0.0420f, 0.0506f, 0.1111f,
|
779 |
+
0.1086f, 0.1351f, -0.0851f,
|
780 |
+
0.0466f, 0.2750f, 0.0185f,
|
781 |
+
-0.0208f, 0.2090f, 0.0271f,
|
782 |
+
0.0217f, -0.0548f, 0.0078f,
|
783 |
+
-0.0609f, 0.1029f, -0.1641f,
|
784 |
+
0.1392f, 0.0115f, 0.0317f,
|
785 |
+
-0.0570f, 0.1060f, 0.1814f,
|
786 |
+
-0.2015f, -0.1301f, 0.1082f,
|
787 |
+
0.2452f, -0.1815f, -0.0046f,
|
788 |
+
0.0103f, -0.0466f, -0.0895f,
|
789 |
+
0.0158f, -0.0594f, -0.1386f,
|
790 |
+
-0.0073f, -0.0719f, -0.0716f,
|
791 |
+
0.1308f, -0.0206f, 0.0511f,
|
792 |
+
-0.0437f, -0.0763f, 0.0287f,
|
793 |
+
0.0493f, -0.1239f, 0.0219f,
|
794 |
+
-0.0041f, 0.0373f, 0.0262f,
|
795 |
+
0.0078f, -0.0249f, -0.0284f,
|
796 |
+
0.0598f, -0.0205f, -0.0276f,
|
797 |
+
0.0115f, -0.1778f, -0.0395f,
|
798 |
+
0.1673f, -0.0036f, 0.2334f,
|
799 |
+
0.0706f, -0.0694f, 0.0177f,
|
800 |
+
0.1123f, -0.0043f, 0.0716f,
|
801 |
+
-0.0894f, -0.1609f, 0.0334f,
|
802 |
+
-0.0046f, -0.2006f, -0.0977f,
|
803 |
+
-0.0127f, 0.1198f, -0.0339f,
|
804 |
+
-0.0283f, 0.1354f, 0.1637f,
|
805 |
+
-0.1696f, 0.0187f, -0.2621f,
|
806 |
+
0.0496f, 0.2834f, 0.0423f,
|
807 |
+
0.1126f, 0.3962f, 0.1660f,
|
808 |
+
-0.0750f, 0.1955f, 0.0590f,
|
809 |
+
-0.1088f, -0.1146f, -0.1219f,
|
810 |
+
0.1360f, 0.1524f, 0.0498f,
|
811 |
+
-0.1151f, 0.0219f, -0.0063f,
|
812 |
+
-0.0821f, 0.0247f, -0.1065f,
|
813 |
+
0.1153f, 0.2085f, 0.0618f,
|
814 |
+
-0.0383f, 0.0527f, -0.2067f
|
815 |
+
}
|
816 |
+
,
|
817 |
+
{
|
818 |
+
1.8014e-01f, 2.1908e-01f, -2.1088e-03f,
|
819 |
+
1.7345e-01f, 2.7654e-01f, 1.3607e-02f,
|
820 |
+
1.1363e-01f, 9.9105e-02f, -6.5730e-02f,
|
821 |
+
-3.5679e-02f, 9.6072e-03f, 4.0721e-02f,
|
822 |
+
-1.8771e-02f, -2.3484e-04f, -1.0230e-02f,
|
823 |
+
1.6965e-02f, -1.3032e-02f, -6.3906e-02f,
|
824 |
+
-4.5686e-02f, -3.6733e-02f, -4.8873e-02f,
|
825 |
+
4.0752e-02f, 2.1615e-02f, -1.4822e-02f,
|
826 |
+
1.1689e-01f, 3.0153e-02f, -5.0163e-04f,
|
827 |
+
-7.0394e-03f, -1.2387e-01f, -8.9243e-02f,
|
828 |
+
-1.8312e-01f, -1.3868e-01f, -6.2618e-02f,
|
829 |
+
-8.1627e-02f, -2.0480e-01f, -3.0740e-01f,
|
830 |
+
4.4296e-02f, 3.8572e-02f, 4.3754e-02f,
|
831 |
+
1.7538e-01f, 5.3284e-02f, -7.5663e-03f,
|
832 |
+
1.9670e-01f, -1.2397e-01f, -1.6266e-01f,
|
833 |
+
1.4575e-01f, -5.7771e-02f, 2.7619e-02f,
|
834 |
+
2.2757e-02f, -4.8910e-01f, -2.6201e-01f,
|
835 |
+
3.6513e-02f, -2.0704e-01f, -1.3225e-01f,
|
836 |
+
-6.7533e-02f, 1.1289e-02f, 7.1316e-02f,
|
837 |
+
-7.6847e-02f, 6.8128e-02f, 7.4717e-02f,
|
838 |
+
1.1269e-01f, 2.9978e-02f, 3.2132e-02f,
|
839 |
+
-5.4557e-02f, -4.4599e-02f, 4.1835e-02f,
|
840 |
+
5.7964e-02f, -2.1246e-03f, 1.5007e-01f,
|
841 |
+
1.8432e-01f, 1.1463e-01f, 2.2691e-01f,
|
842 |
+
9.6166e-02f, 4.7887e-02f, -3.8399e-02f,
|
843 |
+
5.8153e-02f, -2.0255e-02f, -1.1362e-01f,
|
844 |
+
2.6402e-02f, 2.5562e-02f, 1.9096e-02f,
|
845 |
+
1.1588e-01f, 1.4540e-01f, 1.1948e-01f,
|
846 |
+
1.0360e-01f, 5.9083e-02f, 1.9263e-01f,
|
847 |
+
1.6953e-01f, 2.7390e-02f, 9.7883e-02f,
|
848 |
+
1.5059e-01f, 6.7593e-02f, -4.5843e-03f,
|
849 |
+
8.7031e-02f, -2.0926e-03f, -6.3056e-02f,
|
850 |
+
-6.6960e-02f, -5.2056e-02f, -7.3570e-02f,
|
851 |
+
1.4361e-02f, 1.1059e-01f, -4.9720e-02f,
|
852 |
+
4.4270e-02f, 3.9995e-02f, 4.3101e-03f,
|
853 |
+
-1.1042e-01f, 4.5028e-02f, -8.9124e-02f,
|
854 |
+
-1.2906e-01f, -7.6972e-02f, -6.5449e-03f,
|
855 |
+
-1.9269e-01f, 2.8349e-01f, 1.1573e-01f,
|
856 |
+
-1.7983e-01f, 9.7615e-02f, 9.4003e-03f,
|
857 |
+
-4.7802e-02f, -1.5889e-01f, -1.2693e-01f,
|
858 |
+
7.4717e-02f, 2.8655e-01f, -7.2637e-02f,
|
859 |
+
1.5837e-02f, 8.7125e-02f, -1.2198e-01f,
|
860 |
+
-1.7754e-02f, -5.6443e-02f, -9.8661e-03f,
|
861 |
+
6.3040e-02f, 2.0249e-02f, -3.5368e-02f,
|
862 |
+
9.7756e-03f, 2.6760e-02f, -5.5172e-02f,
|
863 |
+
-1.0406e-02f, 4.8313e-02f, 2.4717e-02f,
|
864 |
+
-5.2851e-02f, 6.8496e-02f, -2.5933e-02f,
|
865 |
+
4.5932e-02f, 5.9892e-02f, 1.9200e-02f,
|
866 |
+
-5.1316e-40f, -5.1811e-40f, -1.5144e-40f,
|
867 |
+
-6.7758e-38f, -5.4608e-40f, -3.9680e-40f,
|
868 |
+
-1.9155e-39f, 2.0423e-41f, 1.5256e-41f,
|
869 |
+
-2.5559e-08f, -3.2461e-08f, -2.6821e-08f,
|
870 |
+
-3.6885e-08f, -4.6896e-08f, -3.9086e-08f,
|
871 |
+
-3.4305e-08f, -4.4160e-08f, -3.7187e-08f,
|
872 |
+
-3.7416e-40f, 3.6550e-40f, 5.0727e-40f,
|
873 |
+
-1.6722e-40f, 3.9228e-40f, 5.4548e-40f,
|
874 |
+
-5.7512e-40f, -2.8156e-40f, 9.4571e-41f,
|
875 |
+
-4.7040e-40f, -1.6974e-40f, 6.3849e-40f,
|
876 |
+
-3.7322e-40f, 2.6014e-40f, 2.3080e-40f,
|
877 |
+
-2.8395e-40f, -3.7116e-40f, 4.4393e-40f,
|
878 |
+
1.1597e-40f, 4.3291e-40f, 3.8219e-40f,
|
879 |
+
3.3393e-40f, 3.1747e-40f, -1.8400e-36f,
|
880 |
+
-5.5215e-40f, 1.7648e-40f, -1.6540e-35f,
|
881 |
+
-3.0953e-40f, 5.3063e-40f, -1.6454e-40f,
|
882 |
+
2.1341e-40f, 2.0790e-40f, -3.0226e-40f,
|
883 |
+
-2.6807e-40f, -1.6601e-40f, 5.1829e-40f,
|
884 |
+
-1.8897e-40f, -4.5956e-41f, 5.3784e-40f,
|
885 |
+
-2.5661e-40f, -2.1726e-40f, 1.2010e-40f,
|
886 |
+
1.8263e-41f, 1.1214e-40f, -3.7693e-40f,
|
887 |
+
-4.2596e-40f, 1.8854e-40f, 5.5010e-40f,
|
888 |
+
-6.6262e-40f, -4.8808e-40f, 3.3123e-40f,
|
889 |
+
5.9379e-41f, 2.3249e-40f, 4.4504e-40f,
|
890 |
+
-8.4836e-04f, -8.4397e-04f, -5.8640e-04f,
|
891 |
+
-8.3506e-04f, -8.0192e-04f, -5.3901e-04f,
|
892 |
+
-8.3539e-04f, -7.8069e-04f, -4.8720e-04f,
|
893 |
+
-3.4706e-04f, -4.4640e-04f, -5.2353e-04f,
|
894 |
+
-4.4518e-04f, -5.3374e-04f, -5.2734e-04f,
|
895 |
+
-5.8780e-04f, -5.8730e-04f, -5.4362e-04f,
|
896 |
+
-5.2452e-04f, -5.4578e-04f, -5.6266e-04f,
|
897 |
+
-4.2387e-04f, -4.4643e-04f, -4.8936e-04f,
|
898 |
+
-3.5880e-04f, -3.7886e-04f, -4.1998e-04f,
|
899 |
+
-2.4479e-04f, -4.0736e-04f, -3.1189e-04f,
|
900 |
+
-3.4922e-04f, -4.0173e-04f, -2.5042e-04f,
|
901 |
+
-5.7091e-04f, -5.2665e-04f, -2.3293e-04f,
|
902 |
+
-2.8505e-04f, 9.7283e-05f, 3.1209e-04f,
|
903 |
+
-2.7463e-04f, 1.8704e-04f, 4.4351e-04f,
|
904 |
+
-9.1436e-05f, 3.2602e-04f, 5.7573e-04f,
|
905 |
+
-4.0112e-04f, -4.2566e-04f, -2.4300e-04f,
|
906 |
+
-9.9362e-05f, -6.5499e-05f, 3.2872e-05f,
|
907 |
+
1.1584e-04f, 2.3417e-04f, 3.4427e-04f,
|
908 |
+
-7.5767e-05f, 3.9768e-06f, 6.2201e-05f,
|
909 |
+
2.3151e-05f, 2.5595e-04f, 3.4038e-04f,
|
910 |
+
-1.3871e-05f, 3.0295e-04f, 4.4170e-04f,
|
911 |
+
-1.7802e-04f, -4.5376e-04f, -5.1847e-04f,
|
912 |
+
-5.0687e-04f, -5.5837e-04f, -2.5917e-04f,
|
913 |
+
-5.3992e-04f, -7.1375e-04f, -4.8728e-04f,
|
914 |
+
-1.7543e-01f, -3.4151e-01f, -3.2619e-02f,
|
915 |
+
-1.9701e-02f, -1.5494e-01f, -1.6534e-01f,
|
916 |
+
3.5632e-02f, -1.0897e-01f, -3.8379e-02f,
|
917 |
+
-6.1420e-02f, -1.0735e-01f, 1.4730e-01f,
|
918 |
+
7.4386e-02f, -1.0487e-01f, 7.9646e-02f,
|
919 |
+
1.7130e-02f, 4.4391e-02f, -5.1959e-03f,
|
920 |
+
4.5682e-02f, -1.1543e-01f, 9.4035e-03f,
|
921 |
+
-3.4376e-01f, -1.1961e-01f, 1.0099e-01f,
|
922 |
+
1.1335e-01f, 7.5840e-02f, 1.0675e-01f,
|
923 |
+
4.9539e-02f, 8.7406e-02f, 4.4951e-02f,
|
924 |
+
1.8111e-01f, 2.6406e-01f, -1.5924e-02f,
|
925 |
+
-1.1464e-01f, 8.4579e-04f, -6.6811e-02f,
|
926 |
+
-8.9635e-03f, 1.8236e-03f, 3.6561e-02f,
|
927 |
+
-7.0281e-02f, 2.9717e-01f, 3.1836e-02f,
|
928 |
+
-1.3647e-01f, -6.5627e-02f, 9.3063e-02f,
|
929 |
+
-2.1851e-01f, -6.0226e-02f, -1.0326e-01f,
|
930 |
+
5.3441e-02f, 1.9103e-01f, -5.7999e-02f,
|
931 |
+
-3.3512e-02f, 1.5496e-01f, -1.1111e-01f,
|
932 |
+
2.3256e-03f, -1.5004e-01f, -9.1248e-02f,
|
933 |
+
-9.7706e-02f, 1.9549e-01f, -1.5403e-01f,
|
934 |
+
-1.5327e-01f, 8.3335e-02f, 5.6111e-03f,
|
935 |
+
-1.5707e-01f, 8.0277e-03f, -7.3955e-02f,
|
936 |
+
-1.4111e-01f, -1.3548e-01f, -1.0563e-01f,
|
937 |
+
2.3054e-01f, -2.1822e-02f, -6.6938e-03f,
|
938 |
+
-1.0259e-01f, 4.3577e-02f, -1.7630e-01f,
|
939 |
+
1.6484e-01f, 4.2413e-01f, 6.9475e-02f,
|
940 |
+
-2.4705e-01f, 2.5757e-01f, -9.5611e-02f,
|
941 |
+
1.0236e-01f, -3.4820e-02f, -6.8818e-03f,
|
942 |
+
-1.1434e-01f, -3.1800e-01f, 2.1337e-02f,
|
943 |
+
-1.9939e-01f, -2.6532e-01f, 7.3361e-02f,
|
944 |
+
6.5939e-02f, 9.5812e-02f, -7.0156e-02f,
|
945 |
+
-1.6249e-02f, -1.5927e-02f, -1.1189e-01f,
|
946 |
+
-9.3936e-03f, -1.0933e-01f, -2.9399e-02f,
|
947 |
+
-2.8752e-02f, -4.5613e-02f, -1.2718e-02f,
|
948 |
+
3.8781e-01f, 2.6776e-01f, -1.0373e-02f,
|
949 |
+
-2.3927e-02f, -6.4398e-02f, 9.9117e-02f,
|
950 |
+
-6.0732e-02f, -5.5917e-03f, 5.1716e-02f,
|
951 |
+
-1.4168e-01f, 1.7661e-01f, -5.5893e-02f,
|
952 |
+
-3.0419e-01f, -3.5537e-01f, 2.1978e-01f,
|
953 |
+
-1.8610e-01f, -5.7743e-03f, 3.2649e-02f,
|
954 |
+
1.9975e-01f, 1.6508e-01f, 1.3808e-02f,
|
955 |
+
1.0733e-01f, 1.4722e-01f, 5.8671e-02f,
|
956 |
+
6.4940e-02f, 1.6114e-01f, 3.9697e-02f,
|
957 |
+
1.1530e-01f, 2.4021e-01f, -2.1669e-01f,
|
958 |
+
6.0220e-02f, 2.0257e-01f, -1.5227e-01f,
|
959 |
+
-6.1096e-02f, 6.6511e-02f, -1.3858e-01f,
|
960 |
+
-6.5275e-02f, 1.0891e-01f, 8.2048e-02f,
|
961 |
+
-6.7907e-02f, 2.2863e-02f, -1.0322e-01f,
|
962 |
+
1.6542e-01f, -1.4436e-01f, 6.4125e-02f,
|
963 |
+
-1.0378e-01f, -3.2346e-01f, -1.5123e-02f,
|
964 |
+
3.8758e-03f, 1.1006e-01f, -4.4325e-02f,
|
965 |
+
-1.0102e-01f, -3.7699e-02f, 9.2472e-02f,
|
966 |
+
-6.8972e-02f, -1.2308e-02f, 1.6478e-01f,
|
967 |
+
3.4351e-02f, -1.7461e-02f, 1.0301e-01f,
|
968 |
+
-2.7125e-01f, -5.6730e-02f, -2.5989e-01f,
|
969 |
+
-3.0163e-01f, -1.4826e-01f, -3.4955e-01f,
|
970 |
+
-1.6259e-01f, -1.6708e-01f, -2.7964e-01f,
|
971 |
+
-6.7134e-02f, -2.2385e-01f, 2.1776e-01f,
|
972 |
+
-1.1351e-02f, -3.7861e-01f, 1.8687e-01f,
|
973 |
+
4.0551e-02f, 8.1943e-02f, 1.0866e-01f,
|
974 |
+
1.0273e-01f, 1.1844e-01f, -1.1852e-01f,
|
975 |
+
2.6758e-02f, -8.5806e-02f, 5.9444e-02f,
|
976 |
+
-5.1627e-02f, 7.1636e-02f, 2.2841e-01f,
|
977 |
+
-3.7242e-03f, 2.9723e-01f, 1.1918e-01f,
|
978 |
+
8.4994e-02f, -3.5747e-01f, 3.6148e-02f,
|
979 |
+
9.9705e-02f, -1.3736e-01f, -6.0080e-02f,
|
980 |
+
1.2370e-01f, 5.0668e-02f, -6.0246e-02f,
|
981 |
+
6.0562e-02f, -3.5068e-01f, -3.2645e-01f,
|
982 |
+
9.1020e-04f, 6.6203e-02f, -1.0770e-01f,
|
983 |
+
1.9434e-02f, 3.0018e-01f, 2.8018e-01f,
|
984 |
+
1.4021e-01f, 2.7481e-01f, 2.2868e-01f,
|
985 |
+
4.8540e-02f, 1.7719e-01f, -4.5834e-02f,
|
986 |
+
-9.6349e-02f, -2.3008e-02f, -1.4497e-01f,
|
987 |
+
4.3053e-02f, -1.0161e-01f, 2.8750e-02f,
|
988 |
+
-1.2594e-01f, -1.0388e-02f, -4.3966e-02f,
|
989 |
+
7.5993e-02f, -7.1609e-02f, 1.4624e-02f,
|
990 |
+
4.1110e-02f, 7.1258e-02f, -2.9109e-02f,
|
991 |
+
-5.8698e-03f, 1.2389e-01f, 4.7648e-02f,
|
992 |
+
-6.1585e-04f, -4.4556e-02f, -2.3373e-02f,
|
993 |
+
-4.4883e-02f, -7.7722e-02f, -7.3635e-02f,
|
994 |
+
-2.7750e-02f, -1.5117e-03f, -8.7368e-02f,
|
995 |
+
2.5113e-02f, 7.7490e-02f, 2.9024e-02f,
|
996 |
+
1.5426e-01f, 2.5472e-01f, 4.8057e-02f,
|
997 |
+
-1.1969e-01f, -1.1487e-01f, -1.1802e-01f,
|
998 |
+
-4.7392e-02f, -4.2226e-02f, 3.1968e-02f,
|
999 |
+
-2.6717e-01f, -5.0206e-02f, 8.1946e-04f,
|
1000 |
+
-4.0426e-02f, 1.4373e-01f, -3.3121e-03f,
|
1001 |
+
-4.5292e-02f, -2.4538e-02f, 1.0377e-01f,
|
1002 |
+
-1.7780e-02f, 2.0058e-01f, -2.4343e-02f,
|
1003 |
+
-1.1714e-02f, 1.5984e-01f, -1.2638e-01f,
|
1004 |
+
6.4655e-02f, 3.7703e-02f, 3.7970e-02f,
|
1005 |
+
9.1864e-03f, 1.1468e-01f, -6.2760e-04f,
|
1006 |
+
-1.4812e-01f, 6.5670e-03f, 1.0765e-01f,
|
1007 |
+
1.5023e-01f, -7.0594e-02f, -1.3924e-01f,
|
1008 |
+
3.6016e-02f, -3.9078e-02f, -3.8950e-02f,
|
1009 |
+
1.8735e-02f, -1.5573e-01f, -1.2456e-01f
|
1010 |
+
}
|
1011 |
+
,
|
1012 |
+
{
|
1013 |
+
4.8634e-02f, -1.3617e-01f, 6.1231e-02f,
|
1014 |
+
-7.0235e-02f, -6.4110e-01f, 1.5985e-01f,
|
1015 |
+
8.6151e-02f, 1.1847e-01f, 1.3819e-01f,
|
1016 |
+
-3.6017e-04f, -3.2273e-02f, -8.5485e-02f,
|
1017 |
+
-7.0804e-03f, 2.1751e-01f, 7.2575e-03f,
|
1018 |
+
-8.3606e-02f, -1.4885e-01f, -1.2702e-01f,
|
1019 |
+
4.0848e-41f, 8.0934e-40f, -1.8889e-40f,
|
1020 |
+
-3.9103e-40f, -7.4709e-40f, 3.8377e-40f,
|
1021 |
+
-2.4159e-40f, -4.7610e-40f, 7.7359e-40f,
|
1022 |
+
-8.6217e-05f, -5.9763e-05f, -4.0558e-05f,
|
1023 |
+
-7.4966e-05f, -4.7074e-05f, -3.1656e-05f,
|
1024 |
+
-9.8390e-05f, -6.6833e-05f, -4.7669e-05f,
|
1025 |
+
3.5375e-02f, 2.8660e-02f, 4.1277e-02f,
|
1026 |
+
1.6289e-01f, -3.2199e-01f, -1.7845e-02f,
|
1027 |
+
2.4659e-01f, -3.9618e-02f, 4.1065e-03f,
|
1028 |
+
2.7267e-02f, 8.6819e-02f, 9.5070e-02f,
|
1029 |
+
-7.2700e-02f, -2.8826e-01f, 1.1750e-03f,
|
1030 |
+
2.5259e-02f, 2.4681e-03f, 6.4737e-02f,
|
1031 |
+
7.3023e-03f, 2.9631e-02f, 1.0820e-02f,
|
1032 |
+
-2.1400e-02f, 5.4244e-01f, 1.5639e-01f,
|
1033 |
+
-1.7561e-01f, 4.8947e-01f, -8.8305e-02f,
|
1034 |
+
6.5073e-02f, 3.4922e-01f, 1.3483e-01f,
|
1035 |
+
1.4506e-01f, -2.5472e-01f, -7.2894e-02f,
|
1036 |
+
4.5945e-02f, 1.4040e-01f, 1.2148e-01f,
|
1037 |
+
-2.6932e-01f, -1.1518e-01f, -9.3158e-03f,
|
1038 |
+
-2.3961e-01f, -1.2479e-01f, -8.9796e-02f,
|
1039 |
+
1.8688e-02f, -4.9267e-02f, 7.7189e-02f,
|
1040 |
+
-7.3691e-02f, 7.8186e-03f, 1.3761e-02f,
|
1041 |
+
-1.5689e-01f, 3.1138e-02f, 3.9231e-02f,
|
1042 |
+
-4.3607e-03f, 2.0813e-01f, 5.5635e-02f,
|
1043 |
+
-6.7000e-41f, 9.8995e-41f, 3.0043e-40f,
|
1044 |
+
6.7190e-40f, 4.0827e-40f, 7.6057e-40f,
|
1045 |
+
4.2208e-40f, 8.1141e-40f, -3.3569e-40f,
|
1046 |
+
1.0179e-03f, 5.1543e-04f, 3.8076e-04f,
|
1047 |
+
7.3507e-04f, 4.5432e-04f, 3.7410e-04f,
|
1048 |
+
9.3014e-04f, 6.7365e-04f, 6.0051e-04f,
|
1049 |
+
-5.1998e-02f, 6.5768e-02f, 3.1603e-02f,
|
1050 |
+
-3.0198e-02f, -3.1692e-02f, -6.9299e-02f,
|
1051 |
+
1.7672e-02f, 2.3766e-01f, 5.7877e-02f,
|
1052 |
+
-5.7944e-02f, 1.2624e-01f, -1.4396e-01f,
|
1053 |
+
-4.1542e-02f, 6.5110e-01f, 1.0942e-01f,
|
1054 |
+
-1.3133e-01f, 5.0538e-02f, -2.7371e-02f,
|
1055 |
+
-3.7515e-02f, 2.8703e-02f, 1.2382e-03f,
|
1056 |
+
3.8542e-01f, -2.2754e-02f, 3.4459e-02f,
|
1057 |
+
3.0545e-01f, -5.3817e-01f, -2.1389e-03f,
|
1058 |
+
1.3888e-02f, -2.2775e-01f, -6.3692e-02f,
|
1059 |
+
-1.8430e-01f, 5.8452e-02f, 4.5764e-02f,
|
1060 |
+
-8.5045e-02f, -1.7060e-01f, -1.8565e-02f,
|
1061 |
+
-2.0384e-02f, -3.3018e-02f, -5.1135e-02f,
|
1062 |
+
-4.5789e-02f, -1.8105e-01f, 3.5419e-02f,
|
1063 |
+
-5.0081e-02f, 8.7719e-02f, 1.0373e-01f,
|
1064 |
+
-1.0033e-02f, 7.0530e-02f, -7.8012e-03f,
|
1065 |
+
8.4042e-02f, 1.1982e-01f, -9.6046e-02f,
|
1066 |
+
-6.4009e-02f, -1.0711e-01f, -1.3523e-01f,
|
1067 |
+
1.8868e-41f, -7.0039e-40f, -7.2568e-40f,
|
1068 |
+
1.7408e-40f, -7.8143e-40f, -6.8130e-40f,
|
1069 |
+
-6.3142e-40f, -6.2560e-40f, -7.4238e-40f,
|
1070 |
+
2.6297e-04f, 7.0014e-05f, -4.0981e-04f,
|
1071 |
+
2.6263e-04f, 4.2811e-05f, -4.9950e-04f,
|
1072 |
+
3.9795e-04f, 1.2615e-04f, -4.7660e-04f,
|
1073 |
+
7.5933e-02f, 2.6295e-02f, 2.7984e-02f,
|
1074 |
+
-5.5914e-03f, -8.7981e-02f, -9.2618e-02f,
|
1075 |
+
4.2725e-02f, -3.1210e-01f, 1.3412e-01f,
|
1076 |
+
5.2683e-02f, 3.9891e-01f, 2.9150e-02f,
|
1077 |
+
-6.6090e-02f, 2.9455e-01f, -1.9710e-01f,
|
1078 |
+
1.4546e-02f, -2.5572e-02f, 8.1125e-02f,
|
1079 |
+
1.2271e-01f, 1.6097e-01f, 4.5644e-02f,
|
1080 |
+
3.6101e-02f, -1.7174e-02f, 6.6110e-02f,
|
1081 |
+
1.5078e-01f, 4.5180e-01f, 7.7154e-02f,
|
1082 |
+
-5.9725e-02f, 1.0185e-01f, 1.1363e-03f,
|
1083 |
+
6.7791e-02f, 1.7696e-02f, 5.2638e-02f,
|
1084 |
+
3.3051e-02f, -8.4049e-02f, 1.4380e-01f,
|
1085 |
+
1.8744e-02f, -2.0940e-01f, -2.1424e-01f,
|
1086 |
+
-2.1329e-01f, -1.3154e-01f, -3.2572e-01f,
|
1087 |
+
1.1292e-01f, 1.2361e-02f, -1.5506e-01f,
|
1088 |
+
-1.0362e-02f, 1.9955e-02f, 4.2639e-02f,
|
1089 |
+
-2.1952e-02f, -2.4682e-02f, -2.4453e-02f,
|
1090 |
+
-2.5606e-02f, -3.3580e-02f, -3.6340e-02f,
|
1091 |
+
-5.0830e-40f, 6.3797e-40f, -5.2775e-40f,
|
1092 |
+
-7.7988e-40f, -7.4579e-40f, -5.1901e-40f,
|
1093 |
+
-3.8275e-41f, -5.7607e-40f, -1.3656e-40f,
|
1094 |
+
2.7164e-04f, 5.9977e-04f, 8.6886e-04f,
|
1095 |
+
3.0116e-04f, 7.0106e-04f, 1.0248e-03f,
|
1096 |
+
2.9177e-04f, 6.4748e-04f, 9.4825e-04f,
|
1097 |
+
6.6310e-02f, 1.5240e-02f, -5.3044e-02f,
|
1098 |
+
1.2545e-01f, 5.0582e-02f, 2.7358e-02f,
|
1099 |
+
1.9338e-01f, 1.1377e-01f, 4.6110e-02f,
|
1100 |
+
-3.1997e-02f, 1.5171e-02f, -4.9372e-02f,
|
1101 |
+
5.4615e-04f, 1.7262e-01f, -2.2081e-01f,
|
1102 |
+
8.4871e-02f, 1.7824e-02f, -3.6429e-02f,
|
1103 |
+
4.2821e-02f, -1.0055e-01f, 4.8927e-02f,
|
1104 |
+
1.2524e-01f, 5.8859e-02f, -2.0980e-02f,
|
1105 |
+
2.2897e-01f, 1.7594e-01f, 3.4239e-02f,
|
1106 |
+
1.0915e-01f, 1.2088e-01f, 1.0151e-01f,
|
1107 |
+
6.8449e-03f, -1.5546e-01f, 1.2024e-01f,
|
1108 |
+
4.9036e-02f, -1.2245e-01f, 4.6713e-02f,
|
1109 |
+
7.5083e-03f, -4.8084e-02f, 9.7731e-03f,
|
1110 |
+
4.8779e-02f, 3.1848e-02f, -9.3517e-02f,
|
1111 |
+
6.4595e-02f, 3.9337e-02f, -7.2343e-02f,
|
1112 |
+
3.9519e-02f, 4.1867e-02f, -5.0485e-02f,
|
1113 |
+
2.5257e-02f, 1.4071e-01f, 1.3606e-01f,
|
1114 |
+
1.7481e-01f, 2.0210e-01f, 1.7241e-01f,
|
1115 |
+
-7.6295e-40f, -7.8460e-40f, -4.1806e-41f,
|
1116 |
+
-7.9994e-40f, -7.3271e-40f, -6.2665e-40f,
|
1117 |
+
-7.9602e-40f, -7.0226e-40f, -7.4131e-40f,
|
1118 |
+
-4.5544e-04f, -5.2379e-04f, -7.0755e-04f,
|
1119 |
+
-3.3807e-04f, -3.8123e-04f, -5.3222e-04f,
|
1120 |
+
-3.1771e-04f, -3.4586e-04f, -4.8784e-04f,
|
1121 |
+
-3.5257e-02f, -1.1866e-02f, 1.9717e-02f,
|
1122 |
+
-6.0777e-02f, -7.3127e-03f, -3.2825e-02f,
|
1123 |
+
-1.4952e-01f, 3.2117e-01f, -6.3786e-02f,
|
1124 |
+
-1.0255e-02f, 1.2961e-01f, -8.6823e-02f,
|
1125 |
+
1.6994e-01f, 4.7491e-01f, 2.7135e-01f,
|
1126 |
+
2.8538e-03f, 1.5572e-01f, -3.3736e-02f,
|
1127 |
+
8.5996e-02f, -1.0176e-02f, 2.6629e-02f,
|
1128 |
+
7.3362e-02f, -7.7525e-03f, 5.6261e-02f,
|
1129 |
+
1.0819e-01f, -2.5863e-01f, -5.7146e-03f,
|
1130 |
+
-7.1781e-02f, 2.8376e-03f, 7.8298e-02f,
|
1131 |
+
1.3183e-01f, 2.7149e-02f, -9.9786e-02f,
|
1132 |
+
9.0491e-02f, 8.7938e-02f, -2.1882e-02f,
|
1133 |
+
4.1396e-03f, -4.5816e-02f, -7.8892e-02f,
|
1134 |
+
-6.3855e-03f, 1.7502e-01f, 1.2053e-01f,
|
1135 |
+
1.2492e-01f, 6.1258e-02f, -4.0516e-02f,
|
1136 |
+
-4.5409e-02f, -4.5877e-02f, -7.6414e-02f,
|
1137 |
+
-1.0573e-02f, -1.2517e-01f, -4.3991e-02f,
|
1138 |
+
-2.6447e-02f, -9.5478e-02f, -2.4735e-02f,
|
1139 |
+
-4.6548e-41f, -1.6443e-40f, -3.1221e-40f,
|
1140 |
+
-3.2675e-40f, -2.7265e-40f, -3.1190e-40f,
|
1141 |
+
-2.2065e-40f, -2.5407e-40f, -6.9511e-40f,
|
1142 |
+
-1.2727e-04f, -2.6585e-04f, -3.5516e-04f,
|
1143 |
+
3.4272e-05f, -1.6810e-04f, -3.1677e-04f,
|
1144 |
+
-5.5355e-05f, -2.9924e-04f, -4.3692e-04f,
|
1145 |
+
-5.6428e-02f, 1.0771e-01f, 1.0185e-01f,
|
1146 |
+
2.2948e-01f, -7.8744e-02f, 6.0768e-04f,
|
1147 |
+
-2.2355e-03f, -2.0128e-03f, -5.7317e-03f,
|
1148 |
+
-7.1232e-03f, 1.0297e-01f, 1.6872e-01f,
|
1149 |
+
1.9194e-01f, -1.1578e-01f, 1.0732e-01f,
|
1150 |
+
-8.6952e-02f, 3.2901e-02f, -6.6658e-03f,
|
1151 |
+
7.3979e-02f, 8.3875e-02f, -7.6372e-03f,
|
1152 |
+
1.9577e-01f, 2.7391e-01f, 4.5275e-02f,
|
1153 |
+
1.5610e-01f, 2.3802e-01f, 1.6555e-02f,
|
1154 |
+
1.3814e-01f, 1.2870e-01f, 9.1626e-02f,
|
1155 |
+
-4.6890e-02f, -8.8734e-02f, 7.8866e-02f,
|
1156 |
+
1.0027e-01f, 2.2139e-01f, 1.0050e-01f,
|
1157 |
+
-6.5845e-02f, -1.0990e-01f, -6.9896e-02f,
|
1158 |
+
4.1687e-02f, 3.0631e-02f, -8.8441e-02f,
|
1159 |
+
-1.1868e-01f, 1.0836e-02f, 2.5873e-02f,
|
1160 |
+
-1.7114e-02f, 7.6295e-02f, 1.5439e-02f,
|
1161 |
+
-2.4271e-02f, 5.8538e-02f, 9.8190e-02f,
|
1162 |
+
4.9742e-02f, 8.7807e-02f, 6.5871e-02f,
|
1163 |
+
-7.2669e-40f, -7.5936e-41f, -7.4975e-40f,
|
1164 |
+
-1.6984e-42f, -1.7334e-40f, -8.4954e-41f,
|
1165 |
+
-2.1556e-41f, -1.5374e-40f, -1.5515e-40f,
|
1166 |
+
-6.2626e-04f, -7.2727e-04f, -8.1665e-04f,
|
1167 |
+
-5.6584e-04f, -6.1190e-04f, -6.9584e-04f,
|
1168 |
+
-5.6278e-04f, -5.8554e-04f, -6.3554e-04f,
|
1169 |
+
8.1550e-02f, -4.1817e-03f, 1.2301e-02f,
|
1170 |
+
-4.5800e-02f, 4.6708e-02f, -8.7972e-02f,
|
1171 |
+
-2.9880e-01f, 2.6456e-01f, 3.9363e-03f,
|
1172 |
+
-3.0939e-02f, -1.9921e-01f, -3.8689e-03f,
|
1173 |
+
-8.6803e-02f, 3.4857e-01f, -1.0201e-01f,
|
1174 |
+
2.1597e-02f, 1.4380e-02f, 4.3448e-02f,
|
1175 |
+
7.1195e-02f, 1.4980e-01f, 3.8079e-02f,
|
1176 |
+
-1.2678e-01f, -8.1274e-02f, -4.3445e-02f,
|
1177 |
+
5.2482e-02f, -1.8763e-01f, 1.1557e-01f,
|
1178 |
+
-9.4614e-02f, 5.4415e-02f, -3.1485e-02f,
|
1179 |
+
-3.6451e-02f, 1.4379e-01f, 5.2291e-02f,
|
1180 |
+
-9.2069e-02f, 9.5675e-02f, -5.8433e-02f,
|
1181 |
+
7.5768e-03f, -7.1280e-02f, -1.4576e-01f,
|
1182 |
+
-1.4671e-01f, -1.2446e-01f, -1.5207e-01f,
|
1183 |
+
-5.4368e-02f, 3.8303e-02f, -8.1794e-02f,
|
1184 |
+
2.0492e-02f, 4.0910e-02f, 1.1379e-02f,
|
1185 |
+
3.1582e-02f, 3.6039e-02f, -4.4040e-03f,
|
1186 |
+
1.7540e-02f, 1.4097e-04f, -6.4367e-02f,
|
1187 |
+
-7.9553e-40f, -5.3941e-40f, -7.1912e-40f,
|
1188 |
+
-5.8099e-40f, -6.8315e-40f, -6.6012e-40f,
|
1189 |
+
-7.6242e-40f, -5.4784e-40f, -7.0267e-40f,
|
1190 |
+
-2.9197e-04f, -2.1994e-04f, -1.9501e-04f,
|
1191 |
+
-2.6516e-05f, -1.2642e-05f, -8.4345e-05f,
|
1192 |
+
1.6763e-04f, 1.1268e-04f, -5.4516e-05f,
|
1193 |
+
-3.8007e-03f, -6.8765e-02f, -9.5716e-02f,
|
1194 |
+
6.3091e-02f, -8.1971e-02f, -9.2895e-02f,
|
1195 |
+
-6.8353e-03f, 7.3639e-02f, 1.3505e-01f,
|
1196 |
+
9.0083e-02f, 2.4352e-01f, 3.9708e-02f,
|
1197 |
+
-5.4051e-02f, -6.8748e-02f, -1.8937e-01f,
|
1198 |
+
-1.9808e-03f, -7.1337e-02f, -2.8316e-02f,
|
1199 |
+
8.1504e-02f, 8.3226e-03f, 6.9013e-03f,
|
1200 |
+
9.4393e-02f, 5.9322e-02f, 5.5023e-02f,
|
1201 |
+
1.0236e-01f, -4.0205e-02f, 3.5172e-02f,
|
1202 |
+
6.5381e-02f, 4.9075e-02f, -5.3931e-02f,
|
1203 |
+
4.3961e-02f, 9.0223e-03f, -4.1678e-02f,
|
1204 |
+
-6.4262e-02f, -5.0304e-02f, -9.3597e-02f
|
1205 |
+
}
|
1206 |
+
,
|
1207 |
+
{
|
1208 |
+
3.8496e-01f, 1.4287e-01f, 3.4530e-02f,
|
1209 |
+
-5.5398e-01f, -6.0381e-02f, 1.2078e-02f,
|
1210 |
+
7.9983e-02f, 2.1478e-01f, -5.7915e-02f,
|
1211 |
+
-1.4020e-01f, -2.6914e-02f, 1.5915e-02f,
|
1212 |
+
1.2371e-01f, 2.5496e-01f, -2.9867e-02f,
|
1213 |
+
1.3269e-02f, -9.9596e-02f, -2.3173e-01f,
|
1214 |
+
5.1471e-02f, -4.5507e-01f, -7.7620e-02f,
|
1215 |
+
-5.1328e-02f, -1.9808e-02f, -4.7051e-02f,
|
1216 |
+
3.0573e-02f, 7.8762e-02f, -7.2627e-02f,
|
1217 |
+
6.8690e-02f, -4.0125e-02f, 5.6657e-02f,
|
1218 |
+
8.0208e-02f, -2.0075e-02f, 1.4019e-01f,
|
1219 |
+
-5.7959e-02f, -7.3152e-02f, 2.0202e-02f,
|
1220 |
+
-8.8702e-02f, -1.9911e-01f, -1.5570e-01f,
|
1221 |
+
2.8401e-02f, 5.8802e-02f, 1.3050e-01f,
|
1222 |
+
2.1905e-02f, -3.4298e-02f, 4.0447e-02f,
|
1223 |
+
1.0184e-01f, -9.0101e-02f, -9.2770e-02f,
|
1224 |
+
1.1713e-02f, -3.2514e-01f, 1.9393e-01f,
|
1225 |
+
-9.4227e-02f, 2.7053e-01f, -9.7233e-02f,
|
1226 |
+
-1.0478e-01f, 6.0652e-02f, 8.3399e-02f,
|
1227 |
+
1.1104e-01f, 2.9008e-01f, 4.9208e-02f,
|
1228 |
+
-1.5414e-02f, 3.1718e-02f, -7.9083e-02f,
|
1229 |
+
-5.2358e-03f, 9.0101e-02f, 5.2973e-02f,
|
1230 |
+
5.5527e-02f, -1.6599e-02f, -8.5167e-02f,
|
1231 |
+
-5.1018e-02f, 7.2243e-03f, -9.5684e-02f,
|
1232 |
+
-5.0608e-02f, -6.7864e-02f, -8.9496e-02f,
|
1233 |
+
-2.4348e-01f, 2.7477e-01f, -1.7588e-01f,
|
1234 |
+
1.3927e-01f, 5.5502e-02f, -1.3370e-02f,
|
1235 |
+
-4.3509e-02f, -2.1511e-01f, -5.9070e-02f,
|
1236 |
+
1.0293e-01f, 4.2678e-01f, -8.7527e-02f,
|
1237 |
+
-6.8546e-02f, -5.6296e-02f, -8.7962e-02f,
|
1238 |
+
-8.6130e-02f, 9.2069e-02f, 7.2303e-02f,
|
1239 |
+
2.4365e-02f, 2.1988e-01f, -7.9408e-03f,
|
1240 |
+
-3.0063e-02f, 1.1554e-01f, -5.0311e-02f,
|
1241 |
+
1.0605e-02f, 5.4598e-02f, 1.3826e-02f,
|
1242 |
+
-1.4342e-02f, 1.5353e-01f, -5.3974e-03f,
|
1243 |
+
1.5583e-01f, -6.0889e-02f, -1.5772e-02f,
|
1244 |
+
-2.5956e-02f, -3.5285e-01f, -2.0338e-01f,
|
1245 |
+
2.6011e-01f, 2.2737e-01f, -1.4693e-01f,
|
1246 |
+
-7.7964e-02f, 1.0053e-01f, -5.4278e-02f,
|
1247 |
+
-3.0668e-02f, 3.4556e-02f, -3.4321e-02f,
|
1248 |
+
7.8695e-02f, -2.2357e-01f, 9.5733e-02f,
|
1249 |
+
1.7483e-01f, -1.5153e-01f, -1.8262e-03f,
|
1250 |
+
4.7605e-02f, -2.2834e-01f, 4.6383e-02f,
|
1251 |
+
1.5701e-01f, 3.2264e-01f, 1.0334e-02f,
|
1252 |
+
6.3351e-02f, 1.1340e-01f, 8.3478e-02f,
|
1253 |
+
6.4196e-02f, 3.3460e-02f, 8.8473e-02f,
|
1254 |
+
5.4663e-02f, -1.7665e-03f, -4.1935e-02f,
|
1255 |
+
-6.1346e-03f, -5.4463e-02f, -6.2960e-02f,
|
1256 |
+
2.8159e-02f, 2.9903e-02f, 9.2429e-03f,
|
1257 |
+
-3.0041e-02f, -9.7783e-02f, -4.9500e-02f,
|
1258 |
+
9.5350e-02f, -7.9143e-02f, -1.3244e-01f,
|
1259 |
+
-6.5129e-02f, 1.4568e-01f, 6.6843e-02f,
|
1260 |
+
1.5241e-01f, -7.8736e-02f, 1.0721e-01f,
|
1261 |
+
-5.9015e-02f, 1.5320e-01f, 3.0796e-01f,
|
1262 |
+
-5.4266e-03f, -6.0804e-02f, 3.7326e-02f,
|
1263 |
+
7.4844e-02f, 4.8340e-02f, 1.5251e-01f,
|
1264 |
+
3.8158e-02f, 1.2087e-01f, -8.9003e-02f,
|
1265 |
+
-5.8369e-02f, -7.3813e-02f, 1.2240e-02f,
|
1266 |
+
-4.5106e-03f, 7.4580e-02f, 1.2042e-01f,
|
1267 |
+
4.1959e-02f, 1.4529e-01f, 5.3636e-03f,
|
1268 |
+
-4.9708e-03f, -1.0775e-02f, -5.9374e-02f,
|
1269 |
+
1.5358e-02f, 1.7277e-02f, -1.5412e-01f,
|
1270 |
+
8.1647e-02f, 3.3503e-02f, -8.1934e-02f,
|
1271 |
+
-1.5807e-02f, -1.0001e-02f, -1.0059e-02f,
|
1272 |
+
-9.0493e-03f, -7.8954e-02f, 4.3891e-02f,
|
1273 |
+
-9.3815e-03f, 3.2241e-02f, 4.7962e-02f,
|
1274 |
+
-7.2252e-03f, 7.9324e-02f, 2.0662e-02f,
|
1275 |
+
-5.7710e-02f, -5.1142e-02f, -1.4296e-01f,
|
1276 |
+
2.1501e-02f, -1.9518e-02f, -2.7658e-02f,
|
1277 |
+
1.4983e-01f, 8.5447e-02f, 7.2092e-04f,
|
1278 |
+
1.1275e-01f, 6.1131e-02f, 5.7955e-02f,
|
1279 |
+
1.5624e-02f, 2.7225e-01f, 1.1716e-01f,
|
1280 |
+
-1.6322e-04f, -1.3368e-04f, -1.5575e-04f,
|
1281 |
+
-1.0525e-04f, -1.0765e-04f, -1.5306e-04f,
|
1282 |
+
-8.9692e-05f, -1.0857e-04f, -1.7316e-04f,
|
1283 |
+
-1.8015e-03f, -1.3733e-03f, -3.9154e-04f,
|
1284 |
+
-1.8453e-03f, -1.4238e-03f, -4.4163e-04f,
|
1285 |
+
-1.5511e-03f, -1.1131e-03f, -2.0087e-04f,
|
1286 |
+
-2.4082e-03f, -2.2576e-03f, -1.9231e-03f,
|
1287 |
+
-2.4913e-03f, -2.4136e-03f, -2.1678e-03f,
|
1288 |
+
-2.5057e-03f, -2.4650e-03f, -2.2732e-03f,
|
1289 |
+
-2.3901e-05f, -1.5870e-05f, -5.8255e-06f,
|
1290 |
+
-1.5163e-05f, -1.2370e-05f, -6.0712e-06f,
|
1291 |
+
-1.3098e-05f, -1.1132e-05f, -5.7866e-06f,
|
1292 |
+
-5.9760e-03f, -5.9998e-03f, -6.0295e-03f,
|
1293 |
+
-5.9962e-03f, -6.0100e-03f, -6.0277e-03f,
|
1294 |
+
-6.0003e-03f, -6.0059e-03f, -6.0148e-03f,
|
1295 |
+
-3.2764e-05f, -2.9574e-05f, -2.8001e-05f,
|
1296 |
+
-1.0846e-05f, -1.1569e-05f, -1.4282e-05f,
|
1297 |
+
-1.6255e-06f, -2.5666e-06f, -4.7808e-06f,
|
1298 |
+
-5.1999e-03f, -5.2334e-03f, -5.2847e-03f,
|
1299 |
+
-5.2057e-03f, -5.2283e-03f, -5.2713e-03f,
|
1300 |
+
-5.2195e-03f, -5.2321e-03f, -5.2633e-03f,
|
1301 |
+
-3.0782e-06f, -9.2118e-06f, -1.6177e-05f,
|
1302 |
+
-1.6382e-06f, -6.9559e-06f, -1.4245e-05f,
|
1303 |
+
-1.1471e-06f, -6.5984e-06f, -1.4903e-05f,
|
1304 |
+
7.7574e-02f, -1.2866e-02f, 4.1348e-03f,
|
1305 |
+
-6.7298e-02f, -1.3691e-01f, 6.4079e-02f,
|
1306 |
+
3.7962e-02f, 8.7737e-02f, -4.1046e-02f,
|
1307 |
+
-2.8471e-02f, 1.7647e-01f, 6.4232e-02f,
|
1308 |
+
1.2316e-01f, 3.6800e-01f, -1.5740e-01f,
|
1309 |
+
-6.0839e-02f, 1.5449e-02f, -1.0761e-01f,
|
1310 |
+
-6.6869e-02f, -1.2867e-01f, -4.0195e-02f,
|
1311 |
+
-4.9651e-02f, -5.5500e-02f, -2.5879e-02f,
|
1312 |
+
2.0179e-02f, 6.8467e-02f, 2.6575e-02f,
|
1313 |
+
-6.7728e-04f, -7.6269e-02f, 2.3470e-02f,
|
1314 |
+
7.1869e-02f, -1.1855e-01f, -2.1067e-02f,
|
1315 |
+
1.3263e-01f, -3.2957e-02f, -3.4365e-03f,
|
1316 |
+
8.1936e-02f, 1.3073e-01f, 1.1477e-01f,
|
1317 |
+
1.2429e-01f, 1.6129e-01f, 1.6251e-01f,
|
1318 |
+
1.5476e-02f, 3.2862e-02f, 2.1999e-02f,
|
1319 |
+
-2.9189e-02f, -3.3615e-02f, 5.5616e-04f,
|
1320 |
+
-2.4059e-02f, -9.6181e-03f, -4.1175e-02f,
|
1321 |
+
-6.3680e-04f, -9.6559e-02f, -9.1448e-02f,
|
1322 |
+
3.0238e-02f, 1.2534e-01f, 1.5256e-02f,
|
1323 |
+
-4.2118e-02f, 1.5723e-01f, 2.6929e-03f,
|
1324 |
+
1.9873e-02f, 5.3050e-02f, -1.0153e-03f,
|
1325 |
+
2.0634e-02f, 9.2825e-03f, -6.8027e-03f,
|
1326 |
+
3.1335e-03f, -7.7443e-03f, -1.8307e-02f,
|
1327 |
+
7.9974e-03f, -1.0283e-03f, -6.2520e-03f,
|
1328 |
+
4.5050e-02f, 9.9504e-02f, -1.3404e-01f,
|
1329 |
+
-6.7271e-01f, -5.7290e-02f, 2.6919e-02f,
|
1330 |
+
2.3673e-01f, 2.4688e-02f, -2.0227e-02f,
|
1331 |
+
5.1389e-02f, -3.9810e-02f, -8.9700e-02f,
|
1332 |
+
2.8445e-02f, 3.9136e-01f, -1.1508e-01f,
|
1333 |
+
-1.0449e-01f, -6.2005e-02f, 6.5721e-02f,
|
1334 |
+
-1.9123e-01f, -4.2613e-02f, 3.5371e-02f,
|
1335 |
+
1.9207e-01f, 8.7916e-02f, 4.8089e-02f,
|
1336 |
+
-5.7912e-02f, 1.0014e-01f, -9.4659e-02f,
|
1337 |
+
1.1240e-02f, -6.2254e-03f, 1.3399e-01f,
|
1338 |
+
1.6483e-01f, -3.5079e-01f, 1.1612e-02f,
|
1339 |
+
2.9215e-01f, 5.6875e-02f, 6.9505e-02f,
|
1340 |
+
1.3721e-02f, 1.2607e-01f, 2.6426e-02f,
|
1341 |
+
-2.0529e-01f, 2.1768e-01f, 2.1232e-01f,
|
1342 |
+
-6.3574e-02f, 2.3504e-02f, -1.0811e-01f,
|
1343 |
+
-1.3470e-02f, -3.6446e-02f, -5.4379e-02f,
|
1344 |
+
-1.3257e-01f, -8.3412e-02f, 3.7745e-02f,
|
1345 |
+
5.8778e-02f, -2.6060e-01f, 3.8262e-02f,
|
1346 |
+
-4.3689e-03f, -6.6703e-02f, -2.2025e-01f,
|
1347 |
+
-9.0961e-02f, 1.3855e-01f, 3.4573e-04f,
|
1348 |
+
-2.9613e-01f, -3.6138e-02f, -1.3827e-01f,
|
1349 |
+
4.5896e-02f, -5.3871e-02f, -1.0037e-01f,
|
1350 |
+
1.8457e-01f, 1.0338e-01f, -5.7306e-02f,
|
1351 |
+
5.5510e-02f, -9.4938e-02f, -5.6527e-05f,
|
1352 |
+
1.6372e-01f, -3.3854e-02f, 5.6332e-02f,
|
1353 |
+
-4.0251e-01f, -5.9428e-02f, -9.1470e-02f,
|
1354 |
+
-1.5921e-02f, -5.7948e-02f, 8.1682e-03f,
|
1355 |
+
-3.7833e-03f, 1.6293e-01f, 5.3784e-02f,
|
1356 |
+
1.1053e-01f, -1.3867e-01f, 2.6772e-02f,
|
1357 |
+
-1.3133e-02f, 3.7614e-01f, 3.6361e-03f,
|
1358 |
+
-1.4205e-01f, 3.1312e-02f, -9.9928e-02f,
|
1359 |
+
-1.5755e-01f, 4.2016e-01f, 9.4065e-02f,
|
1360 |
+
2.7536e-02f, 1.2620e-01f, -1.4894e-01f,
|
1361 |
+
-4.2137e-02f, -9.8700e-02f, -1.7479e-01f,
|
1362 |
+
4.5836e-02f, 5.3893e-02f, -1.0138e-01f,
|
1363 |
+
8.3609e-02f, 2.1849e-02f, -1.0648e-01f,
|
1364 |
+
7.4801e-02f, -1.2671e-01f, -1.5007e-02f,
|
1365 |
+
2.7440e-01f, -3.1351e-01f, 6.5787e-02f,
|
1366 |
+
-6.7820e-02f, 1.6312e-01f, -1.3254e-02f,
|
1367 |
+
-2.5770e-02f, -2.0041e-02f, 5.8243e-02f,
|
1368 |
+
1.6055e-02f, 1.1971e-02f, -4.6112e-02f,
|
1369 |
+
-1.6276e-01f, -1.5313e-02f, -7.9826e-03f,
|
1370 |
+
9.1668e-02f, 9.7722e-02f, 1.3754e-01f,
|
1371 |
+
-7.4817e-02f, -4.1923e-01f, -1.2337e-01f,
|
1372 |
+
1.3472e-01f, -4.0745e-02f, -5.4055e-02f,
|
1373 |
+
-1.2943e-02f, 4.8796e-02f, 4.2007e-02f,
|
1374 |
+
9.4668e-02f, 8.6149e-02f, 1.2362e-01f,
|
1375 |
+
7.0637e-02f, 2.3565e-01f, 1.4582e-01f,
|
1376 |
+
5.6904e-02f, -8.2166e-02f, 1.0563e-01f,
|
1377 |
+
9.3969e-02f, -2.2909e-01f, 4.6537e-02f,
|
1378 |
+
6.5257e-02f, 1.4804e-01f, -6.2092e-02f,
|
1379 |
+
-1.5699e-02f, -1.5303e-02f, 1.6671e-01f,
|
1380 |
+
-6.1947e-03f, 2.5749e-01f, 1.5257e-01f,
|
1381 |
+
3.2908e-02f, -5.9907e-02f, 1.1502e-01f,
|
1382 |
+
7.5876e-02f, -2.6699e-01f, -1.5891e-02f,
|
1383 |
+
-8.0426e-02f, 1.3406e-01f, -1.9881e-02f,
|
1384 |
+
3.5472e-02f, -8.2140e-02f, 1.6509e-02f,
|
1385 |
+
8.3390e-03f, -7.8291e-02f, -2.0754e-01f,
|
1386 |
+
3.4490e-02f, 2.7913e-01f, 5.9566e-02f,
|
1387 |
+
2.5288e-02f, 1.1725e-01f, -1.0356e-01f,
|
1388 |
+
-5.0955e-02f, 9.2093e-02f, -5.8477e-02f,
|
1389 |
+
4.4325e-02f, 3.2973e-02f, -1.9477e-01f,
|
1390 |
+
3.9582e-02f, -8.6877e-02f, -1.1753e-01f,
|
1391 |
+
3.0401e-02f, -2.8757e-02f, -2.5563e-02f,
|
1392 |
+
5.0741e-02f, -3.5056e-01f, -2.5584e-01f,
|
1393 |
+
9.1709e-02f, -4.0932e-02f, 2.3812e-01f,
|
1394 |
+
5.0945e-02f, 4.9246e-02f, 1.2738e-01f,
|
1395 |
+
5.1440e-03f, 1.5703e-01f, 5.5743e-02f,
|
1396 |
+
-3.9492e-02f, 1.2114e-01f, 2.0531e-02f,
|
1397 |
+
8.0800e-02f, 2.6680e-03f, -1.6660e-02f,
|
1398 |
+
1.0684e-01f, 1.2308e-01f, 1.7882e-02f,
|
1399 |
+
1.8280e-02f, 1.0972e-01f, -5.2912e-03f
|
1400 |
+
}
|
1401 |
+
,
|
1402 |
+
{
|
1403 |
+
-1.3812e-02f, -4.6271e-02f, 7.3790e-02f,
|
1404 |
+
-6.3801e-02f, -3.6817e-01f, -1.7880e-02f,
|
1405 |
+
5.2986e-02f, 1.8626e-01f, 1.5645e-03f,
|
1406 |
+
1.2367e-02f, -6.2923e-02f, 3.0844e-02f,
|
1407 |
+
9.3623e-02f, 1.9527e-01f, -2.6366e-02f,
|
1408 |
+
-2.0837e-02f, -3.4424e-02f, 4.0256e-02f,
|
1409 |
+
4.1482e-02f, 6.1795e-02f, -1.1293e-02f,
|
1410 |
+
-8.9944e-02f, -1.3608e-01f, 1.8067e-02f,
|
1411 |
+
3.6974e-02f, 5.2530e-03f, -2.7474e-02f,
|
1412 |
+
1.1872e-05f, 1.9000e-05f, 2.0729e-05f,
|
1413 |
+
1.0139e-05f, 1.6832e-05f, 1.9392e-05f,
|
1414 |
+
6.5445e-06f, 1.0973e-05f, 1.3521e-05f,
|
1415 |
+
-5.3340e-02f, 1.3108e-03f, 4.0436e-02f,
|
1416 |
+
5.7068e-02f, -2.7923e-02f, -5.4781e-02f,
|
1417 |
+
-2.9293e-02f, 2.7145e-02f, 2.7340e-02f,
|
1418 |
+
5.3520e-03f, 1.8766e-02f, 4.0297e-01f,
|
1419 |
+
2.6473e-02f, -3.4675e-02f, -1.1783e-01f,
|
1420 |
+
-2.5038e-02f, -1.7702e-02f, -3.4908e-02f,
|
1421 |
+
1.4847e-02f, 2.3237e-01f, -6.3687e-02f,
|
1422 |
+
-6.5672e-02f, -2.1888e-01f, -1.7233e-02f,
|
1423 |
+
4.0608e-02f, -6.9580e-02f, -2.2200e-02f,
|
1424 |
+
5.8163e-02f, 1.3695e-01f, -2.6257e-02f,
|
1425 |
+
-1.3328e-01f, -3.5730e-01f, 2.4507e-02f,
|
1426 |
+
-4.5611e-03f, 2.0424e-01f, -3.9821e-02f,
|
1427 |
+
5.5300e-02f, -1.6006e-01f, 1.1717e-01f,
|
1428 |
+
-2.6107e-02f, -8.6995e-02f, 8.3720e-02f,
|
1429 |
+
7.5494e-02f, 3.2189e-01f, 1.5527e-01f,
|
1430 |
+
-6.6869e-02f, 1.4469e-01f, 5.1805e-02f,
|
1431 |
+
9.8760e-02f, -1.6759e-01f, -1.2350e-01f,
|
1432 |
+
5.7005e-02f, 8.4904e-02f, 8.9713e-02f,
|
1433 |
+
-1.4263e-02f, 2.8914e-02f, 3.2239e-02f,
|
1434 |
+
-2.4871e-02f, 5.6014e-02f, -4.4469e-02f,
|
1435 |
+
3.1209e-02f, 1.3677e-02f, -2.1052e-02f,
|
1436 |
+
-1.6548e-03f, -1.8796e-03f, -1.9883e-03f,
|
1437 |
+
-1.6186e-03f, -1.8494e-03f, -1.9670e-03f,
|
1438 |
+
-1.5841e-03f, -1.8173e-03f, -1.9345e-03f,
|
1439 |
+
3.5726e-02f, 1.8013e-01f, 1.6913e-02f,
|
1440 |
+
-1.2168e-01f, -6.3848e-02f, 3.0555e-02f,
|
1441 |
+
3.0269e-02f, -1.0260e-01f, -1.5259e-02f,
|
1442 |
+
-4.7375e-03f, 5.5115e-02f, 6.2642e-01f,
|
1443 |
+
9.9776e-03f, -2.1988e-01f, -2.0984e-01f,
|
1444 |
+
7.0470e-03f, 6.3178e-02f, -1.3607e-02f,
|
1445 |
+
1.1918e-01f, -2.4081e-01f, 1.7889e-01f,
|
1446 |
+
-1.0514e-01f, 2.9220e-01f, -1.3263e-01f,
|
1447 |
+
5.6091e-03f, -4.1623e-02f, 2.5589e-02f,
|
1448 |
+
-1.8496e-01f, 2.7698e-02f, -6.5768e-02f,
|
1449 |
+
2.9677e-01f, 4.4163e-02f, 5.8530e-02f,
|
1450 |
+
-1.1010e-01f, -7.6787e-02f, 3.9844e-02f,
|
1451 |
+
5.2113e-03f, -1.8202e-02f, 1.4129e-03f,
|
1452 |
+
-6.1402e-03f, -2.7222e-01f, 7.4690e-02f,
|
1453 |
+
1.9131e-02f, 2.2753e-01f, 1.9587e-02f,
|
1454 |
+
-2.7391e-02f, 6.7917e-03f, 2.0496e-03f,
|
1455 |
+
6.7333e-02f, 7.8262e-02f, 2.1110e-03f,
|
1456 |
+
-5.4519e-02f, 3.0763e-02f, 1.5628e-02f,
|
1457 |
+
9.5055e-02f, 3.8855e-02f, 1.2446e-02f,
|
1458 |
+
-1.5152e-01f, 7.8124e-02f, -1.2616e-02f,
|
1459 |
+
9.3100e-03f, -1.6528e-02f, -1.2873e-02f,
|
1460 |
+
-1.8377e-03f, -1.9231e-03f, -1.8930e-03f,
|
1461 |
+
-1.8058e-03f, -1.8841e-03f, -1.8678e-03f,
|
1462 |
+
-1.7387e-03f, -1.7966e-03f, -1.7781e-03f,
|
1463 |
+
-4.5122e-02f, 1.7027e-03f, -3.5534e-03f,
|
1464 |
+
8.5222e-03f, 1.0130e-01f, 4.7893e-02f,
|
1465 |
+
6.5574e-02f, 7.2150e-03f, -2.1820e-03f,
|
1466 |
+
-5.5105e-03f, -1.8990e-01f, 2.6527e-02f,
|
1467 |
+
6.6140e-03f, 2.1537e-01f, -2.2183e-02f,
|
1468 |
+
-8.0628e-03f, 6.8398e-03f, 9.4474e-03f,
|
1469 |
+
1.2239e-01f, -1.3337e-01f, 7.3391e-02f,
|
1470 |
+
-1.2205e-01f, 1.3145e-01f, -2.0063e-02f,
|
1471 |
+
2.2168e-02f, 3.6097e-03f, 2.7146e-02f,
|
1472 |
+
4.6717e-02f, 2.1122e-02f, 1.5491e-02f,
|
1473 |
+
-1.3077e-01f, 1.1635e-01f, 1.0849e-02f,
|
1474 |
+
8.0113e-02f, -8.4028e-02f, 1.2863e-03f,
|
1475 |
+
-2.9796e-02f, -8.4537e-02f, -2.6766e-03f,
|
1476 |
+
-7.7771e-03f, -2.4274e-03f, 8.6274e-02f,
|
1477 |
+
-2.0354e-02f, 4.1245e-02f, 8.4227e-02f,
|
1478 |
+
5.5894e-02f, 1.0706e-01f, 5.2965e-02f,
|
1479 |
+
-7.8731e-03f, 5.5825e-01f, 1.0373e-01f,
|
1480 |
+
-1.1975e-01f, -2.0071e-02f, -2.5286e-02f,
|
1481 |
+
-7.7477e-02f, 5.3589e-02f, -1.5710e-03f,
|
1482 |
+
-1.2753e-01f, 2.5166e-01f, 8.2205e-03f,
|
1483 |
+
-9.8349e-02f, -4.9539e-02f, -5.4941e-02f,
|
1484 |
+
-4.9916e-03f, -4.9986e-03f, -5.0660e-03f,
|
1485 |
+
-4.9770e-03f, -4.9840e-03f, -5.0543e-03f,
|
1486 |
+
-4.9997e-03f, -5.0114e-03f, -5.0809e-03f,
|
1487 |
+
6.1819e-02f, 1.5061e-01f, 1.1984e-02f,
|
1488 |
+
1.2905e-01f, 2.5921e-01f, 1.4768e-01f,
|
1489 |
+
4.5548e-02f, 1.4902e-01f, -4.8961e-03f,
|
1490 |
+
-1.3605e-02f, 8.2896e-02f, -4.1931e-01f,
|
1491 |
+
-2.2657e-02f, 2.4768e-01f, 2.6528e-01f,
|
1492 |
+
-1.1566e-02f, -8.7819e-03f, 4.3618e-02f,
|
1493 |
+
-3.4332e-02f, -1.8392e-01f, 4.4471e-02f,
|
1494 |
+
-3.7073e-02f, -5.4620e-02f, 1.0899e-01f,
|
1495 |
+
3.7891e-02f, 9.9487e-02f, 3.2383e-02f,
|
1496 |
+
-6.3628e-02f, -5.0303e-03f, 5.4617e-02f,
|
1497 |
+
-8.7802e-02f, 2.1977e-01f, -6.0249e-03f,
|
1498 |
+
6.3554e-02f, -5.4291e-02f, -2.6709e-02f,
|
1499 |
+
-1.5505e-02f, -6.7104e-02f, 3.8607e-02f,
|
1500 |
+
-1.1427e-01f, -3.2524e-01f, 4.0077e-02f,
|
1501 |
+
-6.5144e-03f, 1.2313e-01f, -2.7924e-02f,
|
1502 |
+
1.4265e-02f, -3.8338e-02f, 8.6780e-02f,
|
1503 |
+
1.5341e-01f, 1.2174e-01f, -7.3160e-02f,
|
1504 |
+
2.6326e-04f, 7.3690e-02f, 5.2187e-02f,
|
1505 |
+
-3.3114e-02f, -3.6588e-02f, 1.1635e-02f,
|
1506 |
+
-3.3521e-02f, 1.0767e-01f, -8.9125e-03f,
|
1507 |
+
-2.2431e-02f, -4.5655e-03f, 7.5531e-03f,
|
1508 |
+
6.7227e-04f, 7.2856e-04f, 7.3907e-04f,
|
1509 |
+
6.5335e-04f, 7.0702e-04f, 7.1233e-04f,
|
1510 |
+
6.1540e-04f, 6.7286e-04f, 6.7797e-04f,
|
1511 |
+
-3.1496e-02f, 6.0514e-02f, 4.2013e-02f,
|
1512 |
+
-2.8617e-02f, 1.4846e-02f, 4.0016e-03f,
|
1513 |
+
4.7006e-03f, -4.0017e-02f, -3.0411e-02f,
|
1514 |
+
-9.6037e-03f, 8.8522e-02f, 9.8616e-02f,
|
1515 |
+
4.1297e-02f, -3.2645e-01f, -7.6144e-03f,
|
1516 |
+
-1.0711e-02f, 3.9324e-02f, 4.0144e-02f,
|
1517 |
+
5.2899e-02f, -7.8668e-02f, -5.4798e-02f,
|
1518 |
+
-2.0428e-01f, 5.7238e-02f, -3.6937e-02f,
|
1519 |
+
-3.6103e-02f, -8.2683e-02f, -2.8101e-02f,
|
1520 |
+
8.2479e-02f, 5.7766e-02f, -1.2019e-01f,
|
1521 |
+
-3.8373e-01f, 6.8272e-02f, -1.1758e-02f,
|
1522 |
+
5.1129e-02f, -2.7931e-01f, 4.5608e-02f,
|
1523 |
+
-2.5151e-02f, -5.0816e-02f, 1.7231e-02f,
|
1524 |
+
-3.6376e-02f, 1.5916e-01f, 2.9192e-02f,
|
1525 |
+
-4.1947e-02f, 5.3183e-02f, -9.7289e-02f,
|
1526 |
+
4.6138e-02f, 7.0842e-02f, 1.6673e-02f,
|
1527 |
+
-1.7243e-03f, 2.7203e-01f, 3.8262e-02f,
|
1528 |
+
-1.4000e-01f, -7.3793e-02f, -2.0050e-02f,
|
1529 |
+
-1.8750e-02f, -8.5319e-02f, -3.0858e-02f,
|
1530 |
+
-5.9981e-02f, 1.2729e-01f, 1.4094e-02f,
|
1531 |
+
-5.4088e-02f, -2.3694e-02f, -9.7485e-03f,
|
1532 |
+
-4.7840e-03f, -4.8359e-03f, -4.8727e-03f,
|
1533 |
+
-4.7882e-03f, -4.8380e-03f, -4.8755e-03f,
|
1534 |
+
-4.7859e-03f, -4.8321e-03f, -4.8633e-03f,
|
1535 |
+
4.9511e-02f, 1.0935e-01f, -3.7430e-03f,
|
1536 |
+
1.1834e-01f, 7.7243e-02f, 4.3074e-02f,
|
1537 |
+
6.7446e-02f, 2.9734e-02f, -1.1276e-02f,
|
1538 |
+
-2.0080e-02f, 1.3561e-01f, -1.3455e-01f,
|
1539 |
+
-1.4505e-02f, 2.2100e-01f, 4.9635e-02f,
|
1540 |
+
-1.0040e-02f, 3.4560e-02f, -7.4607e-03f,
|
1541 |
+
-6.8873e-02f, -5.6221e-02f, 1.2255e-02f,
|
1542 |
+
-2.9198e-02f, 7.1612e-02f, 2.9402e-02f,
|
1543 |
+
4.1036e-02f, 4.6417e-02f, 6.0284e-03f,
|
1544 |
+
-6.5261e-02f, 2.1426e-03f, 2.4192e-02f,
|
1545 |
+
-1.6073e-03f, -6.2222e-03f, -1.8295e-02f,
|
1546 |
+
2.4952e-04f, -2.0623e-02f, -3.3064e-03f,
|
1547 |
+
5.9188e-02f, -4.8839e-02f, 7.9840e-02f,
|
1548 |
+
-6.7952e-02f, -4.7191e-01f, 1.5117e-01f,
|
1549 |
+
1.5668e-01f, 2.4733e-01f, 1.1354e-01f,
|
1550 |
+
1.7742e-02f, -4.4059e-02f, 9.5374e-03f,
|
1551 |
+
3.2049e-01f, -1.3779e-01f, 9.6608e-02f,
|
1552 |
+
8.4580e-02f, 1.4293e-01f, 6.1574e-02f,
|
1553 |
+
2.8777e-03f, 7.8795e-02f, -5.1902e-02f,
|
1554 |
+
1.2212e-01f, 1.0321e-01f, 3.2360e-02f,
|
1555 |
+
-9.6617e-02f, 7.8941e-03f, -7.0876e-02f,
|
1556 |
+
3.5869e-03f, 3.5891e-03f, 3.5923e-03f,
|
1557 |
+
3.5746e-03f, 3.5840e-03f, 3.5967e-03f,
|
1558 |
+
3.5785e-03f, 3.5932e-03f, 3.6080e-03f,
|
1559 |
+
1.5454e-03f, 3.0582e-03f, 4.3737e-02f,
|
1560 |
+
-5.9833e-02f, -1.1247e-01f, 4.4380e-02f,
|
1561 |
+
-1.3206e-01f, 8.2778e-03f, 4.7963e-02f,
|
1562 |
+
-4.3720e-02f, -7.5722e-03f, 2.0510e-01f,
|
1563 |
+
3.0133e-02f, -4.0506e-01f, 2.7867e-01f,
|
1564 |
+
5.5586e-02f, 2.8926e-02f, 1.3360e-03f,
|
1565 |
+
1.9490e-05f, 3.3326e-01f, -7.7241e-02f,
|
1566 |
+
-1.5648e-01f, 1.5195e-01f, -1.3995e-01f,
|
1567 |
+
8.6519e-02f, 1.0447e-01f, -4.1413e-02f,
|
1568 |
+
-3.8667e-03f, 1.6159e-01f, 1.1627e-01f,
|
1569 |
+
-2.2646e-01f, -3.4758e-02f, -6.7956e-03f,
|
1570 |
+
-3.2689e-01f, 1.9606e-01f, -9.1523e-02f,
|
1571 |
+
1.1238e-02f, 1.5084e-03f, 4.2113e-02f,
|
1572 |
+
-1.1154e-02f, -3.6596e-01f, -7.2252e-02f,
|
1573 |
+
6.6621e-02f, 1.0188e-01f, 4.1032e-01f,
|
1574 |
+
3.5892e-02f, -4.8304e-02f, 6.6142e-03f,
|
1575 |
+
1.3374e-01f, 2.2720e-01f, -7.1224e-02f,
|
1576 |
+
6.8952e-02f, 2.0467e-01f, 5.0251e-02f,
|
1577 |
+
-6.2016e-02f, 2.2175e-01f, -1.7764e-02f,
|
1578 |
+
2.7542e-02f, 1.4905e-01f, 3.6637e-02f,
|
1579 |
+
-7.2231e-02f, 5.0271e-03f, -7.1823e-02f,
|
1580 |
+
3.5760e-03f, 3.5540e-03f, 3.5692e-03f,
|
1581 |
+
3.5664e-03f, 3.5490e-03f, 3.5689e-03f,
|
1582 |
+
3.5671e-03f, 3.5619e-03f, 3.5864e-03f,
|
1583 |
+
2.7470e-02f, -3.9752e-02f, 4.1063e-02f,
|
1584 |
+
-2.4985e-02f, -1.7969e-01f, 8.2186e-02f,
|
1585 |
+
-5.4251e-02f, -5.9651e-03f, 2.5079e-02f,
|
1586 |
+
-2.1197e-02f, 2.5426e-02f, 1.3585e-01f,
|
1587 |
+
-1.3460e-02f, -1.1377e-01f, 1.2278e-01f,
|
1588 |
+
3.6533e-02f, 1.2843e-02f, 5.6219e-02f,
|
1589 |
+
5.8141e-04f, 2.8354e-01f, -6.2016e-02f,
|
1590 |
+
-1.0289e-01f, 1.8724e-01f, -9.9475e-02f,
|
1591 |
+
5.1193e-02f, 7.5986e-02f, -1.2951e-03f,
|
1592 |
+
-8.2587e-02f, 1.8498e-01f, 1.0891e-01f,
|
1593 |
+
1.3538e-01f, -4.7728e-01f, 1.0868e-01f,
|
1594 |
+
-8.6415e-02f, -1.7061e-01f, 1.0457e-02f
|
1595 |
+
}
|
1596 |
+
};
|
1597 |
+
__device__ __constant__ static const float biasL[8][8] =
|
1598 |
+
{
|
1599 |
+
{
|
1600 |
+
-0.1175f, -0.0258f, -0.0053f, -0.0437f, -0.0563f, -0.1047f, -0.3449f, 0.0568f
|
1601 |
+
}
|
1602 |
+
,
|
1603 |
+
{
|
1604 |
+
0.0339f, -0.1738f, 0.0061f, 0.1565f, -0.0316f, -0.0016f, -0.0032f, -0.0554f
|
1605 |
+
}
|
1606 |
+
,
|
1607 |
+
{
|
1608 |
+
-0.0508f, -0.0609f, 0.0347f, -0.0802f, -0.0438f, 0.2512f, -0.0491f, -0.0259f
|
1609 |
+
}
|
1610 |
+
,
|
1611 |
+
{
|
1612 |
+
0.0655f, 0.0255f, 0.0228f, -0.0027f, -0.0155f, -0.0163f, -0.0174f, -0.1095f
|
1613 |
+
}
|
1614 |
+
,
|
1615 |
+
{
|
1616 |
+
4.9947e-03f, 5.3372e-03f, -4.5286e-09f, -1.3756e-03f, 3.8858e-03f, -4.4197e-02f, 3.3970e-02f, 2.8411e-02f
|
1617 |
+
}
|
1618 |
+
,
|
1619 |
+
{
|
1620 |
+
-0.0396f, 0.0007f, 0.1735f, 0.0109f, 0.1177f, 0.0919f, 0.0567f, -0.0005f
|
1621 |
+
}
|
1622 |
+
,
|
1623 |
+
{
|
1624 |
+
0.0127f, -0.0688f, 0.1102f, -0.0052f, 0.1602f, -0.0191f, -0.0322f, 0.0311f
|
1625 |
+
}
|
1626 |
+
,
|
1627 |
+
{
|
1628 |
+
0.0063f, 0.0093f, 0.0729f, 0.3734f, 0.0006f, 0.1915f, 0.3186f, 0.2636f
|
1629 |
+
}
|
1630 |
+
};
|
1631 |
+
__device__ __constant__ static const float kernelsL10[4 * 8] =
|
1632 |
+
{
|
1633 |
+
-0.0967f, -0.3094f,
|
1634 |
+
0.3537f, 0.5705f,
|
1635 |
+
0.2547f, 0.3360f,
|
1636 |
+
-0.0718f, -0.0700f,
|
1637 |
+
-0.3013f, -0.1602f,
|
1638 |
+
0.4520f, 0.0495f,
|
1639 |
+
0.1564f, 0.3773f,
|
1640 |
+
-0.0216f, 0.4367f,
|
1641 |
+
-0.4855f, -0.1972f,
|
1642 |
+
-0.2026f, -0.4390f,
|
1643 |
+
0.3743f, -0.1156f,
|
1644 |
+
0.4408f, -0.3123f,
|
1645 |
+
-0.3577f, 0.0753f,
|
1646 |
+
-0.3396f, 0.0336f,
|
1647 |
+
0.1052f, -0.4180f,
|
1648 |
+
0.0799f, -0.3587f
|
1649 |
+
};
|
1650 |
+
|
1651 |
+
#include "ACNetCommon.cuh"
|
1652 |
+
|
1653 |
+
DECLARE_ACNET_HDN_INTERFACE_FUNCTION(3)
|
cuda_code/Activation_27.cu
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#define _USE_MATH_DEFINES
|
2 |
+
|
3 |
+
#include <ATen/native/Activation.h>
|
4 |
+
|
5 |
+
#include <cmath>
|
6 |
+
|
7 |
+
#include <thrust/tuple.h>
|
8 |
+
|
9 |
+
#include <ATen/ATen.h>
|
10 |
+
#include <ATen/AccumulateType.h>
|
11 |
+
#include <ATen/Dispatch.h>
|
12 |
+
#include <ATen/NativeFunctions.h>
|
13 |
+
#include <ATen/core/Array.h>
|
14 |
+
#include <ATen/cuda/CUDAApplyUtils.cuh>
|
15 |
+
#include <ATen/cuda/detail/IndexUtils.cuh>
|
16 |
+
#include <ATen/cuda/detail/OffsetCalculator.cuh>
|
17 |
+
#include <ATen/native/cuda/Loops.cuh>
|
18 |
+
#include <c10/cuda/CUDAMathCompat.h>
|
19 |
+
|
20 |
+
namespace at {
|
21 |
+
namespace native {
|
22 |
+
|
23 |
+
// -----------------------------------
|
24 |
+
// prelu forward
|
25 |
+
// -----------------------------------
|
26 |
+
template <typename scalar_t>
|
27 |
+
void prelu_cuda_kernel_share_weights(
|
28 |
+
const Tensor& input,
|
29 |
+
Tensor& result,
|
30 |
+
const scalar_t* weight_data)
|
31 |
+
{
|
32 |
+
auto iter = TensorIterator::unary_op(result, input);
|
33 |
+
|
34 |
+
at::native::gpu_kernel(iter,
|
35 |
+
[weight_data] GPU_LAMBDA (scalar_t input_val) {
|
36 |
+
return (input_val > 0) ? input_val : *weight_data * input_val;
|
37 |
+
});
|
38 |
+
}
|
39 |
+
|
40 |
+
template <typename scalar_t>
|
41 |
+
__global__ void prelu_cuda_kernel_multi_weights(
|
42 |
+
scalar_t* result_data,
|
43 |
+
const scalar_t* input_data,
|
44 |
+
const scalar_t* weight_data,
|
45 |
+
int64_t input_stride0,
|
46 |
+
int64_t input_stride1,
|
47 |
+
int64_t input_numel) {
|
48 |
+
|
49 |
+
int64_t linearId = blockIdx.x * blockDim.x + threadIdx.x;
|
50 |
+
if (linearId >= input_numel) return;
|
51 |
+
|
52 |
+
// multiply values at each channel with weight[channel_index]
|
53 |
+
int64_t channel = (linearId % input_stride0) / input_stride1;
|
54 |
+
scalar_t input_data_val = input_data[linearId];
|
55 |
+
result_data[linearId] = (input_data_val > 0) ? input_data_val : weight_data[channel] * input_data_val;
|
56 |
+
}
|
57 |
+
|
58 |
+
Tensor prelu_cuda(const Tensor& self, const Tensor& weight_) {
|
59 |
+
TORCH_CHECK(self.is_cuda());
|
60 |
+
TORCH_CHECK(weight_.is_cuda());
|
61 |
+
|
62 |
+
auto input = self.contiguous();
|
63 |
+
auto weight = weight_.contiguous();
|
64 |
+
|
65 |
+
TORCH_CHECK(input.is_contiguous());
|
66 |
+
TORCH_CHECK(weight.is_contiguous());
|
67 |
+
|
68 |
+
int64_t weight_num = weight.numel();
|
69 |
+
Tensor result = at::empty_like(input, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
|
70 |
+
auto strides = input.strides();
|
71 |
+
|
72 |
+
// case1: shared weight for all channels
|
73 |
+
if (weight_num == 1) {
|
74 |
+
AT_DISPATCH_FLOATING_TYPES_AND(at::ScalarType::Half, input.scalar_type(), "prelu_cuda", [&] {
|
75 |
+
prelu_cuda_kernel_share_weights<scalar_t>(
|
76 |
+
input,
|
77 |
+
result,
|
78 |
+
weight.data_ptr<scalar_t>());
|
79 |
+
});
|
80 |
+
}
|
81 |
+
else { // case2: multiple weights, one for each channel
|
82 |
+
int64_t input_ndim = input.dim();
|
83 |
+
TORCH_CHECK(input_ndim > 0, "Not allow zero-dim input tensor.");
|
84 |
+
|
85 |
+
int64_t channel_size = 1; // channel_size default to 1
|
86 |
+
int64_t input_stride0 = 1, input_stride1 = 1;
|
87 |
+
|
88 |
+
if (input_ndim > 1) {
|
89 |
+
channel_size = input.size(1); // channel is the 2nd dim of input
|
90 |
+
input_stride0 = strides[0];
|
91 |
+
input_stride1 = strides[1];
|
92 |
+
}
|
93 |
+
TORCH_CHECK(channel_size == weight_num,
|
94 |
+
"Mismatch of parameter numbers and input channel size. Found parameter numbers = ", weight_num,
|
95 |
+
" and channel size = ", channel_size, ".");
|
96 |
+
|
97 |
+
// config to run cuda kernel
|
98 |
+
int64_t input_numel = input.numel();
|
99 |
+
const dim3 block = dim3(std::min(static_cast<int64_t>(cuda::getApplyBlock().x), input_numel));
|
100 |
+
dim3 grid;
|
101 |
+
int curDevice = -1;
|
102 |
+
cudaGetDevice(&curDevice);
|
103 |
+
cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice);
|
104 |
+
TORCH_CHECK(cuda::getApplyGrid(input_numel, grid, curDevice), "prelu: input too large or too many dimensions");
|
105 |
+
|
106 |
+
AT_DISPATCH_FLOATING_TYPES_AND(at::ScalarType::Half, input.scalar_type(), "prelu_cuda", [&] {
|
107 |
+
prelu_cuda_kernel_multi_weights<scalar_t>
|
108 |
+
<<<grid, block, 0, stream>>>(
|
109 |
+
result.data_ptr<scalar_t>(),
|
110 |
+
input.data_ptr<scalar_t>(),
|
111 |
+
weight.data_ptr<scalar_t>(),
|
112 |
+
input_stride0,
|
113 |
+
input_stride1,
|
114 |
+
input_numel);
|
115 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
116 |
+
});
|
117 |
+
}
|
118 |
+
return result;
|
119 |
+
}
|
120 |
+
|
121 |
+
// -----------------------------------
|
122 |
+
// prelu backward
|
123 |
+
// -----------------------------------
|
124 |
+
template <typename scalar_t>
|
125 |
+
void prelu_cuda_backward_kernel_share_weights(
|
126 |
+
const Tensor& input,
|
127 |
+
const Tensor& grad_out,
|
128 |
+
Tensor& input_grad,
|
129 |
+
Tensor& weight_grad_collector,
|
130 |
+
const scalar_t* weight_data) {
|
131 |
+
at::TensorIterator iter = TensorIteratorConfig()
|
132 |
+
.add_borrowed_output(input_grad)
|
133 |
+
.add_borrowed_output(weight_grad_collector)
|
134 |
+
.add_borrowed_input(input)
|
135 |
+
.add_borrowed_input(grad_out)
|
136 |
+
.build();
|
137 |
+
|
138 |
+
// N.B. `std::tuple` does not support `::operator=` on device code.
|
139 |
+
gpu_kernel_multiple_outputs(iter, [=] GPU_LAMBDA (scalar_t input, scalar_t grad_out) -> thrust::tuple<scalar_t, scalar_t> {
|
140 |
+
scalar_t input_grad = input > 0 ? grad_out : (*weight_data) * grad_out;
|
141 |
+
scalar_t weight_grad_collector = input > 0 ? scalar_t(0) : input * grad_out;
|
142 |
+
return {input_grad, weight_grad_collector};
|
143 |
+
});
|
144 |
+
}
|
145 |
+
|
146 |
+
template <typename scalar_t>
|
147 |
+
__global__ void prelu_cuda_backward_kernel_multi_weights(
|
148 |
+
const scalar_t* input_data,
|
149 |
+
const scalar_t* weight_data,
|
150 |
+
const scalar_t* grad_out_data,
|
151 |
+
scalar_t* input_grad_data,
|
152 |
+
scalar_t* weight_grad_collector,
|
153 |
+
int64_t input_stride0,
|
154 |
+
int64_t input_stride1,
|
155 |
+
int64_t input_numel) {
|
156 |
+
|
157 |
+
int64_t linearId = blockIdx.x * blockDim.x + threadIdx.x;
|
158 |
+
if (linearId >= input_numel) return;
|
159 |
+
int64_t channel = (linearId % input_stride0) / input_stride1;
|
160 |
+
scalar_t input_data_val = input_data[linearId];
|
161 |
+
scalar_t grad_out_data_val = grad_out_data[linearId];
|
162 |
+
input_grad_data[linearId] = (input_data_val > 0) ? grad_out_data_val : weight_data[channel] * grad_out_data_val;
|
163 |
+
weight_grad_collector[linearId] = (input_data_val > 0) ? scalar_t(0) : input_data_val * grad_out_data_val;
|
164 |
+
}
|
165 |
+
|
166 |
+
std::tuple<Tensor, Tensor> prelu_backward_cuda(const Tensor& grad_out_, const Tensor& self, const Tensor& weight_) {
|
167 |
+
TORCH_CHECK(grad_out_.is_cuda());
|
168 |
+
TORCH_CHECK(self.is_cuda());
|
169 |
+
TORCH_CHECK(weight_.is_cuda());
|
170 |
+
|
171 |
+
auto input = self.contiguous();
|
172 |
+
auto grad_out = grad_out_.contiguous();
|
173 |
+
auto weight = weight_.contiguous();
|
174 |
+
|
175 |
+
TORCH_CHECK(input.is_contiguous());
|
176 |
+
TORCH_CHECK(weight.is_contiguous());
|
177 |
+
TORCH_CHECK(grad_out.is_contiguous());
|
178 |
+
|
179 |
+
int64_t weight_num = weight.numel();
|
180 |
+
auto strides = input.strides();
|
181 |
+
auto dims = input.dim();
|
182 |
+
Tensor input_grad = at::empty_like(input, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
|
183 |
+
Tensor weight_grad = at::empty_like(weight, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
|
184 |
+
Tensor weight_grad_collector = at::empty_like(input, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
|
185 |
+
// case1: shared parameter for all channels
|
186 |
+
if (weight_num == 1) {
|
187 |
+
AT_DISPATCH_FLOATING_TYPES_AND(at::ScalarType::Half, input.scalar_type(), "prelu_backward_cuda", [&] {
|
188 |
+
prelu_cuda_backward_kernel_share_weights<scalar_t>(
|
189 |
+
input,
|
190 |
+
grad_out,
|
191 |
+
input_grad,
|
192 |
+
weight_grad_collector,
|
193 |
+
weight.data_ptr<scalar_t>());
|
194 |
+
});
|
195 |
+
weight_grad.fill_(weight_grad_collector.sum());
|
196 |
+
}
|
197 |
+
else { // case2: multiple parameters, one for each channel
|
198 |
+
int64_t input_ndim = input.dim();
|
199 |
+
TORCH_CHECK(input_ndim > 0, "Not allow zero-dim input tensor.");
|
200 |
+
|
201 |
+
int64_t channel_size = 1; // channel_size default to 1
|
202 |
+
int64_t input_stride0 = 1, input_stride1 = 1;
|
203 |
+
|
204 |
+
if (input_ndim > 1) {
|
205 |
+
channel_size = input.size(1); // channel is the 2nd dim of input
|
206 |
+
input_stride0 = strides[0];
|
207 |
+
input_stride1 = strides[1];
|
208 |
+
}
|
209 |
+
TORCH_CHECK(channel_size == weight_num,
|
210 |
+
"Mismatch of parameter numbers and input channel size. Found parameter numbers = ", weight_num,
|
211 |
+
" and channel size = ", channel_size, ".");
|
212 |
+
|
213 |
+
// config to run cuda kernel
|
214 |
+
int64_t input_numel = input.numel();
|
215 |
+
const dim3 block = dim3(std::min(static_cast<int64_t>(cuda::getApplyBlock().x), input_numel));
|
216 |
+
dim3 grid;
|
217 |
+
int curDevice = -1;
|
218 |
+
cudaGetDevice(&curDevice);
|
219 |
+
cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice);
|
220 |
+
TORCH_CHECK(cuda::getApplyGrid(input_numel, grid, curDevice), "prelu_backward_cuda: input too large or too many dimensions");
|
221 |
+
|
222 |
+
AT_DISPATCH_FLOATING_TYPES_AND(at::ScalarType::Half, input.scalar_type(), "prelu_backward_cuda", [&] {
|
223 |
+
prelu_cuda_backward_kernel_multi_weights<scalar_t>
|
224 |
+
<<<grid, block, 0, stream>>>(
|
225 |
+
input.data_ptr<scalar_t>(),
|
226 |
+
weight.data_ptr<scalar_t>(),
|
227 |
+
grad_out.data_ptr<scalar_t>(),
|
228 |
+
input_grad.data_ptr<scalar_t>(),
|
229 |
+
weight_grad_collector.data_ptr<scalar_t>(),
|
230 |
+
input_stride0,
|
231 |
+
input_stride1,
|
232 |
+
input_numel);
|
233 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
234 |
+
});
|
235 |
+
// update weight_grad
|
236 |
+
std::vector<int64_t> reduce_dims;
|
237 |
+
reduce_dims.push_back(0);
|
238 |
+
if (dims > 2) {
|
239 |
+
for(int64_t i = 2; i < dims; i++) reduce_dims.push_back(i);
|
240 |
+
}
|
241 |
+
weight_grad = weight_grad_collector.sum(reduce_dims);
|
242 |
+
}
|
243 |
+
return std::tuple<Tensor, Tensor>{input_grad, weight_grad};
|
244 |
+
}
|
245 |
+
|
246 |
+
// -----------------------------------
|
247 |
+
// hardshrink
|
248 |
+
// -----------------------------------
|
249 |
+
void hardshrink_kernel(TensorIterator& iter, const Scalar& value) {
|
250 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "hardshrink_cuda", [&]() {
|
251 |
+
auto lambd = value.to<scalar_t>();
|
252 |
+
gpu_kernel(iter, [lambd]GPU_LAMBDA(scalar_t a) -> scalar_t {
|
253 |
+
return (a >= -lambd && a <= lambd) ? scalar_t(0) : a;
|
254 |
+
});
|
255 |
+
});
|
256 |
+
}
|
257 |
+
|
258 |
+
void softshrink_kernel(TensorIteratorBase& iter, const Scalar& value) {
|
259 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "softshrink_cuda", [&]() {
|
260 |
+
auto lambd = value.to<scalar_t>();
|
261 |
+
gpu_kernel(iter, [lambd]GPU_LAMBDA(scalar_t a) -> scalar_t {
|
262 |
+
return a > lambd ? a - lambd : (a < -lambd ? a + lambd : scalar_t(0));
|
263 |
+
});
|
264 |
+
});
|
265 |
+
}
|
266 |
+
|
267 |
+
void shrink_backward_kernel(TensorIterator& iter, const Scalar& value) {
|
268 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "shrink_backward_cuda", [&]() {
|
269 |
+
auto lambd = value.to<scalar_t>();
|
270 |
+
gpu_kernel(iter, [lambd]GPU_LAMBDA(scalar_t grad_val, scalar_t self_val) -> scalar_t {
|
271 |
+
return (self_val >= -lambd && self_val <= lambd) ? scalar_t(0) : grad_val;
|
272 |
+
});
|
273 |
+
});
|
274 |
+
}
|
275 |
+
|
276 |
+
void hardtanh_backward_kernel(TensorIterator& iter, const Scalar& min, const Scalar& max) {
|
277 |
+
AT_DISPATCH_FLOATING_TYPES_AND(at::ScalarType::Half, iter.dtype(), "hardtanh_backward_cuda", [&]() {
|
278 |
+
auto min_val = min.to<scalar_t>();
|
279 |
+
auto max_val = max.to<scalar_t>();
|
280 |
+
gpu_kernel(iter, [min_val, max_val]GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t {
|
281 |
+
return (b <= min_val) || (b >= max_val) ? scalar_t(0) : a;
|
282 |
+
});
|
283 |
+
});
|
284 |
+
}
|
285 |
+
|
286 |
+
void softplus_kernel(TensorIteratorBase& iter, const Scalar& beta_, const Scalar& threshold_) {
|
287 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "softplus_cuda", [&]() {
|
288 |
+
auto beta = beta_.to<scalar_t>();
|
289 |
+
auto threshold = threshold_.to<scalar_t>();
|
290 |
+
gpu_kernel(iter, [beta, threshold]GPU_LAMBDA(scalar_t a) -> scalar_t {
|
291 |
+
return (a * beta) > threshold ? a : static_cast<scalar_t>(::log1p(std::exp(a * beta))) / beta;
|
292 |
+
});
|
293 |
+
});
|
294 |
+
}
|
295 |
+
|
296 |
+
void softplus_backward_kernel(TensorIteratorBase& iter, const Scalar& beta_, const Scalar& threshold_) {
|
297 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "softplus_backward_cuda", [&]() {
|
298 |
+
auto beta = beta_.to<scalar_t>();
|
299 |
+
auto threshold = threshold_.to<scalar_t>();
|
300 |
+
gpu_kernel(iter, [beta, threshold]GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t {
|
301 |
+
scalar_t z = std::exp(b * beta);
|
302 |
+
return (b * beta) > threshold ? a : a * z / (z + scalar_t(1.));
|
303 |
+
});
|
304 |
+
});
|
305 |
+
}
|
306 |
+
|
307 |
+
template <typename scalar_t>
|
308 |
+
void threshold_kernel_impl(TensorIteratorBase& iter, scalar_t threshold, scalar_t value) {
|
309 |
+
gpu_kernel_with_scalars(iter, [=]GPU_LAMBDA(scalar_t x, scalar_t other) -> scalar_t {
|
310 |
+
return x <= threshold ? value : other;
|
311 |
+
});
|
312 |
+
}
|
313 |
+
|
314 |
+
static void threshold_kernel_cuda(TensorIteratorBase& iter, const Scalar& threshold, const Scalar& value) {
|
315 |
+
AT_DISPATCH_ALL_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "threshold_cuda", [&] {
|
316 |
+
threshold_kernel_impl<scalar_t>(iter, threshold.to<scalar_t>(), value.to<scalar_t>());
|
317 |
+
});
|
318 |
+
}
|
319 |
+
|
320 |
+
void elu_kernel(TensorIteratorBase& iter, const Scalar& alpha, const Scalar& scale, const Scalar& input_scale) {
|
321 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "elu_cuda", [&]() {
|
322 |
+
auto negcoef = alpha.to<scalar_t>() * scale.to<scalar_t>();
|
323 |
+
auto poscoef = scale.to<scalar_t>();
|
324 |
+
auto negiptcoef = input_scale.to<scalar_t>();
|
325 |
+
gpu_kernel(iter, [negcoef, poscoef, negiptcoef]GPU_LAMBDA(scalar_t a) -> scalar_t {
|
326 |
+
return a > scalar_t(0) ? a * poscoef : (static_cast<scalar_t>(std::exp(a * negiptcoef)) - scalar_t(1.)) * negcoef;
|
327 |
+
});
|
328 |
+
});
|
329 |
+
}
|
330 |
+
|
331 |
+
void elu_backward_kernel(TensorIteratorBase& iter, const Scalar& alpha, const Scalar& scale, const Scalar& input_scale, bool is_result) {
|
332 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "elu_backward_cuda", [&]() {
|
333 |
+
auto negcoef = alpha.to<scalar_t>() * scale.to<scalar_t>();
|
334 |
+
auto poscoef = scale.to<scalar_t>();
|
335 |
+
auto negiptcoef = input_scale.to<scalar_t>();
|
336 |
+
gpu_kernel(iter, [negcoef, poscoef, negiptcoef, is_result]GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t {
|
337 |
+
if (is_result) {
|
338 |
+
return b <= scalar_t(0) ? a * negiptcoef * (b + negcoef) : a * poscoef;
|
339 |
+
} else {
|
340 |
+
return b <= scalar_t(0) ? a * negiptcoef * negcoef * (static_cast<scalar_t>(std::exp(b * negiptcoef))) : a * poscoef;
|
341 |
+
}
|
342 |
+
});
|
343 |
+
});
|
344 |
+
}
|
345 |
+
|
346 |
+
namespace {
|
347 |
+
|
348 |
+
void GeluCUDAKernelImpl(TensorIterator& it) {
|
349 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, it.dtype(), "GeluCUDAKernelImpl", [&]() {
|
350 |
+
using T_ACC = acc_type<scalar_t, true>;
|
351 |
+
gpu_kernel(it, [] GPU_LAMBDA(scalar_t x) -> scalar_t {
|
352 |
+
return static_cast<T_ACC>(x) *
|
353 |
+
c10::cuda::compat::normcdf(static_cast<T_ACC>(x));
|
354 |
+
});
|
355 |
+
});
|
356 |
+
}
|
357 |
+
|
358 |
+
void GeluBackwardCUDAKernelImpl(TensorIterator& it) {
|
359 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16,
|
360 |
+
it.dtype(), "GeluBackwardCUDAKernelImpl", [&]() {
|
361 |
+
using T_ACC = acc_type<scalar_t, true>;
|
362 |
+
gpu_kernel(it, [] GPU_LAMBDA(scalar_t dy, scalar_t x) -> scalar_t {
|
363 |
+
constexpr T_ACC kBeta = M_2_SQRTPI * M_SQRT1_2 * T_ACC(0.5);
|
364 |
+
const T_ACC cdf = c10::cuda::compat::normcdf(static_cast<T_ACC>(x));
|
365 |
+
const T_ACC pdf =
|
366 |
+
c10::cuda::compat::exp(
|
367 |
+
T_ACC(-0.5) * static_cast<T_ACC>(x) * static_cast<T_ACC>(x)) *
|
368 |
+
kBeta;
|
369 |
+
return static_cast<T_ACC>(dy) * (cdf + static_cast<T_ACC>(x) * pdf);
|
370 |
+
});
|
371 |
+
});
|
372 |
+
}
|
373 |
+
|
374 |
+
void leaky_relu_kernel(TensorIteratorBase& iter, const Scalar& negval_) {
|
375 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "leaky_relu_cuda", [&]() {
|
376 |
+
auto negval = negval_.to<scalar_t>();
|
377 |
+
gpu_kernel(iter, [negval]GPU_LAMBDA(scalar_t a) -> scalar_t {
|
378 |
+
return a > scalar_t(0) ? a : a * negval;
|
379 |
+
});
|
380 |
+
});
|
381 |
+
}
|
382 |
+
|
383 |
+
void leaky_relu_backward_kernel(TensorIteratorBase& iter, const Scalar& negval_) {
|
384 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "leaky_relu_backward_cuda", [&]() {
|
385 |
+
auto negval = negval_.to<scalar_t>();
|
386 |
+
gpu_kernel(iter, [negval]GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t {
|
387 |
+
return a > scalar_t(0) ? b : b * negval;
|
388 |
+
});
|
389 |
+
});
|
390 |
+
}
|
391 |
+
|
392 |
+
void hardswish_kernel(TensorIterator& iter) {
|
393 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "hardswish_cuda", [&]() {
|
394 |
+
using T_ACC = acc_type<scalar_t, true>;
|
395 |
+
const T_ACC zero(0.0f);
|
396 |
+
const T_ACC one_sixth(1.0f / 6.0f);
|
397 |
+
const T_ACC three(3.0f);
|
398 |
+
const T_ACC six(6.0f);
|
399 |
+
gpu_kernel(iter, [zero, one_sixth, three, six]GPU_LAMBDA(scalar_t self_val) -> scalar_t {
|
400 |
+
T_ACC x = static_cast<T_ACC>(self_val);
|
401 |
+
return x * std::min(std::max(x + three, zero), six) * one_sixth;
|
402 |
+
});
|
403 |
+
});
|
404 |
+
}
|
405 |
+
|
406 |
+
void hardswish_backward_kernel(TensorIterator& iter) {
|
407 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "hardswish_backward_cuda", [&]() {
|
408 |
+
using T_ACC = acc_type<scalar_t, true>;
|
409 |
+
const T_ACC zero(0.0f);
|
410 |
+
const T_ACC three(3.0f);
|
411 |
+
const T_ACC neg_three(-3.0f);
|
412 |
+
const T_ACC one_half(0.5f);
|
413 |
+
gpu_kernel(
|
414 |
+
iter,
|
415 |
+
[zero, three, neg_three, one_half]GPU_LAMBDA(scalar_t grad_val_, scalar_t self_val_) -> scalar_t {
|
416 |
+
T_ACC grad_val = static_cast<T_ACC>(grad_val_);
|
417 |
+
T_ACC self_val = static_cast<T_ACC>(self_val_);
|
418 |
+
if (self_val < neg_three) {
|
419 |
+
return zero;
|
420 |
+
} else if (self_val <= three) {
|
421 |
+
return grad_val * ((self_val / three) + one_half);
|
422 |
+
} else {
|
423 |
+
return grad_val;
|
424 |
+
}
|
425 |
+
});
|
426 |
+
});
|
427 |
+
}
|
428 |
+
|
429 |
+
void hardsigmoid_kernel(TensorIteratorBase& iter) {
|
430 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "hardsigmoid_cuda", [&]() {
|
431 |
+
using T_ACC = acc_type<scalar_t, true>;
|
432 |
+
const T_ACC zero(0.0f);
|
433 |
+
const T_ACC one_sixth(1.0f / 6.0f);
|
434 |
+
const T_ACC three(3.0f);
|
435 |
+
const T_ACC six(6.0f);
|
436 |
+
gpu_kernel(iter, [zero, one_sixth, three, six]GPU_LAMBDA(scalar_t self_val) -> scalar_t {
|
437 |
+
T_ACC x = static_cast<T_ACC>(self_val);
|
438 |
+
return std::min(std::max(x + three, zero), six) * one_sixth;
|
439 |
+
});
|
440 |
+
});
|
441 |
+
}
|
442 |
+
|
443 |
+
void hardsigmoid_backward_kernel(TensorIteratorBase& iter) {
|
444 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "hardsigmoid_backward_cuda", [&]() {
|
445 |
+
using T_ACC = acc_type<scalar_t, true>;
|
446 |
+
const T_ACC zero(0.0f);
|
447 |
+
const T_ACC three(3.0f);
|
448 |
+
const T_ACC neg_three(-3.0f);
|
449 |
+
const T_ACC one_sixth(1.0f / 6.0f);
|
450 |
+
gpu_kernel(
|
451 |
+
iter,
|
452 |
+
[zero, three, neg_three, one_sixth]GPU_LAMBDA(scalar_t grad_val_, scalar_t self_val_) -> scalar_t {
|
453 |
+
T_ACC grad_val = static_cast<T_ACC>(grad_val_);
|
454 |
+
T_ACC self_val = static_cast<T_ACC>(self_val_);
|
455 |
+
return (self_val > neg_three && self_val < three)
|
456 |
+
? grad_val * one_sixth
|
457 |
+
: zero;
|
458 |
+
});
|
459 |
+
});
|
460 |
+
}
|
461 |
+
|
462 |
+
void silu_kernel(TensorIteratorBase& iter) {
|
463 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(
|
464 |
+
at::ScalarType::Half,
|
465 |
+
at::ScalarType::BFloat16,
|
466 |
+
iter.dtype(),
|
467 |
+
"silu_cuda",
|
468 |
+
[&]() {
|
469 |
+
gpu_kernel(
|
470 |
+
iter,
|
471 |
+
[] GPU_LAMBDA(scalar_t x) -> scalar_t {
|
472 |
+
using T_ACC = acc_type<scalar_t, true>;
|
473 |
+
const T_ACC x_acc = static_cast<T_ACC>(x);
|
474 |
+
return x_acc / (T_ACC(1) + c10::cuda::compat::exp(-x_acc));
|
475 |
+
});
|
476 |
+
});
|
477 |
+
}
|
478 |
+
|
479 |
+
void silu_backward_kernel(TensorIterator& iter) {
|
480 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(
|
481 |
+
at::ScalarType::Half,
|
482 |
+
at::ScalarType::BFloat16,
|
483 |
+
iter.dtype(),
|
484 |
+
"silu_backward_cuda",
|
485 |
+
[&]() {
|
486 |
+
gpu_kernel(
|
487 |
+
iter,
|
488 |
+
[] GPU_LAMBDA(scalar_t dy, scalar_t x) -> scalar_t {
|
489 |
+
using T_ACC = acc_type<scalar_t, true>;
|
490 |
+
const T_ACC dy_acc = static_cast<T_ACC>(dy);
|
491 |
+
const T_ACC x_acc = static_cast<T_ACC>(x);
|
492 |
+
const T_ACC s_acc =
|
493 |
+
T_ACC(1) / (T_ACC(1) + c10::cuda::compat::exp(-x_acc));
|
494 |
+
return dy_acc * s_acc * (T_ACC(1) + x_acc * (T_ACC(1) - s_acc));
|
495 |
+
});
|
496 |
+
});
|
497 |
+
}
|
498 |
+
|
499 |
+
void mish_kernel(TensorIteratorBase& iter) {
|
500 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(
|
501 |
+
at::ScalarType::Half,
|
502 |
+
at::ScalarType::BFloat16,
|
503 |
+
iter.dtype(),
|
504 |
+
"mish_cuda",
|
505 |
+
[&]() {
|
506 |
+
gpu_kernel(
|
507 |
+
iter,
|
508 |
+
[] GPU_LAMBDA(scalar_t x) -> scalar_t {
|
509 |
+
using T_ACC = acc_type<scalar_t, true>;
|
510 |
+
const T_ACC x_acc = static_cast<T_ACC>(x);
|
511 |
+
return x_acc * c10::cuda::compat::tanh(c10::cuda::compat::log1p(c10::cuda::compat::exp(x_acc)));
|
512 |
+
});
|
513 |
+
});
|
514 |
+
}
|
515 |
+
|
516 |
+
void mish_backward_kernel(TensorIterator& iter) {
|
517 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(
|
518 |
+
at::ScalarType::Half,
|
519 |
+
at::ScalarType::BFloat16,
|
520 |
+
iter.dtype(),
|
521 |
+
"mish_backward_cuda",
|
522 |
+
[&]() {
|
523 |
+
gpu_kernel(
|
524 |
+
iter,
|
525 |
+
[] GPU_LAMBDA(scalar_t dy, scalar_t x) -> scalar_t {
|
526 |
+
using T_ACC = acc_type<scalar_t, true>;
|
527 |
+
const T_ACC dy_acc = static_cast<T_ACC>(dy);
|
528 |
+
const T_ACC x_acc = static_cast<T_ACC>(x);
|
529 |
+
const T_ACC s_acc =
|
530 |
+
T_ACC(1) / (T_ACC(1) + c10::cuda::compat::exp(-x_acc));
|
531 |
+
const T_ACC t_acc =
|
532 |
+
c10::cuda::compat::tanh(c10::cuda::compat::log1p(c10::cuda::compat::exp(x_acc)));
|
533 |
+
return dy_acc * (t_acc + x_acc * s_acc * (T_ACC(1) - t_acc * t_acc));
|
534 |
+
});
|
535 |
+
});
|
536 |
+
}
|
537 |
+
|
538 |
+
} // namespace
|
539 |
+
|
540 |
+
Tensor gelu_cuda(const Tensor& self) {
|
541 |
+
Tensor Y = at::native::empty_like(
|
542 |
+
self,
|
543 |
+
c10::nullopt /* dtype */,
|
544 |
+
c10::nullopt /* layout */,
|
545 |
+
c10::nullopt /* device */,
|
546 |
+
c10::nullopt /* pin_memory */,
|
547 |
+
LEGACY_CONTIGUOUS_MEMORY_FORMAT);
|
548 |
+
auto it = TensorIterator::unary_op(Y, self);
|
549 |
+
GeluCUDAKernelImpl(it);
|
550 |
+
return Y;
|
551 |
+
}
|
552 |
+
|
553 |
+
Tensor gelu_backward_cuda(const Tensor& grad, const Tensor& self) {
|
554 |
+
Tensor dX = at::native::empty_like(
|
555 |
+
self,
|
556 |
+
c10::nullopt /* dtype */,
|
557 |
+
c10::nullopt /* layout */,
|
558 |
+
c10::nullopt /* device */,
|
559 |
+
c10::nullopt /* pin_memory */,
|
560 |
+
LEGACY_CONTIGUOUS_MEMORY_FORMAT);
|
561 |
+
auto it = TensorIterator::borrowing_binary_op(dX, grad, self);
|
562 |
+
GeluBackwardCUDAKernelImpl(it);
|
563 |
+
return dX;
|
564 |
+
}
|
565 |
+
|
566 |
+
REGISTER_DISPATCH(hardtanh_backward_stub, &hardtanh_backward_kernel);
|
567 |
+
REGISTER_DISPATCH(hardshrink_stub, &hardshrink_kernel);
|
568 |
+
REGISTER_DISPATCH(softshrink_stub, &softshrink_kernel);
|
569 |
+
REGISTER_DISPATCH(shrink_backward_stub, &shrink_backward_kernel);
|
570 |
+
REGISTER_DISPATCH(elu_stub, &elu_kernel);
|
571 |
+
REGISTER_DISPATCH(elu_backward_stub, &elu_backward_kernel);
|
572 |
+
REGISTER_DISPATCH(leaky_relu_stub, &leaky_relu_kernel);
|
573 |
+
REGISTER_DISPATCH(leaky_relu_backward_stub, &leaky_relu_backward_kernel);
|
574 |
+
REGISTER_DISPATCH(hardswish_stub, &hardswish_kernel);
|
575 |
+
REGISTER_DISPATCH(hardswish_backward_stub, &hardswish_backward_kernel);
|
576 |
+
REGISTER_DISPATCH(hardsigmoid_stub, &hardsigmoid_kernel);
|
577 |
+
REGISTER_DISPATCH(hardsigmoid_backward_stub, &hardsigmoid_backward_kernel);
|
578 |
+
REGISTER_DISPATCH(softplus_stub, &softplus_kernel);
|
579 |
+
REGISTER_DISPATCH(softplus_backward_stub, &softplus_backward_kernel);
|
580 |
+
REGISTER_DISPATCH(silu_stub, &silu_kernel);
|
581 |
+
REGISTER_DISPATCH(silu_backward_stub, &silu_backward_kernel);
|
582 |
+
REGISTER_DISPATCH(mish_stub, &mish_kernel);
|
583 |
+
REGISTER_DISPATCH(mish_backward_stub, &mish_backward_kernel);
|
584 |
+
REGISTER_DISPATCH(threshold_stub, &threshold_kernel_cuda);
|
585 |
+
|
586 |
+
} // namespace native
|
587 |
+
} // namespace at
|
cuda_code/AimetOpUtilsGpu_4.cu
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
//==============================================================================
|
2 |
+
//
|
3 |
+
// @@-COPYRIGHT-START-@@
|
4 |
+
//
|
5 |
+
// Copyright (c) 2020, Qualcomm Innovation Center, Inc. All rights reserved.
|
6 |
+
//
|
7 |
+
// Redistribution and use in source and binary forms, with or without
|
8 |
+
// modification, are permitted provided that the following conditions are met:
|
9 |
+
//
|
10 |
+
// 1. Redistributions of source code must retain the above copyright notice,
|
11 |
+
// this list of conditions and the following disclaimer.
|
12 |
+
//
|
13 |
+
// 2. Redistributions in binary form must reproduce the above copyright notice,
|
14 |
+
// this list of conditions and the following disclaimer in the documentation
|
15 |
+
// and/or other materials provided with the distribution.
|
16 |
+
//
|
17 |
+
// 3. Neither the name of the copyright holder nor the names of its contributors
|
18 |
+
// may be used to endorse or promote products derived from this software
|
19 |
+
// without specific prior written permission.
|
20 |
+
//
|
21 |
+
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
22 |
+
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
23 |
+
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
24 |
+
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
25 |
+
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
26 |
+
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
27 |
+
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
28 |
+
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
29 |
+
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
30 |
+
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
31 |
+
// POSSIBILITY OF SUCH DAMAGE.
|
32 |
+
//
|
33 |
+
// SPDX-License-Identifier: BSD-3-Clause
|
34 |
+
//
|
35 |
+
// @@-COPYRIGHT-END-@@
|
36 |
+
//
|
37 |
+
//==============================================================================
|
38 |
+
|
39 |
+
#ifdef GOOGLE_CUDA
|
40 |
+
|
41 |
+
#define EIGEN_USE_GPU
|
42 |
+
#define EIGEN_USE_THREADS
|
43 |
+
|
44 |
+
#include "AimetOpUtils.h"
|
45 |
+
|
46 |
+
using namespace tensorflow;
|
47 |
+
|
48 |
+
#define EIGEN_USE_GPU
|
49 |
+
typedef Eigen::GpuDevice GPUDevice;
|
50 |
+
|
51 |
+
|
52 |
+
// GPU specialization of actual computations.
|
53 |
+
template <typename T>
|
54 |
+
void copyInputTensorsToOutputTensors(const GPUDevice& d, const T* inTensor, size_t count, T* outTensor)
|
55 |
+
{
|
56 |
+
// copy input_tensor to output_tensor
|
57 |
+
cudaMemcpy(outTensor, inTensor, count * sizeof(float), cudaMemcpyDeviceToDevice);
|
58 |
+
}
|
59 |
+
|
60 |
+
template <typename T>
|
61 |
+
T copyLiteralToHost(const GPUDevice& d, const T* deviceValue)
|
62 |
+
{
|
63 |
+
T hostValue;
|
64 |
+
cudaMemcpy(&hostValue, deviceValue, sizeof(T), cudaMemcpyDeviceToHost);
|
65 |
+
|
66 |
+
return hostValue;
|
67 |
+
}
|
68 |
+
|
69 |
+
template void copyInputTensorsToOutputTensors(const GPUDevice& d, const float* inTensor, size_t count, float* outTensor);
|
70 |
+
template int8 copyLiteralToHost<int8>(const GPUDevice&, const int8* deviceValue);
|
71 |
+
template int32 copyLiteralToHost<int32>(const GPUDevice&, const int32* deviceValue);
|
72 |
+
template uint64 copyLiteralToHost<uint64>(const GPUDevice&, const uint64* deviceValue);
|
73 |
+
template double copyLiteralToHost<double>(const GPUDevice&, const double* deviceValue);
|
74 |
+
template bool copyLiteralToHost<bool>(const GPUDevice&, const bool* deviceValue);
|
75 |
+
|
76 |
+
#endif // GOOGLE_CUDA
|
cuda_code/ArrayManip_1.cu
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include "AbstractAPI.h"
|
2 |
+
#include "interfaces/cuda/Internals.h"
|
3 |
+
#include <cassert>
|
4 |
+
#include <device.h>
|
5 |
+
|
6 |
+
namespace device {
|
7 |
+
template <typename T> __global__ void kernel_scaleArray(T *array, const T scalar, const size_t numElements) {
|
8 |
+
size_t index = threadIdx.x + blockIdx.x * blockDim.x;
|
9 |
+
if (index < numElements) {
|
10 |
+
array[index] *= scalar;
|
11 |
+
}
|
12 |
+
}
|
13 |
+
|
14 |
+
template <typename T> void Algorithms::scaleArray(T *devArray,
|
15 |
+
T scalar,
|
16 |
+
const size_t numElements,
|
17 |
+
void* streamPtr) {
|
18 |
+
dim3 block(64, 1, 1);
|
19 |
+
dim3 grid = internals::computeGrid1D(block, numElements);
|
20 |
+
auto stream = reinterpret_cast<internals::deviceStreamT>(streamPtr);
|
21 |
+
kernel_scaleArray<<<grid, block, 0, stream>>>(devArray, scalar, numElements);
|
22 |
+
CHECK_ERR;
|
23 |
+
}
|
24 |
+
template void Algorithms::scaleArray(real *devArray, real scalar, const size_t numElements, void* streamPtr);
|
25 |
+
template void Algorithms::scaleArray(int *devArray, int scalar, const size_t numElements, void* streamPtr);
|
26 |
+
template void Algorithms::scaleArray(char *devArray, char scalar, const size_t numElements, void* streamPtr);
|
27 |
+
|
28 |
+
//--------------------------------------------------------------------------------------------------
|
29 |
+
template <typename T> __global__ void kernel_fillArray(T *array, T scalar, const size_t numElements) {
|
30 |
+
size_t index = threadIdx.x + blockIdx.x * blockDim.x;
|
31 |
+
if (index < numElements) {
|
32 |
+
array[index] = scalar;
|
33 |
+
}
|
34 |
+
}
|
35 |
+
|
36 |
+
template <typename T> void Algorithms::fillArray(T *devArray, const T scalar, const size_t numElements, void* streamPtr) {
|
37 |
+
dim3 block(64, 1, 1);
|
38 |
+
dim3 grid = internals::computeGrid1D(block, numElements);
|
39 |
+
auto stream = reinterpret_cast<internals::deviceStreamT>(streamPtr);
|
40 |
+
kernel_fillArray<<<grid, block, 0, stream>>>(devArray, scalar, numElements);
|
41 |
+
CHECK_ERR;
|
42 |
+
}
|
43 |
+
template void Algorithms::fillArray(real *devArray, real scalar, const size_t numElements, void* streamPtr);
|
44 |
+
template void Algorithms::fillArray(int *devArray, int scalar, const size_t numElements, void* streamPtr);
|
45 |
+
template void Algorithms::fillArray(char *devArray, char scalar, const size_t numElements, void* streamPtr);
|
46 |
+
|
47 |
+
//--------------------------------------------------------------------------------------------------
|
48 |
+
__global__ void kernel_touchMemory(real *ptr, size_t size, bool clean) {
|
49 |
+
int id = threadIdx.x + blockIdx.x * blockDim.x;
|
50 |
+
if (id < size) {
|
51 |
+
if (clean) {
|
52 |
+
ptr[id] = 0;
|
53 |
+
} else {
|
54 |
+
real value = ptr[id];
|
55 |
+
// Do something dummy here. We just need to check the pointers point to valid memory locations.
|
56 |
+
// Avoid compiler optimization. Possibly, implement a dummy code with asm.
|
57 |
+
value += 1;
|
58 |
+
value -= 1;
|
59 |
+
}
|
60 |
+
}
|
61 |
+
}
|
62 |
+
|
63 |
+
void Algorithms::touchMemory(real *ptr, size_t size, bool clean, void* streamPtr) {
|
64 |
+
dim3 block(256, 1, 1);
|
65 |
+
dim3 grid = internals::computeGrid1D(block, size);
|
66 |
+
auto stream = reinterpret_cast<internals::deviceStreamT>(streamPtr);
|
67 |
+
kernel_touchMemory<<<grid, block, 0, stream>>>(ptr, size, clean);
|
68 |
+
CHECK_ERR;
|
69 |
+
}
|
70 |
+
} // namespace device
|
cuda_code/BE_L1D_HIT.cu
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <stdio.h>
|
2 |
+
#include <stdlib.h>
|
3 |
+
#include <cutil.h>
|
4 |
+
#include <math.h>
|
5 |
+
// Includes
|
6 |
+
#include <stdio.h>
|
7 |
+
#include "../include/ContAcq-IntClk.h"
|
8 |
+
|
9 |
+
// includes, project
|
10 |
+
#include "../include/sdkHelper.h" // helper for shared functions common to CUDA SDK samples
|
11 |
+
//#include <shrQATest.h>
|
12 |
+
//#include <shrUtils.h>
|
13 |
+
|
14 |
+
// includes CUDA
|
15 |
+
#include <cuda_runtime.h>
|
16 |
+
|
17 |
+
#define THREADS_PER_BLOCK 256
|
18 |
+
#define NUM_OF_BLOCKS 60
|
19 |
+
#define ITERATIONS REPLACE_ITERATIONS
|
20 |
+
|
21 |
+
#define LINE_SIZE 128
|
22 |
+
#define SETS 64
|
23 |
+
#define ASSOC 6
|
24 |
+
#define SIMD_WIDTH 32
|
25 |
+
|
26 |
+
// Variables
|
27 |
+
int* h_A;
|
28 |
+
int* h_B;
|
29 |
+
int* h_C;
|
30 |
+
int* d_A;
|
31 |
+
int* d_B;
|
32 |
+
int* d_C;
|
33 |
+
bool noprompt = false;
|
34 |
+
unsigned int my_timer;
|
35 |
+
|
36 |
+
// Functions
|
37 |
+
void CleanupResources(void);
|
38 |
+
void RandomInit(int*, int);
|
39 |
+
void ParseArguments(int, char**);
|
40 |
+
|
41 |
+
////////////////////////////////////////////////////////////////////////////////
|
42 |
+
// These are CUDA Helper functions
|
43 |
+
|
44 |
+
// This will output the proper CUDA error strings in the event that a CUDA host call returns an error
|
45 |
+
#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__)
|
46 |
+
|
47 |
+
inline void __checkCudaErrors(cudaError err, const char *file, const int line ){
|
48 |
+
if(cudaSuccess != err){
|
49 |
+
fprintf(stderr, "%s(%i) : CUDA Runtime API error %d: %s.\n",file, line, (int)err, cudaGetErrorString( err ) );
|
50 |
+
exit(-1);
|
51 |
+
}
|
52 |
+
}
|
53 |
+
|
54 |
+
// This will output the proper error string when calling cudaGetLastError
|
55 |
+
#define getLastCudaError(msg) __getLastCudaError (msg, __FILE__, __LINE__)
|
56 |
+
|
57 |
+
inline void __getLastCudaError(const char *errorMessage, const char *file, const int line ){
|
58 |
+
cudaError_t err = cudaGetLastError();
|
59 |
+
if (cudaSuccess != err){
|
60 |
+
fprintf(stderr, "%s(%i) : getLastCudaError() CUDA error : %s : (%d) %s.\n",file, line, errorMessage, (int)err, cudaGetErrorString( err ) );
|
61 |
+
exit(-1);
|
62 |
+
}
|
63 |
+
}
|
64 |
+
|
65 |
+
// end of CUDA Helper Functions
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
// Device code
|
71 |
+
__global__ void PowerKernal(int* A, int* C, int N){
|
72 |
+
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
73 |
+
//Do Some Computation
|
74 |
+
|
75 |
+
int size = (LINE_SIZE*ASSOC*SETS)/sizeof(int);
|
76 |
+
unsigned j=0, k=0;
|
77 |
+
int m_sum=0;
|
78 |
+
// Fill the L1 cache, Miss on first LD, Hit on subsequent LDs
|
79 |
+
for(k=0; k<ITERATIONS; ++k){
|
80 |
+
//for(j=0; j<(size); j+=THREADS_PER_BLOCK){
|
81 |
+
m_sum += A[tid];
|
82 |
+
//}
|
83 |
+
}
|
84 |
+
C[tid]=m_sum;
|
85 |
+
__syncthreads();
|
86 |
+
}
|
87 |
+
|
88 |
+
|
89 |
+
// Host code
|
90 |
+
|
91 |
+
int main(){
|
92 |
+
|
93 |
+
printf("Power Microbenchmarks\n");
|
94 |
+
//int N = LINE_SIZE*SETS*ASSOC;
|
95 |
+
int N = NUM_OF_BLOCKS*THREADS_PER_BLOCK;
|
96 |
+
size_t size = N * sizeof(int) * NUM_OF_BLOCKS;
|
97 |
+
|
98 |
+
// Allocate input vectors h_A and h_B in host memory
|
99 |
+
h_A = (int*)malloc(size);
|
100 |
+
if (h_A == 0) CleanupResources();
|
101 |
+
//h_B = (float*)malloc(size);
|
102 |
+
//if (h_B == 0) CleanupResources();
|
103 |
+
h_C = (int*)malloc(size);
|
104 |
+
if (h_C == 0) CleanupResources();
|
105 |
+
|
106 |
+
// Initialize input vectors
|
107 |
+
RandomInit(h_A, N);
|
108 |
+
//RandomInit(h_B, N);
|
109 |
+
|
110 |
+
// Allocate vectors in device memory
|
111 |
+
checkCudaErrors( cudaMalloc((void**)&d_A, size) );
|
112 |
+
//checkCudaErrors( cudaMalloc((void**)&d_B, size) );
|
113 |
+
checkCudaErrors( cudaMalloc((void**)&d_C, size) );
|
114 |
+
|
115 |
+
// Copy vectors from host memory to device memory
|
116 |
+
checkCudaErrors( cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice) );
|
117 |
+
//checkCudaErrors( cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice) );
|
118 |
+
|
119 |
+
//VecAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, N);
|
120 |
+
dim3 dimGrid(NUM_OF_BLOCKS,1);
|
121 |
+
dim3 dimBlock(THREADS_PER_BLOCK,1);
|
122 |
+
|
123 |
+
CUT_SAFE_CALL(cutCreateTimer(&my_timer));
|
124 |
+
TaskHandle taskhandle = LaunchDAQ();
|
125 |
+
CUT_SAFE_CALL(cutStartTimer(my_timer));
|
126 |
+
|
127 |
+
PowerKernal<<<dimGrid,dimBlock>>>(d_A, d_C, N);
|
128 |
+
|
129 |
+
CUDA_SAFE_CALL( cudaThreadSynchronize() );
|
130 |
+
printf("execution time = %f\n", cutGetTimerValue(my_timer));
|
131 |
+
TurnOffDAQ(taskhandle, cutGetTimerValue(my_timer));
|
132 |
+
CUT_SAFE_CALL(cutStopTimer(my_timer));
|
133 |
+
CUT_SAFE_CALL(cutDeleteTimer(my_timer));
|
134 |
+
|
135 |
+
getLastCudaError("kernel launch failure");
|
136 |
+
|
137 |
+
#ifdef _DEBUG
|
138 |
+
checkCudaErrors( cudaDeviceSynchronize() );
|
139 |
+
#endif
|
140 |
+
|
141 |
+
// Copy result from device memory to host memory
|
142 |
+
// h_C contains the result in host memory
|
143 |
+
checkCudaErrors( cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost) );
|
144 |
+
|
145 |
+
CleanupResources();
|
146 |
+
|
147 |
+
return 0;
|
148 |
+
}
|
149 |
+
|
150 |
+
void CleanupResources(void){
|
151 |
+
// Free device memory
|
152 |
+
if (d_A)
|
153 |
+
cudaFree(d_A);
|
154 |
+
//if (d_B)
|
155 |
+
// cudaFree(d_B);
|
156 |
+
if (d_C)
|
157 |
+
cudaFree(d_C);
|
158 |
+
|
159 |
+
// Free host memory
|
160 |
+
if (h_A)
|
161 |
+
free(h_A);
|
162 |
+
// if (h_B)
|
163 |
+
// free(h_B);
|
164 |
+
if (h_C)
|
165 |
+
free(h_C);
|
166 |
+
|
167 |
+
}
|
168 |
+
|
169 |
+
// Allocates an array with random float entries.
|
170 |
+
void RandomInit(int* data, int n){
|
171 |
+
for (int i = 0; i < n; ++i)
|
172 |
+
data[i] = (int)(rand() / RAND_MAX);
|
173 |
+
}
|
174 |
+
|
175 |
+
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
|
cuda_code/BE_L1D_MISS_L2D_HIT_13.cu
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <stdio.h>
|
2 |
+
#include <stdlib.h>
|
3 |
+
#include <cutil.h>
|
4 |
+
#include <math.h>
|
5 |
+
// Includes
|
6 |
+
#include <stdio.h>
|
7 |
+
#include "../include/ContAcq-IntClk.h"
|
8 |
+
//#include "REPEATL.h"
|
9 |
+
#include "../include/REPEATW.h"
|
10 |
+
// includes, project
|
11 |
+
#include "../include/sdkHelper.h" // helper for shared functions common to CUDA SDK samples
|
12 |
+
//#include <shrQATest.h>
|
13 |
+
//#include <shrUtils.h>
|
14 |
+
|
15 |
+
// includes CUDA
|
16 |
+
#include <cuda_runtime.h>
|
17 |
+
|
18 |
+
#define THREADS_PER_BLOCK 256
|
19 |
+
#define NUM_OF_BLOCKS 60
|
20 |
+
#define max_tid THREADS_PER_BLOCK*NUM_OF_BLOCKS
|
21 |
+
#define LINE_SIZE 32
|
22 |
+
#define SETS 64
|
23 |
+
#define ASSOC 6
|
24 |
+
#define SIMD_WIDTH 32
|
25 |
+
#define ITERATIONS REPLACE_ITERATIONS
|
26 |
+
// Variables
|
27 |
+
int* h_A;
|
28 |
+
int* h_B;
|
29 |
+
int* h_C;
|
30 |
+
int* d_A;
|
31 |
+
int* d_B;
|
32 |
+
int* d_C;
|
33 |
+
bool noprompt = false;
|
34 |
+
unsigned int my_timer;
|
35 |
+
|
36 |
+
// Functions
|
37 |
+
void CleanupResources(void);
|
38 |
+
void RandomInit(int*, int);
|
39 |
+
void ParseArguments(int, char**);
|
40 |
+
|
41 |
+
////////////////////////////////////////////////////////////////////////////////
|
42 |
+
// These are CUDA Helper functions
|
43 |
+
|
44 |
+
// This will output the proper CUDA error strings in the event that a CUDA host call returns an error
|
45 |
+
#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__)
|
46 |
+
|
47 |
+
inline void __checkCudaErrors(cudaError err, const char *file, const int line ){
|
48 |
+
if(cudaSuccess != err){
|
49 |
+
fprintf(stderr, "%s(%i) : CUDA Runtime API error %d: %s.\n",file, line, (int)err, cudaGetErrorString( err ) );
|
50 |
+
exit(-1);
|
51 |
+
}
|
52 |
+
}
|
53 |
+
|
54 |
+
// This will output the proper error string when calling cudaGetLastError
|
55 |
+
#define getLastCudaError(msg) __getLastCudaError (msg, __FILE__, __LINE__)
|
56 |
+
|
57 |
+
inline void __getLastCudaError(const char *errorMessage, const char *file, const int line ){
|
58 |
+
cudaError_t err = cudaGetLastError();
|
59 |
+
if (cudaSuccess != err){
|
60 |
+
fprintf(stderr, "%s(%i) : getLastCudaError() CUDA error : %s : (%d) %s.\n",file, line, errorMessage, (int)err, cudaGetErrorString( err ) );
|
61 |
+
exit(-1);
|
62 |
+
}
|
63 |
+
}
|
64 |
+
|
65 |
+
// end of CUDA Helper Functions
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
// Device code
|
71 |
+
__global__ void PowerKernal(int* A, int* C, int N){
|
72 |
+
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
73 |
+
//Do Some Computation
|
74 |
+
|
75 |
+
int size = (400*max_tid*LINE_SIZE)/sizeof(int);
|
76 |
+
unsigned j=0, k=0;
|
77 |
+
|
78 |
+
int sum=0;
|
79 |
+
|
80 |
+
// Fill the L1 cache, Miss on every iteration
|
81 |
+
for (int i=0; i<ITERATIONS ; i++){
|
82 |
+
//REPEAT_L3(tid);
|
83 |
+
REPEAT_L6(0);
|
84 |
+
}
|
85 |
+
|
86 |
+
|
87 |
+
/*
|
88 |
+
// Fill the L1 cache, Miss on first LD, Hit on subsequent LDs
|
89 |
+
for(k=0; k<ITERATIONS; ++k){
|
90 |
+
for(j=0; j<(size/2); j+=THREADS_PER_BLOCK){
|
91 |
+
C[tid+j] = A[tid+j];
|
92 |
+
}
|
93 |
+
}
|
94 |
+
*/
|
95 |
+
C[0]=sum;
|
96 |
+
__syncthreads();
|
97 |
+
|
98 |
+
|
99 |
+
}
|
100 |
+
|
101 |
+
|
102 |
+
// Host code
|
103 |
+
|
104 |
+
int main(){
|
105 |
+
|
106 |
+
printf("Power Microbenchmarks\n");
|
107 |
+
int N = (400*max_tid*LINE_SIZE);
|
108 |
+
size_t size = N * sizeof(int) ;
|
109 |
+
|
110 |
+
|
111 |
+
// Allocate input vectors h_A and h_B in host memory
|
112 |
+
h_A = (int*)malloc(size);
|
113 |
+
if (h_A == 0) CleanupResources();
|
114 |
+
//h_B = (float*)malloc(size);
|
115 |
+
//if (h_B == 0) CleanupResources();
|
116 |
+
h_C = (int*)malloc(size);
|
117 |
+
if (h_C == 0) CleanupResources();
|
118 |
+
|
119 |
+
// Initialize input vectors
|
120 |
+
RandomInit(h_A, N);
|
121 |
+
//RandomInit(h_B, N);
|
122 |
+
|
123 |
+
// Allocate vectors in device memory
|
124 |
+
checkCudaErrors( cudaMalloc((void**)&d_A, size) );
|
125 |
+
//checkCudaErrors( cudaMalloc((void**)&d_B, size) );
|
126 |
+
checkCudaErrors( cudaMalloc((void**)&d_C, size) );
|
127 |
+
|
128 |
+
// Copy vectors from host memory to device memory
|
129 |
+
checkCudaErrors( cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice) );
|
130 |
+
//checkCudaErrors( cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice) );
|
131 |
+
|
132 |
+
//VecAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, N);
|
133 |
+
dim3 dimGrid(NUM_OF_BLOCKS,1);
|
134 |
+
dim3 dimBlock(THREADS_PER_BLOCK,1);
|
135 |
+
CUT_SAFE_CALL(cutCreateTimer(&my_timer));
|
136 |
+
TaskHandle taskhandle = LaunchDAQ();
|
137 |
+
CUT_SAFE_CALL(cutStartTimer(my_timer));
|
138 |
+
PowerKernal<<<dimGrid,dimBlock>>>(d_A, d_C, N);
|
139 |
+
CUDA_SAFE_CALL( cudaThreadSynchronize() );
|
140 |
+
printf("execution time = %f\n", cutGetTimerValue(my_timer));
|
141 |
+
TurnOffDAQ(taskhandle, cutGetTimerValue(my_timer));
|
142 |
+
CUT_SAFE_CALL(cutStopTimer(my_timer));
|
143 |
+
CUT_SAFE_CALL(cutDeleteTimer(my_timer));
|
144 |
+
|
145 |
+
getLastCudaError("kernel launch failure");
|
146 |
+
|
147 |
+
#ifdef _DEBUG
|
148 |
+
checkCudaErrors( cudaDeviceSynchronize() );
|
149 |
+
#endif
|
150 |
+
|
151 |
+
// Copy result from device memory to host memory
|
152 |
+
// h_C contains the result in host memory
|
153 |
+
checkCudaErrors( cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost) );
|
154 |
+
|
155 |
+
CleanupResources();
|
156 |
+
|
157 |
+
return 0;
|
158 |
+
}
|
159 |
+
|
160 |
+
void CleanupResources(void){
|
161 |
+
// Free device memory
|
162 |
+
if (d_A)
|
163 |
+
cudaFree(d_A);
|
164 |
+
//if (d_B)
|
165 |
+
// cudaFree(d_B);
|
166 |
+
if (d_C)
|
167 |
+
cudaFree(d_C);
|
168 |
+
|
169 |
+
// Free host memory
|
170 |
+
if (h_A)
|
171 |
+
free(h_A);
|
172 |
+
// if (h_B)
|
173 |
+
// free(h_B);
|
174 |
+
if (h_C)
|
175 |
+
free(h_C);
|
176 |
+
|
177 |
+
}
|
178 |
+
|
179 |
+
// Allocates an array with random float entries.
|
180 |
+
void RandomInit(int* data, int n){
|
181 |
+
for (int i = 0; i < n; ++i)
|
182 |
+
data[i] = (int)(rand() / RAND_MAX);
|
183 |
+
}
|
184 |
+
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
|
189 |
+
|
cuda_code/BE_L1D_MISS_L2D_HIT_19.cu
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Includes
|
2 |
+
#include <stdio.h>
|
3 |
+
#include <stdlib.h>
|
4 |
+
|
5 |
+
|
6 |
+
// includes CUDA
|
7 |
+
#include <cuda_runtime.h>
|
8 |
+
|
9 |
+
// includes, project
|
10 |
+
#include "../include/REPEATW.h"
|
11 |
+
|
12 |
+
|
13 |
+
#define THREADS_PER_BLOCK 256
|
14 |
+
#define NUM_OF_BLOCKS 640
|
15 |
+
#define max_tid THREADS_PER_BLOCK*NUM_OF_BLOCKS
|
16 |
+
#define LINE_SIZE 12
|
17 |
+
// Variables
|
18 |
+
int* h_A;
|
19 |
+
int* h_B;
|
20 |
+
int* h_C;
|
21 |
+
int* d_A;
|
22 |
+
int* d_B;
|
23 |
+
int* d_C;
|
24 |
+
bool noprompt = false;
|
25 |
+
unsigned int my_timer;
|
26 |
+
|
27 |
+
// Functions
|
28 |
+
void CleanupResources(void);
|
29 |
+
void RandomInit(int*, int);
|
30 |
+
|
31 |
+
////////////////////////////////////////////////////////////////////////////////
|
32 |
+
// These are CUDA Helper functions
|
33 |
+
|
34 |
+
// This will output the proper CUDA error strings in the event that a CUDA host call returns an error
|
35 |
+
#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__)
|
36 |
+
|
37 |
+
inline void __checkCudaErrors(cudaError err, const char *file, const int line ){
|
38 |
+
if(cudaSuccess != err){
|
39 |
+
fprintf(stderr, "%s(%i) : CUDA Runtime API error %d: %s.\n",file, line, (int)err, cudaGetErrorString( err ) );
|
40 |
+
exit(-1);
|
41 |
+
}
|
42 |
+
}
|
43 |
+
|
44 |
+
// This will output the proper error string when calling cudaGetLastError
|
45 |
+
#define getLastCudaError(msg) __getLastCudaError (msg, __FILE__, __LINE__)
|
46 |
+
|
47 |
+
inline void __getLastCudaError(const char *errorMessage, const char *file, const int line ){
|
48 |
+
cudaError_t err = cudaGetLastError();
|
49 |
+
if (cudaSuccess != err){
|
50 |
+
fprintf(stderr, "%s(%i) : getLastCudaError() CUDA error : %s : (%d) %s.\n",file, line, errorMessage, (int)err, cudaGetErrorString( err ) );
|
51 |
+
exit(-1);
|
52 |
+
}
|
53 |
+
}
|
54 |
+
|
55 |
+
// end of CUDA Helper Functions
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
// Device code
|
61 |
+
__global__ void PowerKernal(int* A, int* C, int iterations){
|
62 |
+
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
63 |
+
//Do Some Computation
|
64 |
+
|
65 |
+
int sum=0;
|
66 |
+
|
67 |
+
// Fill the L1 cache, Miss on every iteration
|
68 |
+
for (int i=0; i<iterations ; i++){
|
69 |
+
//REPLACE_ITERATIONS
|
70 |
+
REPEAT_L6(0);
|
71 |
+
}
|
72 |
+
|
73 |
+
C[0]=sum;
|
74 |
+
__syncthreads();
|
75 |
+
|
76 |
+
|
77 |
+
}
|
78 |
+
|
79 |
+
|
80 |
+
// Host code
|
81 |
+
int main(int argc, char** argv)
|
82 |
+
{
|
83 |
+
int iterations;
|
84 |
+
if (argc != 2){
|
85 |
+
fprintf(stderr,"usage: %s #iterations\n",argv[0]);
|
86 |
+
exit(1);
|
87 |
+
}
|
88 |
+
else{
|
89 |
+
iterations = atoi(argv[1]);
|
90 |
+
}
|
91 |
+
|
92 |
+
printf("Power Microbenchmark with %d iterations\n",iterations);
|
93 |
+
int N = (400*max_tid*LINE_SIZE);
|
94 |
+
size_t size = N * sizeof(int) ;
|
95 |
+
// Allocate input vectors h_A and h_B in host memory
|
96 |
+
h_A = (int*)malloc(size);
|
97 |
+
if (h_A == 0) CleanupResources();
|
98 |
+
// h_B = (int*)malloc(size);
|
99 |
+
// if (h_B == 0) CleanupResources();
|
100 |
+
h_C = (int*)malloc(size);
|
101 |
+
if (h_C == 0) CleanupResources();
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
// Initialize input vectors
|
106 |
+
RandomInit(h_A, N);
|
107 |
+
// RandomInit(h_B, N);
|
108 |
+
|
109 |
+
// Allocate vectors in device memory
|
110 |
+
checkCudaErrors( cudaMalloc((void**)&d_A, size) );
|
111 |
+
// checkCudaErrors( cudaMalloc((void**)&d_B, size) );
|
112 |
+
checkCudaErrors( cudaMalloc((void**)&d_C, size) );
|
113 |
+
|
114 |
+
cudaEvent_t start, stop;
|
115 |
+
float elapsedTime = 0;
|
116 |
+
checkCudaErrors(cudaEventCreate(&start));
|
117 |
+
checkCudaErrors(cudaEventCreate(&stop));
|
118 |
+
|
119 |
+
// Copy vectors from host memory to device memory
|
120 |
+
checkCudaErrors( cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice) );
|
121 |
+
// checkCudaErrors( cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice) );
|
122 |
+
|
123 |
+
|
124 |
+
dim3 dimGrid(NUM_OF_BLOCKS,1);
|
125 |
+
dim3 dimBlock(THREADS_PER_BLOCK,1);
|
126 |
+
|
127 |
+
checkCudaErrors(cudaEventRecord(start));
|
128 |
+
PowerKernal<<<dimGrid,dimBlock>>>(d_A, d_C, iterations);
|
129 |
+
checkCudaErrors(cudaEventRecord(stop));
|
130 |
+
|
131 |
+
checkCudaErrors(cudaEventSynchronize(stop));
|
132 |
+
checkCudaErrors(cudaEventElapsedTime(&elapsedTime, start, stop));
|
133 |
+
printf("gpu execution time = %.2f s\n", elapsedTime/1000);
|
134 |
+
|
135 |
+
getLastCudaError("kernel launch failure");
|
136 |
+
cudaThreadSynchronize();
|
137 |
+
|
138 |
+
// Copy result from device memory to host memory
|
139 |
+
// h_C contains the result in host memory
|
140 |
+
checkCudaErrors( cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost) );
|
141 |
+
|
142 |
+
checkCudaErrors(cudaEventDestroy(start));
|
143 |
+
checkCudaErrors(cudaEventDestroy(stop));
|
144 |
+
CleanupResources();
|
145 |
+
|
146 |
+
return 0;
|
147 |
+
}
|
148 |
+
|
149 |
+
void CleanupResources(void){
|
150 |
+
// Free device memory
|
151 |
+
if (d_A)
|
152 |
+
cudaFree(d_A);
|
153 |
+
//if (d_B)
|
154 |
+
// cudaFree(d_B);
|
155 |
+
if (d_C)
|
156 |
+
cudaFree(d_C);
|
157 |
+
|
158 |
+
// Free host memory
|
159 |
+
if (h_A)
|
160 |
+
free(h_A);
|
161 |
+
// if (h_B)
|
162 |
+
// free(h_B);
|
163 |
+
if (h_C)
|
164 |
+
free(h_C);
|
165 |
+
}
|
166 |
+
|
167 |
+
// Allocates an array with random float entries.
|
168 |
+
void RandomInit(int* data, int n){
|
169 |
+
for (int i = 0; i < n; ++i)
|
170 |
+
data[i] = (int)(rand() / RAND_MAX);
|
171 |
+
}
|
cuda_code/BE_MEM_SHRD_Acss.cu
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <stdio.h>
|
2 |
+
#include <stdlib.h>
|
3 |
+
#include <cutil.h>
|
4 |
+
// Includes
|
5 |
+
#include <stdio.h>
|
6 |
+
#include "../include/ContAcq-IntClk.h"
|
7 |
+
|
8 |
+
// includes, project
|
9 |
+
#include "../include/sdkHelper.h" // helper for shared functions common to CUDA SDK samples
|
10 |
+
//#include <shrQATest.h>
|
11 |
+
//#include <shrUtils.h>
|
12 |
+
|
13 |
+
// includes CUDA
|
14 |
+
#include <cuda_runtime.h>
|
15 |
+
|
16 |
+
#define THREADS_PER_BLOCK 256
|
17 |
+
#define NUM_OF_BLOCKS 60
|
18 |
+
#define ITERATIONS REPLACE_ITERATIONS
|
19 |
+
|
20 |
+
// Variables
|
21 |
+
unsigned* h_C1;
|
22 |
+
float* h_C2;
|
23 |
+
unsigned* d_C1;
|
24 |
+
float* d_C2;
|
25 |
+
bool noprompt = false;
|
26 |
+
unsigned int my_timer;
|
27 |
+
|
28 |
+
// Functions
|
29 |
+
void CleanupResources(void);
|
30 |
+
void RandomInit(unsigned*, int);
|
31 |
+
void ParseArguments(int, char**);
|
32 |
+
|
33 |
+
////////////////////////////////////////////////////////////////////////////////
|
34 |
+
// These are CUDA Helper functions
|
35 |
+
|
36 |
+
// This will output the proper CUDA error strings in the event that a CUDA host call returns an error
|
37 |
+
#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__)
|
38 |
+
|
39 |
+
inline void __checkCudaErrors(cudaError err, const char *file, const int line )
|
40 |
+
{
|
41 |
+
if(cudaSuccess != err){
|
42 |
+
fprintf(stderr, "%s(%i) : CUDA Runtime API error %d: %s.\n",file, line, (int)err, cudaGetErrorString( err ) );
|
43 |
+
exit(-1);
|
44 |
+
}
|
45 |
+
}
|
46 |
+
|
47 |
+
// This will output the proper error string when calling cudaGetLastError
|
48 |
+
#define getLastCudaError(msg) __getLastCudaError (msg, __FILE__, __LINE__)
|
49 |
+
|
50 |
+
inline void __getLastCudaError(const char *errorMessage, const char *file, const int line )
|
51 |
+
{
|
52 |
+
cudaError_t err = cudaGetLastError();
|
53 |
+
if (cudaSuccess != err){
|
54 |
+
fprintf(stderr, "%s(%i) : getLastCudaError() CUDA error : %s : (%d) %s.\n",file, line, errorMessage, (int)err, cudaGetErrorString( err ) );
|
55 |
+
exit(-1);
|
56 |
+
}
|
57 |
+
}
|
58 |
+
|
59 |
+
// end of CUDA Helper Functions
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
// Device code
|
65 |
+
__global__ void PowerKernal(unsigned* C1, float* C2, int N)
|
66 |
+
{
|
67 |
+
int i = threadIdx.x;
|
68 |
+
//Do Some Computation
|
69 |
+
__device__ __shared__ unsigned I1[THREADS_PER_BLOCK];
|
70 |
+
__device__ __shared__ unsigned I2[THREADS_PER_BLOCK];
|
71 |
+
__device__ __shared__ float I3[THREADS_PER_BLOCK];
|
72 |
+
__device__ __shared__ float I4[THREADS_PER_BLOCK];
|
73 |
+
|
74 |
+
I1[i]=i*2;
|
75 |
+
I2[i]=i;
|
76 |
+
I3[i]=i/2;
|
77 |
+
I4[i]=i;
|
78 |
+
|
79 |
+
__syncthreads();
|
80 |
+
|
81 |
+
for(unsigned k=0; k<ITERATIONS ;k++) {
|
82 |
+
I1[i]=I2[(i+k)%THREADS_PER_BLOCK];
|
83 |
+
I2[i]=I1[(i+k+1)%THREADS_PER_BLOCK];
|
84 |
+
}
|
85 |
+
|
86 |
+
for(unsigned k=0; k<ITERATIONS ;k++) {
|
87 |
+
I3[i]=I4[(i+k)%THREADS_PER_BLOCK];
|
88 |
+
I4[i]=I3[(i+k+1)%THREADS_PER_BLOCK];
|
89 |
+
}
|
90 |
+
//C1[i]=I2[i];
|
91 |
+
//C2[i]=I4[i];
|
92 |
+
__syncthreads();
|
93 |
+
|
94 |
+
}
|
95 |
+
|
96 |
+
|
97 |
+
// Host code
|
98 |
+
|
99 |
+
int main()
|
100 |
+
{
|
101 |
+
printf("Power Microbenchmarks\n");
|
102 |
+
int N = THREADS_PER_BLOCK*NUM_OF_BLOCKS;
|
103 |
+
size_t size1 = N * sizeof(unsigned);
|
104 |
+
size_t size2 = N * sizeof(float);
|
105 |
+
|
106 |
+
// Allocate vectors in device memory
|
107 |
+
h_C1 = (unsigned *) malloc(size1);
|
108 |
+
h_C2 = (float *) malloc(size2);
|
109 |
+
checkCudaErrors( cudaMalloc((void**)&d_C1, size1) );
|
110 |
+
checkCudaErrors( cudaMalloc((void**)&d_C2, size2) );
|
111 |
+
|
112 |
+
//VecAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, N);
|
113 |
+
dim3 dimGrid(NUM_OF_BLOCKS,1);
|
114 |
+
dim3 dimBlock(THREADS_PER_BLOCK,1);
|
115 |
+
|
116 |
+
CUT_SAFE_CALL(cutCreateTimer(&my_timer));
|
117 |
+
TaskHandle taskhandle = LaunchDAQ();
|
118 |
+
CUT_SAFE_CALL(cutStartTimer(my_timer));
|
119 |
+
|
120 |
+
PowerKernal<<<dimGrid,dimBlock>>>(d_C1, d_C2, N);
|
121 |
+
|
122 |
+
CUDA_SAFE_CALL( cudaThreadSynchronize() );
|
123 |
+
printf("execution time = %f\n", cutGetTimerValue(my_timer));
|
124 |
+
TurnOffDAQ(taskhandle, cutGetTimerValue(my_timer));
|
125 |
+
CUT_SAFE_CALL(cutStopTimer(my_timer));
|
126 |
+
CUT_SAFE_CALL(cutDeleteTimer(my_timer));
|
127 |
+
|
128 |
+
getLastCudaError("kernel launch failure");
|
129 |
+
|
130 |
+
#ifdef _DEBUG
|
131 |
+
checkCudaErrors( cudaDeviceSynchronize() );
|
132 |
+
#endif
|
133 |
+
|
134 |
+
// Copy result from device memory to host memory
|
135 |
+
// h_C contains the result in host memory
|
136 |
+
checkCudaErrors( cudaMemcpy(h_C1, d_C1, size1, cudaMemcpyDeviceToHost) );
|
137 |
+
checkCudaErrors( cudaMemcpy(h_C2, d_C2, size2, cudaMemcpyDeviceToHost) );
|
138 |
+
|
139 |
+
CleanupResources();
|
140 |
+
|
141 |
+
return 0;
|
142 |
+
}
|
143 |
+
|
144 |
+
void CleanupResources(void)
|
145 |
+
{
|
146 |
+
// Free device memory
|
147 |
+
if (d_C1)
|
148 |
+
cudaFree(d_C1);
|
149 |
+
if (d_C2)
|
150 |
+
cudaFree(d_C2);
|
151 |
+
|
152 |
+
|
153 |
+
// Free host memory
|
154 |
+
if (h_C1)
|
155 |
+
free(h_C1);
|
156 |
+
if (d_C2)
|
157 |
+
cudaFree(d_C2);
|
158 |
+
|
159 |
+
}
|
160 |
+
|
161 |
+
// Allocates an array with random float entries.
|
162 |
+
void RandomInit(unsigned* data, int n)
|
163 |
+
{
|
164 |
+
for (int i = 0; i < n; ++i){
|
165 |
+
srand((unsigned)time(0));
|
166 |
+
data[i] = rand() / RAND_MAX;
|
167 |
+
}
|
168 |
+
}
|
169 |
+
|
170 |
+
|
171 |
+
|
172 |
+
|
173 |
+
|
174 |
+
|
cuda_code/BE_SP_FP_DIV_1.cu
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <stdio.h>
|
2 |
+
#include <stdlib.h>
|
3 |
+
//#include <cutil.h>
|
4 |
+
// Includes
|
5 |
+
//#include <stdio.h>
|
6 |
+
|
7 |
+
// includes, project
|
8 |
+
//#include "../include/sdkHelper.h" // helper for shared functions common to CUDA SDK samples
|
9 |
+
//#include <shrQATest.h>
|
10 |
+
//#include <shrUtils.h>
|
11 |
+
|
12 |
+
// includes CUDA
|
13 |
+
#include <cuda_runtime.h>
|
14 |
+
|
15 |
+
#define THREADS_PER_BLOCK 256
|
16 |
+
#define NUM_OF_BLOCKS 640
|
17 |
+
//#define ITERATIONS 40
|
18 |
+
//#include "../include/ContAcq-IntClk.h"
|
19 |
+
|
20 |
+
// Variables
|
21 |
+
float* h_A;
|
22 |
+
float* h_B;
|
23 |
+
float* h_C;
|
24 |
+
float* d_A;
|
25 |
+
float* d_B;
|
26 |
+
float* d_C;
|
27 |
+
//bool noprompt = false;
|
28 |
+
//unsigned int my_timer;
|
29 |
+
|
30 |
+
// Functions
|
31 |
+
void CleanupResources(void);
|
32 |
+
void RandomInit(float*, int);
|
33 |
+
//void ParseArguments(int, char**);
|
34 |
+
|
35 |
+
////////////////////////////////////////////////////////////////////////////////
|
36 |
+
// These are CUDA Helper functions
|
37 |
+
|
38 |
+
// This will output the proper CUDA error strings in the event that a CUDA host call returns an error
|
39 |
+
#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__)
|
40 |
+
|
41 |
+
inline void __checkCudaErrors(cudaError err, const char *file, const int line )
|
42 |
+
{
|
43 |
+
if(cudaSuccess != err){
|
44 |
+
fprintf(stderr, "%s(%i) : CUDA Runtime API error %d: %s.\n",file, line, (int)err, cudaGetErrorString( err ) );
|
45 |
+
exit(-1);
|
46 |
+
}
|
47 |
+
}
|
48 |
+
|
49 |
+
// This will output the proper error string when calling cudaGetLastError
|
50 |
+
#define getLastCudaError(msg) __getLastCudaError (msg, __FILE__, __LINE__)
|
51 |
+
|
52 |
+
inline void __getLastCudaError(const char *errorMessage, const char *file, const int line )
|
53 |
+
{
|
54 |
+
cudaError_t err = cudaGetLastError();
|
55 |
+
if (cudaSuccess != err){
|
56 |
+
fprintf(stderr, "%s(%i) : getLastCudaError() CUDA error : %s : (%d) %s.\n",file, line, errorMessage, (int)err, cudaGetErrorString( err ) );
|
57 |
+
exit(-1);
|
58 |
+
}
|
59 |
+
}
|
60 |
+
|
61 |
+
// end of CUDA Helper Functions
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
__global__ void PowerKernal3(const float* A, const float* B, float* C, int N)
|
67 |
+
{
|
68 |
+
int i = blockDim.x * blockIdx.x + threadIdx.x;
|
69 |
+
//Do Some Computation
|
70 |
+
float Value1;
|
71 |
+
float Value2 = 999999;
|
72 |
+
float Value3;
|
73 |
+
float Value;
|
74 |
+
float I1=A[i];
|
75 |
+
float I2=B[i];
|
76 |
+
|
77 |
+
|
78 |
+
__syncthreads();
|
79 |
+
#pragma unroll 100
|
80 |
+
// Excessive Division Operations
|
81 |
+
for(unsigned k=0; k<N;k++) {
|
82 |
+
Value1=I1/I2;
|
83 |
+
Value3=I1/I2;
|
84 |
+
Value1/=Value2;
|
85 |
+
Value1/=Value2;
|
86 |
+
Value2=Value3/Value1;
|
87 |
+
Value1=Value2/Value3;
|
88 |
+
}
|
89 |
+
|
90 |
+
__syncthreads();
|
91 |
+
Value=Value1;
|
92 |
+
C[i]=Value/Value2;
|
93 |
+
}
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
int main(int argc, char** argv)
|
98 |
+
{
|
99 |
+
int iterations;
|
100 |
+
if(argc!=2) {
|
101 |
+
fprintf(stderr,"usage: %s #iterations\n",argv[0]);
|
102 |
+
exit(1);
|
103 |
+
}
|
104 |
+
else {
|
105 |
+
iterations = atoi(argv[1]);
|
106 |
+
}
|
107 |
+
|
108 |
+
printf("Power Microbenchmarks with iterations %d\n",iterations);
|
109 |
+
int N = THREADS_PER_BLOCK*NUM_OF_BLOCKS;
|
110 |
+
size_t size = N * sizeof(float);
|
111 |
+
// Allocate input vectors h_A and h_B in host memory
|
112 |
+
h_A = (float*)malloc(size);
|
113 |
+
if (h_A == 0) CleanupResources();
|
114 |
+
h_B = (float*)malloc(size);
|
115 |
+
if (h_B == 0) CleanupResources();
|
116 |
+
h_C = (float*)malloc(size);
|
117 |
+
if (h_C == 0) CleanupResources();
|
118 |
+
|
119 |
+
// Initialize input vectors
|
120 |
+
RandomInit(h_A, N);
|
121 |
+
RandomInit(h_B, N);
|
122 |
+
|
123 |
+
// Allocate vectors in device memory
|
124 |
+
printf("before\n");
|
125 |
+
checkCudaErrors( cudaMalloc((void**)&d_A, size) );
|
126 |
+
checkCudaErrors( cudaMalloc((void**)&d_B, size) );
|
127 |
+
checkCudaErrors( cudaMalloc((void**)&d_C, size) );
|
128 |
+
printf("after\n");
|
129 |
+
|
130 |
+
cudaEvent_t start, stop;
|
131 |
+
float elapsedTime = 0;
|
132 |
+
checkCudaErrors(cudaEventCreate(&start));
|
133 |
+
checkCudaErrors(cudaEventCreate(&stop));
|
134 |
+
|
135 |
+
// Copy vectors from host memory to device memory
|
136 |
+
checkCudaErrors( cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice) );
|
137 |
+
checkCudaErrors( cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice) );
|
138 |
+
|
139 |
+
//VecAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, N);
|
140 |
+
dim3 dimGrid(NUM_OF_BLOCKS,1);
|
141 |
+
dim3 dimBlock(THREADS_PER_BLOCK,1);
|
142 |
+
dim3 dimGrid2(1,1);
|
143 |
+
dim3 dimBlock2(1,1);
|
144 |
+
|
145 |
+
checkCudaErrors(cudaEventRecord(start));
|
146 |
+
PowerKernal3<<<dimGrid,dimBlock>>>(d_A, d_B, d_C, iterations);
|
147 |
+
checkCudaErrors(cudaEventRecord(stop));
|
148 |
+
|
149 |
+
checkCudaErrors(cudaEventSynchronize(stop));
|
150 |
+
checkCudaErrors(cudaEventElapsedTime(&elapsedTime, start, stop));
|
151 |
+
printf("execution time = %.2f s\n", elapsedTime/1000);
|
152 |
+
getLastCudaError("kernel launch failure");
|
153 |
+
cudaThreadSynchronize();
|
154 |
+
|
155 |
+
/*CUT_SAFE_CALL(cutCreateTimer(&my_timer));
|
156 |
+
TaskHandle taskhandle = LaunchDAQ();
|
157 |
+
CUT_SAFE_CALL(cutStartTimer(my_timer));
|
158 |
+
printf("execution time = %f\n", cutGetTimerValue(my_timer));
|
159 |
+
|
160 |
+
|
161 |
+
|
162 |
+
PowerKernal3<<<dimGrid,dimBlock>>>(d_A, d_B, d_C, N);
|
163 |
+
CUDA_SAFE_CALL( cudaThreadSynchronize() );
|
164 |
+
printf("execution time = %f\n", cutGetTimerValue(my_timer));
|
165 |
+
|
166 |
+
|
167 |
+
getLastCudaError("kernel launch failure");
|
168 |
+
CUDA_SAFE_CALL( cudaThreadSynchronize() );
|
169 |
+
CUT_SAFE_CALL(cutStopTimer(my_timer));
|
170 |
+
TurnOffDAQ(taskhandle, cutGetTimerValue(my_timer));
|
171 |
+
printf("execution time = %f\n", cutGetTimerValue(my_timer));
|
172 |
+
CUT_SAFE_CALL(cutDeleteTimer(my_timer));
|
173 |
+
|
174 |
+
#ifdef _DEBUG
|
175 |
+
checkCudaErrors( cudaDeviceSynchronize() );
|
176 |
+
#endif*/
|
177 |
+
|
178 |
+
// Copy result from device memory to host memory
|
179 |
+
// h_C contains the result in host memory
|
180 |
+
checkCudaErrors( cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost) );
|
181 |
+
checkCudaErrors(cudaEventDestroy(start));
|
182 |
+
checkCudaErrors(cudaEventDestroy(stop));
|
183 |
+
CleanupResources();
|
184 |
+
|
185 |
+
return 0;
|
186 |
+
}
|
187 |
+
|
188 |
+
void CleanupResources(void)
|
189 |
+
{
|
190 |
+
// Free device memory
|
191 |
+
if (d_A)
|
192 |
+
cudaFree(d_A);
|
193 |
+
if (d_B)
|
194 |
+
cudaFree(d_B);
|
195 |
+
if (d_C)
|
196 |
+
cudaFree(d_C);
|
197 |
+
|
198 |
+
// Free host memory
|
199 |
+
if (h_A)
|
200 |
+
free(h_A);
|
201 |
+
if (h_B)
|
202 |
+
free(h_B);
|
203 |
+
if (h_C)
|
204 |
+
free(h_C);
|
205 |
+
|
206 |
+
}
|
207 |
+
|
208 |
+
// Allocates an array with random float entries.
|
209 |
+
void RandomInit(float* data, int n)
|
210 |
+
{
|
211 |
+
for (int i = 0; i < n; ++i){
|
212 |
+
data[i] = rand() / RAND_MAX;
|
213 |
+
}
|
214 |
+
}
|
215 |
+
|
216 |
+
|
217 |
+
|
218 |
+
|
219 |
+
|
220 |
+
|
cuda_code/BE_SP_INT_ADD_l32_1.cu
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Includes
|
2 |
+
#include <stdio.h>
|
3 |
+
#include <stdlib.h>
|
4 |
+
// includes from project
|
5 |
+
|
6 |
+
|
7 |
+
// includes from CUDA
|
8 |
+
#include <cuda_runtime.h>
|
9 |
+
//#include <helper_math.h>
|
10 |
+
|
11 |
+
#define THREADS_PER_BLOCK 256
|
12 |
+
#define NUM_OF_BLOCKS 640
|
13 |
+
|
14 |
+
|
15 |
+
// Variables
|
16 |
+
unsigned* h_A;
|
17 |
+
unsigned* h_B;
|
18 |
+
unsigned* h_C;
|
19 |
+
unsigned* d_A;
|
20 |
+
unsigned* d_B;
|
21 |
+
unsigned* d_C;
|
22 |
+
|
23 |
+
// Functions
|
24 |
+
void CleanupResources(void);
|
25 |
+
void RandomInit(unsigned*, int);
|
26 |
+
|
27 |
+
////////////////////////////////////////////////////////////////////////////////
|
28 |
+
// These are CUDA Helper functions
|
29 |
+
|
30 |
+
// This will output the proper CUDA error strings in the event that a CUDA host call returns an error
|
31 |
+
#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__)
|
32 |
+
|
33 |
+
inline void __checkCudaErrors(cudaError err, const char *file, const int line )
|
34 |
+
{
|
35 |
+
if(cudaSuccess != err){
|
36 |
+
fprintf(stderr, "%s(%i) : CUDA Runtime API error %d: %s.\n",file, line, (int)err, cudaGetErrorString( err ) );
|
37 |
+
exit(-1);
|
38 |
+
}
|
39 |
+
}
|
40 |
+
|
41 |
+
// This will output the proper error string when calling cudaGetLastError
|
42 |
+
#define getLastCudaError(msg) __getLastCudaError (msg, __FILE__, __LINE__)
|
43 |
+
|
44 |
+
inline void __getLastCudaError(const char *errorMessage, const char *file, const int line )
|
45 |
+
{
|
46 |
+
cudaError_t err = cudaGetLastError();
|
47 |
+
if (cudaSuccess != err){
|
48 |
+
fprintf(stderr, "%s(%i) : getLastCudaError() CUDA error : %s : (%d) %s.\n",file, line, errorMessage, (int)err, cudaGetErrorString( err ) );
|
49 |
+
exit(-1);
|
50 |
+
}
|
51 |
+
}
|
52 |
+
// end of CUDA Helper Functions
|
53 |
+
|
54 |
+
__global__ void PowerKernal2(const unsigned* A, const unsigned* B, unsigned* C, int iterations)
|
55 |
+
{
|
56 |
+
int i = blockDim.x * blockIdx.x + threadIdx.x;
|
57 |
+
//Do Some Computation
|
58 |
+
unsigned Value1=0;
|
59 |
+
unsigned Value2=0;
|
60 |
+
unsigned Value3=0;
|
61 |
+
unsigned Value=0;
|
62 |
+
unsigned I1=A[i];
|
63 |
+
unsigned I2=B[i];
|
64 |
+
|
65 |
+
// Excessive INT addition access
|
66 |
+
if((i%32)<=31){
|
67 |
+
#pragma unroll 100
|
68 |
+
for(unsigned k=0; k<iterations;k++) {
|
69 |
+
Value2= I1+I2;
|
70 |
+
Value3=I1-I2;
|
71 |
+
Value1-=Value2;
|
72 |
+
Value3+=Value1;
|
73 |
+
Value2-=Value3;
|
74 |
+
Value1+=Value3;
|
75 |
+
}
|
76 |
+
}
|
77 |
+
__syncthreads();
|
78 |
+
|
79 |
+
Value=Value1;
|
80 |
+
C[i]=Value;
|
81 |
+
__syncthreads();
|
82 |
+
}
|
83 |
+
|
84 |
+
int main(int argc, char** argv)
|
85 |
+
{
|
86 |
+
|
87 |
+
int iterations;
|
88 |
+
if (argc != 2){
|
89 |
+
fprintf(stderr,"usage: %s #iterations\n",argv[0]);
|
90 |
+
exit(1);
|
91 |
+
}
|
92 |
+
else{
|
93 |
+
iterations = atoi(argv[1]);
|
94 |
+
}
|
95 |
+
|
96 |
+
printf("Power Microbenchmark with %d iterations\n",iterations);
|
97 |
+
int N = THREADS_PER_BLOCK*NUM_OF_BLOCKS;
|
98 |
+
size_t size = N * sizeof(unsigned);
|
99 |
+
// Allocate input vectors h_A and h_B in host memory
|
100 |
+
h_A = (unsigned*)malloc(size);
|
101 |
+
if (h_A == 0) CleanupResources();
|
102 |
+
h_B = (unsigned*)malloc(size);
|
103 |
+
if (h_B == 0) CleanupResources();
|
104 |
+
h_C = (unsigned*)malloc(size);
|
105 |
+
if (h_C == 0) CleanupResources();
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
// Initialize input vectors
|
110 |
+
RandomInit(h_A, N);
|
111 |
+
RandomInit(h_B, N);
|
112 |
+
|
113 |
+
// Allocate vectors in device memory
|
114 |
+
printf("before\n");
|
115 |
+
checkCudaErrors( cudaMalloc((void**)&d_A, size) );
|
116 |
+
checkCudaErrors( cudaMalloc((void**)&d_B, size) );
|
117 |
+
checkCudaErrors( cudaMalloc((void**)&d_C, size) );
|
118 |
+
printf("after\n");
|
119 |
+
|
120 |
+
cudaEvent_t start, stop;
|
121 |
+
float elapsedTime = 0;
|
122 |
+
checkCudaErrors(cudaEventCreate(&start));
|
123 |
+
checkCudaErrors(cudaEventCreate(&stop));
|
124 |
+
|
125 |
+
// Copy vectors from host memory to device memory
|
126 |
+
checkCudaErrors( cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice) );
|
127 |
+
checkCudaErrors( cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice) );
|
128 |
+
|
129 |
+
|
130 |
+
dim3 dimGrid(NUM_OF_BLOCKS,1);
|
131 |
+
dim3 dimBlock(THREADS_PER_BLOCK,1);
|
132 |
+
dim3 dimGrid2(1,1);
|
133 |
+
dim3 dimBlock2(1,1);
|
134 |
+
|
135 |
+
checkCudaErrors(cudaEventRecord(start));
|
136 |
+
PowerKernal2<<<dimGrid,dimBlock>>>(d_A, d_B, d_C, iterations);
|
137 |
+
checkCudaErrors(cudaEventRecord(stop));
|
138 |
+
|
139 |
+
checkCudaErrors(cudaEventSynchronize(stop));
|
140 |
+
checkCudaErrors(cudaEventElapsedTime(&elapsedTime, start, stop));
|
141 |
+
printf("gpu execution time = %.2f s\n", elapsedTime/1000);
|
142 |
+
|
143 |
+
getLastCudaError("kernel launch failure");
|
144 |
+
cudaThreadSynchronize();
|
145 |
+
|
146 |
+
// Copy result from device memory to host memory
|
147 |
+
// h_C contains the result in host memory
|
148 |
+
checkCudaErrors( cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost) );
|
149 |
+
|
150 |
+
checkCudaErrors(cudaEventDestroy(start));
|
151 |
+
checkCudaErrors(cudaEventDestroy(stop));
|
152 |
+
CleanupResources();
|
153 |
+
|
154 |
+
return 0;
|
155 |
+
}
|
156 |
+
|
157 |
+
void CleanupResources(void)
|
158 |
+
{
|
159 |
+
// Free device memory
|
160 |
+
if (d_A)
|
161 |
+
cudaFree(d_A);
|
162 |
+
if (d_B)
|
163 |
+
cudaFree(d_B);
|
164 |
+
if (d_C)
|
165 |
+
cudaFree(d_C);
|
166 |
+
|
167 |
+
// Free host memory
|
168 |
+
if (h_A)
|
169 |
+
free(h_A);
|
170 |
+
if (h_B)
|
171 |
+
free(h_B);
|
172 |
+
if (h_C)
|
173 |
+
free(h_C);
|
174 |
+
|
175 |
+
}
|
176 |
+
|
177 |
+
// Allocates an array with random unsigned entries.
|
178 |
+
void RandomInit(unsigned* data, int n)
|
179 |
+
{
|
180 |
+
for (int i = 0; i < n; ++i){
|
181 |
+
srand((unsigned)time(0));
|
182 |
+
data[i] = rand() / RAND_MAX;
|
183 |
+
}
|
184 |
+
}
|
cuda_code/BE_SP_INT_MUL_3.cu
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <stdio.h>
|
2 |
+
#include <stdlib.h>
|
3 |
+
//#include <cutil.h>
|
4 |
+
// Includes
|
5 |
+
//#include <stdio.h>
|
6 |
+
//#include "../include/ContAcq-IntClk.h"
|
7 |
+
|
8 |
+
// includes, project
|
9 |
+
//#include "../include/sdkHelper.h" // helper for shared functions common to CUDA SDK samples
|
10 |
+
//#include <shrQATest.h>
|
11 |
+
//#include <shrUtils.h>
|
12 |
+
|
13 |
+
// includes CUDA
|
14 |
+
#include <cuda_runtime.h>
|
15 |
+
|
16 |
+
#define THREADS_PER_BLOCK 256
|
17 |
+
#define NUM_OF_BLOCKS 640
|
18 |
+
//#define ITERATIONS 40
|
19 |
+
|
20 |
+
// Variables
|
21 |
+
unsigned* h_A;
|
22 |
+
unsigned* h_B;
|
23 |
+
unsigned* h_C;
|
24 |
+
unsigned* d_A;
|
25 |
+
unsigned* d_B;
|
26 |
+
unsigned* d_C;
|
27 |
+
//bool noprompt = false;
|
28 |
+
//unsigned int my_timer;
|
29 |
+
|
30 |
+
// Functions
|
31 |
+
void CleanupResources(void);
|
32 |
+
void RandomInit(unsigned*, int);
|
33 |
+
//void ParseArguments(int, char**);
|
34 |
+
|
35 |
+
////////////////////////////////////////////////////////////////////////////////
|
36 |
+
// These are CUDA Helper functions
|
37 |
+
|
38 |
+
// This will output the proper CUDA error strings in the event that a CUDA host call returns an error
|
39 |
+
#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__)
|
40 |
+
|
41 |
+
inline void __checkCudaErrors(cudaError err, const char *file, const int line )
|
42 |
+
{
|
43 |
+
if(cudaSuccess != err){
|
44 |
+
fprintf(stderr, "%s(%i) : CUDA Runtime API error %d: %s.\n",file, line, (int)err, cudaGetErrorString( err ) );
|
45 |
+
exit(-1);
|
46 |
+
}
|
47 |
+
}
|
48 |
+
|
49 |
+
// This will output the proper error string when calling cudaGetLastError
|
50 |
+
#define getLastCudaError(msg) __getLastCudaError (msg, __FILE__, __LINE__)
|
51 |
+
|
52 |
+
inline void __getLastCudaError(const char *errorMessage, const char *file, const int line )
|
53 |
+
{
|
54 |
+
cudaError_t err = cudaGetLastError();
|
55 |
+
if (cudaSuccess != err){
|
56 |
+
fprintf(stderr, "%s(%i) : getLastCudaError() CUDA error : %s : (%d) %s.\n",file, line, errorMessage, (int)err, cudaGetErrorString( err ) );
|
57 |
+
exit(-1);
|
58 |
+
}
|
59 |
+
}
|
60 |
+
|
61 |
+
// end of CUDA Helper Functions
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
// Device code
|
67 |
+
|
68 |
+
|
69 |
+
__global__ void PowerKernal3(const unsigned* A, const unsigned* B, unsigned* C, int N)
|
70 |
+
{
|
71 |
+
int i = blockDim.x * blockIdx.x + threadIdx.x;
|
72 |
+
//Do Some Computation
|
73 |
+
unsigned Value1;
|
74 |
+
unsigned Value2 = 999999;
|
75 |
+
unsigned Value3;
|
76 |
+
unsigned Value;
|
77 |
+
unsigned I1=A[i];
|
78 |
+
unsigned I2=B[i];
|
79 |
+
|
80 |
+
|
81 |
+
#pragma unroll 100
|
82 |
+
// Excessive Multiplication
|
83 |
+
for(unsigned k=0; k<N;k++) {
|
84 |
+
Value1=I1*I2;
|
85 |
+
Value1*=Value2;
|
86 |
+
Value3=Value1*I2;
|
87 |
+
Value2*=I1*Value3;
|
88 |
+
Value1*=Value2;
|
89 |
+
Value3*=Value1;
|
90 |
+
}
|
91 |
+
|
92 |
+
__syncthreads();
|
93 |
+
Value=Value3;
|
94 |
+
|
95 |
+
C[i]=Value;
|
96 |
+
__syncthreads();
|
97 |
+
|
98 |
+
}
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
int main(int argc, char** argv)
|
104 |
+
{
|
105 |
+
int iterations;
|
106 |
+
if(argc!=2) {
|
107 |
+
fprintf(stderr,"usage: %s #iterations\n",argv[0]);
|
108 |
+
exit(1);
|
109 |
+
}
|
110 |
+
else {
|
111 |
+
iterations = atoi(argv[1]);
|
112 |
+
}
|
113 |
+
|
114 |
+
printf("Power Microbenchmarks with iterations %d\n",iterations);
|
115 |
+
int N = THREADS_PER_BLOCK*NUM_OF_BLOCKS;
|
116 |
+
size_t size = N * sizeof(unsigned);
|
117 |
+
// Allocate input vectors h_A and h_B in host memory
|
118 |
+
h_A = (unsigned*)malloc(size);
|
119 |
+
if (h_A == 0) CleanupResources();
|
120 |
+
h_B = (unsigned*)malloc(size);
|
121 |
+
if (h_B == 0) CleanupResources();
|
122 |
+
h_C = (unsigned*)malloc(size);
|
123 |
+
if (h_C == 0) CleanupResources();
|
124 |
+
|
125 |
+
// Initialize input vectors
|
126 |
+
RandomInit(h_A, N);
|
127 |
+
RandomInit(h_B, N);
|
128 |
+
|
129 |
+
// Allocate vectors in device memory
|
130 |
+
checkCudaErrors( cudaMalloc((void**)&d_A, size) );
|
131 |
+
checkCudaErrors( cudaMalloc((void**)&d_B, size) );
|
132 |
+
checkCudaErrors( cudaMalloc((void**)&d_C, size) );
|
133 |
+
|
134 |
+
// Copy vectors from host memory to device memory
|
135 |
+
checkCudaErrors( cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice) );
|
136 |
+
checkCudaErrors( cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice) );
|
137 |
+
|
138 |
+
cudaEvent_t start, stop;
|
139 |
+
float elapsedTime = 0;
|
140 |
+
checkCudaErrors(cudaEventCreate(&start));
|
141 |
+
checkCudaErrors(cudaEventCreate(&stop));
|
142 |
+
|
143 |
+
//VecAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, N);
|
144 |
+
dim3 dimGrid(NUM_OF_BLOCKS,1);
|
145 |
+
dim3 dimBlock(THREADS_PER_BLOCK,1);
|
146 |
+
dim3 dimGrid2(1,1);
|
147 |
+
dim3 dimBlock2(1,1);
|
148 |
+
|
149 |
+
checkCudaErrors(cudaEventRecord(start));
|
150 |
+
PowerKernal3<<<dimGrid,dimBlock>>>(d_A, d_B, d_C, iterations);
|
151 |
+
checkCudaErrors(cudaEventRecord(stop));
|
152 |
+
|
153 |
+
checkCudaErrors(cudaEventSynchronize(stop));
|
154 |
+
checkCudaErrors(cudaEventElapsedTime(&elapsedTime, start, stop));
|
155 |
+
printf("execution time = %.2f s\n", elapsedTime/1000);
|
156 |
+
getLastCudaError("kernel launch failure");
|
157 |
+
cudaThreadSynchronize();
|
158 |
+
|
159 |
+
/*CUT_SAFE_CALL(cutCreateTimer(&my_timer));
|
160 |
+
TaskHandle taskhandle = LaunchDAQ();
|
161 |
+
CUT_SAFE_CALL(cutStartTimer(my_timer));
|
162 |
+
printf("execution time = %f\n", cutGetTimerValue(my_timer));
|
163 |
+
|
164 |
+
|
165 |
+
|
166 |
+
PowerKernal3<<<dimGrid,dimBlock>>>(d_A, d_B, d_C, N);
|
167 |
+
CUDA_SAFE_CALL( cudaThreadSynchronize() );
|
168 |
+
printf("execution time = %f\n", cutGetTimerValue(my_timer));
|
169 |
+
|
170 |
+
|
171 |
+
getLastCudaError("kernel launch failure");
|
172 |
+
CUDA_SAFE_CALL( cudaThreadSynchronize() );
|
173 |
+
CUT_SAFE_CALL(cutStopTimer(my_timer));
|
174 |
+
TurnOffDAQ(taskhandle, cutGetTimerValue(my_timer));
|
175 |
+
printf("execution time = %f\n", cutGetTimerValue(my_timer));
|
176 |
+
CUT_SAFE_CALL(cutDeleteTimer(my_timer));
|
177 |
+
|
178 |
+
#ifdef _DEBUG
|
179 |
+
checkCudaErrors( cudaDeviceSynchronize() );
|
180 |
+
#endif*/
|
181 |
+
|
182 |
+
// Copy result from device memory to host memory
|
183 |
+
// h_C contains the result in host memory
|
184 |
+
checkCudaErrors( cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost) );
|
185 |
+
checkCudaErrors(cudaEventDestroy(start));
|
186 |
+
checkCudaErrors(cudaEventDestroy(stop));
|
187 |
+
CleanupResources();
|
188 |
+
|
189 |
+
return 0;
|
190 |
+
}
|
191 |
+
|
192 |
+
void CleanupResources(void)
|
193 |
+
{
|
194 |
+
// Free device memory
|
195 |
+
if (d_A)
|
196 |
+
cudaFree(d_A);
|
197 |
+
if (d_B)
|
198 |
+
cudaFree(d_B);
|
199 |
+
if (d_C)
|
200 |
+
cudaFree(d_C);
|
201 |
+
|
202 |
+
// Free host memory
|
203 |
+
if (h_A)
|
204 |
+
free(h_A);
|
205 |
+
if (h_B)
|
206 |
+
free(h_B);
|
207 |
+
if (h_C)
|
208 |
+
free(h_C);
|
209 |
+
|
210 |
+
}
|
211 |
+
|
212 |
+
// Allocates an array with random float entries.
|
213 |
+
void RandomInit(unsigned* data, int n)
|
214 |
+
{
|
215 |
+
for (int i = 0; i < n; ++i){
|
216 |
+
srand((unsigned)time(0));
|
217 |
+
data[i] = rand() / RAND_MAX;
|
218 |
+
}
|
219 |
+
}
|
220 |
+
|
221 |
+
|
222 |
+
|
223 |
+
|
224 |
+
|
225 |
+
|
cuda_code/BK5_1.cu
ADDED
@@ -0,0 +1,812 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
|
3 |
+
See LICENSE file.
|
4 |
+
|
5 |
+
*/
|
6 |
+
|
7 |
+
#include <stdio.h>
|
8 |
+
#include <stdlib.h>
|
9 |
+
#include <cuda.h>
|
10 |
+
#include <cuda_runtime.h>
|
11 |
+
#include "meshBasis.hpp"
|
12 |
+
|
13 |
+
void matrixPrint(int Nrows, int Ncols, dfloat *A, const char *mess){
|
14 |
+
#if 0
|
15 |
+
printf("%s = [\n", mess);
|
16 |
+
for(int i=0;i<Nrows;++i){
|
17 |
+
for(int a=0;a<Ncols;++a){
|
18 |
+
printf(" % e", A[i*Ncols+a]);
|
19 |
+
}
|
20 |
+
printf("\n");
|
21 |
+
}
|
22 |
+
printf("]\n");
|
23 |
+
#endif
|
24 |
+
}
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
__forceinline__ __device__ __host__ int ijN(const int i, const int j, const int N){
|
29 |
+
|
30 |
+
return i + j*N;
|
31 |
+
|
32 |
+
}
|
33 |
+
|
34 |
+
__forceinline__ __device__ __host__ int ijkN(const int i, const int j, const int k, const int N){
|
35 |
+
|
36 |
+
return i + j*N + k*N*N;
|
37 |
+
|
38 |
+
}
|
39 |
+
|
40 |
+
__forceinline__ __device__ __host__ int ijklN(const int i, const int j, const int k, const int l, const int N){
|
41 |
+
|
42 |
+
return i + j*N + k*N*N + l*N*N*N;
|
43 |
+
|
44 |
+
}
|
45 |
+
|
46 |
+
// switch:
|
47 |
+
// 1 to use CUDA 10.0 stream recording
|
48 |
+
// 0 to use traditional enqueing of kernels
|
49 |
+
#define USE_GRAPH 0
|
50 |
+
|
51 |
+
#define MAX_DOFS_1D 14
|
52 |
+
#define MAX_HALF_DOFS_1D 7
|
53 |
+
|
54 |
+
|
55 |
+
#define HALF_DOFS_1D ((NUM_DOFS_1D+1)/2)
|
56 |
+
|
57 |
+
#define NUM_DOFS_2D (NUM_DOFS_1D*NUM_DOFS_1D)
|
58 |
+
#define NUM_DOFS_3D (NUM_DOFS_1D*NUM_DOFS_1D*NUM_DOFS_1D)
|
59 |
+
|
60 |
+
__constant__ dfloat const_DofToDofD[MAX_DOFS_1D*MAX_DOFS_1D];
|
61 |
+
__constant__ dfloat const_oddDofToDofD[MAX_HALF_DOFS_1D*MAX_HALF_DOFS_1D];
|
62 |
+
__constant__ dfloat const_evenDofToDofD[MAX_HALF_DOFS_1D*MAX_HALF_DOFS_1D];
|
63 |
+
|
64 |
+
void randAlloc(int N, dfloat **h_a, dfloat **c_a){
|
65 |
+
|
66 |
+
*h_a = (dfloat*) calloc(N, sizeof(dfloat));
|
67 |
+
|
68 |
+
for(int n=0;n<N;++n)
|
69 |
+
h_a[0][n] = drand48();
|
70 |
+
|
71 |
+
cudaMalloc(c_a, N*sizeof(dfloat));
|
72 |
+
|
73 |
+
cudaMemcpy(c_a[0], h_a[0], N*sizeof(dfloat), cudaMemcpyHostToDevice);
|
74 |
+
|
75 |
+
}
|
76 |
+
|
77 |
+
__global__ void nothingKernel(){ }
|
78 |
+
|
79 |
+
|
80 |
+
template <int NUM_DOFS_1D, int p_Nblock >
|
81 |
+
__forceinline__ __device__
|
82 |
+
void BK5Device(const int numElements,
|
83 |
+
const int element,
|
84 |
+
const dfloat lambda,
|
85 |
+
const dfloat * __restrict__ op,
|
86 |
+
const dfloat * __restrict__ DofToDofD,
|
87 |
+
const dfloat * __restrict__ oddDofToDofD,
|
88 |
+
const dfloat * __restrict__ evenDofToDofD,
|
89 |
+
dfloat * __restrict__ r_p,
|
90 |
+
dfloat * __restrict__ r_Ap){
|
91 |
+
|
92 |
+
__shared__ dfloat s_p[p_Nblock][NUM_DOFS_1D][NUM_DOFS_1D];
|
93 |
+
__shared__ dfloat s_Gpr[p_Nblock][NUM_DOFS_1D][NUM_DOFS_1D];
|
94 |
+
__shared__ dfloat s_Gps[p_Nblock][NUM_DOFS_1D][NUM_DOFS_1D];
|
95 |
+
|
96 |
+
// assumes NUM_DOFS_2D threads
|
97 |
+
int t = threadIdx.x;
|
98 |
+
int blk = threadIdx.y;
|
99 |
+
|
100 |
+
int i = t%NUM_DOFS_1D;
|
101 |
+
int j = t/NUM_DOFS_1D;
|
102 |
+
|
103 |
+
for(int k = 0; k < NUM_DOFS_1D; k++) {
|
104 |
+
r_Ap[k] = 0.f; // zero the accumulator
|
105 |
+
}
|
106 |
+
|
107 |
+
// Layer by layer
|
108 |
+
#pragma unroll
|
109 |
+
for(int k = 0; k < NUM_DOFS_1D; k++) {
|
110 |
+
|
111 |
+
// share r_p[k]
|
112 |
+
__syncthreads();
|
113 |
+
|
114 |
+
s_p[blk][j][i] = r_p[k];
|
115 |
+
|
116 |
+
__syncthreads();
|
117 |
+
|
118 |
+
dfloat G00 = 0, G01 =0, G02 =0, G11 =0, G12 =0, G22 =0, GWJ =0;
|
119 |
+
|
120 |
+
// prefetch geometric factors
|
121 |
+
const int gbase = element*p_Nggeo*NUM_DOFS_3D + ijkN(i,j,k,NUM_DOFS_1D);
|
122 |
+
|
123 |
+
if(element<numElements){
|
124 |
+
G00 = op[gbase+p_G00ID*NUM_DOFS_3D];
|
125 |
+
G01 = op[gbase+p_G01ID*NUM_DOFS_3D];
|
126 |
+
G02 = op[gbase+p_G02ID*NUM_DOFS_3D];
|
127 |
+
G11 = op[gbase+p_G11ID*NUM_DOFS_3D];
|
128 |
+
G12 = op[gbase+p_G12ID*NUM_DOFS_3D];
|
129 |
+
G22 = op[gbase+p_G22ID*NUM_DOFS_3D];
|
130 |
+
GWJ = op[gbase+p_GWJID*NUM_DOFS_3D];
|
131 |
+
}
|
132 |
+
|
133 |
+
dfloat pr = 0.f;
|
134 |
+
dfloat ps = 0.f;
|
135 |
+
dfloat pt = 0.f;
|
136 |
+
|
137 |
+
#pragma unroll
|
138 |
+
for(int m = 0; m < NUM_DOFS_1D; m++) {
|
139 |
+
int im = ijN(m,i,NUM_DOFS_1D);
|
140 |
+
int jm = ijN(m,j,NUM_DOFS_1D);
|
141 |
+
int km = ijN(m,k,NUM_DOFS_1D);
|
142 |
+
pr += DofToDofD[im]*s_p[blk][j][m];
|
143 |
+
ps += DofToDofD[jm]*s_p[blk][m][i];
|
144 |
+
pt += DofToDofD[km]*r_p[m];
|
145 |
+
}
|
146 |
+
|
147 |
+
s_Gpr[blk][j][i] = (G00*pr + G01*ps + G02*pt);
|
148 |
+
s_Gps[blk][j][i] = (G01*pr + G11*ps + G12*pt);
|
149 |
+
|
150 |
+
dfloat Gpt = (G02*pr + G12*ps + G22*pt);
|
151 |
+
|
152 |
+
dfloat Apk = GWJ*lambda*r_p[k];
|
153 |
+
|
154 |
+
__syncthreads();
|
155 |
+
|
156 |
+
#pragma unroll
|
157 |
+
for(int m = 0; m < NUM_DOFS_1D; m++){
|
158 |
+
int mi = ijN(i,m,NUM_DOFS_1D);
|
159 |
+
int mj = ijN(j,m,NUM_DOFS_1D);
|
160 |
+
int km = ijN(m,k,NUM_DOFS_1D);
|
161 |
+
Apk += DofToDofD[mi]*s_Gpr[blk][j][m];
|
162 |
+
Apk += DofToDofD[mj]*s_Gps[blk][m][i];
|
163 |
+
r_Ap[m] += DofToDofD[km]*Gpt; // DT(m,k)*ut(i,j,k,e)
|
164 |
+
}
|
165 |
+
|
166 |
+
r_Ap[k] += Apk;
|
167 |
+
}
|
168 |
+
|
169 |
+
}
|
170 |
+
|
171 |
+
template <int NUM_DOFS_1D, int p_Nblock >
|
172 |
+
__global__ void BK5ConstantKernel(const int numElements,
|
173 |
+
const dfloat lambda,
|
174 |
+
const dfloat * __restrict__ op,
|
175 |
+
const dfloat * __restrict__ DofToDofD,
|
176 |
+
const dfloat * __restrict__ oddDofToDofD,
|
177 |
+
const dfloat * __restrict__ evenDofToDofD,
|
178 |
+
const dfloat * __restrict__ solIn,
|
179 |
+
dfloat * __restrict__ solOut){
|
180 |
+
|
181 |
+
__shared__ dfloat s_DofToDofD[NUM_DOFS_2D];
|
182 |
+
|
183 |
+
dfloat r_q[NUM_DOFS_1D];
|
184 |
+
dfloat r_Aq[NUM_DOFS_1D];
|
185 |
+
|
186 |
+
const unsigned int t = threadIdx.x;
|
187 |
+
const int blk = threadIdx.y;
|
188 |
+
|
189 |
+
const int element = blockIdx.x*p_Nblock + blk;
|
190 |
+
|
191 |
+
const unsigned int a = t%NUM_DOFS_1D;
|
192 |
+
const unsigned int b = t/NUM_DOFS_1D;
|
193 |
+
|
194 |
+
s_DofToDofD[t] = DofToDofD[t];
|
195 |
+
|
196 |
+
if(element < numElements){
|
197 |
+
for(int c=0;c<NUM_DOFS_1D;++c){
|
198 |
+
|
199 |
+
int id = ijklN(a,b,c,element,NUM_DOFS_1D);
|
200 |
+
|
201 |
+
r_q[c] = solIn[id];
|
202 |
+
}
|
203 |
+
}
|
204 |
+
|
205 |
+
__syncthreads();
|
206 |
+
|
207 |
+
BK5Device <NUM_DOFS_1D, p_Nblock>
|
208 |
+
(numElements, element, lambda, op, s_DofToDofD, const_oddDofToDofD, const_evenDofToDofD, r_q, r_Aq);
|
209 |
+
|
210 |
+
if(element<numElements){
|
211 |
+
#pragma unroll
|
212 |
+
for(int c=0;c<NUM_DOFS_1D;++c){
|
213 |
+
int id = ijklN(a,b,c,element,NUM_DOFS_1D);
|
214 |
+
solOut[id] = r_Aq[c];
|
215 |
+
}
|
216 |
+
}
|
217 |
+
}
|
218 |
+
|
219 |
+
template <int NUM_DOFS_1D>
|
220 |
+
__forceinline__ __device__
|
221 |
+
dfloat BK5CubeDevice(const int numElements,
|
222 |
+
const int element,
|
223 |
+
const dfloat lambda,
|
224 |
+
const dfloat * __restrict__ op,
|
225 |
+
const dfloat * __restrict__ DofToDofD,
|
226 |
+
dfloat r_p){
|
227 |
+
|
228 |
+
__shared__ dfloat s_p[NUM_DOFS_1D][NUM_DOFS_1D][NUM_DOFS_1D];
|
229 |
+
|
230 |
+
// assumes NUM_DOFS_2D threads
|
231 |
+
int i = threadIdx.x;
|
232 |
+
int j = threadIdx.y;
|
233 |
+
int k = threadIdx.z;
|
234 |
+
|
235 |
+
dfloat r_Ap = 0; // zero the accumulator
|
236 |
+
|
237 |
+
s_p[k][j][i] = r_p;
|
238 |
+
|
239 |
+
__syncthreads();
|
240 |
+
|
241 |
+
dfloat G00 = 0, G01 =0, G02 =0, G11 =0, G12 =0, G22 =0, GWJ =0;
|
242 |
+
|
243 |
+
// prefetch geometric factors
|
244 |
+
const int gbase = element*p_Nggeo*NUM_DOFS_3D + ijkN(i,j,k,NUM_DOFS_1D);
|
245 |
+
|
246 |
+
if(element<numElements){
|
247 |
+
G00 = op[gbase+p_G00ID*NUM_DOFS_3D];
|
248 |
+
G01 = op[gbase+p_G01ID*NUM_DOFS_3D];
|
249 |
+
G02 = op[gbase+p_G02ID*NUM_DOFS_3D];
|
250 |
+
G11 = op[gbase+p_G11ID*NUM_DOFS_3D];
|
251 |
+
G12 = op[gbase+p_G12ID*NUM_DOFS_3D];
|
252 |
+
G22 = op[gbase+p_G22ID*NUM_DOFS_3D];
|
253 |
+
GWJ = op[gbase+p_GWJID*NUM_DOFS_3D];
|
254 |
+
}
|
255 |
+
|
256 |
+
r_Ap = GWJ*lambda*r_p;
|
257 |
+
|
258 |
+
dfloat pr = 0.f;
|
259 |
+
dfloat ps = 0.f;
|
260 |
+
dfloat pt = 0.f;
|
261 |
+
|
262 |
+
#pragma unroll
|
263 |
+
for(int m = 0; m < NUM_DOFS_1D; m++) {
|
264 |
+
int im = ijN(m,i,NUM_DOFS_1D);
|
265 |
+
int jm = ijN(m,j,NUM_DOFS_1D);
|
266 |
+
int km = ijN(m,k,NUM_DOFS_1D);
|
267 |
+
pr += DofToDofD[im]*s_p[k][j][m];
|
268 |
+
ps += DofToDofD[jm]*s_p[k][m][i];
|
269 |
+
pt += DofToDofD[km]*s_p[m][j][i];
|
270 |
+
}
|
271 |
+
|
272 |
+
dfloat Gpr = (G00*pr + G01*ps + G02*pt);
|
273 |
+
dfloat Gps = (G01*pr + G11*ps + G12*pt);
|
274 |
+
dfloat Gpt = (G02*pr + G12*ps + G22*pt);
|
275 |
+
|
276 |
+
|
277 |
+
__syncthreads();
|
278 |
+
|
279 |
+
s_p[k][j][i] = Gpr;
|
280 |
+
|
281 |
+
__syncthreads();
|
282 |
+
|
283 |
+
#pragma unroll
|
284 |
+
for(int m = 0; m < NUM_DOFS_1D; m++){
|
285 |
+
int mi = ijN(i,m,NUM_DOFS_1D);
|
286 |
+
r_Ap += DofToDofD[mi]*s_p[k][j][m];
|
287 |
+
}
|
288 |
+
|
289 |
+
|
290 |
+
__syncthreads();
|
291 |
+
|
292 |
+
s_p[k][j][i] = Gps;
|
293 |
+
|
294 |
+
__syncthreads();
|
295 |
+
|
296 |
+
#pragma unroll
|
297 |
+
for(int m = 0; m < NUM_DOFS_1D; m++){
|
298 |
+
int mj = ijN(j,m,NUM_DOFS_1D);
|
299 |
+
r_Ap += DofToDofD[mj]*s_p[k][m][i];
|
300 |
+
}
|
301 |
+
|
302 |
+
__syncthreads();
|
303 |
+
|
304 |
+
s_p[k][j][i] = Gpt;
|
305 |
+
|
306 |
+
__syncthreads();
|
307 |
+
|
308 |
+
#pragma unroll
|
309 |
+
for(int m = 0; m < NUM_DOFS_1D; m++){
|
310 |
+
int mk= ijN(k,m,NUM_DOFS_1D);
|
311 |
+
r_Ap += DofToDofD[mk]*s_p[m][j][i];
|
312 |
+
}
|
313 |
+
|
314 |
+
return r_Ap;
|
315 |
+
}
|
316 |
+
|
317 |
+
template <int NUM_DOFS_1D>
|
318 |
+
__global__ void BK5CubeKernel(const int numElements,
|
319 |
+
const dfloat lambda,
|
320 |
+
const dfloat * __restrict__ op,
|
321 |
+
const dfloat * __restrict__ DofToDofD,
|
322 |
+
const dfloat * __restrict__ solIn,
|
323 |
+
dfloat * __restrict__ solOut){
|
324 |
+
|
325 |
+
__shared__ dfloat s_DofToDofD[NUM_DOFS_2D];
|
326 |
+
|
327 |
+
const int element = blockIdx.x;
|
328 |
+
|
329 |
+
int a = threadIdx.x;
|
330 |
+
int b = threadIdx.y;
|
331 |
+
int c = threadIdx.z;
|
332 |
+
|
333 |
+
if(c==0)
|
334 |
+
s_DofToDofD[b*NUM_DOFS_1D+a] = DofToDofD[b*NUM_DOFS_1D+a];
|
335 |
+
|
336 |
+
int id = ijklN(a,b,c,element,NUM_DOFS_1D);
|
337 |
+
|
338 |
+
dfloat r_p = solIn[id];
|
339 |
+
|
340 |
+
__syncthreads();
|
341 |
+
|
342 |
+
dfloat r_Ap = BK5CubeDevice <NUM_DOFS_1D>
|
343 |
+
(numElements, element, lambda, op, s_DofToDofD, r_p);
|
344 |
+
|
345 |
+
solOut[id] = r_Ap;
|
346 |
+
|
347 |
+
}
|
348 |
+
|
349 |
+
|
350 |
+
|
351 |
+
double bandwidthTest(cudaStream_t stream, int Ntests, size_t bwNtotal){
|
352 |
+
|
353 |
+
cudaEvent_t start, end;
|
354 |
+
cudaEventCreate(&start);
|
355 |
+
cudaEventCreate(&end);
|
356 |
+
|
357 |
+
dfloat *h_bwTest1, *c_bwTest1;
|
358 |
+
dfloat *h_bwTest2, *c_bwTest2;
|
359 |
+
|
360 |
+
randAlloc(bwNtotal/2, &h_bwTest1, &c_bwTest1);
|
361 |
+
randAlloc(bwNtotal/2, &h_bwTest2, &c_bwTest2);
|
362 |
+
|
363 |
+
cudaDeviceSynchronize();
|
364 |
+
cudaEventRecord(start, stream);
|
365 |
+
|
366 |
+
for(int test=0;test<Ntests/2;++test){
|
367 |
+
cudaMemcpy(c_bwTest2, c_bwTest1, (bwNtotal/2)*sizeof(dfloat), cudaMemcpyDeviceToDevice);
|
368 |
+
cudaMemcpy(c_bwTest1, c_bwTest2, (bwNtotal/2)*sizeof(dfloat), cudaMemcpyDeviceToDevice);
|
369 |
+
}
|
370 |
+
|
371 |
+
cudaEventRecord(end, stream);
|
372 |
+
cudaEventSynchronize(end);
|
373 |
+
cudaDeviceSynchronize();
|
374 |
+
|
375 |
+
float elapsed;
|
376 |
+
cudaEventElapsedTime(&elapsed, start, end);
|
377 |
+
elapsed /= 1000.; // convert to s
|
378 |
+
elapsed /= (double) Ntests;
|
379 |
+
|
380 |
+
double estimatedActualDeviceBandwidth = (bwNtotal*sizeof(dfloat)/elapsed)/1.e9;
|
381 |
+
|
382 |
+
cudaFree(c_bwTest1);
|
383 |
+
cudaFree(c_bwTest2);
|
384 |
+
|
385 |
+
free(h_bwTest1);
|
386 |
+
free(h_bwTest2);
|
387 |
+
|
388 |
+
cudaEventDestroy(start);
|
389 |
+
cudaEventDestroy(end);
|
390 |
+
|
391 |
+
return estimatedActualDeviceBandwidth;
|
392 |
+
}
|
393 |
+
|
394 |
+
// leave this here in case we add odd-even versions
|
395 |
+
void buildOddEvenMatrices(int NUM_COLS_OP, int NUM_ROWS_OP,
|
396 |
+
dfloat *h_OP, dfloat **c_OP, dfloat **c_oddOP, dfloat **c_evenOP){
|
397 |
+
|
398 |
+
int HALF_COLS_OP = ((NUM_COLS_OP+1)/2);
|
399 |
+
int HALF_ROWS_OP = ((NUM_ROWS_OP+1)/2);
|
400 |
+
|
401 |
+
dfloat *X = (dfloat*) calloc(NUM_COLS_OP*NUM_COLS_OP, sizeof(dfloat));
|
402 |
+
dfloat *invX = (dfloat*) calloc(NUM_COLS_OP*NUM_COLS_OP, sizeof(dfloat));
|
403 |
+
|
404 |
+
dfloat *cubX = (dfloat*) calloc(NUM_ROWS_OP*NUM_ROWS_OP, sizeof(dfloat));
|
405 |
+
dfloat *cubInvX = (dfloat*) calloc(NUM_ROWS_OP*NUM_ROWS_OP, sizeof(dfloat));
|
406 |
+
|
407 |
+
for(int n=0;n<NUM_ROWS_OP;++n){
|
408 |
+
cubX[n*NUM_ROWS_OP + n] = 1;
|
409 |
+
cubInvX[n*NUM_ROWS_OP + n] = 0.5;
|
410 |
+
|
411 |
+
if(n<NUM_ROWS_OP/2){
|
412 |
+
cubX[n*NUM_ROWS_OP + NUM_ROWS_OP-1-n] = -1;
|
413 |
+
cubInvX[n*NUM_ROWS_OP + NUM_ROWS_OP-1-n] = +0.5;
|
414 |
+
}
|
415 |
+
|
416 |
+
if(n>=(NUM_ROWS_OP/2)){
|
417 |
+
cubX[n*NUM_ROWS_OP + NUM_ROWS_OP-1-n] = +1;
|
418 |
+
cubInvX[n*NUM_ROWS_OP + NUM_ROWS_OP-1-n] = -0.5;
|
419 |
+
}
|
420 |
+
}
|
421 |
+
|
422 |
+
for(int n=0;n<NUM_COLS_OP;++n){
|
423 |
+
X[n*NUM_COLS_OP + n] = 1;
|
424 |
+
invX[n*NUM_COLS_OP + n] = 0.5;
|
425 |
+
|
426 |
+
if(n<NUM_COLS_OP/2){
|
427 |
+
X[n*NUM_COLS_OP + NUM_COLS_OP-1-n] = 1;
|
428 |
+
invX[n*NUM_COLS_OP + NUM_COLS_OP-1-n] = -0.5;
|
429 |
+
}
|
430 |
+
|
431 |
+
if(n>=NUM_COLS_OP/2){
|
432 |
+
X[n*NUM_COLS_OP + NUM_COLS_OP-1-n] = -1;
|
433 |
+
invX[n*NUM_COLS_OP + NUM_COLS_OP-1-n] = 0.5;
|
434 |
+
}
|
435 |
+
}
|
436 |
+
|
437 |
+
if(NUM_COLS_OP%2) X[(NUM_COLS_OP)*(NUM_COLS_OP)/2] = 1;
|
438 |
+
if(NUM_COLS_OP%2) invX[(NUM_COLS_OP)*(NUM_COLS_OP)/2] = 1;
|
439 |
+
|
440 |
+
if(NUM_ROWS_OP%2) cubX[(NUM_ROWS_OP)*(NUM_ROWS_OP)/2] = 1;
|
441 |
+
if(NUM_ROWS_OP%2) cubInvX[(NUM_ROWS_OP)*(NUM_ROWS_OP)/2] = 1;
|
442 |
+
|
443 |
+
// if(NUM_COLS_OP%2) invX[(NUM_COLS_OP)*(NUM_COLS_OP)/2] = 1;
|
444 |
+
// if(NUM_ROWS_OP%2) cubInvX[(NUM_ROWS_OP+1)*(NUM_ROWS_OP+1)/2] = 1;
|
445 |
+
|
446 |
+
dfloat *IinvX = (dfloat*) calloc(NUM_COLS_OP*NUM_ROWS_OP, sizeof(dfloat));
|
447 |
+
dfloat *cubInvXIinvX = (dfloat*) calloc(NUM_COLS_OP*NUM_ROWS_OP, sizeof(dfloat));
|
448 |
+
|
449 |
+
// post multiply by invX
|
450 |
+
for(int i=0;i<NUM_ROWS_OP;++i){
|
451 |
+
for(int a=0;a<NUM_COLS_OP;++a){
|
452 |
+
dfloat resI = 0;
|
453 |
+
for(int n=0;n<NUM_COLS_OP;++n){
|
454 |
+
resI += h_OP [i*NUM_COLS_OP+n]*invX[n*NUM_COLS_OP+a];
|
455 |
+
}
|
456 |
+
IinvX[i*NUM_COLS_OP+a] = resI;
|
457 |
+
}
|
458 |
+
}
|
459 |
+
|
460 |
+
// pre multiply by invX
|
461 |
+
for(int i=0;i<NUM_ROWS_OP;++i){
|
462 |
+
for(int a=0;a<NUM_COLS_OP;++a){
|
463 |
+
dfloat resI = 0;
|
464 |
+
for(int n=0;n<NUM_ROWS_OP;++n){
|
465 |
+
resI += cubInvX[i*NUM_ROWS_OP+n]*IinvX[n*NUM_COLS_OP + a];
|
466 |
+
}
|
467 |
+
cubInvXIinvX[i*NUM_COLS_OP+a] = resI;
|
468 |
+
}
|
469 |
+
}
|
470 |
+
|
471 |
+
// now interleave the two non-zero blocks
|
472 |
+
// [ A 0 ] => [ A[0][0] B[0][0] A[0][1] B[0][1] .. A[0][HALF_DOFS_1D-1] B[0][HALF_DOFS_1D-1] ..
|
473 |
+
// [ 0 B ]
|
474 |
+
|
475 |
+
dfloat *oddOP = (dfloat*) calloc(NUM_ROWS_OP*HALF_ROWS_OP, sizeof(dfloat));
|
476 |
+
dfloat *evenOP = (dfloat*) calloc(NUM_ROWS_OP*HALF_ROWS_OP, sizeof(dfloat));
|
477 |
+
|
478 |
+
for(int i=0;i<HALF_ROWS_OP;++i){
|
479 |
+
for(int a=0;a<HALF_COLS_OP;++a){
|
480 |
+
|
481 |
+
oddOP[i*HALF_COLS_OP+a] = cubInvXIinvX[i*NUM_COLS_OP+a];
|
482 |
+
evenOP[i*HALF_COLS_OP+a] = cubInvXIinvX[(NUM_ROWS_OP-1-i)*NUM_COLS_OP + NUM_COLS_OP-1-a];
|
483 |
+
}
|
484 |
+
}
|
485 |
+
|
486 |
+
if((NUM_ROWS_OP%2)) // zero duplicate
|
487 |
+
evenOP[HALF_ROWS_OP*HALF_COLS_OP-1] = 0;
|
488 |
+
|
489 |
+
int NoddOP = HALF_ROWS_OP*HALF_COLS_OP;
|
490 |
+
int NevenOP = HALF_ROWS_OP*HALF_COLS_OP;
|
491 |
+
|
492 |
+
cudaMalloc(c_oddOP, NoddOP*sizeof(dfloat));
|
493 |
+
cudaMalloc(c_evenOP, NevenOP*sizeof(dfloat));
|
494 |
+
|
495 |
+
cudaMemcpy(*c_oddOP, oddOP, NoddOP*sizeof(dfloat), cudaMemcpyHostToDevice);
|
496 |
+
cudaMemcpy(*c_evenOP, evenOP, NoddOP*sizeof(dfloat), cudaMemcpyHostToDevice);
|
497 |
+
|
498 |
+
cudaMemcpy(*c_OP, h_OP, NUM_COLS_OP*NUM_ROWS_OP*sizeof(dfloat), cudaMemcpyHostToDevice);
|
499 |
+
|
500 |
+
matrixPrint(NUM_COLS_OP, NUM_COLS_OP, X, "X");
|
501 |
+
matrixPrint(NUM_ROWS_OP, NUM_ROWS_OP, cubX, "cubX");
|
502 |
+
|
503 |
+
|
504 |
+
matrixPrint(NUM_COLS_OP, NUM_COLS_OP, invX, "invX");
|
505 |
+
matrixPrint(NUM_ROWS_OP, NUM_ROWS_OP, cubInvX, "cubInvX");
|
506 |
+
|
507 |
+
|
508 |
+
|
509 |
+
}
|
510 |
+
|
511 |
+
|
512 |
+
void runBK5Kernel(cudaStream_t stream, int Nq, int numElements, dfloat lambda,
|
513 |
+
dfloat *c_op,
|
514 |
+
dfloat *c_DofToDofD, dfloat *c_oddDofToDofD, dfloat *c_evenDofToDofD,
|
515 |
+
dfloat *c_solIn, dfloat *c_solOut, int mode){
|
516 |
+
|
517 |
+
#define BK5Kernel(Nq,Nblock) \
|
518 |
+
{ \
|
519 |
+
if(mode==0){ \
|
520 |
+
dim3 G((numElements+Nblock-1)/Nblock, 1, 1); \
|
521 |
+
dim3 B(Nq*Nq, Nblock, 1); \
|
522 |
+
BK5ConstantKernel<Nq,Nblock> <<< G, B, 0, stream >>> \
|
523 |
+
(numElements, lambda, c_op, c_DofToDofD, c_oddDofToDofD,c_evenDofToDofD, c_solIn, c_solOut); \
|
524 |
+
} \
|
525 |
+
else{ \
|
526 |
+
dim3 G(numElements,1,1); \
|
527 |
+
dim3 B(Nq, Nq, Nq); \
|
528 |
+
BK5CubeKernel<Nq> <<< G, B, 0, stream >>> \
|
529 |
+
(numElements, lambda, c_op, c_DofToDofD, c_solIn, c_solOut); \
|
530 |
+
} \
|
531 |
+
}
|
532 |
+
|
533 |
+
|
534 |
+
#define ERR printf("massMatrixMultiplyRegister with Nq=%d not available", Nq); exit(-1)
|
535 |
+
|
536 |
+
if(Nq==2){
|
537 |
+
BK5Kernel(2,16);
|
538 |
+
return;
|
539 |
+
}
|
540 |
+
|
541 |
+
if(Nq==3){
|
542 |
+
BK5Kernel(3,7);
|
543 |
+
return;
|
544 |
+
}
|
545 |
+
|
546 |
+
if(Nq==4){
|
547 |
+
BK5Kernel(4,4);
|
548 |
+
return;
|
549 |
+
}
|
550 |
+
|
551 |
+
if(Nq==5){
|
552 |
+
BK5Kernel(5,5);
|
553 |
+
return;
|
554 |
+
}
|
555 |
+
|
556 |
+
if(Nq==6){
|
557 |
+
BK5Kernel(6,3);
|
558 |
+
return;
|
559 |
+
}
|
560 |
+
|
561 |
+
if(Nq==7){
|
562 |
+
BK5Kernel(7,2);
|
563 |
+
return;
|
564 |
+
}
|
565 |
+
|
566 |
+
if(Nq==8){
|
567 |
+
BK5Kernel(8,1);
|
568 |
+
return;
|
569 |
+
}
|
570 |
+
|
571 |
+
if(Nq==9){
|
572 |
+
BK5Kernel(9,1);
|
573 |
+
return;
|
574 |
+
}
|
575 |
+
|
576 |
+
if(Nq==10){
|
577 |
+
BK5Kernel(10,1);
|
578 |
+
return;
|
579 |
+
}
|
580 |
+
|
581 |
+
if(Nq==11){
|
582 |
+
BK5Kernel(11,1);
|
583 |
+
return;
|
584 |
+
}
|
585 |
+
|
586 |
+
if(Nq==12){
|
587 |
+
BK5Kernel(12,1);
|
588 |
+
return;
|
589 |
+
}
|
590 |
+
|
591 |
+
if(Nq==13){
|
592 |
+
BK5Kernel(13,1);
|
593 |
+
return;
|
594 |
+
}
|
595 |
+
|
596 |
+
ERR;
|
597 |
+
}
|
598 |
+
|
599 |
+
|
600 |
+
dfloat nothingTest(cudaStream_t stream, int Ntests){
|
601 |
+
|
602 |
+
cudaEvent_t start, end;
|
603 |
+
cudaEventCreate(&start);
|
604 |
+
cudaEventCreate(&end);
|
605 |
+
|
606 |
+
cudaDeviceSynchronize();
|
607 |
+
|
608 |
+
float nothingElapsed = 0;
|
609 |
+
{
|
610 |
+
|
611 |
+
// time kernel that does nothing
|
612 |
+
|
613 |
+
#if USE_GRAPH==1
|
614 |
+
// cuda stream capture sequence for nothingKernel
|
615 |
+
cudaGraph_t nothingGraph;
|
616 |
+
|
617 |
+
cudaStreamBeginCapture(stream, cudaStreamCaptureModeGlobal);
|
618 |
+
|
619 |
+
for(int test=0;test<Ntests;++test){
|
620 |
+
nothingKernel <<< 1, 1, 0, stream >>> ();
|
621 |
+
}
|
622 |
+
|
623 |
+
cudaStreamEndCapture(stream, ¬hingGraph);
|
624 |
+
|
625 |
+
// time graph sequence for nothing
|
626 |
+
cudaGraphExec_t nothingInstance;
|
627 |
+
cudaGraphInstantiate(¬hingInstance, nothingGraph, NULL, NULL, 0);
|
628 |
+
|
629 |
+
cudaEventRecord(start, stream);
|
630 |
+
|
631 |
+
cudaGraphLaunch(nothingInstance, stream);
|
632 |
+
|
633 |
+
cudaEventRecord(end, stream);
|
634 |
+
#else
|
635 |
+
|
636 |
+
cudaEventRecord(start, stream);
|
637 |
+
|
638 |
+
for(int test=0;test<Ntests;++test)
|
639 |
+
nothingKernel <<< 1, 1, 0, stream >>> ();
|
640 |
+
|
641 |
+
cudaEventRecord(end, stream);
|
642 |
+
|
643 |
+
#endif
|
644 |
+
|
645 |
+
cudaDeviceSynchronize();
|
646 |
+
|
647 |
+
cudaEventElapsedTime(¬hingElapsed, start, end);
|
648 |
+
nothingElapsed /= 1000.;
|
649 |
+
nothingElapsed /= (double) Ntests;
|
650 |
+
|
651 |
+
}
|
652 |
+
|
653 |
+
return nothingElapsed;
|
654 |
+
}
|
655 |
+
|
656 |
+
|
657 |
+
int main(int argc, char **argv){
|
658 |
+
|
659 |
+
cudaStream_t stream;
|
660 |
+
cudaStreamCreate(&stream);
|
661 |
+
|
662 |
+
if(argc!=4){
|
663 |
+
printf("Usage: ./BK5 Nq numElements mode\n");
|
664 |
+
exit(-1);
|
665 |
+
}
|
666 |
+
|
667 |
+
// read number of elements
|
668 |
+
int Nq = atoi(argv[1]);
|
669 |
+
int numElements = atoi(argv[2]);
|
670 |
+
int mode = atoi(argv[3]);
|
671 |
+
|
672 |
+
dfloat lambda = 0;
|
673 |
+
|
674 |
+
printf("Running: NUM_DOFS_1D=%d, numElements=%d\n", Nq, numElements);
|
675 |
+
|
676 |
+
int Np = Nq*Nq*Nq;
|
677 |
+
int halfNq = ((Nq+1)/2);
|
678 |
+
|
679 |
+
int Ntotal = numElements*Np;
|
680 |
+
|
681 |
+
int Ntests = 10;
|
682 |
+
|
683 |
+
double estimatedActualDeviceBandwidth = bandwidthTest(stream, Ntests, (Ntotal*2+7*Ntotal)*sizeof(dfloat));
|
684 |
+
|
685 |
+
dfloat *h_op, *c_op;
|
686 |
+
dfloat *h_solOut, *c_solOut;
|
687 |
+
dfloat *h_solIn, *c_solIn;
|
688 |
+
|
689 |
+
dfloat *h_DofToDofD, *c_DofToDofD;
|
690 |
+
dfloat *c_oddDofToDofD, *c_evenDofToDofD;
|
691 |
+
|
692 |
+
// float fields
|
693 |
+
randAlloc(Ntotal*p_Nggeo, &h_op, &c_op);
|
694 |
+
|
695 |
+
randAlloc(Ntotal, &h_solIn, &c_solIn);
|
696 |
+
randAlloc(Ntotal, &h_solOut, &c_solOut);
|
697 |
+
|
698 |
+
randAlloc(Nq*Nq, &h_DofToDofD, &c_DofToDofD);
|
699 |
+
|
700 |
+
// give D the correct symmetry
|
701 |
+
for(int i=0;i<halfNq;++i){
|
702 |
+
for(int a=0;a<Nq;++a){
|
703 |
+
h_DofToDofD[(Nq-1-i)*Nq + Nq-1-a] = -h_DofToDofD[i*Nq+a];
|
704 |
+
}
|
705 |
+
}
|
706 |
+
|
707 |
+
// create Odd-even packed storage for I and transpose(I) and push to constant memory
|
708 |
+
buildOddEvenMatrices (Nq,Nq, h_DofToDofD, &c_DofToDofD, &c_oddDofToDofD, &c_evenDofToDofD);
|
709 |
+
|
710 |
+
cudaMemcpyToSymbol(const_DofToDofD, c_DofToDofD, Nq*Nq*sizeof(dfloat), 0, cudaMemcpyDeviceToDevice);
|
711 |
+
cudaMemcpyToSymbol(const_oddDofToDofD, c_oddDofToDofD, halfNq*halfNq*sizeof(dfloat), 0, cudaMemcpyDeviceToDevice);
|
712 |
+
cudaMemcpyToSymbol(const_evenDofToDofD, c_evenDofToDofD, halfNq*halfNq*sizeof(dfloat), 0, cudaMemcpyDeviceToDevice);
|
713 |
+
|
714 |
+
cudaEvent_t start, end;
|
715 |
+
cudaEventCreate(&start);
|
716 |
+
cudaEventCreate(&end);
|
717 |
+
|
718 |
+
// KERNEL GRID
|
719 |
+
// do nothing kernel test
|
720 |
+
dfloat nothingElapsed = nothingTest(stream, Ntests);
|
721 |
+
nothingElapsed = nothingTest(stream, Ntests);
|
722 |
+
|
723 |
+
// warm up call
|
724 |
+
runBK5Kernel (stream, Nq, numElements, lambda,
|
725 |
+
c_op,
|
726 |
+
c_DofToDofD, c_oddDofToDofD, c_evenDofToDofD,
|
727 |
+
c_solIn, c_solOut, mode);
|
728 |
+
|
729 |
+
#if USE_GRAPH==1
|
730 |
+
// cuda stream capture
|
731 |
+
cudaGraph_t graph;
|
732 |
+
|
733 |
+
cudaStreamBeginCapture(stream, cudaStreamCaptureModeGlobal);
|
734 |
+
|
735 |
+
for(int test=0;test<Ntests;++test){
|
736 |
+
|
737 |
+
runMassBK5Kernel (stream, Nq, numElements, lambda,
|
738 |
+
c_op,
|
739 |
+
c_DofToDofD, c_oddDofToDofD, c_evenDofToDofD,
|
740 |
+
c_solIn, c_solOut, mode);
|
741 |
+
}
|
742 |
+
|
743 |
+
cudaStreamEndCapture(stream, &graph);
|
744 |
+
|
745 |
+
cudaGraphExec_t instance;
|
746 |
+
cudaGraphInstantiate(&instance, graph, NULL, NULL, 0);
|
747 |
+
#endif
|
748 |
+
|
749 |
+
cudaDeviceSynchronize();
|
750 |
+
|
751 |
+
{
|
752 |
+
cudaEventRecord(start, stream);
|
753 |
+
|
754 |
+
#if USE_GRAPH==0
|
755 |
+
for(int test=0;test<Ntests;++test){
|
756 |
+
|
757 |
+
runBK5Kernel (stream, Nq, numElements, lambda,
|
758 |
+
c_op,
|
759 |
+
c_DofToDofD, c_oddDofToDofD, c_evenDofToDofD,
|
760 |
+
c_solIn, c_solOut, mode);
|
761 |
+
|
762 |
+
}
|
763 |
+
#else
|
764 |
+
cudaGraphLaunch(instance, stream);
|
765 |
+
#endif
|
766 |
+
|
767 |
+
cudaEventRecord(end, stream);
|
768 |
+
|
769 |
+
cudaEventSynchronize(end);
|
770 |
+
|
771 |
+
float elapsed;
|
772 |
+
cudaEventElapsedTime(&elapsed, start, end);
|
773 |
+
elapsed /= 1000.;
|
774 |
+
elapsed /= (double) Ntests;
|
775 |
+
|
776 |
+
int bytesMoved = (2*Np+7*Np)*sizeof(dfloat); // x, Mx, opa
|
777 |
+
double bw = (bytesMoved*numElements/elapsed)/1.e9;
|
778 |
+
|
779 |
+
double flopCount = Np*(6*2*Nq + 17);
|
780 |
+
double gflops = (flopCount*numElements/elapsed)/1.e9;
|
781 |
+
|
782 |
+
printf("%2d %8d %8d %e %e %e %e %e %e %%%% [BK5: N, numElements, Ndofs,"
|
783 |
+
" elapsed, dofsPerSecond, nothingElapsed, BW in GB/s, estimatedActualDeviceBandwidth, GFLOPS/s]\n",
|
784 |
+
Nq-1, numElements, Np*numElements, elapsed, numElements*(Np/elapsed),
|
785 |
+
nothingElapsed, bw, estimatedActualDeviceBandwidth, gflops);
|
786 |
+
}
|
787 |
+
|
788 |
+
// check output is correct
|
789 |
+
// BK5Host (Nq, numElements, lambda, h_op, h_DofToDofD, h_solIn, h_solOut);
|
790 |
+
meshReferenceBK5(Nq, numElements, lambda, h_op, h_DofToDofD, h_solIn, h_solOut);
|
791 |
+
|
792 |
+
// copy device version to host old qh
|
793 |
+
dfloat *fromDevice = (dfloat*) calloc(numElements*Np, sizeof(dfloat));
|
794 |
+
cudaMemcpy(fromDevice, c_solOut, numElements*Np*sizeof(dfloat), cudaMemcpyDeviceToHost);
|
795 |
+
|
796 |
+
dfloat maxDiff = 0;
|
797 |
+
|
798 |
+
for(int e=0;e<numElements;++e){
|
799 |
+
for(int n=0;n<Np;++n){
|
800 |
+
int id = e*Np + n;
|
801 |
+
dfloat diff = fabs(h_solOut[id]-fromDevice[id]);
|
802 |
+
maxDiff = (diff>maxDiff) ? diff:maxDiff;
|
803 |
+
}
|
804 |
+
}
|
805 |
+
printf("|| Mq_{host} - Mq_{device} ||_linf = %lg\n", maxDiff);
|
806 |
+
|
807 |
+
cudaEventDestroy(start);
|
808 |
+
cudaEventDestroy(end);
|
809 |
+
|
810 |
+
return 0;
|
811 |
+
|
812 |
+
}
|
cuda_code/BatchNormalization_8.cu
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#ifndef THC_GENERIC_FILE
|
2 |
+
#define THC_GENERIC_FILE "generic/BatchNormalization.cu"
|
3 |
+
#else
|
4 |
+
|
5 |
+
#define DeviceTensor3 THCDeviceTensor<real, 3>
|
6 |
+
#define DeviceTensor1 THCDeviceTensor<real, 1>
|
7 |
+
|
8 |
+
template <int Dim>
|
9 |
+
static THCDeviceTensor<real, Dim> devicetensor(THCState *state, THCTensor *t) {
|
10 |
+
if (!t) {
|
11 |
+
return THCDeviceTensor<real, Dim>();
|
12 |
+
}
|
13 |
+
|
14 |
+
int inDim = THCTensor_(nDimension)(state, t);
|
15 |
+
if (inDim == Dim) {
|
16 |
+
return toDeviceTensor<real, Dim>(state, t);
|
17 |
+
}
|
18 |
+
|
19 |
+
// View in which the last dimensions are collapsed or expanded as needed
|
20 |
+
THAssert(THCTensor_(isContiguous)(state, t));
|
21 |
+
int size[Dim];
|
22 |
+
for (int i = 0; i < Dim || i < inDim; ++i) {
|
23 |
+
if (i < Dim && i < inDim) {
|
24 |
+
size[i] = t->size[i];
|
25 |
+
} else if (i < Dim) {
|
26 |
+
size[i] = 1;
|
27 |
+
} else {
|
28 |
+
size[Dim - 1] *= t->size[i];
|
29 |
+
}
|
30 |
+
}
|
31 |
+
return THCDeviceTensor<real, Dim>(THCTensor_(data)(state, t), size);
|
32 |
+
}
|
33 |
+
|
34 |
+
void THNN_(BatchNormalization_updateOutput)(
|
35 |
+
THCState *state, THCTensor *input_, THCTensor *output_,
|
36 |
+
THCTensor *weight_, THCTensor *bias_, THCTensor *runningMean_,
|
37 |
+
THCTensor *runningVar_, THCTensor *saveMean_, THCTensor *saveStd_,
|
38 |
+
bool train, double momentum, double eps) {
|
39 |
+
|
40 |
+
THCTensor_(resizeAs)(state, output_, input_);
|
41 |
+
DeviceTensor3 input = devicetensor<3>(state, input_);
|
42 |
+
DeviceTensor3 output = devicetensor<3>(state, output_);
|
43 |
+
DeviceTensor1 weight = devicetensor<1>(state, weight_);
|
44 |
+
DeviceTensor1 bias = devicetensor<1>(state, bias_);
|
45 |
+
DeviceTensor1 runningMean = devicetensor<1>(state, runningMean_);
|
46 |
+
DeviceTensor1 runningVar = devicetensor<1>(state, runningVar_);
|
47 |
+
DeviceTensor1 saveMean = devicetensor<1>(state, saveMean_);
|
48 |
+
DeviceTensor1 saveStd = devicetensor<1>(state, saveStd_);
|
49 |
+
|
50 |
+
cudaStream_t s = THCState_getCurrentStream(state);
|
51 |
+
cudaDeviceProp *prop = THCState_getCurrentDeviceProperties(state);
|
52 |
+
|
53 |
+
if (!train) {
|
54 |
+
dim3 blocks(input.getSize(1));
|
55 |
+
dim3 threads(getNumThreads(input.getSize(2)));
|
56 |
+
BatchNormalizationUpdateOutputInference_kernel<real, accreal, DeviceTensor1, DeviceTensor3> <<<blocks, threads, 0, s>>>(
|
57 |
+
input, output, runningMean, runningVar, weight, bias, eps);
|
58 |
+
} else {
|
59 |
+
dim3 blocks(input.getSize(1));
|
60 |
+
dim3 threads(getNumThreads(input.getSize(2)));
|
61 |
+
BatchNormalizationUpdateOutput_kernel<real, accreal, DeviceTensor1, DeviceTensor3> <<<blocks, threads, 0, s>>>(
|
62 |
+
input, output, weight, bias, eps, momentum, runningMean, runningVar,
|
63 |
+
saveMean, saveStd);
|
64 |
+
}
|
65 |
+
THCudaCheck(cudaGetLastError());
|
66 |
+
}
|
67 |
+
|
68 |
+
void THNN_(BatchNormalization_backward)(
|
69 |
+
THCState *state, THCTensor *input_, THCTensor *gradOutput_,
|
70 |
+
THCTensor *gradInput_, THCTensor *gradWeight_, THCTensor *gradBias_,
|
71 |
+
THCTensor *weight_, THCTensor *runningMean_, THCTensor *runningVar_,
|
72 |
+
THCTensor *saveMean_, THCTensor *saveStd_, bool train, float scale, double eps) {
|
73 |
+
|
74 |
+
THCUNN_check_shape(state, input_, gradOutput_);
|
75 |
+
DeviceTensor3 input = devicetensor<3>(state, input_);
|
76 |
+
DeviceTensor3 gradOutput = devicetensor<3>(state, gradOutput_);
|
77 |
+
DeviceTensor3 gradInput = devicetensor<3>(state, gradInput_);
|
78 |
+
DeviceTensor1 gradWeight = devicetensor<1>(state, gradWeight_);
|
79 |
+
DeviceTensor1 gradBias = devicetensor<1>(state, gradBias_);
|
80 |
+
DeviceTensor1 weight = devicetensor<1>(state, weight_);
|
81 |
+
DeviceTensor1 runningMean = devicetensor<1>(state, runningMean_);
|
82 |
+
DeviceTensor1 runningVar = devicetensor<1>(state, runningVar_);
|
83 |
+
DeviceTensor1 saveMean = devicetensor<1>(state, saveMean_);
|
84 |
+
DeviceTensor1 saveStd = devicetensor<1>(state, saveStd_);
|
85 |
+
|
86 |
+
cudaStream_t s = THCState_getCurrentStream(state);
|
87 |
+
|
88 |
+
dim3 blocks(gradOutput.getSize(1));
|
89 |
+
dim3 threads(getNumThreads(gradOutput.getSize(2)));
|
90 |
+
BatchNormalizationBackward_kernel<real, accreal, DeviceTensor1, DeviceTensor3> <<<blocks, threads, 0, s>>>(
|
91 |
+
input, gradOutput, gradInput, gradWeight, gradBias, weight, runningMean, runningVar,
|
92 |
+
saveMean, saveStd, train, scale, eps);
|
93 |
+
THCudaCheck(cudaGetLastError());
|
94 |
+
}
|
95 |
+
|
96 |
+
#undef DeviceTensor3
|
97 |
+
#undef DeviceTensor1
|
98 |
+
|
99 |
+
#endif
|
cuda_code/BlockSelectFloat_1.cu
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/**
|
2 |
+
* Copyright (c) 2015-present, Facebook, Inc.
|
3 |
+
* All rights reserved.
|
4 |
+
*
|
5 |
+
* This source code is licensed under the BSD+Patents license found in the
|
6 |
+
* LICENSE file in the root directory of this source tree.
|
7 |
+
*/
|
8 |
+
|
9 |
+
// Copyright 2004-present Facebook. All Rights Reserved.
|
10 |
+
#include "blockselect/BlockSelectImpl.cuh"
|
11 |
+
|
12 |
+
namespace faiss { namespace gpu {
|
13 |
+
|
14 |
+
// warp Q to thread Q:
|
15 |
+
// 1, 1
|
16 |
+
// 32, 2
|
17 |
+
// 64, 3
|
18 |
+
// 128, 3
|
19 |
+
// 256, 4
|
20 |
+
// 512, 8
|
21 |
+
// 1024, 8
|
22 |
+
|
23 |
+
BLOCK_SELECT_DECL(float, true, 1);
|
24 |
+
BLOCK_SELECT_DECL(float, true, 32);
|
25 |
+
BLOCK_SELECT_DECL(float, true, 64);
|
26 |
+
BLOCK_SELECT_DECL(float, true, 128);
|
27 |
+
BLOCK_SELECT_DECL(float, true, 256);
|
28 |
+
BLOCK_SELECT_DECL(float, true, 512);
|
29 |
+
BLOCK_SELECT_DECL(float, true, 1024);
|
30 |
+
|
31 |
+
BLOCK_SELECT_DECL(float, false, 1);
|
32 |
+
BLOCK_SELECT_DECL(float, false, 32);
|
33 |
+
BLOCK_SELECT_DECL(float, false, 64);
|
34 |
+
BLOCK_SELECT_DECL(float, false, 128);
|
35 |
+
BLOCK_SELECT_DECL(float, false, 256);
|
36 |
+
BLOCK_SELECT_DECL(float, false, 512);
|
37 |
+
BLOCK_SELECT_DECL(float, false, 1024);
|
38 |
+
|
39 |
+
void runBlockSelect(Tensor<float, 2, true>& in,
|
40 |
+
Tensor<float, 2, true>& outK,
|
41 |
+
Tensor<int, 2, true>& outV,
|
42 |
+
bool dir, int k, cudaStream_t stream) {
|
43 |
+
FAISS_ASSERT(k <= 1024);
|
44 |
+
|
45 |
+
if (dir) {
|
46 |
+
if (k == 1) {
|
47 |
+
BLOCK_SELECT_CALL(float, true, 1);
|
48 |
+
} else if (k <= 32) {
|
49 |
+
BLOCK_SELECT_CALL(float, true, 32);
|
50 |
+
} else if (k <= 64) {
|
51 |
+
BLOCK_SELECT_CALL(float, true, 64);
|
52 |
+
} else if (k <= 128) {
|
53 |
+
BLOCK_SELECT_CALL(float, true, 128);
|
54 |
+
} else if (k <= 256) {
|
55 |
+
BLOCK_SELECT_CALL(float, true, 256);
|
56 |
+
} else if (k <= 512) {
|
57 |
+
BLOCK_SELECT_CALL(float, true, 512);
|
58 |
+
} else if (k <= 1024) {
|
59 |
+
BLOCK_SELECT_CALL(float, true, 1024);
|
60 |
+
}
|
61 |
+
} else {
|
62 |
+
if (k == 1) {
|
63 |
+
BLOCK_SELECT_CALL(float, false, 1);
|
64 |
+
} else if (k <= 32) {
|
65 |
+
BLOCK_SELECT_CALL(float, false, 32);
|
66 |
+
} else if (k <= 64) {
|
67 |
+
BLOCK_SELECT_CALL(float, false, 64);
|
68 |
+
} else if (k <= 128) {
|
69 |
+
BLOCK_SELECT_CALL(float, false, 128);
|
70 |
+
} else if (k <= 256) {
|
71 |
+
BLOCK_SELECT_CALL(float, false, 256);
|
72 |
+
} else if (k <= 512) {
|
73 |
+
BLOCK_SELECT_CALL(float, false, 512);
|
74 |
+
} else if (k <= 1024) {
|
75 |
+
BLOCK_SELECT_CALL(float, false, 1024);
|
76 |
+
}
|
77 |
+
}
|
78 |
+
}
|
79 |
+
|
80 |
+
void runBlockSelectPair(Tensor<float, 2, true>& inK,
|
81 |
+
Tensor<int, 2, true>& inV,
|
82 |
+
Tensor<float, 2, true>& outK,
|
83 |
+
Tensor<int, 2, true>& outV,
|
84 |
+
bool dir, int k, cudaStream_t stream) {
|
85 |
+
FAISS_ASSERT(k <= 1024);
|
86 |
+
|
87 |
+
if (dir) {
|
88 |
+
if (k == 1) {
|
89 |
+
BLOCK_SELECT_PAIR_CALL(float, true, 1);
|
90 |
+
} else if (k <= 32) {
|
91 |
+
BLOCK_SELECT_PAIR_CALL(float, true, 32);
|
92 |
+
} else if (k <= 64) {
|
93 |
+
BLOCK_SELECT_PAIR_CALL(float, true, 64);
|
94 |
+
} else if (k <= 128) {
|
95 |
+
BLOCK_SELECT_PAIR_CALL(float, true, 128);
|
96 |
+
} else if (k <= 256) {
|
97 |
+
BLOCK_SELECT_PAIR_CALL(float, true, 256);
|
98 |
+
} else if (k <= 512) {
|
99 |
+
BLOCK_SELECT_PAIR_CALL(float, true, 512);
|
100 |
+
} else if (k <= 1024) {
|
101 |
+
BLOCK_SELECT_PAIR_CALL(float, true, 1024);
|
102 |
+
}
|
103 |
+
} else {
|
104 |
+
if (k == 1) {
|
105 |
+
BLOCK_SELECT_PAIR_CALL(float, false, 1);
|
106 |
+
} else if (k <= 32) {
|
107 |
+
BLOCK_SELECT_PAIR_CALL(float, false, 32);
|
108 |
+
} else if (k <= 64) {
|
109 |
+
BLOCK_SELECT_PAIR_CALL(float, false, 64);
|
110 |
+
} else if (k <= 128) {
|
111 |
+
BLOCK_SELECT_PAIR_CALL(float, false, 128);
|
112 |
+
} else if (k <= 256) {
|
113 |
+
BLOCK_SELECT_PAIR_CALL(float, false, 256);
|
114 |
+
} else if (k <= 512) {
|
115 |
+
BLOCK_SELECT_PAIR_CALL(float, false, 512);
|
116 |
+
} else if (k <= 1024) {
|
117 |
+
BLOCK_SELECT_PAIR_CALL(float, false, 1024);
|
118 |
+
}
|
119 |
+
}
|
120 |
+
}
|
121 |
+
|
122 |
+
} } // namespace
|
cuda_code/BounceBackNVEGPU_6.cu
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2018-2020, Michael P. Howard
|
2 |
+
// Copyright (c) 2021, Auburn University
|
3 |
+
// This file is part of the azplugins project, released under the Modified BSD License.
|
4 |
+
|
5 |
+
/*!
|
6 |
+
* \file BounceBackNVEGPU.cu
|
7 |
+
* \brief Template specialization of CUDA kernels for BounceBackNVEGPU geometries. Each instance of the
|
8 |
+
* nve_bounce_step_one must be templated explicitly for each geometry.
|
9 |
+
*/
|
10 |
+
|
11 |
+
#include "BounceBackNVEGPU.cuh"
|
12 |
+
#include "BounceBackGeometry.h"
|
13 |
+
|
14 |
+
namespace azplugins
|
15 |
+
{
|
16 |
+
namespace gpu
|
17 |
+
{
|
18 |
+
|
19 |
+
//! Template instantiation of slit geometry streaming
|
20 |
+
template cudaError_t nve_bounce_step_one<mpcd::detail::SlitGeometry>
|
21 |
+
(const bounce_args_t& args, const mpcd::detail::SlitGeometry& geom);
|
22 |
+
|
23 |
+
namespace kernel
|
24 |
+
{
|
25 |
+
//! Kernel for applying second step of velocity Verlet algorithm with bounce back
|
26 |
+
/*!
|
27 |
+
* \param d_vel Particle velocities
|
28 |
+
* \param d_accel Particle accelerations
|
29 |
+
* \param d_net_force Net force on each particle
|
30 |
+
* \param d_group Indexes in particle group
|
31 |
+
* \param dt Timestep
|
32 |
+
* \param N Number of particles in group
|
33 |
+
*
|
34 |
+
* \b Implementation:
|
35 |
+
* Using one thread per particle, the particle velocities are updated according to the second step of the velocity Verlet
|
36 |
+
* algorithm. This is the standard update as in MD, and is only reimplemented here in case future modifications are necessary.
|
37 |
+
*/
|
38 |
+
__global__ void nve_bounce_step_two(Scalar4 *d_vel,
|
39 |
+
Scalar3 *d_accel,
|
40 |
+
const Scalar4 *d_net_force,
|
41 |
+
const unsigned int *d_group,
|
42 |
+
const Scalar dt,
|
43 |
+
const unsigned int N)
|
44 |
+
{
|
45 |
+
// one thread per particle
|
46 |
+
unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
47 |
+
if (idx >= N)
|
48 |
+
return;
|
49 |
+
const unsigned int pid = d_group[idx];
|
50 |
+
|
51 |
+
const Scalar4 net_force = d_net_force[pid];
|
52 |
+
Scalar3 accel = make_scalar3(net_force.x, net_force.y, net_force.z);
|
53 |
+
Scalar4 vel = d_vel[pid];
|
54 |
+
accel.x /= vel.w;
|
55 |
+
accel.y /= vel.w;
|
56 |
+
accel.z /= vel.w;
|
57 |
+
|
58 |
+
// then, update the velocity
|
59 |
+
vel.x += Scalar(0.5) * accel.x * dt;
|
60 |
+
vel.y += Scalar(0.5) * accel.y * dt;
|
61 |
+
vel.z += Scalar(0.5) * accel.z * dt;
|
62 |
+
|
63 |
+
d_vel[pid] = vel;
|
64 |
+
d_accel[pid] = accel;
|
65 |
+
}
|
66 |
+
} // end namespace kernel
|
67 |
+
|
68 |
+
/*!
|
69 |
+
* \param d_vel Particle velocities
|
70 |
+
* \param d_accel Particle accelerations
|
71 |
+
* \param d_net_force Net force on each particle
|
72 |
+
* \param d_group Indexes in particle group
|
73 |
+
* \param dt Timestep
|
74 |
+
* \param N Number of particles in group
|
75 |
+
* \param block_size Number of threads per block
|
76 |
+
*
|
77 |
+
* \sa kernel::nve_bounce_step_two
|
78 |
+
*/
|
79 |
+
cudaError_t nve_bounce_step_two(Scalar4 *d_vel,
|
80 |
+
Scalar3 *d_accel,
|
81 |
+
const Scalar4 *d_net_force,
|
82 |
+
const unsigned int *d_group,
|
83 |
+
const Scalar dt,
|
84 |
+
const unsigned int N,
|
85 |
+
const unsigned int block_size)
|
86 |
+
{
|
87 |
+
static unsigned int max_block_size = UINT_MAX;
|
88 |
+
if (max_block_size == UINT_MAX)
|
89 |
+
{
|
90 |
+
cudaFuncAttributes attr;
|
91 |
+
cudaFuncGetAttributes(&attr, (const void*)kernel::nve_bounce_step_two);
|
92 |
+
max_block_size = attr.maxThreadsPerBlock;
|
93 |
+
}
|
94 |
+
|
95 |
+
unsigned int run_block_size = min(block_size, max_block_size);
|
96 |
+
dim3 grid(N / run_block_size + 1);
|
97 |
+
kernel::nve_bounce_step_two<<<grid, run_block_size>>>(d_vel, d_accel, d_net_force, d_group, dt, N);
|
98 |
+
|
99 |
+
return cudaSuccess;
|
100 |
+
}
|
101 |
+
|
102 |
+
} // end namespace gpu
|
103 |
+
} // end namespace azplugins
|
cuda_code/COOtoCSR_2.cu
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
* Copyright (c) 2020, NVIDIA CORPORATION.
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*/
|
16 |
+
|
17 |
+
#include <functions.hpp>
|
18 |
+
#include "COOtoCSR.cuh"
|
19 |
+
|
20 |
+
namespace cugraph {
|
21 |
+
|
22 |
+
// Explicit instantiation for uint32_t + float
|
23 |
+
template std::unique_ptr<GraphCSR<uint32_t, uint32_t, float>> coo_to_csr<uint32_t, uint32_t, float>(
|
24 |
+
GraphCOOView<uint32_t, uint32_t, float> const &graph, rmm::mr::device_memory_resource *);
|
25 |
+
|
26 |
+
// Explicit instantiation for uint32_t + double
|
27 |
+
template std::unique_ptr<GraphCSR<uint32_t, uint32_t, double>>
|
28 |
+
coo_to_csr<uint32_t, uint32_t, double>(GraphCOOView<uint32_t, uint32_t, double> const &graph,
|
29 |
+
rmm::mr::device_memory_resource *);
|
30 |
+
|
31 |
+
// Explicit instantiation for int + float
|
32 |
+
template std::unique_ptr<GraphCSR<int32_t, int32_t, float>> coo_to_csr<int32_t, int32_t, float>(
|
33 |
+
GraphCOOView<int32_t, int32_t, float> const &graph, rmm::mr::device_memory_resource *);
|
34 |
+
|
35 |
+
// Explicit instantiation for int + double
|
36 |
+
template std::unique_ptr<GraphCSR<int32_t, int32_t, double>> coo_to_csr<int32_t, int32_t, double>(
|
37 |
+
GraphCOOView<int32_t, int32_t, double> const &graph, rmm::mr::device_memory_resource *);
|
38 |
+
|
39 |
+
// Explicit instantiation for int64_t + float
|
40 |
+
template std::unique_ptr<GraphCSR<int64_t, int64_t, float>> coo_to_csr<int64_t, int64_t, float>(
|
41 |
+
GraphCOOView<int64_t, int64_t, float> const &graph, rmm::mr::device_memory_resource *);
|
42 |
+
|
43 |
+
// Explicit instantiation for int64_t + double
|
44 |
+
template std::unique_ptr<GraphCSR<int64_t, int64_t, double>> coo_to_csr<int64_t, int64_t, double>(
|
45 |
+
GraphCOOView<int64_t, int64_t, double> const &graph, rmm::mr::device_memory_resource *);
|
46 |
+
|
47 |
+
// in-place versions:
|
48 |
+
//
|
49 |
+
// Explicit instantiation for uint32_t + float
|
50 |
+
template void coo_to_csr_inplace<uint32_t, uint32_t, float>(
|
51 |
+
GraphCOOView<uint32_t, uint32_t, float> &graph, GraphCSRView<uint32_t, uint32_t, float> &result);
|
52 |
+
|
53 |
+
// Explicit instantiation for uint32_t + double
|
54 |
+
template void coo_to_csr_inplace<uint32_t, uint32_t, double>(
|
55 |
+
GraphCOOView<uint32_t, uint32_t, double> &graph,
|
56 |
+
GraphCSRView<uint32_t, uint32_t, double> &result);
|
57 |
+
|
58 |
+
// Explicit instantiation for int + float
|
59 |
+
template void coo_to_csr_inplace<int32_t, int32_t, float>(
|
60 |
+
GraphCOOView<int32_t, int32_t, float> &graph, GraphCSRView<int32_t, int32_t, float> &result);
|
61 |
+
|
62 |
+
// Explicit instantiation for int + double
|
63 |
+
template void coo_to_csr_inplace<int32_t, int32_t, double>(
|
64 |
+
GraphCOOView<int32_t, int32_t, double> &graph, GraphCSRView<int32_t, int32_t, double> &result);
|
65 |
+
|
66 |
+
// Explicit instantiation for int64_t + float
|
67 |
+
template void coo_to_csr_inplace<int64_t, int64_t, float>(
|
68 |
+
GraphCOOView<int64_t, int64_t, float> &graph, GraphCSRView<int64_t, int64_t, float> &result);
|
69 |
+
|
70 |
+
// Explicit instantiation for int64_t + double
|
71 |
+
template void coo_to_csr_inplace<int64_t, int64_t, double>(
|
72 |
+
GraphCOOView<int64_t, int64_t, double> &graph, GraphCSRView<int64_t, int64_t, double> &result);
|
73 |
+
|
74 |
+
} // namespace cugraph
|
cuda_code/CPU_GPU_time.cu
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
* =====================================================================================
|
3 |
+
*
|
4 |
+
* Filename: testLironPaper.cu
|
5 |
+
*
|
6 |
+
* Description: This tries to match computation results with those in
|
7 |
+
* Liron's paper.
|
8 |
+
*
|
9 |
+
* Version: 1.0
|
10 |
+
* Created: 04/04/2014 07:58:39 AM
|
11 |
+
* Revision: none
|
12 |
+
* Compiler: gcc
|
13 |
+
*
|
14 |
+
* Author: Hoang-Ngan Nguyen (), zhoangngan-gmail
|
15 |
+
* Organization:
|
16 |
+
*
|
17 |
+
* =====================================================================================
|
18 |
+
*/
|
19 |
+
|
20 |
+
#include "periodicStokes.h"
|
21 |
+
#include <cstdlib> /* srand, rand */
|
22 |
+
#include <ctime> /* time */
|
23 |
+
#include <string>
|
24 |
+
#include <fstream>
|
25 |
+
#include <iostream>
|
26 |
+
#include <eigen3/Eigen/Dense>
|
27 |
+
using namespace std;
|
28 |
+
using namespace Eigen;
|
29 |
+
|
30 |
+
int main( int argc, char *argv[] ) {
|
31 |
+
MatrixOnHost L(3, 1, 1);
|
32 |
+
|
33 |
+
//open binary file to save GPU and CPU times
|
34 |
+
//char timeName[80];
|
35 |
+
//sprintf(timeName, "CPU_GPU_time", filename);
|
36 |
+
//ofstream outTime(timeName, ios::binary);
|
37 |
+
|
38 |
+
//if (!outTime) {
|
39 |
+
//std::cout << "Error: Could not open file \"" << timeName << "\""
|
40 |
+
//<< ". Error occurs on line " << __LINE__
|
41 |
+
//<< " in source file \"" << __FILE__ << "\"" << std::endl;;
|
42 |
+
//exit(1);
|
43 |
+
//}
|
44 |
+
MatrixOnHost timeM(2, 4);
|
45 |
+
|
46 |
+
int maxShell = 4;
|
47 |
+
double d = 1.0/sqrt(atan(1)*4);
|
48 |
+
double e = 0;
|
49 |
+
|
50 |
+
clock_t start, end;
|
51 |
+
cudaEvent_t eStart, eStop;
|
52 |
+
HANDLE_ERROR( cudaEventCreate( &eStart ) );
|
53 |
+
HANDLE_ERROR( cudaEventCreate( &eStop ) );
|
54 |
+
|
55 |
+
MatrixOnHost newM(2, 1), oldM(2, 1);
|
56 |
+
float elapsedTime;
|
57 |
+
size_t size = 10;
|
58 |
+
size_t maxCol = 10;
|
59 |
+
for (int i = 0; i < 4; i++) {
|
60 |
+
cout << "Round " << i << endl;
|
61 |
+
MatrixOnHost x(3, size), x0(3, maxCol);
|
62 |
+
x.setRandom();
|
63 |
+
x0 = x;
|
64 |
+
//MatrixOnDevice dx = x, dx0 = x0;
|
65 |
+
//MatrixOnDevice dA(3*dx.columns(), 3*dx0.columns());
|
66 |
+
|
67 |
+
// record GPU time
|
68 |
+
//for (int j = 0; j * maxCol < size; j++) {
|
69 |
+
//for (int l = 0; l < 3; l++) {
|
70 |
+
//for (int k = 0; k < maxCol; k++) {
|
71 |
+
//x0(l, k) = x(l, j * maxCol + k);
|
72 |
+
//}
|
73 |
+
//}
|
74 |
+
//dx0 = x0;
|
75 |
+
//HANDLE_ERROR( cudaEventRecord( eStart, 0) );
|
76 |
+
//imageStokeslet( dA, dx, dx0, d, e, maxShell, maxShell-1, L(0), L(1) );
|
77 |
+
//HANDLE_ERROR( cudaEventRecord( eStop , 0) );
|
78 |
+
//HANDLE_ERROR( cudaEventSynchronize( eStop ) );
|
79 |
+
//HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime, eStart, eStop ) );
|
80 |
+
//timeM(0, i) = elapsedTime;
|
81 |
+
//}
|
82 |
+
|
83 |
+
//record CPU time
|
84 |
+
MatrixOnHost A(3*x.columns(), 3*x.columns());
|
85 |
+
MatrixOnHost absA = A, refSol = A;
|
86 |
+
start = clock();
|
87 |
+
newM(0) = newM(1) = oldM(0) = oldM(1) = 0;
|
88 |
+
realShells ( refSol, absA, x, x, newM, oldM, L, d, e );
|
89 |
+
fourierShells(A, absA, x, x, newM, oldM, L, d, e);
|
90 |
+
refSol = refSol + A;
|
91 |
+
newM(0) = newM(1) = maxShell;
|
92 |
+
realShells ( refSol, absA, x, x, newM, oldM, L, d, e );
|
93 |
+
newM(0) = newM(1) = maxShell-1;
|
94 |
+
fourierShells(refSol, absA, x, x, newM, oldM, L, d, e);
|
95 |
+
end = clock();
|
96 |
+
timeM(1, i) = 1000.0 * ((double) (end - start)) / CLOCKS_PER_SEC ;
|
97 |
+
size *= 8;
|
98 |
+
cout << "maxShell = " << maxShell << endl;
|
99 |
+
cout << "time is " << timeM(1, i) << "ms" << endl;
|
100 |
+
}
|
101 |
+
timeM.write("CPU_GPU_time");
|
102 |
+
HANDLE_ERROR( cudaEventDestroy( eStart ) );
|
103 |
+
HANDLE_ERROR( cudaEventDestroy( eStop ) );
|
104 |
+
//outTime.close();
|
105 |
+
|
106 |
+
cout << "Done!!!!!!!!!!!!!!" << endl;
|
107 |
+
|
108 |
+
return EXIT_SUCCESS;
|
109 |
+
} // ---------- end of function main ----------
|
110 |
+
|
cuda_code/CUAPI_Asyn_PoissonGravitySolver_8.cu
ADDED
@@ -0,0 +1,473 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include "CUAPI.h"
|
2 |
+
#include "CUPOT.h"
|
3 |
+
|
4 |
+
#if ( defined GPU && defined GRAVITY )
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
// Poisson solver prototypes
|
9 |
+
#if ( POT_SCHEME == SOR )
|
10 |
+
#ifdef USE_PSOLVER_10TO14
|
11 |
+
__global__ void CUPOT_PoissonSolver_SOR_10to14cube( const real g_Rho_Array [][ RHO_NXT*RHO_NXT*RHO_NXT ],
|
12 |
+
const real g_Pot_Array_In [][ POT_NXT*POT_NXT*POT_NXT ],
|
13 |
+
real g_Pot_Array_Out[][ GRA_NXT*GRA_NXT*GRA_NXT ],
|
14 |
+
const int Min_Iter, const int Max_Iter, const real Omega_6,
|
15 |
+
const real Const, const IntScheme_t IntScheme );
|
16 |
+
#else
|
17 |
+
__global__ void CUPOT_PoissonSolver_SOR_16to18cube( const real g_Rho_Array [][ RHO_NXT*RHO_NXT*RHO_NXT ],
|
18 |
+
const real g_Pot_Array_In [][ POT_NXT*POT_NXT*POT_NXT ],
|
19 |
+
real g_Pot_Array_Out[][ GRA_NXT*GRA_NXT*GRA_NXT ],
|
20 |
+
const int Min_Iter, const int Max_Iter, const real Omega_6,
|
21 |
+
const real Const, const IntScheme_t IntScheme );
|
22 |
+
#endif // #ifdef USE_PSOLVER_10TO14 ... else ...
|
23 |
+
|
24 |
+
#elif ( POT_SCHEME == MG )
|
25 |
+
__global__ void CUPOT_PoissonSolver_MG( const real g_Rho_Array [][ RHO_NXT*RHO_NXT*RHO_NXT ],
|
26 |
+
const real g_Pot_Array_In [][ POT_NXT*POT_NXT*POT_NXT ],
|
27 |
+
real g_Pot_Array_Out[][ GRA_NXT*GRA_NXT*GRA_NXT ],
|
28 |
+
const real dh_Min, const int Max_Iter, const int NPre_Smooth,
|
29 |
+
const int NPost_Smooth, const real Tolerated_Error, const real Poi_Coeff,
|
30 |
+
const IntScheme_t IntScheme );
|
31 |
+
#endif // POT_SCHEME
|
32 |
+
|
33 |
+
|
34 |
+
// Gravity solver prototypes
|
35 |
+
#if ( MODEL == HYDRO )
|
36 |
+
__global__
|
37 |
+
void CUPOT_HydroGravitySolver(
|
38 |
+
real g_Flu_Array_New[][GRA_NIN][ CUBE(PS1) ],
|
39 |
+
const real g_Pot_Array_New[][ CUBE(GRA_NXT) ],
|
40 |
+
const double g_Corner_Array [][3],
|
41 |
+
const real g_Pot_Array_USG[][ CUBE(USG_NXT_G) ],
|
42 |
+
const real g_Flu_Array_USG[][GRA_NIN-1][ CUBE(PS1) ],
|
43 |
+
char g_DE_Array [][ CUBE(PS1) ],
|
44 |
+
const real g_EngyB_Array [][ CUBE(PS1) ],
|
45 |
+
const real dt, const real dh, const bool P5_Gradient,
|
46 |
+
const OptGravityType_t GravityType,
|
47 |
+
const double TimeNew, const double TimeOld, const real MinEint );
|
48 |
+
|
49 |
+
#elif ( MODEL == ELBDM )
|
50 |
+
__global__ void CUPOT_ELBDMGravitySolver( real g_Flu_Array[][GRA_NIN][ PS1*PS1*PS1 ],
|
51 |
+
const real g_Pot_Array[][ GRA_NXT*GRA_NXT*GRA_NXT ],
|
52 |
+
const double g_Corner_Array[][3],
|
53 |
+
const real EtaDt, const real dh, const real Lambda, const bool ExtPot,
|
54 |
+
const double TimeNew );
|
55 |
+
|
56 |
+
#else
|
57 |
+
#error : ERROR : unsupported MODEL !!
|
58 |
+
#endif // MODEL
|
59 |
+
|
60 |
+
|
61 |
+
// declare all device pointers
|
62 |
+
extern real (*d_Rho_Array_P )[ CUBE(RHO_NXT) ];
|
63 |
+
extern real (*d_Pot_Array_P_In )[ CUBE(POT_NXT) ];
|
64 |
+
extern real (*d_Pot_Array_P_Out)[ CUBE(GRA_NXT) ];
|
65 |
+
extern real (*d_Flu_Array_G )[GRA_NIN][ CUBE(PS1)];
|
66 |
+
extern double (*d_Corner_Array_G)[3];
|
67 |
+
#if ( MODEL == HYDRO )
|
68 |
+
#ifdef UNSPLIT_GRAVITY
|
69 |
+
extern real (*d_Pot_Array_USG_G)[ CUBE(USG_NXT_G) ];
|
70 |
+
extern real (*d_Flu_Array_USG_G)[GRA_NIN-1][ CUBE(PS1) ];
|
71 |
+
#else
|
72 |
+
static real (*d_Pot_Array_USG_G)[ CUBE(USG_NXT_G) ] = NULL;
|
73 |
+
static real (*d_Flu_Array_USG_G)[GRA_NIN-1][ CUBE(PS1) ] = NULL;
|
74 |
+
#endif
|
75 |
+
#ifdef DUAL_ENERGY
|
76 |
+
extern char (*d_DE_Array_G)[ CUBE(PS1) ];
|
77 |
+
#else
|
78 |
+
static char (*d_DE_Array_G)[ CUBE(PS1) ] = NULL;
|
79 |
+
#endif
|
80 |
+
#ifdef MHD
|
81 |
+
extern real (*d_EngyB_Array_G)[ CUBE(PS1) ];
|
82 |
+
#else
|
83 |
+
static real (*d_EngyB_Array_G)[ CUBE(PS1) ] = NULL;
|
84 |
+
#endif
|
85 |
+
#endif // #if ( MODEL == HYDRO )
|
86 |
+
|
87 |
+
extern cudaStream_t *Stream;
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
//-------------------------------------------------------------------------------------------------------
|
93 |
+
// Function : CUAPI_Asyn_PoissonGravitySolver
|
94 |
+
// Description : Invoke the CUPOT_PoissonSolver_XXtoXXcube and/or CUPOT_GravitySolver kernel(s) to evaluate
|
95 |
+
// the gravitational potential and/or advance the fluid variables by the gravitational
|
96 |
+
// acceleration for a group of patches
|
97 |
+
//
|
98 |
+
// ***********************************************************
|
99 |
+
// ** Asynchronous Function **
|
100 |
+
// ** **
|
101 |
+
// ** will return before the execution in GPU is complete **
|
102 |
+
// ***********************************************************
|
103 |
+
//
|
104 |
+
// Note : a. Use streams for the asychronous memory copy between device and host
|
105 |
+
// b. Prefix "d" : for pointers pointing to the "Device" memory space
|
106 |
+
// Prefix "h" : for pointers pointing to the "Host" memory space
|
107 |
+
//
|
108 |
+
// Parameter : h_Rho_Array : Host array storing the input density
|
109 |
+
// h_Pot_Array_In : Host array storing the input "coarse-grid" potential for interpolation
|
110 |
+
// h_Pot_Array_Out : Host array to store the output potential
|
111 |
+
// h_Flu_Array : Host array to store the fluid variables for the Gravity solver
|
112 |
+
// h_Corner_Array : Host array storing the physical corner coordinates of each patch
|
113 |
+
// h_Pot_Array_USG : Host array storing the prepared potential for UNSPLIT_GRAVITY
|
114 |
+
// h_Flu_Array_USG : Host array storing the prepared density + momentum for UNSPLIT_GRAVITY
|
115 |
+
// h_DE_Array : Host array storing the dual-energy status (for both input and output)
|
116 |
+
// h_EngyB_Array : Host array storing the cell-centered magnetic energy (MHD only)
|
117 |
+
// NPatchGroup : Number of patch groups evaluated simultaneously by GPU
|
118 |
+
// dt : Time interval to advance solution
|
119 |
+
// dh : Grid size
|
120 |
+
// SOR_Min_Iter : Minimum # of iterations for SOR
|
121 |
+
// SOR_Max_Iter : Maximum # of iterations for SOR
|
122 |
+
// SOR_Omega : Over-relaxation parameter
|
123 |
+
// MG_Max_Iter : Maximum number of iterations for multigrid
|
124 |
+
// MG_NPre_Smooth : Number of pre-smoothing steps for multigrid
|
125 |
+
// MG_NPos_tSmooth : Number of post-smoothing steps for multigrid
|
126 |
+
// MG_Tolerated_Error : Maximum tolerated error for multigrid
|
127 |
+
// Poi_Coeff : Coefficient in front of density in the Poisson equation (4*Pi*Newton_G*a)
|
128 |
+
// IntScheme : Interpolation scheme for potential
|
129 |
+
// --> currently supported schemes include
|
130 |
+
// INT_CQUAD : conservative quadratic interpolation
|
131 |
+
// INT_QUAD : quadratic interpolation
|
132 |
+
// P5_Gradient : Use 5-points stencil to evaluate the potential gradient
|
133 |
+
// ELBDM_Eta : Particle mass / Planck constant in ELBDM
|
134 |
+
// ELBDM_Lambda : Quartic self-interaction coefficient in ELBDM
|
135 |
+
// Poisson : true --> invoke the Poisson solver
|
136 |
+
// GraAcc : true --> invoke the Gravity solver
|
137 |
+
// GPU_NStream : Number of CUDA streams for the asynchronous memory copy
|
138 |
+
// GravityType : Types of gravity --> self-gravity, external gravity, both
|
139 |
+
// TimeNew : Physical time at the current step (for the external gravity solver)
|
140 |
+
// TimeOld : Physical time at the previous step (for the external gravity solver in UNSPLIT_GRAVITY)
|
141 |
+
// ExtPot : Add the external potential
|
142 |
+
// MinEint : Minimum allowed internal energy (== MIN_PRES / (GAMMA-1))
|
143 |
+
//
|
144 |
+
// Useless parameters in HYDRO : ELBDM_Eta, ELBDM_Lambda
|
145 |
+
// Useless parameters in ELBDM : P5_Gradient
|
146 |
+
//-------------------------------------------------------------------------------------------------------
|
147 |
+
void CUAPI_Asyn_PoissonGravitySolver( const real h_Rho_Array [][RHO_NXT][RHO_NXT][RHO_NXT],
|
148 |
+
const real h_Pot_Array_In [][POT_NXT][POT_NXT][POT_NXT],
|
149 |
+
real h_Pot_Array_Out[][GRA_NXT][GRA_NXT][GRA_NXT],
|
150 |
+
real h_Flu_Array [][GRA_NIN][PS1][PS1][PS1],
|
151 |
+
const double h_Corner_Array[][3],
|
152 |
+
const real h_Pot_Array_USG[][USG_NXT_G][USG_NXT_G][USG_NXT_G],
|
153 |
+
const real h_Flu_Array_USG[][GRA_NIN-1][PS1][PS1][PS1],
|
154 |
+
char h_DE_Array [][PS1][PS1][PS1],
|
155 |
+
const real h_EngyB_Array [][PS1][PS1][PS1],
|
156 |
+
const int NPatchGroup, const real dt, const real dh, const int SOR_Min_Iter,
|
157 |
+
const int SOR_Max_Iter, const real SOR_Omega, const int MG_Max_Iter,
|
158 |
+
const int MG_NPre_Smooth, const int MG_NPost_Smooth,
|
159 |
+
const real MG_Tolerated_Error, const real Poi_Coeff,
|
160 |
+
const IntScheme_t IntScheme, const bool P5_Gradient, const real ELBDM_Eta,
|
161 |
+
const real ELBDM_Lambda, const bool Poisson, const bool GraAcc, const int GPU_NStream,
|
162 |
+
const OptGravityType_t GravityType, const double TimeNew, const double TimeOld,
|
163 |
+
const bool ExtPot, const real MinEint )
|
164 |
+
{
|
165 |
+
|
166 |
+
// model-independent constants
|
167 |
+
# if ( POT_SCHEME == SOR )
|
168 |
+
const dim3 Poi_Block_Dim( RHO_NXT/2, RHO_NXT, POT_BLOCK_SIZE_Z );
|
169 |
+
# elif ( POT_SCHEME == MG )
|
170 |
+
const dim3 Poi_Block_Dim( POT_BLOCK_SIZE_X, 1, 1 );
|
171 |
+
# endif
|
172 |
+
const dim3 Gra_Block_Dim( GRA_BLOCK_SIZE );
|
173 |
+
const int NPatch = NPatchGroup*8;
|
174 |
+
# if ( POT_SCHEME == SOR )
|
175 |
+
const real Poi_Const = Poi_Coeff*dh*dh;
|
176 |
+
const real SOR_Omega_6 = SOR_Omega/6.0;
|
177 |
+
# endif
|
178 |
+
|
179 |
+
// model-dependent constants
|
180 |
+
# if ( MODEL == HYDRO )
|
181 |
+
|
182 |
+
# elif ( MODEL == ELBDM )
|
183 |
+
const real ELBDM_EtaDt = ELBDM_Eta*dt;
|
184 |
+
|
185 |
+
# else
|
186 |
+
# error : ERROR : unsupported MODEL !!
|
187 |
+
# endif
|
188 |
+
|
189 |
+
|
190 |
+
// check
|
191 |
+
# if ( MODEL == ELBDM && !defined STORE_POT_GHOST && GRA_GHOST_SIZE != 0 )
|
192 |
+
# warning : WARNING : GRA_GHOST_SIZE != 0 in ELBDM (without STORE_POT_GHOST) !!
|
193 |
+
# endif
|
194 |
+
|
195 |
+
# ifdef GAMER_DEBUG
|
196 |
+
const int Poi_NThread = Poi_Block_Dim.x * Poi_Block_Dim.y * Poi_Block_Dim.z;
|
197 |
+
|
198 |
+
// minimum number of threads for spatial interpolation
|
199 |
+
if ( Poisson && Poi_NThread < (POT_NXT-2)*(POT_NXT-2) )
|
200 |
+
Aux_Error( ERROR_INFO, "Poi_NThread (%d) < (POT_NXT-2)*(POT_NXT-2) (%d) !!\n",
|
201 |
+
Poi_NThread, (POT_NXT-2)*(POT_NXT-2) );
|
202 |
+
|
203 |
+
// constraint due to the reduction operation in "CUPOT_Poisson_10to14cube" and "CUPOT_PoissonSolver_MG"
|
204 |
+
# if ( ( POT_SCHEME == SOR && defined USE_PSOLVER_10TO14 ) || POT_SCHEME == MG )
|
205 |
+
if ( Poisson && Poi_NThread < 64 )
|
206 |
+
Aux_Error( ERROR_INFO, "incorrect parameter %s = %d (must >= 64) !!\n", "Poi_NThread", Poi_NThread );
|
207 |
+
# endif
|
208 |
+
|
209 |
+
// constraint in "CUPOT_PoissonSolver_SOR_16to18cube"
|
210 |
+
# if ( POT_SCHEME == SOR && !defined USE_PSOLVER_10TO14 )
|
211 |
+
if ( Poisson && Poi_NThread != RHO_NXT*RHO_NXT/2 )
|
212 |
+
Aux_Error( ERROR_INFO, "incorrect parameter %s = %d (must == %d) !!\n", "Poi_NThread", Poi_NThread,
|
213 |
+
RHO_NXT*RHO_NXT/2 );
|
214 |
+
# endif
|
215 |
+
|
216 |
+
if ( GraAcc )
|
217 |
+
{
|
218 |
+
if ( GravityType == GRAVITY_EXTERNAL || GravityType == GRAVITY_BOTH || ExtPot )
|
219 |
+
{
|
220 |
+
if ( h_Corner_Array == NULL ) Aux_Error( ERROR_INFO, "h_Corner_Array == NULL !!\n" );
|
221 |
+
if ( d_Corner_Array_G == NULL ) Aux_Error( ERROR_INFO, "d_Corner_Array_G == NULL !!\n" );
|
222 |
+
}
|
223 |
+
|
224 |
+
# ifdef UNSPLIT_GRAVITY
|
225 |
+
if ( GravityType == GRAVITY_SELF || GravityType == GRAVITY_BOTH )
|
226 |
+
{
|
227 |
+
if ( h_Pot_Array_USG == NULL ) Aux_Error( ERROR_INFO, "h_Pot_Array_USG == NULL !!\n" );
|
228 |
+
if ( d_Pot_Array_USG_G == NULL ) Aux_Error( ERROR_INFO, "d_Pot_Array_USG_G == NULL !!\n" );
|
229 |
+
}
|
230 |
+
|
231 |
+
if ( h_Flu_Array_USG == NULL ) Aux_Error( ERROR_INFO, "h_Flu_Array_USG == NULL !!\n" );
|
232 |
+
if ( d_Flu_Array_USG_G == NULL ) Aux_Error( ERROR_INFO, "d_Flu_Array_USG_G == NULL !!\n" );
|
233 |
+
# endif
|
234 |
+
|
235 |
+
# ifdef DUAL_ENERGY
|
236 |
+
if ( h_DE_Array == NULL ) Aux_Error( ERROR_INFO, "h_DE_Array == NULL !!\n" );
|
237 |
+
if ( d_DE_Array_G == NULL ) Aux_Error( ERROR_INFO, "d_DE_Array_G == NULL !!\n" );
|
238 |
+
# endif
|
239 |
+
|
240 |
+
# ifdef MHD
|
241 |
+
if ( h_EngyB_Array == NULL ) Aux_Error( ERROR_INFO, "h_EngyB_Array == NULL !!\n" );
|
242 |
+
if ( d_EngyB_Array_G == NULL ) Aux_Error( ERROR_INFO, "d_EngyB_Array_G == NULL !!\n" );
|
243 |
+
# endif
|
244 |
+
}
|
245 |
+
# endif // #ifdef GAMER_DEBUG
|
246 |
+
|
247 |
+
if ( Poisson && ( IntScheme != INT_CQUAD && IntScheme != INT_QUAD ) )
|
248 |
+
Aux_Error( ERROR_INFO, "incorrect parameter %s = %d !!\n", "IntScheme", IntScheme );
|
249 |
+
|
250 |
+
|
251 |
+
int *NPatch_per_Stream = new int [GPU_NStream];
|
252 |
+
int *Rho_MemSize = new int [GPU_NStream];
|
253 |
+
int *Pot_MemSize_In = new int [GPU_NStream];
|
254 |
+
int *Pot_MemSize_Out = new int [GPU_NStream];
|
255 |
+
int *Flu_MemSize = new int [GPU_NStream];
|
256 |
+
int *Corner_MemSize = new int [GPU_NStream];
|
257 |
+
int *UsedPatch = new int [GPU_NStream];
|
258 |
+
# ifdef UNSPLIT_GRAVITY
|
259 |
+
int *Pot_USG_MemSize = new int [GPU_NStream];
|
260 |
+
int *Flu_USG_MemSize = new int [GPU_NStream];
|
261 |
+
# endif
|
262 |
+
# ifdef DUAL_ENERGY
|
263 |
+
int *DE_MemSize = new int [GPU_NStream];
|
264 |
+
# endif
|
265 |
+
# ifdef MHD
|
266 |
+
int *EngyB_MemSize = new int [GPU_NStream];
|
267 |
+
# endif
|
268 |
+
|
269 |
+
|
270 |
+
// set the number of patches in each stream
|
271 |
+
UsedPatch[0] = 0;
|
272 |
+
|
273 |
+
if ( GPU_NStream == 1 ) NPatch_per_Stream[0] = NPatch;
|
274 |
+
else
|
275 |
+
{
|
276 |
+
for (int s=0; s<GPU_NStream-1; s++)
|
277 |
+
{
|
278 |
+
NPatch_per_Stream[s] = NPatch/GPU_NStream;
|
279 |
+
UsedPatch[s+1] = UsedPatch[s] + NPatch_per_Stream[s];
|
280 |
+
}
|
281 |
+
|
282 |
+
NPatch_per_Stream[GPU_NStream-1] = NPatch - UsedPatch[GPU_NStream-1];
|
283 |
+
}
|
284 |
+
|
285 |
+
|
286 |
+
// set the size of data to be transferred into GPU in each stream
|
287 |
+
for (int s=0; s<GPU_NStream; s++)
|
288 |
+
{
|
289 |
+
Rho_MemSize [s] = NPatch_per_Stream[s]*CUBE(RHO_NXT )*sizeof(real);
|
290 |
+
Pot_MemSize_In [s] = NPatch_per_Stream[s]*CUBE(POT_NXT )*sizeof(real);
|
291 |
+
Pot_MemSize_Out[s] = NPatch_per_Stream[s]*CUBE(GRA_NXT )*sizeof(real);
|
292 |
+
Flu_MemSize [s] = NPatch_per_Stream[s]*CUBE(PS1 )*sizeof(real)*GRA_NIN;
|
293 |
+
Corner_MemSize [s] = NPatch_per_Stream[s]*3 *sizeof(double);
|
294 |
+
# ifdef UNSPLIT_GRAVITY
|
295 |
+
Pot_USG_MemSize[s] = NPatch_per_Stream[s]*CUBE(USG_NXT_G)*sizeof(real);
|
296 |
+
Flu_USG_MemSize[s] = NPatch_per_Stream[s]*CUBE(PS1 )*sizeof(real)*(GRA_NIN-1);
|
297 |
+
# endif
|
298 |
+
# ifdef DUAL_ENERGY
|
299 |
+
DE_MemSize [s] = NPatch_per_Stream[s]*CUBE(PS1 )*sizeof(char);
|
300 |
+
# endif
|
301 |
+
# ifdef MHD
|
302 |
+
EngyB_MemSize [s] = NPatch_per_Stream[s]*CUBE(PS1 )*sizeof(real);
|
303 |
+
# endif
|
304 |
+
}
|
305 |
+
|
306 |
+
|
307 |
+
// a. copy data from host to device
|
308 |
+
//=========================================================================================
|
309 |
+
for (int s=0; s<GPU_NStream; s++)
|
310 |
+
{
|
311 |
+
if ( NPatch_per_Stream[s] == 0 ) continue;
|
312 |
+
|
313 |
+
if ( Poisson )
|
314 |
+
{
|
315 |
+
CUDA_CHECK_ERROR( cudaMemcpyAsync( d_Rho_Array_P + UsedPatch[s], h_Rho_Array + UsedPatch[s],
|
316 |
+
Rho_MemSize[s], cudaMemcpyHostToDevice, Stream[s] ) );
|
317 |
+
|
318 |
+
CUDA_CHECK_ERROR( cudaMemcpyAsync( d_Pot_Array_P_In + UsedPatch[s], h_Pot_Array_In + UsedPatch[s],
|
319 |
+
Pot_MemSize_In[s], cudaMemcpyHostToDevice, Stream[s] ) );
|
320 |
+
}
|
321 |
+
|
322 |
+
if ( GraAcc )
|
323 |
+
{
|
324 |
+
if ( ( GravityType == GRAVITY_SELF || GravityType == GRAVITY_BOTH ) && !Poisson )
|
325 |
+
CUDA_CHECK_ERROR( cudaMemcpyAsync( d_Pot_Array_P_Out + UsedPatch[s], h_Pot_Array_Out + UsedPatch[s],
|
326 |
+
Pot_MemSize_Out[s], cudaMemcpyHostToDevice, Stream[s] ) );
|
327 |
+
|
328 |
+
CUDA_CHECK_ERROR( cudaMemcpyAsync( d_Flu_Array_G + UsedPatch[s], h_Flu_Array + UsedPatch[s],
|
329 |
+
Flu_MemSize[s], cudaMemcpyHostToDevice, Stream[s] ) );
|
330 |
+
|
331 |
+
if ( GravityType == GRAVITY_EXTERNAL || GravityType == GRAVITY_BOTH || ExtPot )
|
332 |
+
CUDA_CHECK_ERROR( cudaMemcpyAsync( d_Corner_Array_G + UsedPatch[s], h_Corner_Array + UsedPatch[s],
|
333 |
+
Corner_MemSize[s], cudaMemcpyHostToDevice, Stream[s] ) );
|
334 |
+
# ifdef UNSPLIT_GRAVITY
|
335 |
+
if ( GravityType == GRAVITY_SELF || GravityType == GRAVITY_BOTH )
|
336 |
+
CUDA_CHECK_ERROR( cudaMemcpyAsync( d_Pot_Array_USG_G + UsedPatch[s], h_Pot_Array_USG + UsedPatch[s],
|
337 |
+
Pot_USG_MemSize[s], cudaMemcpyHostToDevice, Stream[s] ) );
|
338 |
+
|
339 |
+
CUDA_CHECK_ERROR( cudaMemcpyAsync( d_Flu_Array_USG_G + UsedPatch[s], h_Flu_Array_USG + UsedPatch[s],
|
340 |
+
Flu_USG_MemSize[s], cudaMemcpyHostToDevice, Stream[s] ) );
|
341 |
+
# endif
|
342 |
+
|
343 |
+
# ifdef DUAL_ENERGY
|
344 |
+
CUDA_CHECK_ERROR( cudaMemcpyAsync( d_DE_Array_G + UsedPatch[s], h_DE_Array + UsedPatch[s],
|
345 |
+
DE_MemSize[s], cudaMemcpyHostToDevice, Stream[s] ) );
|
346 |
+
# endif
|
347 |
+
|
348 |
+
# ifdef MHD
|
349 |
+
CUDA_CHECK_ERROR( cudaMemcpyAsync( d_EngyB_Array_G + UsedPatch[s], h_EngyB_Array + UsedPatch[s],
|
350 |
+
EngyB_MemSize[s], cudaMemcpyHostToDevice, Stream[s] ) );
|
351 |
+
# endif
|
352 |
+
} // if ( GraAcc )
|
353 |
+
} // for (int s=0; s<GPU_NStream; s++)
|
354 |
+
|
355 |
+
|
356 |
+
// b. execute the kernel
|
357 |
+
//=========================================================================================
|
358 |
+
for (int s=0; s<GPU_NStream; s++)
|
359 |
+
{
|
360 |
+
if ( NPatch_per_Stream[s] == 0 ) continue;
|
361 |
+
|
362 |
+
// b1. Poisson solver
|
363 |
+
if ( Poisson )
|
364 |
+
{
|
365 |
+
# if ( POT_SCHEME == SOR )
|
366 |
+
|
367 |
+
# ifdef USE_PSOLVER_10TO14
|
368 |
+
CUPOT_PoissonSolver_SOR_10to14cube <<< NPatch_per_Stream[s], Poi_Block_Dim, 0, Stream[s] >>>
|
369 |
+
( d_Rho_Array_P + UsedPatch[s],
|
370 |
+
d_Pot_Array_P_In + UsedPatch[s],
|
371 |
+
d_Pot_Array_P_Out + UsedPatch[s],
|
372 |
+
SOR_Min_Iter, SOR_Max_Iter, SOR_Omega_6, Poi_Const, IntScheme );
|
373 |
+
# else
|
374 |
+
CUPOT_PoissonSolver_SOR_16to18cube <<< NPatch_per_Stream[s], Poi_Block_Dim, 0, Stream[s] >>>
|
375 |
+
( d_Rho_Array_P + UsedPatch[s],
|
376 |
+
d_Pot_Array_P_In + UsedPatch[s],
|
377 |
+
d_Pot_Array_P_Out + UsedPatch[s],
|
378 |
+
SOR_Min_Iter, SOR_Max_Iter, SOR_Omega_6, Poi_Const, IntScheme );
|
379 |
+
# endif // #ifdef USE_PSOLVER_10TO14 ... else ...
|
380 |
+
|
381 |
+
# elif ( POT_SCHEME == MG )
|
382 |
+
|
383 |
+
CUPOT_PoissonSolver_MG <<< NPatch_per_Stream[s], Poi_Block_Dim, 0, Stream[s] >>>
|
384 |
+
( d_Rho_Array_P + UsedPatch[s],
|
385 |
+
d_Pot_Array_P_In + UsedPatch[s],
|
386 |
+
d_Pot_Array_P_Out + UsedPatch[s],
|
387 |
+
dh, MG_Max_Iter, MG_NPre_Smooth, MG_NPost_Smooth, MG_Tolerated_Error,
|
388 |
+
Poi_Coeff, IntScheme );
|
389 |
+
|
390 |
+
# else
|
391 |
+
|
392 |
+
# error : unsupported GPU Poisson solver
|
393 |
+
|
394 |
+
# endif // POT_SCHEME
|
395 |
+
} // if ( Poisson )
|
396 |
+
|
397 |
+
|
398 |
+
// b2. Gravity solver
|
399 |
+
if ( GraAcc )
|
400 |
+
{
|
401 |
+
# if ( MODEL == HYDRO )
|
402 |
+
CUPOT_HydroGravitySolver <<< NPatch_per_Stream[s], Gra_Block_Dim, 0, Stream[s] >>>
|
403 |
+
( d_Flu_Array_G + UsedPatch[s],
|
404 |
+
d_Pot_Array_P_Out + UsedPatch[s],
|
405 |
+
d_Corner_Array_G + UsedPatch[s],
|
406 |
+
d_Pot_Array_USG_G + UsedPatch[s],
|
407 |
+
d_Flu_Array_USG_G + UsedPatch[s],
|
408 |
+
d_DE_Array_G + UsedPatch[s],
|
409 |
+
d_EngyB_Array_G + UsedPatch[s],
|
410 |
+
dt, dh, P5_Gradient, GravityType, TimeNew, TimeOld, MinEint );
|
411 |
+
|
412 |
+
# elif ( MODEL == ELBDM )
|
413 |
+
CUPOT_ELBDMGravitySolver <<< NPatch_per_Stream[s], Gra_Block_Dim, 0, Stream[s] >>>
|
414 |
+
( d_Flu_Array_G + UsedPatch[s],
|
415 |
+
d_Pot_Array_P_Out + UsedPatch[s],
|
416 |
+
d_Corner_Array_G + UsedPatch[s],
|
417 |
+
ELBDM_EtaDt, dh, ELBDM_Lambda, ExtPot, TimeNew );
|
418 |
+
|
419 |
+
# else
|
420 |
+
# error : ERROR : unsupported MODEL !!
|
421 |
+
# endif // MODEL
|
422 |
+
} // if ( GraAcc )
|
423 |
+
|
424 |
+
CUDA_CHECK_ERROR( cudaGetLastError() );
|
425 |
+
} // for (int s=0; s<GPU_NStream; s++)
|
426 |
+
|
427 |
+
|
428 |
+
// c. copy data from device to host
|
429 |
+
//=========================================================================================
|
430 |
+
for (int s=0; s<GPU_NStream; s++)
|
431 |
+
{
|
432 |
+
if ( NPatch_per_Stream[s] == 0 ) continue;
|
433 |
+
|
434 |
+
if ( Poisson )
|
435 |
+
CUDA_CHECK_ERROR( cudaMemcpyAsync( h_Pot_Array_Out + UsedPatch[s], d_Pot_Array_P_Out + UsedPatch[s],
|
436 |
+
Pot_MemSize_Out[s], cudaMemcpyDeviceToHost, Stream[s] ) );
|
437 |
+
|
438 |
+
if ( GraAcc )
|
439 |
+
{
|
440 |
+
CUDA_CHECK_ERROR( cudaMemcpyAsync( h_Flu_Array + UsedPatch[s], d_Flu_Array_G + UsedPatch[s],
|
441 |
+
Flu_MemSize[s], cudaMemcpyDeviceToHost, Stream[s] ) );
|
442 |
+
|
443 |
+
# ifdef DUAL_ENERGY
|
444 |
+
CUDA_CHECK_ERROR( cudaMemcpyAsync( h_DE_Array + UsedPatch[s], d_DE_Array_G + UsedPatch[s],
|
445 |
+
DE_MemSize[s], cudaMemcpyDeviceToHost, Stream[s] ) );
|
446 |
+
# endif
|
447 |
+
}
|
448 |
+
} // for (int s=0; s<GPU_NStream; s++)
|
449 |
+
|
450 |
+
|
451 |
+
delete [] NPatch_per_Stream;
|
452 |
+
delete [] Rho_MemSize;
|
453 |
+
delete [] Pot_MemSize_In;
|
454 |
+
delete [] Pot_MemSize_Out;
|
455 |
+
delete [] Flu_MemSize;
|
456 |
+
delete [] Corner_MemSize;
|
457 |
+
delete [] UsedPatch;
|
458 |
+
# ifdef UNSPLIT_GRAVITY
|
459 |
+
delete [] Pot_USG_MemSize;
|
460 |
+
delete [] Flu_USG_MemSize;
|
461 |
+
# endif
|
462 |
+
# ifdef DUAL_ENERGY
|
463 |
+
delete [] DE_MemSize;
|
464 |
+
# endif
|
465 |
+
# ifdef MHD
|
466 |
+
delete [] EngyB_MemSize;
|
467 |
+
# endif
|
468 |
+
|
469 |
+
} // FUNCTION : CUAPI_Asyn_PoissonGravitySolver
|
470 |
+
|
471 |
+
|
472 |
+
|
473 |
+
#endif // #if ( defined GPU && defined GRAVITY )
|
cuda_code/CUFLU_Shared_FullStepUpdate_1.cu
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#ifndef __CUFLU_FULLSTEPUPDATE__
|
2 |
+
#define __CUFLU_FULLSTEPUPDATE__
|
3 |
+
|
4 |
+
|
5 |
+
|
6 |
+
#include "CUFLU.h"
|
7 |
+
|
8 |
+
#if ( MODEL == HYDRO && ( FLU_SCHEME == MHM || FLU_SCHEME == MHM_RP || FLU_SCHEME == CTU ) )
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
// external functions
|
13 |
+
#ifdef __CUDACC__
|
14 |
+
|
15 |
+
#if ( NCOMP_PASSIVE > 0 )
|
16 |
+
# include "CUFLU_Shared_FluUtility.cu"
|
17 |
+
#endif
|
18 |
+
|
19 |
+
#ifdef DUAL_ENERGY
|
20 |
+
# include "CUFLU_Shared_DualEnergy.cu"
|
21 |
+
#endif
|
22 |
+
|
23 |
+
#endif // #ifdef __CUDACC__
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
//-------------------------------------------------------------------------------------------------------
|
29 |
+
// Function : Hydro_FullStepUpdate
|
30 |
+
// Description : Evaluate the full-step solution
|
31 |
+
//
|
32 |
+
// Note : 1. This function is shared by MHM, MHM_RP, and CTU schemes
|
33 |
+
// 2. Invoke dual-energy check if DualEnergySwitch is on
|
34 |
+
//
|
35 |
+
// Parameter : g_Input : Array storing the input fluid data
|
36 |
+
// g_Output : Array to store the updated fluid data
|
37 |
+
// g_DE_Status : Array to store the dual-energy status
|
38 |
+
// g_FC_B : Array storing the updated face-centered B field
|
39 |
+
// --> For the dual-energy formalism only
|
40 |
+
// g_Flux : Array storing the input face-centered fluxes
|
41 |
+
// --> Accessed with the array stride N_FL_FLUX even thought its actually
|
42 |
+
// allocated size is N_FC_FLUX^3
|
43 |
+
// dt : Time interval to advance solution
|
44 |
+
// dh : Cell size
|
45 |
+
// MinDens/Eint : Density and internal energy floors
|
46 |
+
// DualEnergySwitch : Use the dual-energy formalism if E_int/E_kin < DualEnergySwitch
|
47 |
+
// NormPassive : true --> normalize passive scalars so that the sum of their mass density
|
48 |
+
// is equal to the gas mass density
|
49 |
+
// NNorm : Number of passive scalars to be normalized
|
50 |
+
// --> Should be set to the global variable "PassiveNorm_NVar"
|
51 |
+
// NormIdx : Target variable indices to be normalized
|
52 |
+
// --> Should be set to the global variable "PassiveNorm_VarIdx"
|
53 |
+
// EoS : EoS object
|
54 |
+
// --> Only for obtaining Gamma used by the dual-energy formalism
|
55 |
+
//-------------------------------------------------------------------------------------------------------
|
56 |
+
GPU_DEVICE
|
57 |
+
void Hydro_FullStepUpdate( const real g_Input[][ CUBE(FLU_NXT) ], real g_Output[][ CUBE(PS2) ], char g_DE_Status[],
|
58 |
+
const real g_FC_B[][ PS2P1*SQR(PS2) ], const real g_Flux[][NCOMP_TOTAL_PLUS_MAG][ CUBE(N_FC_FLUX) ],
|
59 |
+
const real dt, const real dh, const real MinDens, const real MinEint,
|
60 |
+
const real DualEnergySwitch, const bool NormPassive, const int NNorm, const int NormIdx[],
|
61 |
+
const EoS_t *EoS )
|
62 |
+
{
|
63 |
+
|
64 |
+
const int didx_flux[3] = { 1, N_FL_FLUX, SQR(N_FL_FLUX) };
|
65 |
+
const real dt_dh = dt/dh;
|
66 |
+
|
67 |
+
real dFlux[3][NCOMP_TOTAL], Output_1Cell[NCOMP_TOTAL], Emag;
|
68 |
+
|
69 |
+
|
70 |
+
const int size_ij = SQR(PS2);
|
71 |
+
CGPU_LOOP( idx_out, CUBE(PS2) )
|
72 |
+
{
|
73 |
+
const int i_out = idx_out % PS2;
|
74 |
+
const int j_out = idx_out % size_ij / PS2;
|
75 |
+
const int k_out = idx_out / size_ij;
|
76 |
+
|
77 |
+
// for MHD, one additional flux is evaluated along each transverse direction for computing the CT electric field
|
78 |
+
# ifdef MHD
|
79 |
+
const int i_flux = i_out + 1;
|
80 |
+
const int j_flux = j_out + 1;
|
81 |
+
const int k_flux = k_out + 1;
|
82 |
+
# else
|
83 |
+
const int i_flux = i_out;
|
84 |
+
const int j_flux = j_out;
|
85 |
+
const int k_flux = k_out;
|
86 |
+
# endif
|
87 |
+
const int idx_flux = IDX321( i_flux, j_flux, k_flux, N_FL_FLUX, N_FL_FLUX );
|
88 |
+
|
89 |
+
const int i_in = i_out + FLU_GHOST_SIZE;
|
90 |
+
const int j_in = j_out + FLU_GHOST_SIZE;
|
91 |
+
const int k_in = k_out + FLU_GHOST_SIZE;
|
92 |
+
const int idx_in = IDX321( i_in, j_in, k_in, FLU_NXT, FLU_NXT );
|
93 |
+
|
94 |
+
|
95 |
+
// 1. calculate flux difference to update the fluid data
|
96 |
+
for (int d=0; d<3; d++)
|
97 |
+
for (int v=0; v<NCOMP_TOTAL; v++)
|
98 |
+
{
|
99 |
+
# ifdef MHD
|
100 |
+
dFlux[d][v] = g_Flux[d][v][idx_flux] - g_Flux[d][v][ idx_flux - didx_flux[d] ];
|
101 |
+
# else
|
102 |
+
dFlux[d][v] = g_Flux[d][v][ idx_flux + didx_flux[d] ] - g_Flux[d][v][idx_flux];
|
103 |
+
# endif
|
104 |
+
}
|
105 |
+
|
106 |
+
for (int v=0; v<NCOMP_TOTAL; v++)
|
107 |
+
Output_1Cell[v] = g_Input[v][idx_in] - dt_dh*( dFlux[0][v] + dFlux[1][v] + dFlux[2][v] );
|
108 |
+
|
109 |
+
|
110 |
+
// we no longer ensure positive density and pressure here
|
111 |
+
// --> these checks have been moved to Flu_Close()->CorrectUnphysical()
|
112 |
+
// because we want to apply 1st-order-flux correction BEFORE setting a minimum density and pressure
|
113 |
+
// --> this consideration holds even when DUAL_ENERGY is adopted (e.g., when density is negative,
|
114 |
+
// even when DUAL_ENERGY is on, we still want to try the 1st-order-flux correction before setting a floor value)
|
115 |
+
// --> but for barotropic EoS, we apply Eint floor here to avoid any false alarm caused by Eint<0
|
116 |
+
# ifdef BAROTROPIC_EOS
|
117 |
+
# ifdef MHD
|
118 |
+
Emag = MHD_GetCellCenteredBEnergy( g_FC_B[MAGX], g_FC_B[MAGY], g_FC_B[MAGZ],
|
119 |
+
PS2, PS2, PS2, i_out, j_out, k_out );
|
120 |
+
# else
|
121 |
+
Emag = NULL_REAL;
|
122 |
+
# endif
|
123 |
+
// Output_1Cell[DENS] = FMAX( Output_1Cell[DENS], MinDens );
|
124 |
+
Output_1Cell[ENGY] = Hydro_CheckMinEintInEngy( Output_1Cell[DENS], Output_1Cell[MOMX],
|
125 |
+
Output_1Cell[MOMY], Output_1Cell[MOMZ],
|
126 |
+
Output_1Cell[ENGY], MinEint, Emag );
|
127 |
+
# endif // #ifdef BAROTROPIC_EOS
|
128 |
+
|
129 |
+
|
130 |
+
// 2. floor and normalize passive scalars
|
131 |
+
# if ( NCOMP_PASSIVE > 0 )
|
132 |
+
for (int v=NCOMP_FLUID; v<NCOMP_TOTAL; v++) Output_1Cell[v] = FMAX( Output_1Cell[v], TINY_NUMBER );
|
133 |
+
|
134 |
+
if ( NormPassive )
|
135 |
+
Hydro_NormalizePassive( Output_1Cell[DENS], Output_1Cell+NCOMP_FLUID, NNorm, NormIdx );
|
136 |
+
# endif
|
137 |
+
|
138 |
+
|
139 |
+
// 3. apply the dual-energy formalism to correct the internal energy
|
140 |
+
// --> currently, even when UNSPLIT_GRAVITY is on (which would update the internal energy), we still invoke
|
141 |
+
// Hydro_DualEnergyFix() here and will fix the internal energy in the gravity solver for cells updated
|
142 |
+
// by the dual-energy formalism (i.e., for cells with their dual-energy status marked as DE_UPDATED_BY_DUAL)
|
143 |
+
// --> this feature might be modified in the future
|
144 |
+
# ifdef DUAL_ENERGY
|
145 |
+
// B field must be updated in advance
|
146 |
+
# ifdef MHD
|
147 |
+
Emag = MHD_GetCellCenteredBEnergy( g_FC_B[MAGX], g_FC_B[MAGY], g_FC_B[MAGZ],
|
148 |
+
PS2, PS2, PS2, i_out, j_out, k_out );
|
149 |
+
# else
|
150 |
+
Emag = NULL_REAL;
|
151 |
+
# endif
|
152 |
+
// we no longer apply density and pressure floors here since we want to enable 1st-order-flux correction for that
|
153 |
+
const bool CheckMinPres_No = false;
|
154 |
+
// Output_1Cell[DENS] = FMAX( Output_1Cell[DENS], MinDens );
|
155 |
+
|
156 |
+
Hydro_DualEnergyFix( Output_1Cell[DENS], Output_1Cell[MOMX], Output_1Cell[MOMY], Output_1Cell[MOMZ],
|
157 |
+
Output_1Cell[ENGY], Output_1Cell[ENPY], g_DE_Status[idx_out],
|
158 |
+
EoS->AuxArrayDevPtr_Flt[1], EoS->AuxArrayDevPtr_Flt[2], CheckMinPres_No, NULL_REAL,
|
159 |
+
DualEnergySwitch, Emag );
|
160 |
+
# endif // #ifdef DUAL_ENERGY
|
161 |
+
|
162 |
+
|
163 |
+
// 4. store results to the output array
|
164 |
+
for (int v=0; v<NCOMP_TOTAL; v++) g_Output[v][idx_out] = Output_1Cell[v];
|
165 |
+
|
166 |
+
|
167 |
+
// 5. check the negative density and energy
|
168 |
+
# ifdef CHECK_NEGATIVE_IN_FLUID
|
169 |
+
if ( Hydro_CheckNegative(Output_1Cell[DENS]) )
|
170 |
+
printf( "WARNING : invalid density (%14.7e) at file <%s>, line <%d>, function <%s>\n",
|
171 |
+
Output_1Cell[DENS], __FILE__, __LINE__, __FUNCTION__ );
|
172 |
+
|
173 |
+
if ( Hydro_CheckNegative(Output_1Cell[ENGY]) )
|
174 |
+
printf( "WARNING : invalid energy (%14.7e) at file <%s>, line <%d>, function <%s>\n",
|
175 |
+
Output_1Cell[ENGY], __FILE__, __LINE__, __FUNCTION__ );
|
176 |
+
# endif
|
177 |
+
|
178 |
+
} // CGPU_LOOP( idx_out, CUBE(PS2) )
|
179 |
+
|
180 |
+
} // FUNCTION : Hydro_FullStepUpdate
|
181 |
+
|
182 |
+
|
183 |
+
|
184 |
+
#endif // #if ( FLU_SCHEME == MHM || FLU_SCHEME == MHM_RP || FLU_SCHEME == CTU )
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
#endif // #ifndef __CUFLU_FULLSTEPUPDATE__
|
cuda_code/Col2Im_9.cu
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <ATen/ATen.h>
|
2 |
+
#include <ATen/AccumulateType.h>
|
3 |
+
#include <ATen/NativeFunctions.h>
|
4 |
+
#include <ATen/TensorUtils.h>
|
5 |
+
#include <ATen/Utils.h>
|
6 |
+
#include <ATen/div_rtn.h>
|
7 |
+
|
8 |
+
#include <ATen/cuda/CUDAContext.h>
|
9 |
+
#include <ATen/cuda/CUDAApplyUtils.cuh>
|
10 |
+
|
11 |
+
#include <ATen/native/cuda/im2col.cuh>
|
12 |
+
#include <ATen/native/im2col_shape_check.h>
|
13 |
+
|
14 |
+
namespace at {
|
15 |
+
namespace native {
|
16 |
+
namespace {
|
17 |
+
|
18 |
+
void col2im_out_cuda_template(
|
19 |
+
Tensor& output,
|
20 |
+
const Tensor& input_,
|
21 |
+
IntArrayRef output_size,
|
22 |
+
IntArrayRef kernel_size,
|
23 |
+
IntArrayRef dilation,
|
24 |
+
IntArrayRef padding,
|
25 |
+
IntArrayRef stride) {
|
26 |
+
TensorArg input_arg{input_, "input", 1};
|
27 |
+
TensorArg output_arg{output, "output", 2};
|
28 |
+
checkAllSameGPU("col2im_out_cuda", {input_arg, output_arg});
|
29 |
+
|
30 |
+
TORCH_CHECK(
|
31 |
+
output_size.size() == 2,
|
32 |
+
"It is expected output_size equals to 2, but got size ",
|
33 |
+
output_size.size());
|
34 |
+
|
35 |
+
TORCH_CHECK(
|
36 |
+
kernel_size.size() == 2,
|
37 |
+
"It is expected kernel_size equals to 2, but got size ",
|
38 |
+
kernel_size.size());
|
39 |
+
|
40 |
+
TORCH_CHECK(
|
41 |
+
dilation.size() == 2,
|
42 |
+
"It is expected dilation equals to 2, but got size ",
|
43 |
+
dilation.size());
|
44 |
+
|
45 |
+
TORCH_CHECK(
|
46 |
+
padding.size() == 2,
|
47 |
+
"It is expected padding equals to 2, but got size ",
|
48 |
+
padding.size());
|
49 |
+
|
50 |
+
TORCH_CHECK(
|
51 |
+
stride.size() == 2,
|
52 |
+
"It is expected stride equals to 2, but got size ",
|
53 |
+
stride.size());
|
54 |
+
|
55 |
+
int64_t output_height = output_size[0];
|
56 |
+
int64_t output_width = output_size[1];
|
57 |
+
int64_t kernel_height = kernel_size[0];
|
58 |
+
int64_t kernel_width = kernel_size[1];
|
59 |
+
int64_t dilation_height = dilation[0];
|
60 |
+
int64_t dilation_width = dilation[1];
|
61 |
+
int64_t pad_height = padding[0];
|
62 |
+
int64_t pad_width = padding[1];
|
63 |
+
int64_t stride_height = stride[0];
|
64 |
+
int64_t stride_width = stride[1];
|
65 |
+
|
66 |
+
col2im_shape_check(
|
67 |
+
input_,
|
68 |
+
Tensor(),
|
69 |
+
output_height,
|
70 |
+
output_width,
|
71 |
+
kernel_height,
|
72 |
+
kernel_width,
|
73 |
+
dilation_height,
|
74 |
+
dilation_width,
|
75 |
+
pad_height,
|
76 |
+
pad_width,
|
77 |
+
stride_height,
|
78 |
+
stride_width);
|
79 |
+
|
80 |
+
Tensor input = input_.contiguous();
|
81 |
+
|
82 |
+
bool batched_input = true;
|
83 |
+
if (input.dim() == 2) {
|
84 |
+
// Force batch
|
85 |
+
batched_input = false;
|
86 |
+
input.resize_({1, input.size(0), input.size(1)});
|
87 |
+
}
|
88 |
+
|
89 |
+
int64_t batch_size = input.size(0);
|
90 |
+
int64_t n_input_plane = input.size(1);
|
91 |
+
int64_t n_output_plane = n_input_plane / (kernel_width * kernel_height);
|
92 |
+
|
93 |
+
output.resize_({batch_size, n_output_plane, output_height, output_width});
|
94 |
+
output.zero_();
|
95 |
+
|
96 |
+
AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.scalar_type(), "col2im_out_cuda", [&] {
|
97 |
+
using accscalar_t = at::acc_type<scalar_t, true>;
|
98 |
+
|
99 |
+
Tensor input_n;
|
100 |
+
Tensor output_n;
|
101 |
+
|
102 |
+
int64_t height_col = (output_height + 2 * pad_height -
|
103 |
+
(dilation_height * (kernel_height - 1) + 1)) /
|
104 |
+
stride_height +
|
105 |
+
1;
|
106 |
+
int64_t width_col = (output_width + 2 * pad_width -
|
107 |
+
(dilation_width * (kernel_width - 1) + 1)) /
|
108 |
+
stride_width +
|
109 |
+
1;
|
110 |
+
|
111 |
+
for (int64_t elt = 0; elt < batch_size; elt++) {
|
112 |
+
input_n = input.select(0, elt);
|
113 |
+
output_n = output.select(0, elt);
|
114 |
+
|
115 |
+
col2im<scalar_t, accscalar_t>(
|
116 |
+
at::cuda::getCurrentCUDAStream(),
|
117 |
+
input_n.data_ptr<scalar_t>(),
|
118 |
+
n_output_plane,
|
119 |
+
output_height,
|
120 |
+
output_width,
|
121 |
+
height_col,
|
122 |
+
width_col,
|
123 |
+
kernel_height,
|
124 |
+
kernel_width,
|
125 |
+
pad_height,
|
126 |
+
pad_width,
|
127 |
+
stride_height,
|
128 |
+
stride_width,
|
129 |
+
dilation_height,
|
130 |
+
dilation_width,
|
131 |
+
output_n.data_ptr<scalar_t>());
|
132 |
+
}
|
133 |
+
|
134 |
+
if (!batched_input) {
|
135 |
+
output.resize_({n_output_plane, output_height, output_width});
|
136 |
+
}
|
137 |
+
});
|
138 |
+
}
|
139 |
+
|
140 |
+
void col2im_backward_out_cuda_template(
|
141 |
+
Tensor& grad_input,
|
142 |
+
const Tensor& grad_output,
|
143 |
+
IntArrayRef kernel_size,
|
144 |
+
IntArrayRef dilation,
|
145 |
+
IntArrayRef padding,
|
146 |
+
IntArrayRef stride) {
|
147 |
+
// im2col_out_cuda checks size of kernel_size, dilation, padding and stride
|
148 |
+
im2col_out_cuda(
|
149 |
+
grad_input, grad_output, kernel_size, dilation, padding, stride);
|
150 |
+
}
|
151 |
+
|
152 |
+
} // namespace
|
153 |
+
|
154 |
+
Tensor& col2im_out_cuda(
|
155 |
+
Tensor& output,
|
156 |
+
const Tensor& input,
|
157 |
+
IntArrayRef output_size,
|
158 |
+
IntArrayRef kernel_size,
|
159 |
+
IntArrayRef dilation,
|
160 |
+
IntArrayRef padding,
|
161 |
+
IntArrayRef stride) {
|
162 |
+
col2im_out_cuda_template(
|
163 |
+
output, input, output_size, kernel_size, dilation, padding, stride);
|
164 |
+
return output;
|
165 |
+
}
|
166 |
+
|
167 |
+
Tensor col2im_cuda(
|
168 |
+
const Tensor& input,
|
169 |
+
IntArrayRef output_size,
|
170 |
+
IntArrayRef kernel_size,
|
171 |
+
IntArrayRef dilation,
|
172 |
+
IntArrayRef padding,
|
173 |
+
IntArrayRef stride) {
|
174 |
+
Tensor output = at::empty_like(input, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
|
175 |
+
|
176 |
+
col2im_out_cuda_template(
|
177 |
+
output, input, output_size, kernel_size, dilation, padding, stride);
|
178 |
+
return output;
|
179 |
+
}
|
180 |
+
|
181 |
+
Tensor& col2im_backward_out_cuda(
|
182 |
+
Tensor& grad_input,
|
183 |
+
const Tensor& grad_output,
|
184 |
+
IntArrayRef kernel_size,
|
185 |
+
IntArrayRef dilation,
|
186 |
+
IntArrayRef padding,
|
187 |
+
IntArrayRef stride) {
|
188 |
+
col2im_backward_out_cuda_template(
|
189 |
+
grad_input, grad_output, kernel_size, dilation, padding, stride);
|
190 |
+
return grad_input;
|
191 |
+
}
|
192 |
+
|
193 |
+
Tensor col2im_backward_cuda(
|
194 |
+
const Tensor& grad_output,
|
195 |
+
IntArrayRef kernel_size,
|
196 |
+
IntArrayRef dilation,
|
197 |
+
IntArrayRef padding,
|
198 |
+
IntArrayRef stride) {
|
199 |
+
Tensor grad_input = at::empty_like(grad_output, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
|
200 |
+
|
201 |
+
col2im_backward_out_cuda_template(
|
202 |
+
grad_input, grad_output, kernel_size, dilation, padding, stride);
|
203 |
+
return grad_input;
|
204 |
+
}
|
205 |
+
|
206 |
+
} // namespace native
|
207 |
+
} // namespace at
|
cuda_code/CommunicatorGridGPU_1.cu
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2009-2022 The Regents of the University of Michigan.
|
2 |
+
// Part of HOOMD-blue, released under the BSD 3-Clause License.
|
3 |
+
|
4 |
+
#include "hip/hip_runtime.h"
|
5 |
+
|
6 |
+
#ifdef __HIP_PLATFORM_HCC__
|
7 |
+
#include <hipfft.h>
|
8 |
+
#else
|
9 |
+
#include <cufft.h>
|
10 |
+
typedef cufftComplex hipfftComplex;
|
11 |
+
#endif
|
12 |
+
|
13 |
+
#include "CommunicatorGridGPU.cuh"
|
14 |
+
//! Define plus operator for complex data type (needed by CommunicatorMesh)
|
15 |
+
__device__ inline hipfftComplex operator+(hipfftComplex& lhs, const hipfftComplex& rhs)
|
16 |
+
{
|
17 |
+
hipfftComplex res;
|
18 |
+
res.x = lhs.x + rhs.x;
|
19 |
+
res.y = lhs.y + rhs.y;
|
20 |
+
return res;
|
21 |
+
}
|
22 |
+
|
23 |
+
namespace hoomd
|
24 |
+
{
|
25 |
+
namespace md
|
26 |
+
{
|
27 |
+
namespace kernel
|
28 |
+
{
|
29 |
+
template<typename T>
|
30 |
+
__global__ void gpu_gridcomm_scatter_send_cells_kernel(unsigned int n_send_cells,
|
31 |
+
unsigned int* d_send_idx,
|
32 |
+
const T* d_grid,
|
33 |
+
T* d_send_buf)
|
34 |
+
{
|
35 |
+
unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
36 |
+
|
37 |
+
if (idx >= n_send_cells)
|
38 |
+
return;
|
39 |
+
d_send_buf[idx] = d_grid[d_send_idx[idx]];
|
40 |
+
}
|
41 |
+
|
42 |
+
template<typename T, bool add_outer>
|
43 |
+
__global__ void gpu_gridcomm_scatter_add_recv_cells_kernel(unsigned int n_unique_recv_cells,
|
44 |
+
const T* d_recv_buf,
|
45 |
+
T* d_grid,
|
46 |
+
const unsigned int* d_cell_recv,
|
47 |
+
const unsigned int* d_cell_recv_begin,
|
48 |
+
const unsigned int* d_cell_recv_end,
|
49 |
+
const unsigned int* d_recv_idx)
|
50 |
+
{
|
51 |
+
unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
52 |
+
if (idx >= n_unique_recv_cells)
|
53 |
+
return;
|
54 |
+
|
55 |
+
unsigned int begin = d_cell_recv_begin[idx];
|
56 |
+
unsigned int end = d_cell_recv_end[idx];
|
57 |
+
|
58 |
+
T val = d_recv_buf[d_cell_recv[begin]];
|
59 |
+
|
60 |
+
// add together multiple received cells
|
61 |
+
for (unsigned int i = begin + 1; i < end; i++)
|
62 |
+
val = val + d_recv_buf[d_cell_recv[i]];
|
63 |
+
|
64 |
+
unsigned int recv_cell = d_recv_idx[d_cell_recv[begin]];
|
65 |
+
if (add_outer)
|
66 |
+
{
|
67 |
+
// add to grid
|
68 |
+
d_grid[recv_cell] = d_grid[recv_cell] + val;
|
69 |
+
}
|
70 |
+
else
|
71 |
+
{
|
72 |
+
// write out to grid
|
73 |
+
d_grid[recv_cell] = val;
|
74 |
+
}
|
75 |
+
}
|
76 |
+
|
77 |
+
template<typename T>
|
78 |
+
void gpu_gridcomm_scatter_send_cells(unsigned int n_send_cells,
|
79 |
+
unsigned int* d_send_idx,
|
80 |
+
const T* d_grid,
|
81 |
+
T* d_send_buf)
|
82 |
+
{
|
83 |
+
unsigned int block_size = 256;
|
84 |
+
unsigned int n_blocks = n_send_cells / block_size + 1;
|
85 |
+
|
86 |
+
hipLaunchKernelGGL((gpu_gridcomm_scatter_send_cells_kernel<T>),
|
87 |
+
dim3(n_blocks),
|
88 |
+
dim3(block_size),
|
89 |
+
0,
|
90 |
+
0,
|
91 |
+
n_send_cells,
|
92 |
+
d_send_idx,
|
93 |
+
d_grid,
|
94 |
+
d_send_buf);
|
95 |
+
}
|
96 |
+
|
97 |
+
template<typename T>
|
98 |
+
void gpu_gridcomm_scatter_add_recv_cells(unsigned int n_unique_recv_cells,
|
99 |
+
const T* d_recv_buf,
|
100 |
+
T* d_grid,
|
101 |
+
const unsigned int* d_cell_recv,
|
102 |
+
const unsigned int* d_cell_recv_begin,
|
103 |
+
const unsigned int* d_cell_recv_end,
|
104 |
+
const unsigned int* d_recv_idx,
|
105 |
+
bool add_outer)
|
106 |
+
{
|
107 |
+
unsigned int block_size = 256;
|
108 |
+
unsigned int n_blocks = n_unique_recv_cells / block_size + 1;
|
109 |
+
|
110 |
+
if (add_outer)
|
111 |
+
{
|
112 |
+
hipLaunchKernelGGL((gpu_gridcomm_scatter_add_recv_cells_kernel<T, true>),
|
113 |
+
dim3(n_blocks),
|
114 |
+
dim3(block_size),
|
115 |
+
0,
|
116 |
+
0,
|
117 |
+
n_unique_recv_cells,
|
118 |
+
d_recv_buf,
|
119 |
+
d_grid,
|
120 |
+
d_cell_recv,
|
121 |
+
d_cell_recv_begin,
|
122 |
+
d_cell_recv_end,
|
123 |
+
d_recv_idx);
|
124 |
+
}
|
125 |
+
else
|
126 |
+
{
|
127 |
+
hipLaunchKernelGGL((gpu_gridcomm_scatter_add_recv_cells_kernel<T, false>),
|
128 |
+
dim3(n_blocks),
|
129 |
+
dim3(block_size),
|
130 |
+
0,
|
131 |
+
0,
|
132 |
+
n_unique_recv_cells,
|
133 |
+
d_recv_buf,
|
134 |
+
d_grid,
|
135 |
+
d_cell_recv,
|
136 |
+
d_cell_recv_begin,
|
137 |
+
d_cell_recv_end,
|
138 |
+
d_recv_idx);
|
139 |
+
}
|
140 |
+
}
|
141 |
+
|
142 |
+
//! Template instantiation for hipfftComplex
|
143 |
+
template void gpu_gridcomm_scatter_send_cells<hipfftComplex>(unsigned int n_send_cells,
|
144 |
+
unsigned int* d_send_idx,
|
145 |
+
const hipfftComplex* d_grid,
|
146 |
+
hipfftComplex* d_send_buf);
|
147 |
+
|
148 |
+
template void
|
149 |
+
gpu_gridcomm_scatter_add_recv_cells<hipfftComplex>(unsigned int n_unique_recv_cells,
|
150 |
+
const hipfftComplex* d_recv_buf,
|
151 |
+
hipfftComplex* d_grid,
|
152 |
+
const unsigned int* d_cell_recv,
|
153 |
+
const unsigned int* d_cell_recv_begin,
|
154 |
+
const unsigned int* d_cell_recv_end,
|
155 |
+
const unsigned int* d_recv_idx,
|
156 |
+
bool add_outer);
|
157 |
+
|
158 |
+
//! Template instantiation for Scalar
|
159 |
+
template void gpu_gridcomm_scatter_send_cells<Scalar>(unsigned int n_send_cells,
|
160 |
+
unsigned int* d_send_idx,
|
161 |
+
const Scalar* d_grid,
|
162 |
+
Scalar* d_send_buf);
|
163 |
+
|
164 |
+
template void gpu_gridcomm_scatter_add_recv_cells<Scalar>(unsigned int n_unique_recv_cells,
|
165 |
+
const Scalar* d_recv_buf,
|
166 |
+
Scalar* d_grid,
|
167 |
+
const unsigned int* d_cell_recv,
|
168 |
+
const unsigned int* d_cell_recv_begin,
|
169 |
+
const unsigned int* d_cell_recv_end,
|
170 |
+
const unsigned int* d_recv_idx,
|
171 |
+
bool add_outer);
|
172 |
+
|
173 |
+
//! Template instantiation for unsigned int
|
174 |
+
template void gpu_gridcomm_scatter_send_cells<unsigned int>(unsigned int n_send_cells,
|
175 |
+
unsigned int* d_send_idx,
|
176 |
+
const unsigned int* d_grid,
|
177 |
+
unsigned int* d_send_buf);
|
178 |
+
|
179 |
+
template void
|
180 |
+
gpu_gridcomm_scatter_add_recv_cells<unsigned int>(unsigned int n_unique_recv_cells,
|
181 |
+
const unsigned int* d_recv_buf,
|
182 |
+
unsigned int* d_grid,
|
183 |
+
const unsigned int* d_cell_recv,
|
184 |
+
const unsigned int* d_cell_recv_begin,
|
185 |
+
const unsigned int* d_cell_recv_end,
|
186 |
+
const unsigned int* d_recv_idx,
|
187 |
+
bool add_outer);
|
188 |
+
|
189 |
+
} // end namespace kernel
|
190 |
+
} // end namespace md
|
191 |
+
} // end namespace hoomd
|
cuda_code/CompareEQKernel.cu
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <ATen/Dispatch.h>
|
2 |
+
#include <ATen/native/BinaryOps.h>
|
3 |
+
#include <ATen/native/DispatchStub.h>
|
4 |
+
#include <ATen/native/TensorIterator.h>
|
5 |
+
#include <ATen/native/cuda/Loops.cuh>
|
6 |
+
|
7 |
+
|
8 |
+
// NOTE: CUDA on Windows requires that the enclosing function
|
9 |
+
// of a __device__ lambda not have internal linkage.
|
10 |
+
|
11 |
+
namespace at { namespace native {
|
12 |
+
|
13 |
+
template<typename scalar_t>
|
14 |
+
struct CompareEqFunctor {
|
15 |
+
__device__ __forceinline__ bool operator() (scalar_t a, scalar_t b) const {
|
16 |
+
return a == b;
|
17 |
+
}
|
18 |
+
};
|
19 |
+
|
20 |
+
void eq_kernel_cuda(TensorIteratorBase& iter) {
|
21 |
+
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(kHalf, kBFloat16, kBool, iter.common_dtype(), "eq_cuda", [&]() {
|
22 |
+
gpu_kernel_with_scalars(iter, CompareEqFunctor<scalar_t>());
|
23 |
+
});
|
24 |
+
}
|
25 |
+
|
26 |
+
REGISTER_DISPATCH(eq_stub, &eq_kernel_cuda);
|
27 |
+
|
28 |
+
}} // namespace at::native
|
cuda_code/CompareGEKernel_3.cu
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#define TORCH_ASSERT_NO_OPERATORS
|
2 |
+
#include <ATen/Dispatch.h>
|
3 |
+
#include <ATen/native/BinaryOps.h>
|
4 |
+
#include <ATen/native/DispatchStub.h>
|
5 |
+
#include <ATen/native/TensorIterator.h>
|
6 |
+
#include <ATen/native/cuda/Loops.cuh>
|
7 |
+
|
8 |
+
|
9 |
+
// NOTE: CUDA on Windows requires that the enclosing function
|
10 |
+
// of a __device__ lambda not have internal linkage.
|
11 |
+
|
12 |
+
namespace at { namespace native {
|
13 |
+
|
14 |
+
template<typename scalar_t>
|
15 |
+
struct CompareGEFunctor {
|
16 |
+
__device__ __forceinline__ bool operator() (scalar_t a, scalar_t b) const {
|
17 |
+
return a >= b;
|
18 |
+
}
|
19 |
+
};
|
20 |
+
|
21 |
+
void ge_kernel_cuda(TensorIteratorBase& iter) {
|
22 |
+
AT_DISPATCH_ALL_TYPES_AND3(kHalf, kBFloat16, kBool, iter.common_dtype(), "ge_cuda", [&]() {
|
23 |
+
gpu_kernel_with_scalars(iter, CompareGEFunctor<scalar_t>());
|
24 |
+
});
|
25 |
+
}
|
26 |
+
|
27 |
+
REGISTER_DISPATCH(ge_stub, &ge_kernel_cuda);
|
28 |
+
|
29 |
+
}} // namespace at::native
|
cuda_code/CompareGTKernel.cu
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <ATen/Dispatch.h>
|
2 |
+
#include <ATen/native/BinaryOps.h>
|
3 |
+
#include <ATen/native/DispatchStub.h>
|
4 |
+
#include <ATen/native/TensorIterator.h>
|
5 |
+
#include <ATen/native/cuda/Loops.cuh>
|
6 |
+
|
7 |
+
|
8 |
+
// NOTE: CUDA on Windows requires that the enclosing function
|
9 |
+
// of a __device__ lambda not have internal linkage.
|
10 |
+
|
11 |
+
namespace at { namespace native {
|
12 |
+
|
13 |
+
template<typename scalar_t>
|
14 |
+
struct CompareGTFunctor {
|
15 |
+
__device__ __forceinline__ bool operator() (scalar_t a, scalar_t b) const {
|
16 |
+
return a > b;
|
17 |
+
}
|
18 |
+
};
|
19 |
+
|
20 |
+
void gt_kernel_cuda(TensorIterator& iter) {
|
21 |
+
AT_DISPATCH_ALL_TYPES_AND3(kHalf, kBFloat16, kBool, iter.common_dtype(), "gt_cuda", [&]() {
|
22 |
+
gpu_kernel_with_scalars(iter, CompareGTFunctor<scalar_t>());
|
23 |
+
});
|
24 |
+
}
|
25 |
+
|
26 |
+
REGISTER_DISPATCH(gt_stub, >_kernel_cuda);
|
27 |
+
|
28 |
+
}} // namespace at::native
|
cuda_code/CompressKernel_8.cu
ADDED
@@ -0,0 +1,2022 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2009-2011 Ignacio Castano <[email protected]>
|
2 |
+
// Copyright (c) 2007-2009 NVIDIA Corporation -- Ignacio Castano <[email protected]>
|
3 |
+
//
|
4 |
+
// Permission is hereby granted, free of charge, to any person
|
5 |
+
// obtaining a copy of this software and associated documentation
|
6 |
+
// files (the "Software"), to deal in the Software without
|
7 |
+
// restriction, including without limitation the rights to use,
|
8 |
+
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
// copies of the Software, and to permit persons to whom the
|
10 |
+
// Software is furnished to do so, subject to the following
|
11 |
+
// conditions:
|
12 |
+
//
|
13 |
+
// The above copyright notice and this permission notice shall be
|
14 |
+
// included in all copies or substantial portions of the Software.
|
15 |
+
//
|
16 |
+
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
17 |
+
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
18 |
+
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
19 |
+
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
20 |
+
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
21 |
+
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
22 |
+
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
23 |
+
// OTHER DEALINGS IN THE SOFTWARE.
|
24 |
+
|
25 |
+
#include <math.h>
|
26 |
+
#include <float.h> // FLT_MAX
|
27 |
+
|
28 |
+
#include "CudaMath.h"
|
29 |
+
|
30 |
+
|
31 |
+
#define NUM_THREADS 64 // Number of threads per block.
|
32 |
+
|
33 |
+
typedef unsigned char uchar;
|
34 |
+
typedef unsigned short ushort;
|
35 |
+
typedef unsigned int uint;
|
36 |
+
|
37 |
+
template <class T>
|
38 |
+
__device__ inline void swap(T & a, T & b)
|
39 |
+
{
|
40 |
+
T tmp = a;
|
41 |
+
a = b;
|
42 |
+
b = tmp;
|
43 |
+
}
|
44 |
+
|
45 |
+
__constant__ uchar OMatch5[256][2];
|
46 |
+
__constant__ uchar OMatch6[256][2];
|
47 |
+
|
48 |
+
__constant__ float3 kColorMetric = { 1.0f, 1.0f, 1.0f };
|
49 |
+
__constant__ float3 kColorMetricSqr = { 1.0f, 1.0f, 1.0f };
|
50 |
+
|
51 |
+
// Some kernels read the input through texture.
|
52 |
+
texture<uchar4, 2, cudaReadModeNormalizedFloat> tex;
|
53 |
+
|
54 |
+
|
55 |
+
////////////////////////////////////////////////////////////////////////////////
|
56 |
+
// Color helpers
|
57 |
+
////////////////////////////////////////////////////////////////////////////////
|
58 |
+
|
59 |
+
__device__ inline uint float_to_u8(float value)
|
60 |
+
{
|
61 |
+
return min(max(__float2int_rn((255 * value + 0.5f) / (1.0f + 1.0f/255.0f)), 0), 255);
|
62 |
+
}
|
63 |
+
|
64 |
+
__device__ inline uint float_to_u6(float value)
|
65 |
+
{
|
66 |
+
return min(max(__float2int_rn((63 * value + 0.5f) / (1.0f + 1.0f/63.0f)), 0), 63);
|
67 |
+
}
|
68 |
+
|
69 |
+
__device__ inline uint float_to_u5(float value)
|
70 |
+
{
|
71 |
+
return min(max(__float2int_rn((31 * value + 0.5f) / (1.0f + 1.0f/31.0f)), 0), 31);
|
72 |
+
}
|
73 |
+
|
74 |
+
__device__ inline float u8_to_float(uint value)
|
75 |
+
{
|
76 |
+
return __saturatef(__uint2float_rn(value) / 255.0f);
|
77 |
+
//return (value) / 255.0f;
|
78 |
+
}
|
79 |
+
|
80 |
+
__device__ float3 color32ToFloat3(uint c)
|
81 |
+
{
|
82 |
+
float3 color;
|
83 |
+
color.z = u8_to_float((c >> 0) & 0xFF);
|
84 |
+
color.y = u8_to_float((c >> 8) & 0xFF);
|
85 |
+
color.x = u8_to_float((c >> 16) & 0xFF);
|
86 |
+
return color;
|
87 |
+
}
|
88 |
+
|
89 |
+
__device__ int3 color16ToInt3(ushort c)
|
90 |
+
{
|
91 |
+
int3 color;
|
92 |
+
|
93 |
+
color.z = ((c >> 0) & 0x1F);
|
94 |
+
color.z = (color.z << 3) | (color.z >> 2);
|
95 |
+
|
96 |
+
color.y = ((c >> 5) & 0x3F);
|
97 |
+
color.y = (color.y << 2) | (color.y >> 4);
|
98 |
+
|
99 |
+
color.x = ((c >> 11) & 0x1F);
|
100 |
+
color.x = (color.x << 3) | (color.x >> 2);
|
101 |
+
|
102 |
+
return color;
|
103 |
+
}
|
104 |
+
|
105 |
+
__device__ float3 color16ToFloat3(ushort c)
|
106 |
+
{
|
107 |
+
int3 color = color16ToInt3(c);
|
108 |
+
return make_float3(color.x, color.y, color.z) * (1.0f / 255.0f);
|
109 |
+
}
|
110 |
+
|
111 |
+
__device__ int3 float3ToInt3(float3 c)
|
112 |
+
{
|
113 |
+
return make_int3(c.x * 255, c.y * 255, c.z * 255);
|
114 |
+
}
|
115 |
+
|
116 |
+
__device__ float3 int3ToFloat3(int3 c)
|
117 |
+
{
|
118 |
+
return make_float3(float_to_u8(c.x), float_to_u8(c.y), float_to_u8(c.z));
|
119 |
+
}
|
120 |
+
|
121 |
+
|
122 |
+
__device__ int colorDistance(int3 c0, int3 c1)
|
123 |
+
{
|
124 |
+
int dx = c0.x-c1.x;
|
125 |
+
int dy = c0.y-c1.y;
|
126 |
+
int dz = c0.z-c1.z;
|
127 |
+
return __mul24(dx, dx) + __mul24(dy, dy) + __mul24(dz, dz);
|
128 |
+
}
|
129 |
+
|
130 |
+
|
131 |
+
////////////////////////////////////////////////////////////////////////////////
|
132 |
+
// Round color to RGB565 and expand
|
133 |
+
////////////////////////////////////////////////////////////////////////////////
|
134 |
+
|
135 |
+
|
136 |
+
#if 0
|
137 |
+
__device__ inline uint float_to_u8(float value)
|
138 |
+
{
|
139 |
+
//uint result;
|
140 |
+
//asm("cvt.sat.rni.u8.f32 %0, %1;" : "=r" (result) : "f" (value));
|
141 |
+
//return result;
|
142 |
+
//return __float2uint_rn(__saturatef(value) * 255.0f);
|
143 |
+
|
144 |
+
int result = __float2int_rn((255 * value + 0.5f) / (1.0f + 1.0f/255.0f));
|
145 |
+
result = max(result, 0);
|
146 |
+
result = min(result, 255);
|
147 |
+
return result;
|
148 |
+
}
|
149 |
+
|
150 |
+
__device__ inline float u8_to_float(uint value)
|
151 |
+
{
|
152 |
+
//float result;
|
153 |
+
//asm("cvt.sat.rn.f32.u8 %0, %1;" : "=f" (result) : "r" (value)); // this is wrong!
|
154 |
+
//return result;
|
155 |
+
return __saturatef(__uint2float_rn(value) / 255.0f);
|
156 |
+
}
|
157 |
+
|
158 |
+
inline __device__ float3 roundAndExpand565(float3 v, ushort * w)
|
159 |
+
{
|
160 |
+
uint x = float_to_u8(v.x) >> 3;
|
161 |
+
uint y = float_to_u8(v.y) >> 2;
|
162 |
+
uint z = float_to_u8(v.z) >> 3;
|
163 |
+
*w = (x << 11) | (y << 5) | z;
|
164 |
+
v.x = u8_to_float((x << 3) | (x >> 2));
|
165 |
+
v.y = u8_to_float((y << 2) | (y >> 4));
|
166 |
+
v.z = u8_to_float((z << 3) | (z >> 2));
|
167 |
+
// v.x = u8_to_float(x) * 255.0f / 31.0f;
|
168 |
+
// v.y = u8_to_float(y) * 255.0f / 63.0f;
|
169 |
+
// v.z = u8_to_float(z) * 255.0f / 31.0f;
|
170 |
+
return v;
|
171 |
+
}
|
172 |
+
#else
|
173 |
+
|
174 |
+
inline __device__ float3 roundAndExpand565(float3 v, ushort * w)
|
175 |
+
{
|
176 |
+
uint x = __float2uint_rn(__saturatef(v.x) * 31.0f);
|
177 |
+
uint y = __float2uint_rn(__saturatef(v.y) * 63.0f);
|
178 |
+
uint z = __float2uint_rn(__saturatef(v.z) * 31.0f);
|
179 |
+
|
180 |
+
//uint x = float_to_u5(v.x);
|
181 |
+
//uint y = float_to_u6(v.y);
|
182 |
+
//uint z = float_to_u5(v.z);
|
183 |
+
|
184 |
+
*w = (x << 11) | (y << 5) | z;
|
185 |
+
|
186 |
+
v.x = __uint2float_rn(x) * 1.0f / 31.0f;
|
187 |
+
v.y = __uint2float_rn(y) * 1.0f / 63.0f;
|
188 |
+
v.z = __uint2float_rn(z) * 1.0f / 31.0f;
|
189 |
+
|
190 |
+
//v.x = u8_to_float((x << 3) | (x >> 2));
|
191 |
+
//v.y = u8_to_float((y << 2) | (y >> 4));
|
192 |
+
//v.z = u8_to_float((z << 3) | (z >> 2));
|
193 |
+
|
194 |
+
return v;
|
195 |
+
}
|
196 |
+
#endif
|
197 |
+
inline __device__ float2 roundAndExpand56(float2 v, ushort * w)
|
198 |
+
{
|
199 |
+
uint x = __float2uint_rn(__saturatef(v.x) * 31.0f);
|
200 |
+
uint y = __float2uint_rn(__saturatef(v.y) * 63.0f);
|
201 |
+
*w = (x << 11) | (y << 5);
|
202 |
+
v.x = __uint2float_rn(x) * 1.0f / 31.0f;
|
203 |
+
v.y = __uint2float_rn(y) * 1.0f / 63.0f;
|
204 |
+
return v;
|
205 |
+
}
|
206 |
+
|
207 |
+
inline __device__ float2 roundAndExpand88(float2 v, ushort * w)
|
208 |
+
{
|
209 |
+
uint x = __float2uint_rn(__saturatef(v.x) * 255.0f);
|
210 |
+
uint y = __float2uint_rn(__saturatef(v.y) * 255.0f);
|
211 |
+
*w = (x << 8) | y;
|
212 |
+
v.x = __uint2float_rn(x) * 1.0f / 255.0f;
|
213 |
+
v.y = __uint2float_rn(y) * 1.0f / 255.0f;
|
214 |
+
return v;
|
215 |
+
}
|
216 |
+
|
217 |
+
|
218 |
+
////////////////////////////////////////////////////////////////////////////////
|
219 |
+
// Block errors
|
220 |
+
////////////////////////////////////////////////////////////////////////////////
|
221 |
+
|
222 |
+
__device__ float3 blockError4(const float3 * colors, uint permutation, float3 a, float3 b)
|
223 |
+
{
|
224 |
+
float3 error = make_float3(0.0f, 0.0f, 0.0f);
|
225 |
+
|
226 |
+
for (int i = 0; i < 16; i++)
|
227 |
+
{
|
228 |
+
const uint bits = permutation >> (2*i);
|
229 |
+
|
230 |
+
float beta = (bits & 1);
|
231 |
+
if (bits & 2) beta = (1 + beta) / 3.0f;
|
232 |
+
float alpha = 1.0f - beta;
|
233 |
+
|
234 |
+
float3 diff = colors[i] - (a*alpha + b*beta);
|
235 |
+
|
236 |
+
error += diff*diff;
|
237 |
+
}
|
238 |
+
|
239 |
+
return error;
|
240 |
+
}
|
241 |
+
|
242 |
+
__device__ float3 blockError4(const float3 * colors, uint permutation, ushort c0, ushort c1)
|
243 |
+
{
|
244 |
+
float3 error = make_float3(0.0f, 0.0f, 0.0f);
|
245 |
+
|
246 |
+
int3 color0 = color16ToInt3(c0);
|
247 |
+
int3 color1 = color16ToInt3(c1);
|
248 |
+
|
249 |
+
for (int i = 0; i < 16; i++)
|
250 |
+
{
|
251 |
+
const uint bits = permutation >> (2*i);
|
252 |
+
|
253 |
+
int beta = (bits & 1);
|
254 |
+
if (bits & 2) beta = (1 + beta);
|
255 |
+
float alpha = 3 - beta;
|
256 |
+
|
257 |
+
int3 color;
|
258 |
+
color.x = (color0.x * alpha + color1.x * beta) / 3;
|
259 |
+
color.y = (color0.y * alpha + color1.y * beta) / 3;
|
260 |
+
color.z = (color0.z * alpha + color1.z * beta) / 3;
|
261 |
+
|
262 |
+
float3 diff = colors[i] - int3ToFloat3(color);
|
263 |
+
|
264 |
+
error += diff*diff;
|
265 |
+
}
|
266 |
+
|
267 |
+
return error;
|
268 |
+
}
|
269 |
+
|
270 |
+
|
271 |
+
__device__ float3 blockError3(const float3 * colors, uint permutation, float3 a, float3 b)
|
272 |
+
{
|
273 |
+
float3 error = make_float3(0.0f, 0.0f, 0.0f);
|
274 |
+
|
275 |
+
for (int i = 0; i < 16; i++)
|
276 |
+
{
|
277 |
+
const uint bits = permutation >> (2*i);
|
278 |
+
|
279 |
+
float beta = (bits & 1);
|
280 |
+
if (bits & 2) beta = 0.5f;
|
281 |
+
float alpha = 1.0f - beta;
|
282 |
+
|
283 |
+
float3 diff = colors[i] - (a*alpha + b*beta);
|
284 |
+
|
285 |
+
error += diff*diff;
|
286 |
+
}
|
287 |
+
|
288 |
+
return error;
|
289 |
+
}
|
290 |
+
|
291 |
+
|
292 |
+
////////////////////////////////////////////////////////////////////////////////
|
293 |
+
// Sort colors
|
294 |
+
////////////////////////////////////////////////////////////////////////////////
|
295 |
+
|
296 |
+
// @@ Experimental code to avoid duplicate colors for faster compression.
|
297 |
+
// We could first sort along the best fit line and only compare colors that have the same projection.
|
298 |
+
// The hardest part is to maintain the indices to map packed/sorted colors to the input colors.
|
299 |
+
// We also need to update several functions that assume the number of colors is fixed to 16.
|
300 |
+
// And compute different bit maps for the different color counts.
|
301 |
+
// This is a fairly high amount of work.
|
302 |
+
__device__ int packColors(float3 * values, float * weights, int * ranks)
|
303 |
+
{
|
304 |
+
const int tid = threadIdx.x;
|
305 |
+
|
306 |
+
__shared__ int count;
|
307 |
+
count = 0;
|
308 |
+
|
309 |
+
bool alive = true;
|
310 |
+
|
311 |
+
// Append this
|
312 |
+
for (int i = 0; i < 16; i++)
|
313 |
+
{
|
314 |
+
// One thread leads on each iteration.
|
315 |
+
if (tid == i) {
|
316 |
+
|
317 |
+
// If thread alive, then append element.
|
318 |
+
if (alive) {
|
319 |
+
values[count] = values[i];
|
320 |
+
weights[count] = weights[i];
|
321 |
+
count++;
|
322 |
+
}
|
323 |
+
|
324 |
+
// Otherwise update weight.
|
325 |
+
else {
|
326 |
+
weights[ranks[i]] += weights[i];
|
327 |
+
}
|
328 |
+
}
|
329 |
+
|
330 |
+
// Kill all threads that have the same element and record rank.
|
331 |
+
if (values[i] == values[tid]) {
|
332 |
+
alive = false;
|
333 |
+
ranks[tid] = count - 1;
|
334 |
+
}
|
335 |
+
}
|
336 |
+
|
337 |
+
return count;
|
338 |
+
}
|
339 |
+
|
340 |
+
|
341 |
+
__device__ void sortColors(const float * values, int * ranks)
|
342 |
+
{
|
343 |
+
const int tid = threadIdx.x;
|
344 |
+
|
345 |
+
int rank = 0;
|
346 |
+
|
347 |
+
#pragma unroll
|
348 |
+
for (int i = 0; i < 16; i++)
|
349 |
+
{
|
350 |
+
rank += (values[i] < values[tid]);
|
351 |
+
}
|
352 |
+
|
353 |
+
ranks[tid] = rank;
|
354 |
+
|
355 |
+
// Resolve elements with the same index.
|
356 |
+
#pragma unroll
|
357 |
+
for (int i = 0; i < 15; i++)
|
358 |
+
{
|
359 |
+
if ((tid > i) & (ranks[tid] == ranks[i])) ++ranks[tid];
|
360 |
+
}
|
361 |
+
}
|
362 |
+
|
363 |
+
__device__ void sortColors(const float * values, int * ranks, int count)
|
364 |
+
{
|
365 |
+
const int tid = threadIdx.x;
|
366 |
+
|
367 |
+
int rank = 0;
|
368 |
+
|
369 |
+
#pragma unroll
|
370 |
+
for (int i = 0; i < count; i++)
|
371 |
+
{
|
372 |
+
rank += (values[i] < values[tid]);
|
373 |
+
}
|
374 |
+
|
375 |
+
ranks[tid] = rank;
|
376 |
+
|
377 |
+
// Resolve elements with the same index.
|
378 |
+
#pragma unroll
|
379 |
+
for (int i = 0; i < count-1; i++)
|
380 |
+
{
|
381 |
+
if ((tid > i) & (ranks[tid] == ranks[i])) ++ranks[tid];
|
382 |
+
}
|
383 |
+
}
|
384 |
+
|
385 |
+
|
386 |
+
|
387 |
+
////////////////////////////////////////////////////////////////////////////////
|
388 |
+
// Load color block to shared mem
|
389 |
+
////////////////////////////////////////////////////////////////////////////////
|
390 |
+
|
391 |
+
__device__ void loadColorBlockTex(uint firstBlock, uint blockWidth, float3 colors[16], float3 sums[16], int xrefs[16], int * sameColor)
|
392 |
+
{
|
393 |
+
const int bid = blockIdx.x;
|
394 |
+
const int idx = threadIdx.x;
|
395 |
+
|
396 |
+
__shared__ float dps[16];
|
397 |
+
|
398 |
+
if (idx < 16)
|
399 |
+
{
|
400 |
+
float x = 4 * ((firstBlock + bid) % blockWidth) + idx % 4; // @@ Avoid mod and div by using 2D grid?
|
401 |
+
float y = 4 * ((firstBlock + bid) / blockWidth) + idx / 4;
|
402 |
+
|
403 |
+
// Read color and copy to shared mem.
|
404 |
+
float4 c = tex2D(tex, x, y);
|
405 |
+
|
406 |
+
colors[idx].x = c.z;
|
407 |
+
colors[idx].y = c.y;
|
408 |
+
colors[idx].z = c.x;
|
409 |
+
|
410 |
+
// Sort colors along the best fit line.
|
411 |
+
colorSums(colors, sums);
|
412 |
+
float3 axis = bestFitLine(colors, sums[0], kColorMetric);
|
413 |
+
|
414 |
+
*sameColor = (axis == make_float3(0, 0, 0));
|
415 |
+
|
416 |
+
dps[idx] = dot(colors[idx], axis);
|
417 |
+
|
418 |
+
sortColors(dps, xrefs);
|
419 |
+
|
420 |
+
float3 tmp = colors[idx];
|
421 |
+
colors[xrefs[idx]] = tmp;
|
422 |
+
}
|
423 |
+
}
|
424 |
+
|
425 |
+
/*
|
426 |
+
__device__ void loadColorBlockTex(uint firstBlock, uint w, float3 colors[16], float3 sums[16], float weights[16], int xrefs[16], int * sameColor)
|
427 |
+
{
|
428 |
+
const int bid = blockIdx.x;
|
429 |
+
const int idx = threadIdx.x;
|
430 |
+
|
431 |
+
__shared__ float dps[16];
|
432 |
+
|
433 |
+
if (idx < 16)
|
434 |
+
{
|
435 |
+
float x = 4 * ((firstBlock + bid) % w) + idx % 4; // @@ Avoid mod and div by using 2D grid?
|
436 |
+
float y = 4 * ((firstBlock + bid) / w) + idx / 4;
|
437 |
+
|
438 |
+
// Read color and copy to shared mem.
|
439 |
+
float4 c = tex2D(tex, x, y);
|
440 |
+
|
441 |
+
colors[idx].x = c.z;
|
442 |
+
colors[idx].y = c.y;
|
443 |
+
colors[idx].z = c.x;
|
444 |
+
weights[idx] = 1;
|
445 |
+
|
446 |
+
int count = packColors(colors, weights);
|
447 |
+
if (idx < count)
|
448 |
+
{
|
449 |
+
// Sort colors along the best fit line.
|
450 |
+
colorSums(colors, sums);
|
451 |
+
float3 axis = bestFitLine(colors, sums[0], kColorMetric);
|
452 |
+
|
453 |
+
*sameColor = (axis == make_float3(0, 0, 0));
|
454 |
+
|
455 |
+
dps[idx] = dot(colors[idx], axis);
|
456 |
+
|
457 |
+
sortColors(dps, xrefs);
|
458 |
+
|
459 |
+
float3 tmp = colors[idx];
|
460 |
+
colors[xrefs[idx]] = tmp;
|
461 |
+
}
|
462 |
+
}
|
463 |
+
}
|
464 |
+
*/
|
465 |
+
|
466 |
+
__device__ void loadColorBlockTex(uint firstBlock, uint width, float3 colors[16], float3 sums[16], float weights[16], int xrefs[16], int * sameColor)
|
467 |
+
{
|
468 |
+
const int bid = blockIdx.x;
|
469 |
+
const int idx = threadIdx.x;
|
470 |
+
|
471 |
+
__shared__ float3 rawColors[16];
|
472 |
+
__shared__ float dps[16];
|
473 |
+
|
474 |
+
if (idx < 16)
|
475 |
+
{
|
476 |
+
float x = 4 * ((firstBlock + bid) % width) + idx % 4; // @@ Avoid mod and div by using 2D grid?
|
477 |
+
float y = 4 * ((firstBlock + bid) / width) + idx / 4;
|
478 |
+
|
479 |
+
// Read color and copy to shared mem.
|
480 |
+
float4 c = tex2D(tex, x, y);
|
481 |
+
|
482 |
+
rawColors[idx].x = c.z;
|
483 |
+
rawColors[idx].y = c.y;
|
484 |
+
rawColors[idx].z = c.x;
|
485 |
+
weights[idx] = c.w;
|
486 |
+
|
487 |
+
colors[idx] = rawColors[idx] * weights[idx];
|
488 |
+
|
489 |
+
// Sort colors along the best fit line.
|
490 |
+
colorSums(colors, sums);
|
491 |
+
float3 axis = bestFitLine(colors, sums[0], kColorMetric);
|
492 |
+
|
493 |
+
*sameColor = (axis == make_float3(0, 0, 0));
|
494 |
+
|
495 |
+
// Single color compressor needs unweighted colors.
|
496 |
+
if (*sameColor) colors[idx] = rawColors[idx];
|
497 |
+
|
498 |
+
dps[idx] = dot(colors[idx], axis);
|
499 |
+
|
500 |
+
sortColors(dps, xrefs);
|
501 |
+
|
502 |
+
float3 tmp = colors[idx];
|
503 |
+
float w = weights[idx];
|
504 |
+
colors[xrefs[idx]] = tmp;
|
505 |
+
weights[xrefs[idx]] = w;
|
506 |
+
}
|
507 |
+
}
|
508 |
+
|
509 |
+
__device__ void loadColorBlock(const uint * image, float2 colors[16], float2 sums[16], int xrefs[16], int * sameColor)
|
510 |
+
{
|
511 |
+
const int bid = blockIdx.x;
|
512 |
+
const int idx = threadIdx.x;
|
513 |
+
|
514 |
+
__shared__ float dps[16];
|
515 |
+
|
516 |
+
if (idx < 16)
|
517 |
+
{
|
518 |
+
// Read color and copy to shared mem.
|
519 |
+
uint c = image[(bid) * 16 + idx];
|
520 |
+
|
521 |
+
colors[idx].y = ((c >> 8) & 0xFF) * (1.0f / 255.0f);
|
522 |
+
colors[idx].x = ((c >> 16) & 0xFF) * (1.0f / 255.0f);
|
523 |
+
|
524 |
+
// Sort colors along the best fit line.
|
525 |
+
colorSums(colors, sums);
|
526 |
+
float2 axis = bestFitLine(colors, sums[0]);
|
527 |
+
|
528 |
+
*sameColor = (axis == make_float2(0, 0));
|
529 |
+
|
530 |
+
dps[idx] = dot(colors[idx], axis);
|
531 |
+
|
532 |
+
sortColors(dps, xrefs);
|
533 |
+
|
534 |
+
float2 tmp = colors[idx];
|
535 |
+
colors[xrefs[idx]] = tmp;
|
536 |
+
}
|
537 |
+
}
|
538 |
+
|
539 |
+
|
540 |
+
////////////////////////////////////////////////////////////////////////////////
|
541 |
+
// Evaluate permutations
|
542 |
+
////////////////////////////////////////////////////////////////////////////////
|
543 |
+
__device__ float evalPermutation4(const float3 * colors, uint permutation, ushort * start, ushort * end)
|
544 |
+
{
|
545 |
+
// Compute endpoints using least squares.
|
546 |
+
float alpha2_sum = 0.0f;
|
547 |
+
float beta2_sum = 0.0f;
|
548 |
+
float alphabeta_sum = 0.0f;
|
549 |
+
float3 alphax_sum = make_float3(0.0f, 0.0f, 0.0f);
|
550 |
+
float3 betax_sum = make_float3(0.0f, 0.0f, 0.0f);
|
551 |
+
|
552 |
+
// Compute alpha & beta for this permutation.
|
553 |
+
for (int i = 0; i < 16; i++)
|
554 |
+
{
|
555 |
+
const uint bits = permutation >> (2*i);
|
556 |
+
|
557 |
+
float beta = (bits & 1);
|
558 |
+
if (bits & 2) beta = (1 + beta) / 3.0f;
|
559 |
+
float alpha = 1.0f - beta;
|
560 |
+
|
561 |
+
alpha2_sum += alpha * alpha;
|
562 |
+
beta2_sum += beta * beta;
|
563 |
+
alphabeta_sum += alpha * beta;
|
564 |
+
alphax_sum += alpha * colors[i];
|
565 |
+
betax_sum += beta * colors[i];
|
566 |
+
}
|
567 |
+
|
568 |
+
const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
|
569 |
+
|
570 |
+
float3 a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor;
|
571 |
+
float3 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
|
572 |
+
|
573 |
+
// Round a, b to the closest 5-6-5 color and expand...
|
574 |
+
a = roundAndExpand565(a, start);
|
575 |
+
b = roundAndExpand565(b, end);
|
576 |
+
|
577 |
+
// compute the error
|
578 |
+
float3 e = a * a * alpha2_sum + b * b * beta2_sum + 2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum);
|
579 |
+
|
580 |
+
return dot(e, kColorMetricSqr);
|
581 |
+
}
|
582 |
+
|
583 |
+
__device__ float evalPermutation3(const float3 * colors, uint permutation, ushort * start, ushort * end)
|
584 |
+
{
|
585 |
+
// Compute endpoints using least squares.
|
586 |
+
float alpha2_sum = 0.0f;
|
587 |
+
float beta2_sum = 0.0f;
|
588 |
+
float alphabeta_sum = 0.0f;
|
589 |
+
float3 alphax_sum = make_float3(0.0f, 0.0f, 0.0f);
|
590 |
+
float3 betax_sum = make_float3(0.0f, 0.0f, 0.0f);
|
591 |
+
|
592 |
+
// Compute alpha & beta for this permutation.
|
593 |
+
for (int i = 0; i < 16; i++)
|
594 |
+
{
|
595 |
+
const uint bits = permutation >> (2*i);
|
596 |
+
|
597 |
+
float beta = (bits & 1);
|
598 |
+
if (bits & 2) beta = 0.5f;
|
599 |
+
float alpha = 1.0f - beta;
|
600 |
+
|
601 |
+
alpha2_sum += alpha * alpha;
|
602 |
+
beta2_sum += beta * beta;
|
603 |
+
alphabeta_sum += alpha * beta;
|
604 |
+
alphax_sum += alpha * colors[i];
|
605 |
+
betax_sum += beta * colors[i];
|
606 |
+
}
|
607 |
+
|
608 |
+
const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
|
609 |
+
|
610 |
+
float3 a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor;
|
611 |
+
float3 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
|
612 |
+
|
613 |
+
// Round a, b to the closest 5-6-5 color and expand...
|
614 |
+
a = roundAndExpand565(a, start);
|
615 |
+
b = roundAndExpand565(b, end);
|
616 |
+
|
617 |
+
// compute the error
|
618 |
+
float3 e = a * a * alpha2_sum + b * b * beta2_sum + 2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum);
|
619 |
+
|
620 |
+
return dot(e, kColorMetricSqr);
|
621 |
+
}
|
622 |
+
|
623 |
+
__constant__ const float alphaTable4[4] = { 9.0f, 0.0f, 6.0f, 3.0f };
|
624 |
+
__constant__ const float alphaTable3[4] = { 4.0f, 0.0f, 2.0f, 2.0f };
|
625 |
+
__constant__ const uint prods4[4] = { 0x090000,0x000900,0x040102,0x010402 };
|
626 |
+
__constant__ const uint prods3[4] = { 0x040000,0x000400,0x040101,0x010401 };
|
627 |
+
|
628 |
+
__device__ float evalPermutation4(const float3 * colors, float3 color_sum, uint permutation, ushort * start, ushort * end)
|
629 |
+
{
|
630 |
+
// Compute endpoints using least squares.
|
631 |
+
float3 alphax_sum = make_float3(0.0f, 0.0f, 0.0f);
|
632 |
+
uint akku = 0;
|
633 |
+
|
634 |
+
// Compute alpha & beta for this permutation.
|
635 |
+
#pragma unroll
|
636 |
+
for (int i = 0; i < 16; i++)
|
637 |
+
{
|
638 |
+
const uint bits = permutation >> (2*i);
|
639 |
+
|
640 |
+
alphax_sum += alphaTable4[bits & 3] * colors[i];
|
641 |
+
akku += prods4[bits & 3];
|
642 |
+
}
|
643 |
+
|
644 |
+
float alpha2_sum = float(akku >> 16);
|
645 |
+
float beta2_sum = float((akku >> 8) & 0xff);
|
646 |
+
float alphabeta_sum = float(akku & 0xff);
|
647 |
+
float3 betax_sum = 9.0f * color_sum - alphax_sum;
|
648 |
+
|
649 |
+
const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
|
650 |
+
|
651 |
+
float3 a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor;
|
652 |
+
float3 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
|
653 |
+
|
654 |
+
// Round a, b to the closest 5-6-5 color and expand...
|
655 |
+
a = roundAndExpand565(a, start);
|
656 |
+
b = roundAndExpand565(b, end);
|
657 |
+
|
658 |
+
// compute the error
|
659 |
+
float3 e = a * a * alpha2_sum + b * b * beta2_sum + 2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum);
|
660 |
+
|
661 |
+
//float3 e = blockError4(colors, permutation, *start, *end);
|
662 |
+
|
663 |
+
return (1.0f / 9.0f) * dot(e, kColorMetricSqr);
|
664 |
+
}
|
665 |
+
|
666 |
+
__device__ float evalPermutation3(const float3 * colors, float3 color_sum, uint permutation, ushort * start, ushort * end)
|
667 |
+
{
|
668 |
+
// Compute endpoints using least squares.
|
669 |
+
float3 alphax_sum = make_float3(0.0f, 0.0f, 0.0f);
|
670 |
+
uint akku = 0;
|
671 |
+
|
672 |
+
// Compute alpha & beta for this permutation.
|
673 |
+
#pragma unroll
|
674 |
+
for (int i = 0; i < 16; i++)
|
675 |
+
{
|
676 |
+
const uint bits = permutation >> (2*i);
|
677 |
+
|
678 |
+
alphax_sum += alphaTable3[bits & 3] * colors[i];
|
679 |
+
akku += prods3[bits & 3];
|
680 |
+
}
|
681 |
+
|
682 |
+
float alpha2_sum = float(akku >> 16);
|
683 |
+
float beta2_sum = float((akku >> 8) & 0xff);
|
684 |
+
float alphabeta_sum = float(akku & 0xff);
|
685 |
+
float3 betax_sum = 4.0f * color_sum - alphax_sum;
|
686 |
+
|
687 |
+
const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
|
688 |
+
|
689 |
+
float3 a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor;
|
690 |
+
float3 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
|
691 |
+
|
692 |
+
// Round a, b to the closest 5-6-5 color and expand...
|
693 |
+
a = roundAndExpand565(a, start);
|
694 |
+
b = roundAndExpand565(b, end);
|
695 |
+
|
696 |
+
// compute the error
|
697 |
+
float3 e = a * a * alpha2_sum + b * b * beta2_sum + 2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum);
|
698 |
+
|
699 |
+
//float3 e = blockError3(colors, permutation, a, b);
|
700 |
+
|
701 |
+
return (1.0f / 4.0f) * dot(e, kColorMetricSqr);
|
702 |
+
}
|
703 |
+
|
704 |
+
__device__ float evalPermutation4(const float3 * colors, const float * weights, float3 color_sum, uint permutation, ushort * start, ushort * end)
|
705 |
+
{
|
706 |
+
// Compute endpoints using least squares.
|
707 |
+
float alpha2_sum = 0.0f;
|
708 |
+
float beta2_sum = 0.0f;
|
709 |
+
float alphabeta_sum = 0.0f;
|
710 |
+
float3 alphax_sum = make_float3(0.0f, 0.0f, 0.0f);
|
711 |
+
|
712 |
+
// Compute alpha & beta for this permutation.
|
713 |
+
for (int i = 0; i < 16; i++)
|
714 |
+
{
|
715 |
+
const uint bits = permutation >> (2*i);
|
716 |
+
|
717 |
+
float beta = (bits & 1);
|
718 |
+
if (bits & 2) beta = (1 + beta) / 3.0f;
|
719 |
+
float alpha = 1.0f - beta;
|
720 |
+
|
721 |
+
alpha2_sum += alpha * alpha * weights[i];
|
722 |
+
beta2_sum += beta * beta * weights[i];
|
723 |
+
alphabeta_sum += alpha * beta * weights[i];
|
724 |
+
alphax_sum += alpha * colors[i];
|
725 |
+
}
|
726 |
+
|
727 |
+
float3 betax_sum = color_sum - alphax_sum;
|
728 |
+
|
729 |
+
const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
|
730 |
+
|
731 |
+
float3 a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor;
|
732 |
+
float3 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
|
733 |
+
|
734 |
+
// Round a, b to the closest 5-6-5 color and expand...
|
735 |
+
a = roundAndExpand565(a, start);
|
736 |
+
b = roundAndExpand565(b, end);
|
737 |
+
|
738 |
+
// compute the error
|
739 |
+
float3 e = a * a * alpha2_sum + b * b * beta2_sum + 2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum);
|
740 |
+
|
741 |
+
return dot(e, kColorMetricSqr);
|
742 |
+
}
|
743 |
+
|
744 |
+
/*
|
745 |
+
__device__ float evalPermutation3(const float3 * colors, const float * weights, uint permutation, ushort * start, ushort * end)
|
746 |
+
{
|
747 |
+
// Compute endpoints using least squares.
|
748 |
+
float alpha2_sum = 0.0f;
|
749 |
+
float beta2_sum = 0.0f;
|
750 |
+
float alphabeta_sum = 0.0f;
|
751 |
+
float3 alphax_sum = make_float3(0.0f, 0.0f, 0.0f);
|
752 |
+
|
753 |
+
// Compute alpha & beta for this permutation.
|
754 |
+
for (int i = 0; i < 16; i++)
|
755 |
+
{
|
756 |
+
const uint bits = permutation >> (2*i);
|
757 |
+
|
758 |
+
float beta = (bits & 1);
|
759 |
+
if (bits & 2) beta = 0.5f;
|
760 |
+
float alpha = 1.0f - beta;
|
761 |
+
|
762 |
+
alpha2_sum += alpha * alpha * weights[i];
|
763 |
+
beta2_sum += beta * beta * weights[i];
|
764 |
+
alphabeta_sum += alpha * beta * weights[i];
|
765 |
+
alphax_sum += alpha * colors[i];
|
766 |
+
}
|
767 |
+
|
768 |
+
float3 betax_sum = color_sum - alphax_sum;
|
769 |
+
|
770 |
+
const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
|
771 |
+
|
772 |
+
float3 a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor;
|
773 |
+
float3 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
|
774 |
+
|
775 |
+
// Round a, b to the closest 5-6-5 color and expand...
|
776 |
+
a = roundAndExpand565(a, start);
|
777 |
+
b = roundAndExpand565(b, end);
|
778 |
+
|
779 |
+
// compute the error
|
780 |
+
float3 e = a * a * alpha2_sum + b * b * beta2_sum + 2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum);
|
781 |
+
|
782 |
+
return dot(e, kColorMetricSqr);
|
783 |
+
}
|
784 |
+
*/
|
785 |
+
|
786 |
+
__device__ float evalPermutation4(const float2 * colors, float2 color_sum, uint permutation, ushort * start, ushort * end)
|
787 |
+
{
|
788 |
+
// Compute endpoints using least squares.
|
789 |
+
float2 alphax_sum = make_float2(0.0f, 0.0f);
|
790 |
+
uint akku = 0;
|
791 |
+
|
792 |
+
// Compute alpha & beta for this permutation.
|
793 |
+
#pragma unroll
|
794 |
+
for (int i = 0; i < 16; i++)
|
795 |
+
{
|
796 |
+
const uint bits = permutation >> (2*i);
|
797 |
+
|
798 |
+
alphax_sum += alphaTable4[bits & 3] * colors[i];
|
799 |
+
akku += prods4[bits & 3];
|
800 |
+
}
|
801 |
+
|
802 |
+
float alpha2_sum = float(akku >> 16);
|
803 |
+
float beta2_sum = float((akku >> 8) & 0xff);
|
804 |
+
float alphabeta_sum = float(akku & 0xff);
|
805 |
+
float2 betax_sum = 9.0f * color_sum - alphax_sum;
|
806 |
+
|
807 |
+
const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
|
808 |
+
|
809 |
+
float2 a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor;
|
810 |
+
float2 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
|
811 |
+
|
812 |
+
// Round a, b to the closest 5-6 color and expand...
|
813 |
+
a = roundAndExpand56(a, start);
|
814 |
+
b = roundAndExpand56(b, end);
|
815 |
+
|
816 |
+
// compute the error
|
817 |
+
float2 e = a * a * alpha2_sum + b * b * beta2_sum + 2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum);
|
818 |
+
|
819 |
+
return (1.0f / 9.0f) * (e.x + e.y);
|
820 |
+
}
|
821 |
+
|
822 |
+
__device__ float evalPermutation3(const float2 * colors, float2 color_sum, uint permutation, ushort * start, ushort * end)
|
823 |
+
{
|
824 |
+
// Compute endpoints using least squares.
|
825 |
+
float2 alphax_sum = make_float2(0.0f, 0.0f);
|
826 |
+
uint akku = 0;
|
827 |
+
|
828 |
+
// Compute alpha & beta for this permutation.
|
829 |
+
#pragma unroll
|
830 |
+
for (int i = 0; i < 16; i++)
|
831 |
+
{
|
832 |
+
const uint bits = permutation >> (2*i);
|
833 |
+
|
834 |
+
alphax_sum += alphaTable3[bits & 3] * colors[i];
|
835 |
+
akku += prods3[bits & 3];
|
836 |
+
}
|
837 |
+
|
838 |
+
float alpha2_sum = float(akku >> 16);
|
839 |
+
float beta2_sum = float((akku >> 8) & 0xff);
|
840 |
+
float alphabeta_sum = float(akku & 0xff);
|
841 |
+
float2 betax_sum = 4.0f * color_sum - alphax_sum;
|
842 |
+
|
843 |
+
const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
|
844 |
+
|
845 |
+
float2 a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor;
|
846 |
+
float2 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
|
847 |
+
|
848 |
+
// Round a, b to the closest 5-6 color and expand...
|
849 |
+
a = roundAndExpand56(a, start);
|
850 |
+
b = roundAndExpand56(b, end);
|
851 |
+
|
852 |
+
// compute the error
|
853 |
+
float2 e = a * a * alpha2_sum + b * b * beta2_sum + 2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum);
|
854 |
+
|
855 |
+
return (1.0f / 4.0f) * (e.x + e.y);
|
856 |
+
}
|
857 |
+
|
858 |
+
__device__ float evalPermutationCTX(const float2 * colors, float2 color_sum, uint permutation, ushort * start, ushort * end)
|
859 |
+
{
|
860 |
+
// Compute endpoints using least squares.
|
861 |
+
float2 alphax_sum = make_float2(0.0f, 0.0f);
|
862 |
+
uint akku = 0;
|
863 |
+
|
864 |
+
// Compute alpha & beta for this permutation.
|
865 |
+
#pragma unroll
|
866 |
+
for (int i = 0; i < 16; i++)
|
867 |
+
{
|
868 |
+
const uint bits = permutation >> (2*i);
|
869 |
+
|
870 |
+
alphax_sum += alphaTable4[bits & 3] * colors[i];
|
871 |
+
akku += prods4[bits & 3];
|
872 |
+
}
|
873 |
+
|
874 |
+
float alpha2_sum = float(akku >> 16);
|
875 |
+
float beta2_sum = float((akku >> 8) & 0xff);
|
876 |
+
float alphabeta_sum = float(akku & 0xff);
|
877 |
+
float2 betax_sum = 9.0f * color_sum - alphax_sum;
|
878 |
+
|
879 |
+
const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
|
880 |
+
|
881 |
+
float2 a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor;
|
882 |
+
float2 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
|
883 |
+
|
884 |
+
// Round a, b to the closest 8-8 color and expand...
|
885 |
+
a = roundAndExpand88(a, start);
|
886 |
+
b = roundAndExpand88(b, end);
|
887 |
+
|
888 |
+
// compute the error
|
889 |
+
float2 e = a * a * alpha2_sum + b * b * beta2_sum + 2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum);
|
890 |
+
|
891 |
+
return (1.0f / 9.0f) * (e.x + e.y);
|
892 |
+
}
|
893 |
+
|
894 |
+
|
895 |
+
////////////////////////////////////////////////////////////////////////////////
|
896 |
+
// Evaluate all permutations
|
897 |
+
////////////////////////////////////////////////////////////////////////////////
|
898 |
+
__device__ void evalAllPermutations(const float3 * colors, float3 colorSum, const uint * permutations, ushort & bestStart, ushort & bestEnd, uint & bestPermutation, float * errors)
|
899 |
+
{
|
900 |
+
const int idx = threadIdx.x;
|
901 |
+
|
902 |
+
float bestError = FLT_MAX;
|
903 |
+
|
904 |
+
__shared__ uint s_permutations[160];
|
905 |
+
|
906 |
+
for(int i = 0; i < 16; i++)
|
907 |
+
{
|
908 |
+
int pidx = idx + NUM_THREADS * i;
|
909 |
+
if (pidx >= 992) break;
|
910 |
+
|
911 |
+
ushort start, end;
|
912 |
+
uint permutation = permutations[pidx];
|
913 |
+
if (pidx < 160) s_permutations[pidx] = permutation;
|
914 |
+
|
915 |
+
float error = evalPermutation4(colors, colorSum, permutation, &start, &end);
|
916 |
+
|
917 |
+
if (error < bestError)
|
918 |
+
{
|
919 |
+
bestError = error;
|
920 |
+
bestPermutation = permutation;
|
921 |
+
bestStart = start;
|
922 |
+
bestEnd = end;
|
923 |
+
}
|
924 |
+
}
|
925 |
+
|
926 |
+
if (bestStart < bestEnd)
|
927 |
+
{
|
928 |
+
swap(bestEnd, bestStart);
|
929 |
+
bestPermutation ^= 0x55555555; // Flip indices.
|
930 |
+
}
|
931 |
+
|
932 |
+
for(int i = 0; i < 3; i++)
|
933 |
+
{
|
934 |
+
int pidx = idx + NUM_THREADS * i;
|
935 |
+
if (pidx >= 160) break;
|
936 |
+
|
937 |
+
ushort start, end;
|
938 |
+
uint permutation = s_permutations[pidx];
|
939 |
+
float error = evalPermutation3(colors, colorSum, permutation, &start, &end);
|
940 |
+
|
941 |
+
if (error < bestError)
|
942 |
+
{
|
943 |
+
bestError = error;
|
944 |
+
bestPermutation = permutation;
|
945 |
+
bestStart = start;
|
946 |
+
bestEnd = end;
|
947 |
+
|
948 |
+
if (bestStart > bestEnd)
|
949 |
+
{
|
950 |
+
swap(bestEnd, bestStart);
|
951 |
+
bestPermutation ^= (~bestPermutation >> 1) & 0x55555555; // Flip indices.
|
952 |
+
}
|
953 |
+
}
|
954 |
+
}
|
955 |
+
|
956 |
+
errors[idx] = bestError;
|
957 |
+
}
|
958 |
+
|
959 |
+
/*
|
960 |
+
__device__ void evalAllPermutations(const float3 * colors, const float * weights, const uint * permutations, ushort & bestStart, ushort & bestEnd, uint & bestPermutation, float * errors)
|
961 |
+
{
|
962 |
+
const int idx = threadIdx.x;
|
963 |
+
|
964 |
+
float bestError = FLT_MAX;
|
965 |
+
|
966 |
+
__shared__ uint s_permutations[160];
|
967 |
+
|
968 |
+
for(int i = 0; i < 16; i++)
|
969 |
+
{
|
970 |
+
int pidx = idx + NUM_THREADS * i;
|
971 |
+
if (pidx >= 992) break;
|
972 |
+
|
973 |
+
ushort start, end;
|
974 |
+
uint permutation = permutations[pidx];
|
975 |
+
if (pidx < 160) s_permutations[pidx] = permutation;
|
976 |
+
|
977 |
+
float error = evalPermutation4(colors, weights, permutation, &start, &end);
|
978 |
+
|
979 |
+
if (error < bestError)
|
980 |
+
{
|
981 |
+
bestError = error;
|
982 |
+
bestPermutation = permutation;
|
983 |
+
bestStart = start;
|
984 |
+
bestEnd = end;
|
985 |
+
}
|
986 |
+
}
|
987 |
+
|
988 |
+
if (bestStart < bestEnd)
|
989 |
+
{
|
990 |
+
swap(bestEnd, bestStart);
|
991 |
+
bestPermutation ^= 0x55555555; // Flip indices.
|
992 |
+
}
|
993 |
+
|
994 |
+
for(int i = 0; i < 3; i++)
|
995 |
+
{
|
996 |
+
int pidx = idx + NUM_THREADS * i;
|
997 |
+
if (pidx >= 160) break;
|
998 |
+
|
999 |
+
ushort start, end;
|
1000 |
+
uint permutation = s_permutations[pidx];
|
1001 |
+
float error = evalPermutation3(colors, weights, permutation, &start, &end);
|
1002 |
+
|
1003 |
+
if (error < bestError)
|
1004 |
+
{
|
1005 |
+
bestError = error;
|
1006 |
+
bestPermutation = permutation;
|
1007 |
+
bestStart = start;
|
1008 |
+
bestEnd = end;
|
1009 |
+
|
1010 |
+
if (bestStart > bestEnd)
|
1011 |
+
{
|
1012 |
+
swap(bestEnd, bestStart);
|
1013 |
+
bestPermutation ^= (~bestPermutation >> 1) & 0x55555555; // Flip indices.
|
1014 |
+
}
|
1015 |
+
}
|
1016 |
+
}
|
1017 |
+
|
1018 |
+
errors[idx] = bestError;
|
1019 |
+
}
|
1020 |
+
*/
|
1021 |
+
|
1022 |
+
__device__ void evalAllPermutations(const float2 * colors, float2 colorSum, const uint * permutations, ushort & bestStart, ushort & bestEnd, uint & bestPermutation, float * errors)
|
1023 |
+
{
|
1024 |
+
const int idx = threadIdx.x;
|
1025 |
+
|
1026 |
+
float bestError = FLT_MAX;
|
1027 |
+
|
1028 |
+
__shared__ uint s_permutations[160];
|
1029 |
+
|
1030 |
+
for(int i = 0; i < 16; i++)
|
1031 |
+
{
|
1032 |
+
int pidx = idx + NUM_THREADS * i;
|
1033 |
+
if (pidx >= 992) break;
|
1034 |
+
|
1035 |
+
ushort start, end;
|
1036 |
+
uint permutation = permutations[pidx];
|
1037 |
+
if (pidx < 160) s_permutations[pidx] = permutation;
|
1038 |
+
|
1039 |
+
float error = evalPermutation4(colors, colorSum, permutation, &start, &end);
|
1040 |
+
|
1041 |
+
if (error < bestError)
|
1042 |
+
{
|
1043 |
+
bestError = error;
|
1044 |
+
bestPermutation = permutation;
|
1045 |
+
bestStart = start;
|
1046 |
+
bestEnd = end;
|
1047 |
+
}
|
1048 |
+
}
|
1049 |
+
|
1050 |
+
if (bestStart < bestEnd)
|
1051 |
+
{
|
1052 |
+
swap(bestEnd, bestStart);
|
1053 |
+
bestPermutation ^= 0x55555555; // Flip indices.
|
1054 |
+
}
|
1055 |
+
|
1056 |
+
for(int i = 0; i < 3; i++)
|
1057 |
+
{
|
1058 |
+
int pidx = idx + NUM_THREADS * i;
|
1059 |
+
if (pidx >= 160) break;
|
1060 |
+
|
1061 |
+
ushort start, end;
|
1062 |
+
uint permutation = s_permutations[pidx];
|
1063 |
+
float error = evalPermutation3(colors, colorSum, permutation, &start, &end);
|
1064 |
+
|
1065 |
+
if (error < bestError)
|
1066 |
+
{
|
1067 |
+
bestError = error;
|
1068 |
+
bestPermutation = permutation;
|
1069 |
+
bestStart = start;
|
1070 |
+
bestEnd = end;
|
1071 |
+
|
1072 |
+
if (bestStart > bestEnd)
|
1073 |
+
{
|
1074 |
+
swap(bestEnd, bestStart);
|
1075 |
+
bestPermutation ^= (~bestPermutation >> 1) & 0x55555555; // Flip indices.
|
1076 |
+
}
|
1077 |
+
}
|
1078 |
+
}
|
1079 |
+
|
1080 |
+
errors[idx] = bestError;
|
1081 |
+
}
|
1082 |
+
|
1083 |
+
__device__ void evalLevel4Permutations(const float3 * colors, float3 colorSum, const uint * permutations, ushort & bestStart, ushort & bestEnd, uint & bestPermutation, float * errors)
|
1084 |
+
{
|
1085 |
+
const int idx = threadIdx.x;
|
1086 |
+
|
1087 |
+
float bestError = FLT_MAX;
|
1088 |
+
|
1089 |
+
for(int i = 0; i < 16; i++)
|
1090 |
+
{
|
1091 |
+
int pidx = idx + NUM_THREADS * i;
|
1092 |
+
if (pidx >= 992) break;
|
1093 |
+
|
1094 |
+
ushort start, end;
|
1095 |
+
uint permutation = permutations[pidx];
|
1096 |
+
|
1097 |
+
float error = evalPermutation4(colors, colorSum, permutation, &start, &end);
|
1098 |
+
|
1099 |
+
if (error < bestError)
|
1100 |
+
{
|
1101 |
+
bestError = error;
|
1102 |
+
bestPermutation = permutation;
|
1103 |
+
bestStart = start;
|
1104 |
+
bestEnd = end;
|
1105 |
+
}
|
1106 |
+
}
|
1107 |
+
|
1108 |
+
if (bestStart < bestEnd)
|
1109 |
+
{
|
1110 |
+
swap(bestEnd, bestStart);
|
1111 |
+
bestPermutation ^= 0x55555555; // Flip indices.
|
1112 |
+
}
|
1113 |
+
|
1114 |
+
errors[idx] = bestError;
|
1115 |
+
}
|
1116 |
+
|
1117 |
+
__device__ void evalLevel4Permutations(const float3 * colors, const float * weights, float3 colorSum, const uint * permutations, ushort & bestStart, ushort & bestEnd, uint & bestPermutation, float * errors)
|
1118 |
+
{
|
1119 |
+
const int idx = threadIdx.x;
|
1120 |
+
|
1121 |
+
float bestError = FLT_MAX;
|
1122 |
+
|
1123 |
+
for(int i = 0; i < 16; i++)
|
1124 |
+
{
|
1125 |
+
int pidx = idx + NUM_THREADS * i;
|
1126 |
+
if (pidx >= 992) break;
|
1127 |
+
|
1128 |
+
ushort start, end;
|
1129 |
+
uint permutation = permutations[pidx];
|
1130 |
+
|
1131 |
+
float error = evalPermutation4(colors, weights, colorSum, permutation, &start, &end);
|
1132 |
+
|
1133 |
+
if (error < bestError)
|
1134 |
+
{
|
1135 |
+
bestError = error;
|
1136 |
+
bestPermutation = permutation;
|
1137 |
+
bestStart = start;
|
1138 |
+
bestEnd = end;
|
1139 |
+
}
|
1140 |
+
}
|
1141 |
+
|
1142 |
+
if (bestStart < bestEnd)
|
1143 |
+
{
|
1144 |
+
swap(bestEnd, bestStart);
|
1145 |
+
bestPermutation ^= 0x55555555; // Flip indices.
|
1146 |
+
}
|
1147 |
+
|
1148 |
+
errors[idx] = bestError;
|
1149 |
+
}
|
1150 |
+
|
1151 |
+
__device__ void evalAllPermutationsCTX(const float2 * colors, float2 colorSum, const uint * permutations, ushort & bestStart, ushort & bestEnd, uint & bestPermutation, float * errors)
|
1152 |
+
{
|
1153 |
+
const int idx = threadIdx.x;
|
1154 |
+
|
1155 |
+
float bestError = FLT_MAX;
|
1156 |
+
|
1157 |
+
for(int i = 0; i < 16; i++)
|
1158 |
+
{
|
1159 |
+
int pidx = idx + NUM_THREADS * i;
|
1160 |
+
if (pidx >= 704) break;
|
1161 |
+
|
1162 |
+
ushort start, end;
|
1163 |
+
uint permutation = permutations[pidx];
|
1164 |
+
|
1165 |
+
float error = evalPermutationCTX(colors, colorSum, permutation, &start, &end);
|
1166 |
+
|
1167 |
+
if (error < bestError)
|
1168 |
+
{
|
1169 |
+
bestError = error;
|
1170 |
+
bestPermutation = permutation;
|
1171 |
+
bestStart = start;
|
1172 |
+
bestEnd = end;
|
1173 |
+
}
|
1174 |
+
}
|
1175 |
+
|
1176 |
+
if (bestStart < bestEnd)
|
1177 |
+
{
|
1178 |
+
swap(bestEnd, bestStart);
|
1179 |
+
bestPermutation ^= 0x55555555; // Flip indices.
|
1180 |
+
}
|
1181 |
+
|
1182 |
+
errors[idx] = bestError;
|
1183 |
+
}
|
1184 |
+
|
1185 |
+
|
1186 |
+
////////////////////////////////////////////////////////////////////////////////
|
1187 |
+
// Find index with minimum error
|
1188 |
+
////////////////////////////////////////////////////////////////////////////////
|
1189 |
+
__device__ int findMinError(float * errors)
|
1190 |
+
{
|
1191 |
+
const int idx = threadIdx.x;
|
1192 |
+
|
1193 |
+
__shared__ int indices[NUM_THREADS];
|
1194 |
+
indices[idx] = idx;
|
1195 |
+
|
1196 |
+
for(int d = NUM_THREADS/2; d > 32; d >>= 1)
|
1197 |
+
{
|
1198 |
+
__syncthreads();
|
1199 |
+
|
1200 |
+
if (idx < d)
|
1201 |
+
{
|
1202 |
+
float err0 = errors[idx];
|
1203 |
+
float err1 = errors[idx + d];
|
1204 |
+
|
1205 |
+
if (err1 < err0) {
|
1206 |
+
errors[idx] = err1;
|
1207 |
+
indices[idx] = indices[idx + d];
|
1208 |
+
}
|
1209 |
+
}
|
1210 |
+
}
|
1211 |
+
|
1212 |
+
__syncthreads();
|
1213 |
+
|
1214 |
+
// unroll last 6 iterations
|
1215 |
+
if (idx < 32)
|
1216 |
+
{
|
1217 |
+
if (errors[idx + 32] < errors[idx]) {
|
1218 |
+
errors[idx] = errors[idx + 32];
|
1219 |
+
indices[idx] = indices[idx + 32];
|
1220 |
+
}
|
1221 |
+
if (errors[idx + 16] < errors[idx]) {
|
1222 |
+
errors[idx] = errors[idx + 16];
|
1223 |
+
indices[idx] = indices[idx + 16];
|
1224 |
+
}
|
1225 |
+
if (errors[idx + 8] < errors[idx]) {
|
1226 |
+
errors[idx] = errors[idx + 8];
|
1227 |
+
indices[idx] = indices[idx + 8];
|
1228 |
+
}
|
1229 |
+
if (errors[idx + 4] < errors[idx]) {
|
1230 |
+
errors[idx] = errors[idx + 4];
|
1231 |
+
indices[idx] = indices[idx + 4];
|
1232 |
+
}
|
1233 |
+
if (errors[idx + 2] < errors[idx]) {
|
1234 |
+
errors[idx] = errors[idx + 2];
|
1235 |
+
indices[idx] = indices[idx + 2];
|
1236 |
+
}
|
1237 |
+
if (errors[idx + 1] < errors[idx]) {
|
1238 |
+
errors[idx] = errors[idx + 1];
|
1239 |
+
indices[idx] = indices[idx + 1];
|
1240 |
+
}
|
1241 |
+
}
|
1242 |
+
|
1243 |
+
__syncthreads();
|
1244 |
+
|
1245 |
+
return indices[0];
|
1246 |
+
}
|
1247 |
+
|
1248 |
+
|
1249 |
+
////////////////////////////////////////////////////////////////////////////////
|
1250 |
+
// Save DXT block
|
1251 |
+
////////////////////////////////////////////////////////////////////////////////
|
1252 |
+
__device__ void saveBlockDXT1(ushort start, ushort end, uint permutation, int xrefs[16], uint2 * result)
|
1253 |
+
{
|
1254 |
+
const int bid = blockIdx.x;
|
1255 |
+
|
1256 |
+
if (start == end)
|
1257 |
+
{
|
1258 |
+
permutation = 0;
|
1259 |
+
}
|
1260 |
+
|
1261 |
+
// Reorder permutation.
|
1262 |
+
uint indices = 0;
|
1263 |
+
for(int i = 0; i < 16; i++)
|
1264 |
+
{
|
1265 |
+
int ref = xrefs[i];
|
1266 |
+
indices |= ((permutation >> (2 * ref)) & 3) << (2 * i);
|
1267 |
+
}
|
1268 |
+
|
1269 |
+
// Write endpoints.
|
1270 |
+
result[bid].x = (end << 16) | start;
|
1271 |
+
|
1272 |
+
// Write palette indices.
|
1273 |
+
result[bid].y = indices;
|
1274 |
+
}
|
1275 |
+
|
1276 |
+
__device__ void saveBlockDXT1_Parallel(uint endpoints, float3 colors[16], int xrefs[16], uint * result)
|
1277 |
+
{
|
1278 |
+
const int tid = threadIdx.x;
|
1279 |
+
const int bid = blockIdx.x;
|
1280 |
+
|
1281 |
+
if (tid < 16)
|
1282 |
+
{
|
1283 |
+
int3 color = float3ToInt3(colors[xrefs[tid]]);
|
1284 |
+
|
1285 |
+
ushort endpoint0 = endpoints & 0xFFFF;
|
1286 |
+
ushort endpoint1 = endpoints >> 16;
|
1287 |
+
|
1288 |
+
int3 palette[4];
|
1289 |
+
palette[0] = color16ToInt3(endpoint0);
|
1290 |
+
palette[1] = color16ToInt3(endpoint1);
|
1291 |
+
|
1292 |
+
int d0 = colorDistance(palette[0], color);
|
1293 |
+
int d1 = colorDistance(palette[1], color);
|
1294 |
+
|
1295 |
+
uint index;
|
1296 |
+
if (endpoint0 > endpoint1)
|
1297 |
+
{
|
1298 |
+
palette[2].x = (2 * palette[0].x + palette[1].x) / 3;
|
1299 |
+
palette[2].y = (2 * palette[0].y + palette[1].y) / 3;
|
1300 |
+
palette[2].z = (2 * palette[0].z + palette[1].z) / 3;
|
1301 |
+
|
1302 |
+
palette[3].x = (2 * palette[1].x + palette[0].x) / 3;
|
1303 |
+
palette[3].y = (2 * palette[1].y + palette[0].y) / 3;
|
1304 |
+
palette[3].z = (2 * palette[1].z + palette[0].z) / 3;
|
1305 |
+
|
1306 |
+
int d2 = colorDistance(palette[2], color);
|
1307 |
+
int d3 = colorDistance(palette[3], color);
|
1308 |
+
|
1309 |
+
// Compute the index that best fit color.
|
1310 |
+
uint b0 = d0 > d3;
|
1311 |
+
uint b1 = d1 > d2;
|
1312 |
+
uint b2 = d0 > d2;
|
1313 |
+
uint b3 = d1 > d3;
|
1314 |
+
uint b4 = d2 > d3;
|
1315 |
+
|
1316 |
+
uint x0 = b1 & b2;
|
1317 |
+
uint x1 = b0 & b3;
|
1318 |
+
uint x2 = b0 & b4;
|
1319 |
+
|
1320 |
+
index = (x2 | ((x0 | x1) << 1));
|
1321 |
+
}
|
1322 |
+
else {
|
1323 |
+
palette[2].x = (palette[0].x + palette[1].x) / 2;
|
1324 |
+
palette[2].y = (palette[0].y + palette[1].y) / 2;
|
1325 |
+
palette[2].z = (palette[0].z + palette[1].z) / 2;
|
1326 |
+
|
1327 |
+
int d2 = colorDistance(palette[2], color);
|
1328 |
+
|
1329 |
+
index = 0;
|
1330 |
+
if (d1 < d0 && d1 < d2) index = 1;
|
1331 |
+
else if (d2 < d0) index = 2;
|
1332 |
+
}
|
1333 |
+
|
1334 |
+
__shared__ uint indices[16];
|
1335 |
+
|
1336 |
+
indices[tid] = index << (2 * tid);
|
1337 |
+
if (tid < 8) indices[tid] |= indices[tid+8];
|
1338 |
+
if (tid < 4) indices[tid] |= indices[tid+4];
|
1339 |
+
if (tid < 2) indices[tid] |= indices[tid+2];
|
1340 |
+
if (tid < 1) indices[tid] |= indices[tid+1];
|
1341 |
+
|
1342 |
+
if (tid < 2) {
|
1343 |
+
result[2 * bid + tid] = tid == 0 ? endpoints : indices[0];
|
1344 |
+
}
|
1345 |
+
}
|
1346 |
+
}
|
1347 |
+
|
1348 |
+
__device__ void saveBlockDXT1_Parallel(uint endpoints, uint permutation, int xrefs[16], uint * result)
|
1349 |
+
{
|
1350 |
+
const int tid = threadIdx.x;
|
1351 |
+
const int bid = blockIdx.x;
|
1352 |
+
|
1353 |
+
if (tid < 16)
|
1354 |
+
{
|
1355 |
+
// Reorder permutation.
|
1356 |
+
uint index = ((permutation >> (2 * xrefs[tid])) & 3) << (2 * tid);
|
1357 |
+
__shared__ uint indices[16];
|
1358 |
+
|
1359 |
+
indices[tid] = index;
|
1360 |
+
if (tid < 8) indices[tid] |= indices[tid+8];
|
1361 |
+
if (tid < 4) indices[tid] |= indices[tid+4];
|
1362 |
+
if (tid < 2) indices[tid] |= indices[tid+2];
|
1363 |
+
if (tid < 1) indices[tid] |= indices[tid+1];
|
1364 |
+
|
1365 |
+
if (tid < 2) {
|
1366 |
+
result[2 * bid + tid] = tid == 0 ? endpoints : indices[0];
|
1367 |
+
}
|
1368 |
+
}
|
1369 |
+
}
|
1370 |
+
|
1371 |
+
|
1372 |
+
__device__ void saveBlockCTX1(ushort start, ushort end, uint permutation, int xrefs[16], uint2 * result)
|
1373 |
+
{
|
1374 |
+
saveBlockDXT1(start, end, permutation, xrefs, result);
|
1375 |
+
}
|
1376 |
+
|
1377 |
+
__device__ void saveSingleColorBlockDXT1(float3 color, uint2 * result)
|
1378 |
+
{
|
1379 |
+
const int bid = blockIdx.x;
|
1380 |
+
|
1381 |
+
int r = color.x * 255;
|
1382 |
+
int g = color.y * 255;
|
1383 |
+
int b = color.z * 255;
|
1384 |
+
|
1385 |
+
ushort color0 = (OMatch5[r][0] << 11) | (OMatch6[g][0] << 5) | OMatch5[b][0];
|
1386 |
+
ushort color1 = (OMatch5[r][1] << 11) | (OMatch6[g][1] << 5) | OMatch5[b][1];
|
1387 |
+
|
1388 |
+
if (color0 < color1)
|
1389 |
+
{
|
1390 |
+
result[bid].x = (color0 << 16) | color1;
|
1391 |
+
result[bid].y = 0xffffffff;
|
1392 |
+
}
|
1393 |
+
else
|
1394 |
+
{
|
1395 |
+
result[bid].x = (color1 << 16) | color0;
|
1396 |
+
result[bid].y = 0xaaaaaaaa;
|
1397 |
+
}
|
1398 |
+
}
|
1399 |
+
|
1400 |
+
__device__ void saveSingleColorBlockDXT1(float2 color, uint2 * result)
|
1401 |
+
{
|
1402 |
+
const int bid = blockIdx.x;
|
1403 |
+
|
1404 |
+
int r = color.x * 255;
|
1405 |
+
int g = color.y * 255;
|
1406 |
+
|
1407 |
+
ushort color0 = (OMatch5[r][0] << 11) | (OMatch6[g][0] << 5);
|
1408 |
+
ushort color1 = (OMatch5[r][1] << 11) | (OMatch6[g][1] << 5);
|
1409 |
+
|
1410 |
+
if (color0 < color1)
|
1411 |
+
{
|
1412 |
+
result[bid].x = (color0 << 16) | color1;
|
1413 |
+
result[bid].y = 0xffffffff;
|
1414 |
+
}
|
1415 |
+
else
|
1416 |
+
{
|
1417 |
+
result[bid].x = (color1 << 16) | color0;
|
1418 |
+
result[bid].y = 0xaaaaaaaa;
|
1419 |
+
}
|
1420 |
+
}
|
1421 |
+
|
1422 |
+
__device__ void saveSingleColorBlockCTX1(float2 color, uint2 * result)
|
1423 |
+
{
|
1424 |
+
const int bid = blockIdx.x;
|
1425 |
+
|
1426 |
+
int r = color.x * 255;
|
1427 |
+
int g = color.y * 255;
|
1428 |
+
|
1429 |
+
ushort color0 = (r << 8) | (g);
|
1430 |
+
|
1431 |
+
result[bid].x = (color0 << 16) | color0;
|
1432 |
+
result[bid].y = 0x00000000;
|
1433 |
+
}
|
1434 |
+
|
1435 |
+
|
1436 |
+
////////////////////////////////////////////////////////////////////////////////
|
1437 |
+
// Compress color block
|
1438 |
+
////////////////////////////////////////////////////////////////////////////////
|
1439 |
+
|
1440 |
+
__global__ void compressDXT1(uint firstBlock, uint blockWidth, const uint * permutations, uint2 * result)
|
1441 |
+
{
|
1442 |
+
__shared__ float3 colors[16];
|
1443 |
+
__shared__ float3 sums[16];
|
1444 |
+
__shared__ int xrefs[16];
|
1445 |
+
__shared__ int sameColor;
|
1446 |
+
|
1447 |
+
loadColorBlockTex(firstBlock, blockWidth, colors, sums, xrefs, &sameColor);
|
1448 |
+
|
1449 |
+
__syncthreads();
|
1450 |
+
|
1451 |
+
if (sameColor)
|
1452 |
+
{
|
1453 |
+
if (threadIdx.x == 0) saveSingleColorBlockDXT1(colors[0], result);
|
1454 |
+
return;
|
1455 |
+
}
|
1456 |
+
|
1457 |
+
ushort bestStart, bestEnd;
|
1458 |
+
uint bestPermutation;
|
1459 |
+
|
1460 |
+
__shared__ float errors[NUM_THREADS];
|
1461 |
+
evalAllPermutations(colors, sums[0], permutations, bestStart, bestEnd, bestPermutation, errors);
|
1462 |
+
|
1463 |
+
// Use a parallel reduction to find minimum error.
|
1464 |
+
const int minIdx = findMinError(errors);
|
1465 |
+
|
1466 |
+
__shared__ uint s_bestEndPoints;
|
1467 |
+
__shared__ uint s_bestPermutation;
|
1468 |
+
|
1469 |
+
// Only write the result of the winner thread.
|
1470 |
+
if (threadIdx.x == minIdx)
|
1471 |
+
{
|
1472 |
+
s_bestEndPoints = (bestEnd << 16) | bestStart;
|
1473 |
+
s_bestPermutation = (bestStart != bestEnd) ? bestPermutation : 0;
|
1474 |
+
}
|
1475 |
+
|
1476 |
+
__syncthreads();
|
1477 |
+
|
1478 |
+
saveBlockDXT1_Parallel(s_bestEndPoints, colors, xrefs, (uint *)result);
|
1479 |
+
//saveBlockDXT1_Parallel(s_bestEndPoints, s_bestPermutation, xrefs, (uint *)result);
|
1480 |
+
}
|
1481 |
+
|
1482 |
+
|
1483 |
+
__global__ void compressLevel4DXT1(uint firstBlock, uint blockWidth, const uint * permutations, uint2 * result)
|
1484 |
+
{
|
1485 |
+
__shared__ float3 colors[16];
|
1486 |
+
__shared__ float3 sums[16];
|
1487 |
+
__shared__ int xrefs[16];
|
1488 |
+
__shared__ int sameColor;
|
1489 |
+
|
1490 |
+
loadColorBlockTex(firstBlock, blockWidth, colors, sums, xrefs, &sameColor);
|
1491 |
+
|
1492 |
+
__syncthreads();
|
1493 |
+
|
1494 |
+
if (sameColor)
|
1495 |
+
{
|
1496 |
+
if (threadIdx.x == 0) saveSingleColorBlockDXT1(colors[0], result);
|
1497 |
+
return;
|
1498 |
+
}
|
1499 |
+
|
1500 |
+
ushort bestStart, bestEnd;
|
1501 |
+
uint bestPermutation;
|
1502 |
+
|
1503 |
+
__shared__ float errors[NUM_THREADS];
|
1504 |
+
|
1505 |
+
evalLevel4Permutations(colors, sums[0], permutations, bestStart, bestEnd, bestPermutation, errors);
|
1506 |
+
|
1507 |
+
// Use a parallel reduction to find minimum error.
|
1508 |
+
const int minIdx = findMinError(errors);
|
1509 |
+
|
1510 |
+
// Only write the result of the winner thread.
|
1511 |
+
if (threadIdx.x == minIdx)
|
1512 |
+
{
|
1513 |
+
saveBlockDXT1(bestStart, bestEnd, bestPermutation, xrefs, result);
|
1514 |
+
}
|
1515 |
+
}
|
1516 |
+
|
1517 |
+
__global__ void compressWeightedDXT1(uint firstBlock, uint blockWidth, const uint * permutations, uint2 * result)
|
1518 |
+
{
|
1519 |
+
__shared__ float3 colors[16];
|
1520 |
+
__shared__ float3 sums[16];
|
1521 |
+
__shared__ float weights[16];
|
1522 |
+
__shared__ int xrefs[16];
|
1523 |
+
__shared__ int sameColor;
|
1524 |
+
|
1525 |
+
loadColorBlockTex(firstBlock, blockWidth, colors, sums, weights, xrefs, &sameColor);
|
1526 |
+
|
1527 |
+
__syncthreads();
|
1528 |
+
|
1529 |
+
if (sameColor)
|
1530 |
+
{
|
1531 |
+
if (threadIdx.x == 0) saveSingleColorBlockDXT1(colors[0], result);
|
1532 |
+
return;
|
1533 |
+
}
|
1534 |
+
|
1535 |
+
ushort bestStart, bestEnd;
|
1536 |
+
uint bestPermutation;
|
1537 |
+
|
1538 |
+
__shared__ float errors[NUM_THREADS];
|
1539 |
+
|
1540 |
+
evalLevel4Permutations(colors, weights, sums[0], permutations, bestStart, bestEnd, bestPermutation, errors);
|
1541 |
+
|
1542 |
+
// Use a parallel reduction to find minimum error.
|
1543 |
+
int minIdx = findMinError(errors);
|
1544 |
+
|
1545 |
+
// Only write the result of the winner thread.
|
1546 |
+
if (threadIdx.x == minIdx)
|
1547 |
+
{
|
1548 |
+
saveBlockDXT1(bestStart, bestEnd, bestPermutation, xrefs, result);
|
1549 |
+
}
|
1550 |
+
}
|
1551 |
+
|
1552 |
+
|
1553 |
+
__global__ void compressNormalDXT1(const uint * permutations, const uint * image, uint2 * result)
|
1554 |
+
{
|
1555 |
+
__shared__ float2 colors[16];
|
1556 |
+
__shared__ float2 sums[16];
|
1557 |
+
__shared__ int xrefs[16];
|
1558 |
+
__shared__ int sameColor;
|
1559 |
+
|
1560 |
+
loadColorBlock(image, colors, sums, xrefs, &sameColor);
|
1561 |
+
|
1562 |
+
__syncthreads();
|
1563 |
+
|
1564 |
+
if (sameColor)
|
1565 |
+
{
|
1566 |
+
if (threadIdx.x == 0) saveSingleColorBlockDXT1(colors[0], result);
|
1567 |
+
return;
|
1568 |
+
}
|
1569 |
+
|
1570 |
+
ushort bestStart, bestEnd;
|
1571 |
+
uint bestPermutation;
|
1572 |
+
|
1573 |
+
__shared__ float errors[NUM_THREADS];
|
1574 |
+
|
1575 |
+
evalAllPermutations(colors, sums[0], permutations, bestStart, bestEnd, bestPermutation, errors);
|
1576 |
+
|
1577 |
+
// Use a parallel reduction to find minimum error.
|
1578 |
+
const int minIdx = findMinError(errors);
|
1579 |
+
|
1580 |
+
// Only write the result of the winner thread.
|
1581 |
+
if (threadIdx.x == minIdx)
|
1582 |
+
{
|
1583 |
+
saveBlockDXT1(bestStart, bestEnd, bestPermutation, xrefs, result);
|
1584 |
+
}
|
1585 |
+
}
|
1586 |
+
|
1587 |
+
__global__ void compressCTX1(const uint * permutations, const uint * image, uint2 * result)
|
1588 |
+
{
|
1589 |
+
__shared__ float2 colors[16];
|
1590 |
+
__shared__ float2 sums[16];
|
1591 |
+
__shared__ int xrefs[16];
|
1592 |
+
__shared__ int sameColor;
|
1593 |
+
|
1594 |
+
loadColorBlock(image, colors, sums, xrefs, &sameColor);
|
1595 |
+
|
1596 |
+
__syncthreads();
|
1597 |
+
|
1598 |
+
if (sameColor)
|
1599 |
+
{
|
1600 |
+
if (threadIdx.x == 0) saveSingleColorBlockCTX1(colors[0], result);
|
1601 |
+
return;
|
1602 |
+
}
|
1603 |
+
|
1604 |
+
ushort bestStart, bestEnd;
|
1605 |
+
uint bestPermutation;
|
1606 |
+
|
1607 |
+
__shared__ float errors[NUM_THREADS];
|
1608 |
+
|
1609 |
+
evalAllPermutationsCTX(colors, sums[0], permutations, bestStart, bestEnd, bestPermutation, errors);
|
1610 |
+
|
1611 |
+
// Use a parallel reduction to find minimum error.
|
1612 |
+
const int minIdx = findMinError(errors);
|
1613 |
+
|
1614 |
+
// Only write the result of the winner thread.
|
1615 |
+
if (threadIdx.x == minIdx)
|
1616 |
+
{
|
1617 |
+
saveBlockCTX1(bestStart, bestEnd, bestPermutation, xrefs, result);
|
1618 |
+
}
|
1619 |
+
}
|
1620 |
+
|
1621 |
+
|
1622 |
+
/*
|
1623 |
+
__device__ float computeError(const float weights[16], uchar a0, uchar a1)
|
1624 |
+
{
|
1625 |
+
float palette[6];
|
1626 |
+
palette[0] = (6.0f/7.0f * a0 + 1.0f/7.0f * a1);
|
1627 |
+
palette[1] = (5.0f/7.0f * a0 + 2.0f/7.0f * a1);
|
1628 |
+
palette[2] = (4.0f/7.0f * a0 + 3.0f/7.0f * a1);
|
1629 |
+
palette[3] = (3.0f/7.0f * a0 + 4.0f/7.0f * a1);
|
1630 |
+
palette[4] = (2.0f/7.0f * a0 + 5.0f/7.0f * a1);
|
1631 |
+
palette[5] = (1.0f/7.0f * a0 + 6.0f/7.0f * a1);
|
1632 |
+
|
1633 |
+
float total = 0.0f;
|
1634 |
+
|
1635 |
+
for (uint i = 0; i < 16; i++)
|
1636 |
+
{
|
1637 |
+
float alpha = weights[i];
|
1638 |
+
|
1639 |
+
float error = a0 - alpha;
|
1640 |
+
error = min(error, palette[0] - alpha);
|
1641 |
+
error = min(error, palette[1] - alpha);
|
1642 |
+
error = min(error, palette[2] - alpha);
|
1643 |
+
error = min(error, palette[3] - alpha);
|
1644 |
+
error = min(error, palette[4] - alpha);
|
1645 |
+
error = min(error, palette[5] - alpha);
|
1646 |
+
error = min(error, a1 - alpha);
|
1647 |
+
|
1648 |
+
total += error;
|
1649 |
+
}
|
1650 |
+
|
1651 |
+
return total;
|
1652 |
+
}
|
1653 |
+
|
1654 |
+
inline __device__ uchar roundAndExpand(float a)
|
1655 |
+
{
|
1656 |
+
return rintf(__saturatef(a) * 255.0f);
|
1657 |
+
}
|
1658 |
+
*/
|
1659 |
+
/*
|
1660 |
+
__device__ void optimizeAlpha8(const float alphas[16], uchar & a0, uchar & a1)
|
1661 |
+
{
|
1662 |
+
float alpha2_sum = 0;
|
1663 |
+
float beta2_sum = 0;
|
1664 |
+
float alphabeta_sum = 0;
|
1665 |
+
float alphax_sum = 0;
|
1666 |
+
float betax_sum = 0;
|
1667 |
+
|
1668 |
+
for (int i = 0; i < 16; i++)
|
1669 |
+
{
|
1670 |
+
uint idx = index[i];
|
1671 |
+
float alpha;
|
1672 |
+
if (idx < 2) alpha = 1.0f - idx;
|
1673 |
+
else alpha = (8.0f - idx) / 7.0f;
|
1674 |
+
|
1675 |
+
float beta = 1 - alpha;
|
1676 |
+
|
1677 |
+
alpha2_sum += alpha * alpha;
|
1678 |
+
beta2_sum += beta * beta;
|
1679 |
+
alphabeta_sum += alpha * beta;
|
1680 |
+
alphax_sum += alpha * alphas[i];
|
1681 |
+
betax_sum += beta * alphas[i];
|
1682 |
+
}
|
1683 |
+
|
1684 |
+
const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
|
1685 |
+
|
1686 |
+
float a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor;
|
1687 |
+
float b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
|
1688 |
+
|
1689 |
+
a0 = roundAndExpand8(a);
|
1690 |
+
a1 = roundAndExpand8(b);
|
1691 |
+
}
|
1692 |
+
*/
|
1693 |
+
/*
|
1694 |
+
__device__ void compressAlpha(const float alphas[16], uint4 * result)
|
1695 |
+
{
|
1696 |
+
const int tid = threadIdx.x;
|
1697 |
+
|
1698 |
+
// Compress alpha block!
|
1699 |
+
// Brute force approach:
|
1700 |
+
// Try all color pairs: 256*256/2 = 32768, 32768/64 = 512 iterations?
|
1701 |
+
|
1702 |
+
// Determine min & max alphas
|
1703 |
+
|
1704 |
+
float A0, A1;
|
1705 |
+
|
1706 |
+
if (tid < 16)
|
1707 |
+
{
|
1708 |
+
__shared__ uint s_alphas[16];
|
1709 |
+
|
1710 |
+
s_alphas[tid] = alphas[tid];
|
1711 |
+
s_alphas[tid] = min(s_alphas[tid], s_alphas[tid^8]);
|
1712 |
+
s_alphas[tid] = min(s_alphas[tid], s_alphas[tid^4]);
|
1713 |
+
s_alphas[tid] = min(s_alphas[tid], s_alphas[tid^2]);
|
1714 |
+
s_alphas[tid] = min(s_alphas[tid], s_alphas[tid^1]);
|
1715 |
+
A0 = s_alphas[tid];
|
1716 |
+
|
1717 |
+
s_alphas[tid] = alphas[tid];
|
1718 |
+
s_alphas[tid] = max(s_alphas[tid], s_alphas[tid^8]);
|
1719 |
+
s_alphas[tid] = max(s_alphas[tid], s_alphas[tid^4]);
|
1720 |
+
s_alphas[tid] = max(s_alphas[tid], s_alphas[tid^2]);
|
1721 |
+
s_alphas[tid] = max(s_alphas[tid], s_alphas[tid^1]);
|
1722 |
+
A1 = s_alphas[tid];
|
1723 |
+
}
|
1724 |
+
|
1725 |
+
__syncthreads();
|
1726 |
+
|
1727 |
+
int minIdx = 0;
|
1728 |
+
|
1729 |
+
if (A1 - A0 > 8)
|
1730 |
+
{
|
1731 |
+
float bestError = FLT_MAX;
|
1732 |
+
|
1733 |
+
// 64 threads -> 8x8
|
1734 |
+
// divide [A1-A0] in partitions.
|
1735 |
+
// test endpoints
|
1736 |
+
|
1737 |
+
for (int i = 0; i < 128; i++)
|
1738 |
+
{
|
1739 |
+
uint idx = (i * NUM_THREADS + tid) * 4;
|
1740 |
+
uchar a0 = idx & 255;
|
1741 |
+
uchar a1 = idx >> 8;
|
1742 |
+
|
1743 |
+
float error = computeError(alphas, a0, a1);
|
1744 |
+
|
1745 |
+
if (error < bestError)
|
1746 |
+
{
|
1747 |
+
bestError = error;
|
1748 |
+
A0 = a0;
|
1749 |
+
A1 = a1;
|
1750 |
+
}
|
1751 |
+
}
|
1752 |
+
|
1753 |
+
__shared__ float errors[NUM_THREADS];
|
1754 |
+
errors[tid] = bestError;
|
1755 |
+
|
1756 |
+
// Minimize error.
|
1757 |
+
minIdx = findMinError(errors);
|
1758 |
+
|
1759 |
+
}
|
1760 |
+
|
1761 |
+
if (minIdx == tid)
|
1762 |
+
{
|
1763 |
+
// @@ Compute indices.
|
1764 |
+
|
1765 |
+
// @@ Write alpha block.
|
1766 |
+
}
|
1767 |
+
}
|
1768 |
+
|
1769 |
+
__global__ void compressDXT5(const uint * permutations, const uint * image, uint4 * result)
|
1770 |
+
{
|
1771 |
+
__shared__ float3 colors[16];
|
1772 |
+
__shared__ float3 sums[16];
|
1773 |
+
__shared__ float weights[16];
|
1774 |
+
__shared__ int xrefs[16];
|
1775 |
+
|
1776 |
+
loadColorBlock(image, colors, sums, weights, xrefs);
|
1777 |
+
|
1778 |
+
__syncthreads();
|
1779 |
+
|
1780 |
+
compressAlpha(weights, result);
|
1781 |
+
|
1782 |
+
ushort bestStart, bestEnd;
|
1783 |
+
uint bestPermutation;
|
1784 |
+
|
1785 |
+
__shared__ float errors[NUM_THREADS];
|
1786 |
+
|
1787 |
+
evalLevel4Permutations(colors, weights, sums[0], permutations, bestStart, bestEnd, bestPermutation, errors);
|
1788 |
+
|
1789 |
+
// Use a parallel reduction to find minimum error.
|
1790 |
+
int minIdx = findMinError(errors);
|
1791 |
+
|
1792 |
+
// Only write the result of the winner thread.
|
1793 |
+
if (threadIdx.x == minIdx)
|
1794 |
+
{
|
1795 |
+
saveBlockDXT1(bestStart, bestEnd, bestPermutation, xrefs, (uint2 *)result);
|
1796 |
+
}
|
1797 |
+
}
|
1798 |
+
*/
|
1799 |
+
|
1800 |
+
/*__device__ void evaluatePalette(uint alpha0, uint alpha1, uint alphas[8])
|
1801 |
+
{
|
1802 |
+
alpha[0] = alpha0;
|
1803 |
+
alpha[1] = alpha1;
|
1804 |
+
alpha[2] = (6 * alpha[0] + 1 * alpha[1]) / 7; // bit code 010
|
1805 |
+
alpha[3] = (5 * alpha[0] + 2 * alpha[1]) / 7; // bit code 011
|
1806 |
+
alpha[4] = (4 * alpha[0] + 3 * alpha[1]) / 7; // bit code 100
|
1807 |
+
alpha[5] = (3 * alpha[0] + 4 * alpha[1]) / 7; // bit code 101
|
1808 |
+
alpha[6] = (2 * alpha[0] + 5 * alpha[1]) / 7; // bit code 110
|
1809 |
+
alpha[7] = (1 * alpha[0] + 6 * alpha[1]) / 7; // bit code 111
|
1810 |
+
}
|
1811 |
+
|
1812 |
+
__device__ uint computeAlphaError(const uint block[16], uint alpha0, uint alpha1, int bestError = INT_MAX)
|
1813 |
+
{
|
1814 |
+
uint8 alphas[8];
|
1815 |
+
evaluatePalette(alpha0, alpha1, alphas);
|
1816 |
+
|
1817 |
+
int totalError = 0;
|
1818 |
+
|
1819 |
+
for (uint i = 0; i < 16; i++)
|
1820 |
+
{
|
1821 |
+
uint8 alpha = block[i];
|
1822 |
+
|
1823 |
+
// @@ It should be possible to do this much faster.
|
1824 |
+
|
1825 |
+
int minDist = INT_MAX;
|
1826 |
+
for (uint p = 0; p < 8; p++)
|
1827 |
+
{
|
1828 |
+
int dist = alphaDistance(alpha, alphas[p]);
|
1829 |
+
minDist = min(dist, minDist);
|
1830 |
+
}
|
1831 |
+
|
1832 |
+
|
1833 |
+
|
1834 |
+
totalError += minDist;
|
1835 |
+
|
1836 |
+
if (totalError > bestError)
|
1837 |
+
{
|
1838 |
+
// early out
|
1839 |
+
return totalError;
|
1840 |
+
}
|
1841 |
+
}
|
1842 |
+
|
1843 |
+
return totalError;
|
1844 |
+
}
|
1845 |
+
|
1846 |
+
|
1847 |
+
void compressDXT5A(uint alpha[16])
|
1848 |
+
{
|
1849 |
+
// Get min/max alpha.
|
1850 |
+
for (uint i = 0; i < 16; i++)
|
1851 |
+
{
|
1852 |
+
mina = min(mina, alpha[i]);
|
1853 |
+
maxa = max(maxa, alpha[i]);
|
1854 |
+
}
|
1855 |
+
|
1856 |
+
dxtBlock->alpha0 = maxa;
|
1857 |
+
dxtBlock->alpha1 = mina;
|
1858 |
+
|
1859 |
+
if (maxa - mina > 8)
|
1860 |
+
{
|
1861 |
+
int besterror = computeAlphaError(rgba, dxtBlock);
|
1862 |
+
int besta0 = maxa;
|
1863 |
+
int besta1 = mina;
|
1864 |
+
|
1865 |
+
// Expand search space a bit.
|
1866 |
+
const int alphaExpand = 8;
|
1867 |
+
mina = (mina <= alphaExpand) ? 0 : mina - alphaExpand;
|
1868 |
+
maxa = (maxa <= 255-alphaExpand) ? 255 : maxa + alphaExpand;
|
1869 |
+
|
1870 |
+
for (int a0 = mina+9; a0 < maxa; a0++)
|
1871 |
+
{
|
1872 |
+
for (int a1 = mina; a1 < a0-8; a1++)
|
1873 |
+
{
|
1874 |
+
nvDebugCheck(a0 - a1 > 8);
|
1875 |
+
|
1876 |
+
dxtBlock->alpha0 = a0;
|
1877 |
+
dxtBlock->alpha1 = a1;
|
1878 |
+
int error = computeAlphaError(rgba, dxtBlock, besterror);
|
1879 |
+
|
1880 |
+
if (error < besterror)
|
1881 |
+
{
|
1882 |
+
besterror = error;
|
1883 |
+
besta0 = a0;
|
1884 |
+
besta1 = a1;
|
1885 |
+
}
|
1886 |
+
}
|
1887 |
+
}
|
1888 |
+
|
1889 |
+
dxtBlock->alpha0 = besta0;
|
1890 |
+
dxtBlock->alpha1 = besta1;
|
1891 |
+
}
|
1892 |
+
}
|
1893 |
+
|
1894 |
+
__global__ void compressDXT5n(uint blockNum, uint2 * d_result)
|
1895 |
+
{
|
1896 |
+
uint idx = blockIdx.x * 128 + threadIdx.x;
|
1897 |
+
|
1898 |
+
if (idx >= blockNum)
|
1899 |
+
{
|
1900 |
+
return;
|
1901 |
+
}
|
1902 |
+
|
1903 |
+
// @@ Ideally we would load the data to shared mem to achieve coalesced global mem access.
|
1904 |
+
// @@ Blocks would require too much shared memory (8k) and limit occupancy.
|
1905 |
+
|
1906 |
+
// @@ Ideally we should use SIMD processing, multiple threads (4-8) processing the same block.
|
1907 |
+
// That simplifies coalescing, and reduces divergence.
|
1908 |
+
|
1909 |
+
// @@ Experiment with texture. That's probably the most simple approach.
|
1910 |
+
|
1911 |
+
uint x[16];
|
1912 |
+
uint y[16];
|
1913 |
+
|
1914 |
+
|
1915 |
+
}
|
1916 |
+
*/
|
1917 |
+
|
1918 |
+
|
1919 |
+
////////////////////////////////////////////////////////////////////////////////
|
1920 |
+
// Setup kernel
|
1921 |
+
////////////////////////////////////////////////////////////////////////////////
|
1922 |
+
|
1923 |
+
extern "C" void setupOMatchTables(const void * OMatch5Src, size_t OMatch5Size, const void * OMatch6Src, size_t OMatch6Size)
|
1924 |
+
{
|
1925 |
+
// Init single color lookup contant tables.
|
1926 |
+
cudaMemcpyToSymbol(OMatch5, OMatch5Src, OMatch5Size, 0, cudaMemcpyHostToDevice);
|
1927 |
+
cudaMemcpyToSymbol(OMatch6, OMatch6Src, OMatch6Size, 0, cudaMemcpyHostToDevice);
|
1928 |
+
}
|
1929 |
+
|
1930 |
+
extern "C" void setupCompressKernel(const float weights[3])
|
1931 |
+
{
|
1932 |
+
// Set constants.
|
1933 |
+
cudaMemcpyToSymbol(kColorMetric, weights, sizeof(float) * 3, 0);
|
1934 |
+
|
1935 |
+
float weightsSqr[3];
|
1936 |
+
weightsSqr[0] = weights[0] * weights[0];
|
1937 |
+
weightsSqr[1] = weights[1] * weights[1];
|
1938 |
+
weightsSqr[2] = weights[2] * weights[2];
|
1939 |
+
|
1940 |
+
cudaMemcpyToSymbol(kColorMetricSqr, weightsSqr, sizeof(float) * 3, 0);
|
1941 |
+
}
|
1942 |
+
|
1943 |
+
extern "C" void bindTextureToArray(cudaArray * d_data)
|
1944 |
+
{
|
1945 |
+
// Setup texture
|
1946 |
+
tex.normalized = false;
|
1947 |
+
tex.filterMode = cudaFilterModePoint;
|
1948 |
+
tex.addressMode[0] = cudaAddressModeClamp;
|
1949 |
+
tex.addressMode[1] = cudaAddressModeClamp;
|
1950 |
+
|
1951 |
+
cudaBindTextureToArray(tex, d_data);
|
1952 |
+
}
|
1953 |
+
|
1954 |
+
|
1955 |
+
|
1956 |
+
////////////////////////////////////////////////////////////////////////////////
|
1957 |
+
// Launch kernel
|
1958 |
+
////////////////////////////////////////////////////////////////////////////////
|
1959 |
+
|
1960 |
+
// DXT1 compressors:
|
1961 |
+
extern "C" void compressKernelDXT1(uint firstBlock, uint blockNum, uint blockWidth, uint * d_result, uint * d_bitmaps)
|
1962 |
+
{
|
1963 |
+
compressDXT1<<<blockNum, NUM_THREADS>>>(firstBlock, blockWidth, d_bitmaps, (uint2 *)d_result);
|
1964 |
+
}
|
1965 |
+
|
1966 |
+
extern "C" void compressKernelDXT1_Level4(uint firstBlock, uint blockNum, uint blockWidth, uint * d_result, uint * d_bitmaps)
|
1967 |
+
{
|
1968 |
+
compressLevel4DXT1<<<blockNum, NUM_THREADS>>>(firstBlock, blockWidth, d_bitmaps, (uint2 *)d_result);
|
1969 |
+
}
|
1970 |
+
|
1971 |
+
extern "C" void compressWeightedKernelDXT1(uint firstBlock, uint blockNum, uint blockWidth, uint * d_result, uint * d_bitmaps)
|
1972 |
+
{
|
1973 |
+
compressWeightedDXT1<<<blockNum, NUM_THREADS>>>(firstBlock, blockWidth, d_bitmaps, (uint2 *)d_result);
|
1974 |
+
}
|
1975 |
+
|
1976 |
+
// @@ DXT1a compressors.
|
1977 |
+
|
1978 |
+
|
1979 |
+
// @@ DXT3 compressors:
|
1980 |
+
extern "C" void compressKernelDXT3(uint firstBlock, uint blockNum, uint blockWidth, uint * d_result, uint * d_bitmaps)
|
1981 |
+
{
|
1982 |
+
//compressDXT3<<<blockNum, NUM_THREADS>>>(firstBlock, blockWidth, d_bitmaps, (uint2 *)d_result);
|
1983 |
+
}
|
1984 |
+
|
1985 |
+
extern "C" void compressWeightedKernelDXT3(uint firstBlock, uint blockNum, uint blockWidth, uint * d_result, uint * d_bitmaps)
|
1986 |
+
{
|
1987 |
+
//compressWeightedDXT3<<<blockNum, NUM_THREADS>>>(firstBlock, blockWidth, d_bitmaps, (uint2 *)d_result);
|
1988 |
+
}
|
1989 |
+
|
1990 |
+
|
1991 |
+
// @@ DXT5 compressors.
|
1992 |
+
extern "C" void compressKernelDXT5(uint firstBlock, uint blockNum, uint w, uint * d_result, uint * d_bitmaps)
|
1993 |
+
{
|
1994 |
+
//compressDXT5<<<blockNum, NUM_THREADS>>>(firstBlock, w, d_bitmaps, (uint2 *)d_result);
|
1995 |
+
}
|
1996 |
+
|
1997 |
+
extern "C" void compressWeightedKernelDXT5(uint firstBlock, uint blockNum, uint w, uint * d_result, uint * d_bitmaps)
|
1998 |
+
{
|
1999 |
+
//compressWeightedDXT5<<<blockNum, NUM_THREADS>>>(firstBlock, w, d_bitmaps, (uint2 *)d_result);
|
2000 |
+
}
|
2001 |
+
|
2002 |
+
|
2003 |
+
|
2004 |
+
|
2005 |
+
|
2006 |
+
/*
|
2007 |
+
extern "C" void compressNormalKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps)
|
2008 |
+
{
|
2009 |
+
compressNormalDXT1<<<blockNum, NUM_THREADS>>>(d_bitmaps, d_data, (uint2 *)d_result);
|
2010 |
+
}
|
2011 |
+
|
2012 |
+
extern "C" void compressKernelCTX1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps)
|
2013 |
+
{
|
2014 |
+
compressCTX1<<<blockNum, NUM_THREADS>>>(d_bitmaps, d_data, (uint2 *)d_result);
|
2015 |
+
}
|
2016 |
+
*/
|
2017 |
+
/*
|
2018 |
+
extern "C" void compressKernelDXT5n(uint blockNum, cudaArray * d_data, uint * d_result)
|
2019 |
+
{
|
2020 |
+
// compressDXT5n<<<blockNum/128, 128>>>(blockNum, (uint2 *)d_result);
|
2021 |
+
}
|
2022 |
+
*/
|
cuda_code/ComputeProductKernel.cu
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
typedef unsigned char uint8_t;
|
2 |
+
|
3 |
+
struct __device_builtin__ __align__(_NCS_) uint8n
|
4 |
+
{
|
5 |
+
uint8_t _VARNAMES_;
|
6 |
+
};
|
7 |
+
|
8 |
+
extern "C"
|
9 |
+
__global__ void compute_product(
|
10 |
+
const uint8_t* __restrict__ A,
|
11 |
+
const float* __restrict__ B,
|
12 |
+
const char* __restrict__ isEmpty,
|
13 |
+
const int* __restrict__ divStart,
|
14 |
+
const int* __restrict__ divSize,
|
15 |
+
float* __restrict__ V,
|
16 |
+
int* __restrict__ I,
|
17 |
+
int N, int L, int O, int nProbe
|
18 |
+
) {
|
19 |
+
const int tid = threadIdx.x; // thread ID
|
20 |
+
const int qid = blockIdx.x; // query ID
|
21 |
+
// const uint8n* A2 = reinterpret_cast<const uint8n*>( const_cast<uint8_t*>(A) )
|
22 |
+
const uint8n* A2 = reinterpret_cast<const uint8n*>(A); // ?
|
23 |
+
|
24 |
+
// Load precomputed distances
|
25 |
+
extern __shared__ volatile float Bsh[];
|
26 |
+
#pragma unroll
|
27 |
+
if (tid < 256){
|
28 |
+
for (int i = 0; i < _M_; i++){
|
29 |
+
int bz = i;
|
30 |
+
int by = qid;
|
31 |
+
int bx = tid;
|
32 |
+
Bsh[i * _K_ + tid] = B[(bz * L * _K_) + (by * _K_) + (bx)];
|
33 |
+
}
|
34 |
+
}
|
35 |
+
__syncthreads();
|
36 |
+
// Load A and compute distance
|
37 |
+
int iN = tid;
|
38 |
+
int counter = tid;
|
39 |
+
int start = 0;
|
40 |
+
int size = 0;
|
41 |
+
int cDiv = -1;
|
42 |
+
bool break_loop = false;
|
43 |
+
while (iN < N){
|
44 |
+
while ( (iN - start) >= size){
|
45 |
+
cDiv ++;
|
46 |
+
if (cDiv >= nProbe){
|
47 |
+
break_loop = true;
|
48 |
+
break;
|
49 |
+
}
|
50 |
+
int residual = iN - start - size;
|
51 |
+
start = divStart[(qid) * nProbe + (cDiv)];
|
52 |
+
iN = start + residual;
|
53 |
+
size = divSize[(qid) * nProbe + (cDiv)];
|
54 |
+
if (iN >= N){
|
55 |
+
break_loop = true;
|
56 |
+
break;
|
57 |
+
}
|
58 |
+
}
|
59 |
+
if (break_loop)
|
60 |
+
break;
|
61 |
+
|
62 |
+
float sum = 0.f;
|
63 |
+
#pragma unroll
|
64 |
+
for (int i = 0; i < _M_ / _NCS_; i++){
|
65 |
+
uint8n Avals = A2[(i * N) + (iN)];
|
66 |
+
_CODEBLOCK_
|
67 |
+
}
|
68 |
+
// write to V and I
|
69 |
+
int isCurrentEmpty;
|
70 |
+
isCurrentEmpty = isEmpty[iN];
|
71 |
+
|
72 |
+
/*
|
73 |
+
if (isCurrentEmpty == 0){
|
74 |
+
V[(qid) * O + counter] = sum;
|
75 |
+
I[(qid) * O + counter] = iN;
|
76 |
+
} else {
|
77 |
+
V[(qid) * O + counter] = -999999.f;
|
78 |
+
I[(qid) * O + counter] = -1;
|
79 |
+
}
|
80 |
+
*/
|
81 |
+
|
82 |
+
if (counter < O){
|
83 |
+
V[(qid) * O + counter] = isCurrentEmpty == 0 ? sum : -999999.f;
|
84 |
+
I[(qid) * O + counter] = isCurrentEmpty == 0 ? iN : -1;
|
85 |
+
// atomicAdd(V + (qid) * O + counter, isCurrentEmpty == 0 ? sum : -99999.f);
|
86 |
+
}
|
87 |
+
iN += _TPB_;
|
88 |
+
counter += _TPB_;
|
89 |
+
}
|
90 |
+
}
|
cuda_code/ConstraintEllipsoidGPU_1.cu
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2009-2016 The Regents of the University of Michigan
|
2 |
+
// This file is part of the HOOMD-blue project, released under the BSD 3-Clause License.
|
3 |
+
|
4 |
+
|
5 |
+
// Maintainer: joaander
|
6 |
+
|
7 |
+
#include "ConstraintEllipsoidGPU.cuh"
|
8 |
+
#include "EvaluatorConstraint.h"
|
9 |
+
#include "EvaluatorConstraintEllipsoid.h"
|
10 |
+
|
11 |
+
#include <assert.h>
|
12 |
+
|
13 |
+
/*! \file ConstraintEllipsoidGPU.cu
|
14 |
+
\brief Defines GPU kernel code for calculating ellipsoid constraint forces. Used by ConstraintEllipsoidGPU.
|
15 |
+
*/
|
16 |
+
|
17 |
+
//! Kernel for caculating ellipsoid constraint forces on the GPU
|
18 |
+
/*! \param d_group_members List of members in the group
|
19 |
+
\param group_size number of members in the group
|
20 |
+
\param N number of particles in system
|
21 |
+
\param d_pos particle positions on device
|
22 |
+
\param P Position of the ellipsoid
|
23 |
+
\param rx radius of the ellipsoid in x direction
|
24 |
+
\param ry radius of the ellipsoid in y direction
|
25 |
+
\param rz radius of the ellipsoid in z direction
|
26 |
+
\param deltaT step size from the Integrator
|
27 |
+
*/
|
28 |
+
extern "C" __global__
|
29 |
+
void gpu_compute_constraint_ellipsoid_constraint_kernel(const unsigned int *d_group_members,
|
30 |
+
unsigned int group_size,
|
31 |
+
const unsigned int N,
|
32 |
+
Scalar4 *d_pos,
|
33 |
+
Scalar3 P,
|
34 |
+
Scalar rx,
|
35 |
+
Scalar ry,
|
36 |
+
Scalar rz)
|
37 |
+
{
|
38 |
+
// start by identifying which particle we are to handle
|
39 |
+
// determine which particle this thread works on
|
40 |
+
int group_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
41 |
+
|
42 |
+
if (group_idx >= group_size)
|
43 |
+
return;
|
44 |
+
|
45 |
+
unsigned int idx = d_group_members[group_idx];
|
46 |
+
|
47 |
+
// read in position, velocity, net force, and mass
|
48 |
+
Scalar4 pos = d_pos[idx];
|
49 |
+
|
50 |
+
// convert to Scalar3's for passing to the evaluators
|
51 |
+
Scalar3 X = make_scalar3(pos.x, pos.y, pos.z);
|
52 |
+
|
53 |
+
// evaluate the constraint position
|
54 |
+
EvaluatorConstraintEllipsoid Ellipsoid(P, rx, ry, rz);
|
55 |
+
Scalar3 C = Ellipsoid.evalClosest(X);
|
56 |
+
|
57 |
+
// apply the constraint
|
58 |
+
d_pos[idx] = make_scalar4(C.x, C.y, C.z, Scalar(0.0));
|
59 |
+
}
|
60 |
+
|
61 |
+
|
62 |
+
/*! \param d_group_members List of members in the group
|
63 |
+
\param group_size number of members in the group
|
64 |
+
\param N nunmber of particles
|
65 |
+
\param d_pos particle positions on the device
|
66 |
+
\param P Position of the ellipsoid
|
67 |
+
\param rx radius of the ellipsoid in x direction
|
68 |
+
\param ry radius of the ellipsoid in y direction
|
69 |
+
\param rz radius of the ellipsoid in z direction
|
70 |
+
\param deltaT step size from the Integrator
|
71 |
+
\param block_size Block size to execute on the GPU
|
72 |
+
|
73 |
+
\returns Any error code resulting from the kernel launch
|
74 |
+
\note Always returns cudaSuccess in release builds to avoid the cudaThreadSynchronize()
|
75 |
+
*/
|
76 |
+
cudaError_t gpu_compute_constraint_ellipsoid_constraint(const unsigned int *d_group_members,
|
77 |
+
unsigned int group_size,
|
78 |
+
const unsigned int N,
|
79 |
+
Scalar4 *d_pos,
|
80 |
+
const Scalar3 P,
|
81 |
+
Scalar rx,
|
82 |
+
Scalar ry,
|
83 |
+
Scalar rz,
|
84 |
+
unsigned int block_size)
|
85 |
+
{
|
86 |
+
assert(d_group_members);
|
87 |
+
|
88 |
+
// setup the grid to run the kernel
|
89 |
+
dim3 grid( group_size / block_size + 1, 1, 1);
|
90 |
+
dim3 threads(block_size, 1, 1);
|
91 |
+
|
92 |
+
// run the kernel
|
93 |
+
gpu_compute_constraint_ellipsoid_constraint_kernel<<< grid, threads>>>(d_group_members,
|
94 |
+
group_size,
|
95 |
+
N,
|
96 |
+
d_pos,
|
97 |
+
P,
|
98 |
+
rx,
|
99 |
+
ry,
|
100 |
+
rz);
|
101 |
+
|
102 |
+
return cudaSuccess;
|
103 |
+
}
|
cuda_code/CopySurface.cu
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************
|
2 |
+
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
|
3 |
+
#
|
4 |
+
# Redistribution and use in source and binary forms, with or without
|
5 |
+
# modification, are permitted provided that the following conditions
|
6 |
+
# are met:
|
7 |
+
# * Redistributions of source code must retain the above copyright
|
8 |
+
# notice, this list of conditions and the following disclaimer.
|
9 |
+
# * Redistributions in binary form must reproduce the above copyright
|
10 |
+
# notice, this list of conditions and the following disclaimer in the
|
11 |
+
# documentation and/or other materials provided with the distribution.
|
12 |
+
# * Neither the name of NVIDIA CORPORATION nor the names of its
|
13 |
+
# contributors may be used to endorse or promote products derived
|
14 |
+
# from this software without specific prior written permission.
|
15 |
+
#
|
16 |
+
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
17 |
+
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
18 |
+
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
19 |
+
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
20 |
+
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
21 |
+
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
22 |
+
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
23 |
+
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
24 |
+
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
25 |
+
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
26 |
+
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
27 |
+
***************************************************************************/
|
28 |
+
#include "CopySurface.h"
|
29 |
+
#include <device_launch_parameters.h>
|
30 |
+
|
31 |
+
// The CUDA kernel. This sample simply copies the input surface.
|
32 |
+
template<class T>
|
33 |
+
__global__ void copySurface(cudaSurfaceObject_t input, cudaSurfaceObject_t output, unsigned int width, unsigned int height)
|
34 |
+
{
|
35 |
+
unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
|
36 |
+
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
|
37 |
+
if (x < width && y < height)
|
38 |
+
{
|
39 |
+
T data;
|
40 |
+
surf2Dread(&data, input, sizeof(T) * x, y);
|
41 |
+
surf2Dwrite(data, output, sizeof(T) * x, y);
|
42 |
+
}
|
43 |
+
}
|
44 |
+
|
45 |
+
// A wrapper function that launches the kernel.
|
46 |
+
void launchCopySurface(cudaSurfaceObject_t input, cudaSurfaceObject_t output, unsigned int width, unsigned int height, unsigned int format)
|
47 |
+
{
|
48 |
+
dim3 dimBlock(16, 16);
|
49 |
+
dim3 dimGrid((width + dimBlock.x - 1) / dimBlock.x, (height + dimBlock.y - 1) / dimBlock.y);
|
50 |
+
if (format == cudaChannelFormatKindFloat) copySurface<float><<<dimGrid, dimBlock>>>(input, output, width, height);
|
51 |
+
else copySurface<int><<<dimGrid, dimBlock>>>(input, output, width, height);
|
52 |
+
}
|
cuda_code/Copy_15.cu
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <ATen/ATen.h>
|
2 |
+
#include <ATen/Context.h>
|
3 |
+
#include <ATen/Dispatch.h>
|
4 |
+
#include <ATen/cuda/CUDAContext.h>
|
5 |
+
#include <ATen/cuda/CUDAEvent.h>
|
6 |
+
#include <c10/cuda/CUDAStream.h>
|
7 |
+
#include <ATen/native/Copy.h>
|
8 |
+
#include <ATen/native/TensorIterator.h>
|
9 |
+
#include <ATen/native/cuda/Loops.cuh>
|
10 |
+
#include <THC/THC.h>
|
11 |
+
|
12 |
+
#ifdef __HIP_PLATFORM_HCC__
|
13 |
+
#include <hip/hip_version.h>
|
14 |
+
#endif
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
namespace native {
|
18 |
+
|
19 |
+
using namespace at::cuda;
|
20 |
+
|
21 |
+
// device-to-device copy, does type conversion
|
22 |
+
void copy_device_to_device(TensorIterator& iter, bool non_blocking) {
|
23 |
+
int64_t numel = iter.numel();
|
24 |
+
|
25 |
+
// We can memcpy the memory if both tensors have the same type AND both
|
26 |
+
// tensors are contiguous after dimension coalescing and reordering.
|
27 |
+
bool same_type = iter.dtype(0) == iter.dtype(1);
|
28 |
+
bool same_conj = iter.tensor(0).is_conj() == iter.tensor(1).is_conj();
|
29 |
+
bool memcpy_eligible = same_type && same_conj && iter.is_contiguous();
|
30 |
+
|
31 |
+
Device dst_device = iter.device(0);
|
32 |
+
Device src_device = iter.device(1);
|
33 |
+
|
34 |
+
CUDAGuard device_guard(src_device);
|
35 |
+
|
36 |
+
// We always perform the copy on the source device, using the current stream
|
37 |
+
// on the source device, and we fully synchronize on both src and dst's
|
38 |
+
// current streams for completion of the copy. We have to explicitly do this
|
39 |
+
// for non-contig copies. This mimics the behavior of cross-device
|
40 |
+
// cudaMemcpyAsync on the default stream.
|
41 |
+
CUDAStream copy_stream = getCurrentCUDAStream(src_device.index());
|
42 |
+
if (src_device != dst_device) {
|
43 |
+
// This is a cross-device copy on the src current stream and dst current
|
44 |
+
// stream. We perform a two-way barrier between both devices' streams
|
45 |
+
// before the copy. This ensures that any write-after-write and
|
46 |
+
// write-after-read dependencies on the destination side are handled, so
|
47 |
+
// that no one is operating on the dst memory when we perform the copy.
|
48 |
+
// src waits on dst barrier (src already waits on src)
|
49 |
+
CUDAEvent dst_ready;
|
50 |
+
device_guard.set_device(dst_device);
|
51 |
+
dst_ready.record(getCurrentCUDAStream(dst_device.index()));
|
52 |
+
|
53 |
+
device_guard.set_device(src_device);
|
54 |
+
dst_ready.block(copy_stream);
|
55 |
+
}
|
56 |
+
|
57 |
+
if (memcpy_eligible) {
|
58 |
+
void *dst = iter.data_ptr(0);
|
59 |
+
void *src = iter.data_ptr(1);
|
60 |
+
size_t size = numel * iter.element_size(0);
|
61 |
+
if (src != dst || src_device != dst_device) {
|
62 |
+
// Perform the copy
|
63 |
+
AT_CUDA_CHECK(cudaMemcpyAsync(
|
64 |
+
dst, src, size,
|
65 |
+
cudaMemcpyDeviceToDevice,
|
66 |
+
copy_stream));
|
67 |
+
}
|
68 |
+
} else {
|
69 |
+
auto dtype = iter.dtype(0);
|
70 |
+
if (isQIntType(dtype)) {
|
71 |
+
AT_DISPATCH_QINT_TYPES(dtype, "copy_", [&] {
|
72 |
+
gpu_kernel(iter, [] GPU_LAMBDA(scalar_t x) { return x; });
|
73 |
+
});
|
74 |
+
} else {
|
75 |
+
if (!same_conj && same_type) {
|
76 |
+
AT_DISPATCH_COMPLEX_TYPES(
|
77 |
+
dtype, "copy_conj_", [&] {
|
78 |
+
gpu_kernel(iter, [] GPU_LAMBDA(scalar_t x) { return std::conj(x); });
|
79 |
+
});
|
80 |
+
} else {
|
81 |
+
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(
|
82 |
+
kHalf, kBool, kBFloat16, dtype, "copy_", [&] {
|
83 |
+
gpu_kernel(iter, [] GPU_LAMBDA(scalar_t x) { return x; });
|
84 |
+
});
|
85 |
+
}
|
86 |
+
}
|
87 |
+
}
|
88 |
+
|
89 |
+
if (src_device != dst_device) {
|
90 |
+
// dst waits on src barrier (dst already waits on dst). We cannot
|
91 |
+
// operate on dst's copy until the copy is complete.
|
92 |
+
|
93 |
+
// Still on src_device, record stream event
|
94 |
+
CUDAEvent src_ready;
|
95 |
+
src_ready.record(copy_stream);
|
96 |
+
|
97 |
+
device_guard.set_device(dst_device);
|
98 |
+
src_ready.block(getCurrentCUDAStream(dst_device.index()));
|
99 |
+
}
|
100 |
+
|
101 |
+
AT_CUDA_CHECK(cudaGetLastError());
|
102 |
+
}
|
103 |
+
|
104 |
+
static bool copy_requires_temporaries(TensorIterator& iter, bool p2p_enabled) {
|
105 |
+
Device dst_device = iter.device(0);
|
106 |
+
Device src_device = iter.device(1);
|
107 |
+
|
108 |
+
if (dst_device == src_device) {
|
109 |
+
// We never require temporaries for copies on the same GPU.
|
110 |
+
TORCH_INTERNAL_ASSERT(dst_device.is_cuda() && src_device.is_cuda());
|
111 |
+
return false;
|
112 |
+
}
|
113 |
+
|
114 |
+
bool same_dtype = iter.dtype(0) == iter.dtype(1);
|
115 |
+
if (same_dtype && iter.is_contiguous()) {
|
116 |
+
// Contiguous same-dtype copies can always use cudaMemcpyAsync
|
117 |
+
return false;
|
118 |
+
} else if (dst_device.is_cuda() && src_device.is_cuda()) {
|
119 |
+
// Copies between GPUs can use the copy kernel if P2P is supported
|
120 |
+
return !p2p_enabled;
|
121 |
+
} else {
|
122 |
+
// The remaining cases require temporaries. For example, this includes
|
123 |
+
// non-contiguous copies between CPU and GPU.
|
124 |
+
return true;
|
125 |
+
}
|
126 |
+
}
|
127 |
+
|
128 |
+
static bool maybe_enable_p2p_access(Device dst_device, Device src_device) {
|
129 |
+
if (dst_device.is_cpu() || src_device.is_cpu()) {
|
130 |
+
return false;
|
131 |
+
}
|
132 |
+
return THCState_getPeerToPeerAccess(
|
133 |
+
globalContext().getTHCState(), src_device.index(), dst_device.index());
|
134 |
+
}
|
135 |
+
|
136 |
+
static void copy_kernel_cuda(TensorIterator& iter, bool non_blocking) {
|
137 |
+
AT_ASSERT(iter.ntensors() == 2);
|
138 |
+
|
139 |
+
Device dst_device = iter.device(0);
|
140 |
+
Device src_device = iter.device(1);
|
141 |
+
|
142 |
+
// Enable p2p access between devices. (No-op if it involves the CPU)
|
143 |
+
bool p2p_enabled = maybe_enable_p2p_access(dst_device, src_device);
|
144 |
+
|
145 |
+
if (copy_requires_temporaries(iter, p2p_enabled)) {
|
146 |
+
// NB: this involves recursive calls to copy. Be careful that those copies
|
147 |
+
// don't require temporaries or you will cause an infinite recursion!
|
148 |
+
auto& dst = iter.tensor(0);
|
149 |
+
Tensor dst_contig;
|
150 |
+
Tensor src_contig;
|
151 |
+
|
152 |
+
// Type conversions are performed on the CPU for CPU-GPU copies and on
|
153 |
+
// the src device for GPU-GPU copies.
|
154 |
+
if (iter.device_type(0) == kCUDA) {
|
155 |
+
dst_contig = dst.is_contiguous() ? dst : at::empty_like(dst, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
|
156 |
+
src_contig = iter.tensor(1).to(iter.dtype(0)).expand_as(dst).contiguous();
|
157 |
+
} else {
|
158 |
+
bool same_type = iter.dtype(0) == iter.dtype(1);
|
159 |
+
dst_contig = (dst.is_contiguous() && same_type) ? dst : at::empty_like(dst, iter.dtype(1), LEGACY_CONTIGUOUS_MEMORY_FORMAT);
|
160 |
+
src_contig = iter.tensor(1).expand_as(dst).contiguous();
|
161 |
+
}
|
162 |
+
|
163 |
+
// propagate the correct conjugate bit
|
164 |
+
dst_contig._set_conj(dst.is_conj());
|
165 |
+
src_contig._set_conj(iter.tensor(1).is_conj());
|
166 |
+
|
167 |
+
// perform a same-dtype copy on contiguous tensors
|
168 |
+
TORCH_INTERNAL_ASSERT(dst_contig.sizes().equals(src_contig.sizes()));
|
169 |
+
TORCH_INTERNAL_ASSERT(dst_contig.scalar_type() == src_contig.scalar_type());
|
170 |
+
dst_contig.copy_(src_contig, non_blocking);
|
171 |
+
|
172 |
+
// if necessary, copy back into dst
|
173 |
+
if (!dst_contig.is_same(dst)) {
|
174 |
+
TORCH_INTERNAL_ASSERT(dst_contig.device() == dst.device());
|
175 |
+
dst.copy_(dst_contig, non_blocking);
|
176 |
+
}
|
177 |
+
return;
|
178 |
+
}
|
179 |
+
|
180 |
+
// Copy on GPU (or between GPUs)
|
181 |
+
if (dst_device.is_cuda() && src_device.is_cuda()) {
|
182 |
+
copy_device_to_device(iter, non_blocking);
|
183 |
+
return;
|
184 |
+
}
|
185 |
+
|
186 |
+
// Copy between CPU and GPU
|
187 |
+
cuda::OptionalCUDAGuard device_guard;
|
188 |
+
cudaMemcpyKind kind;
|
189 |
+
if (dst_device.is_cuda() && src_device.is_cpu()) {
|
190 |
+
device_guard.set_device(dst_device);
|
191 |
+
kind = cudaMemcpyHostToDevice;
|
192 |
+
} else if (dst_device.is_cpu() && src_device.is_cuda()) {
|
193 |
+
device_guard.set_device(src_device);
|
194 |
+
kind = cudaMemcpyDeviceToHost;
|
195 |
+
} else {
|
196 |
+
TORCH_INTERNAL_ASSERT(false, "unsupported devices in GPU copy_()");
|
197 |
+
}
|
198 |
+
|
199 |
+
void* dst = iter.data_ptr(0);
|
200 |
+
void* src = iter.data_ptr(1);
|
201 |
+
int64_t nbytes = iter.numel() * iter.element_size(0);
|
202 |
+
CUDAStream stream = getCurrentCUDAStream();
|
203 |
+
|
204 |
+
if (non_blocking) {
|
205 |
+
AT_CUDA_CHECK(cudaMemcpyAsync(dst, src, nbytes, kind, stream));
|
206 |
+
void* ptr = (dst_device == kCPU ? dst : src);
|
207 |
+
AT_CUDA_CHECK(THCCachingHostAllocator_recordEvent(ptr, stream));
|
208 |
+
} else {
|
209 |
+
#if HIP_VERSION >= 301
|
210 |
+
AT_CUDA_CHECK(hipMemcpyWithStream(dst, src, nbytes, kind, stream));
|
211 |
+
#else
|
212 |
+
AT_CUDA_CHECK(cudaMemcpyAsync(dst, src, nbytes, kind, stream));
|
213 |
+
AT_CUDA_CHECK(cudaStreamSynchronize(stream));
|
214 |
+
#endif
|
215 |
+
}
|
216 |
+
|
217 |
+
if (iter.tensor(0).is_conj() != iter.tensor(1).is_conj()) {
|
218 |
+
iter.tensor(0).conj_physical_();
|
219 |
+
}
|
220 |
+
}
|
221 |
+
|
222 |
+
REGISTER_DISPATCH(copy_stub, ©_kernel_cuda);
|
223 |
+
|
224 |
+
} // namespace native
|
225 |
+
} // namespace at
|
cuda_code/CudaAllocator_2.cu
ADDED
@@ -0,0 +1,343 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
//============================================================================
|
2 |
+
// Copyright (c) Kitware, Inc.
|
3 |
+
// All rights reserved.
|
4 |
+
// See LICENSE.txt for details.
|
5 |
+
//
|
6 |
+
// This software is distributed WITHOUT ANY WARRANTY; without even
|
7 |
+
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
8 |
+
// PURPOSE. See the above copyright notice for more information.
|
9 |
+
//============================================================================
|
10 |
+
|
11 |
+
#include <cstdlib>
|
12 |
+
#include <mutex>
|
13 |
+
#include <vtkm/cont/Logging.h>
|
14 |
+
#include <vtkm/cont/RuntimeDeviceInformation.h>
|
15 |
+
#include <vtkm/cont/cuda/ErrorCuda.h>
|
16 |
+
#include <vtkm/cont/cuda/internal/CudaAllocator.h>
|
17 |
+
#include <vtkm/cont/cuda/internal/DeviceAdapterTagCuda.h>
|
18 |
+
#include <vtkm/cont/cuda/internal/RuntimeDeviceConfigurationCuda.h>
|
19 |
+
#define NO_VTKM_MANAGED_MEMORY "NO_VTKM_MANAGED_MEMORY"
|
20 |
+
|
21 |
+
#include <mutex>
|
22 |
+
#include <vector>
|
23 |
+
|
24 |
+
VTKM_THIRDPARTY_PRE_INCLUDE
|
25 |
+
#include <cuda_runtime.h>
|
26 |
+
VTKM_THIRDPARTY_POST_INCLUDE
|
27 |
+
|
28 |
+
// These static vars are in an anon namespace to work around MSVC linker issues.
|
29 |
+
namespace
|
30 |
+
{
|
31 |
+
#if CUDART_VERSION >= 8000
|
32 |
+
// Has CudaAllocator::Initialize been called by any thread?
|
33 |
+
static std::once_flag IsInitialized;
|
34 |
+
#endif
|
35 |
+
|
36 |
+
// Holds how VTK-m currently allocates memory.
|
37 |
+
// When VTK-m is initialized we set this based on the hardware support ( HardwareSupportsManagedMemory ).
|
38 |
+
// The user can explicitly disable managed memory through an enviornment variable
|
39 |
+
// or by calling a function on the CudaAllocator.
|
40 |
+
// Likewise managed memory can be re-enabled by calling a function on CudaAllocator
|
41 |
+
// if and only if the underlying hardware supports pageable managed memory
|
42 |
+
static bool ManagedMemoryEnabled = false;
|
43 |
+
|
44 |
+
// True if concurrent pagable managed memory is supported by the machines hardware.
|
45 |
+
static bool HardwareSupportsManagedMemory = false;
|
46 |
+
|
47 |
+
// Avoid overhead of cudaMemAdvise and cudaMemPrefetchAsync for small buffers.
|
48 |
+
// This value should be > 0 or else these functions will error out.
|
49 |
+
static std::size_t Threshold = 1 << 20;
|
50 |
+
}
|
51 |
+
|
52 |
+
namespace vtkm
|
53 |
+
{
|
54 |
+
namespace cont
|
55 |
+
{
|
56 |
+
namespace cuda
|
57 |
+
{
|
58 |
+
namespace internal
|
59 |
+
{
|
60 |
+
|
61 |
+
bool CudaAllocator::UsingManagedMemory()
|
62 |
+
{
|
63 |
+
CudaAllocator::Initialize();
|
64 |
+
return ManagedMemoryEnabled;
|
65 |
+
}
|
66 |
+
|
67 |
+
void CudaAllocator::ForceManagedMemoryOff()
|
68 |
+
{
|
69 |
+
if (HardwareSupportsManagedMemory)
|
70 |
+
{
|
71 |
+
ManagedMemoryEnabled = false;
|
72 |
+
VTKM_LOG_F(vtkm::cont::LogLevel::Info, "CudaAllocator disabling managed memory");
|
73 |
+
}
|
74 |
+
else
|
75 |
+
{
|
76 |
+
VTKM_LOG_F(
|
77 |
+
vtkm::cont::LogLevel::Warn,
|
78 |
+
"CudaAllocator trying to disable managed memory on hardware that doesn't support it");
|
79 |
+
}
|
80 |
+
}
|
81 |
+
|
82 |
+
void CudaAllocator::ForceManagedMemoryOn()
|
83 |
+
{
|
84 |
+
if (HardwareSupportsManagedMemory)
|
85 |
+
{
|
86 |
+
ManagedMemoryEnabled = true;
|
87 |
+
VTKM_LOG_F(vtkm::cont::LogLevel::Info, "CudaAllocator enabling managed memory");
|
88 |
+
}
|
89 |
+
else
|
90 |
+
{
|
91 |
+
VTKM_LOG_F(vtkm::cont::LogLevel::Warn,
|
92 |
+
"CudaAllocator trying to enable managed memory on hardware that doesn't support it");
|
93 |
+
}
|
94 |
+
}
|
95 |
+
|
96 |
+
bool CudaAllocator::IsDevicePointer(const void* ptr)
|
97 |
+
{
|
98 |
+
CudaAllocator::Initialize();
|
99 |
+
if (!ptr)
|
100 |
+
{
|
101 |
+
return false;
|
102 |
+
}
|
103 |
+
|
104 |
+
cudaPointerAttributes attr;
|
105 |
+
cudaError_t err = cudaPointerGetAttributes(&attr, ptr);
|
106 |
+
// This function will return invalid value if the pointer is unknown to the
|
107 |
+
// cuda runtime. Manually catch this value since it's not really an error.
|
108 |
+
if (err == cudaErrorInvalidValue)
|
109 |
+
{
|
110 |
+
cudaGetLastError(); // Clear the error so we don't raise it later...
|
111 |
+
return false;
|
112 |
+
}
|
113 |
+
VTKM_CUDA_CALL(err /*= cudaPointerGetAttributes(&attr, ptr)*/);
|
114 |
+
return attr.devicePointer == ptr;
|
115 |
+
}
|
116 |
+
|
117 |
+
bool CudaAllocator::IsManagedPointer(const void* ptr)
|
118 |
+
{
|
119 |
+
if (!ptr || !ManagedMemoryEnabled)
|
120 |
+
{
|
121 |
+
return false;
|
122 |
+
}
|
123 |
+
|
124 |
+
cudaPointerAttributes attr;
|
125 |
+
cudaError_t err = cudaPointerGetAttributes(&attr, ptr);
|
126 |
+
// This function will return invalid value if the pointer is unknown to the
|
127 |
+
// cuda runtime. Manually catch this value since it's not really an error.
|
128 |
+
if (err == cudaErrorInvalidValue)
|
129 |
+
{
|
130 |
+
cudaGetLastError(); // Clear the error so we don't raise it later...
|
131 |
+
return false;
|
132 |
+
}
|
133 |
+
VTKM_CUDA_CALL(err /*= cudaPointerGetAttributes(&attr, ptr)*/);
|
134 |
+
#if CUDART_VERSION < 10000 // isManaged deprecated in CUDA 10.
|
135 |
+
return attr.isManaged != 0;
|
136 |
+
#else // attr.type doesn't exist before CUDA 10
|
137 |
+
return attr.type == cudaMemoryTypeManaged;
|
138 |
+
#endif
|
139 |
+
}
|
140 |
+
|
141 |
+
void* CudaAllocator::Allocate(std::size_t numBytes)
|
142 |
+
{
|
143 |
+
CudaAllocator::Initialize();
|
144 |
+
// When numBytes is zero cudaMallocManaged returns an error and the behavior
|
145 |
+
// of cudaMalloc is not documented. Just return nullptr.
|
146 |
+
if (numBytes == 0)
|
147 |
+
{
|
148 |
+
return nullptr;
|
149 |
+
}
|
150 |
+
|
151 |
+
void* ptr = nullptr;
|
152 |
+
if (ManagedMemoryEnabled)
|
153 |
+
{
|
154 |
+
VTKM_CUDA_CALL(cudaMallocManaged(&ptr, numBytes));
|
155 |
+
}
|
156 |
+
else
|
157 |
+
{
|
158 |
+
VTKM_CUDA_CALL(cudaMalloc(&ptr, numBytes));
|
159 |
+
}
|
160 |
+
|
161 |
+
{
|
162 |
+
VTKM_LOG_F(vtkm::cont::LogLevel::MemExec,
|
163 |
+
"Allocated CUDA array of %s at %p.",
|
164 |
+
vtkm::cont::GetSizeString(numBytes).c_str(),
|
165 |
+
ptr);
|
166 |
+
}
|
167 |
+
|
168 |
+
return ptr;
|
169 |
+
}
|
170 |
+
|
171 |
+
void* CudaAllocator::AllocateUnManaged(std::size_t numBytes)
|
172 |
+
{
|
173 |
+
void* ptr = nullptr;
|
174 |
+
VTKM_CUDA_CALL(cudaMalloc(&ptr, numBytes));
|
175 |
+
{
|
176 |
+
VTKM_LOG_F(vtkm::cont::LogLevel::MemExec,
|
177 |
+
"Allocated CUDA array of %s at %p.",
|
178 |
+
vtkm::cont::GetSizeString(numBytes).c_str(),
|
179 |
+
ptr);
|
180 |
+
}
|
181 |
+
return ptr;
|
182 |
+
}
|
183 |
+
|
184 |
+
void CudaAllocator::Free(void* ptr)
|
185 |
+
{
|
186 |
+
VTKM_LOG_F(vtkm::cont::LogLevel::MemExec, "Freeing CUDA allocation at %p.", ptr);
|
187 |
+
VTKM_CUDA_CALL(cudaFree(ptr));
|
188 |
+
}
|
189 |
+
|
190 |
+
void CudaAllocator::FreeDeferred(void* ptr, std::size_t numBytes)
|
191 |
+
{
|
192 |
+
static std::mutex deferredMutex;
|
193 |
+
static std::vector<void*> deferredPointers;
|
194 |
+
static std::size_t deferredSize = 0;
|
195 |
+
constexpr std::size_t bufferLimit = 2 << 24; //16MB buffer
|
196 |
+
|
197 |
+
{
|
198 |
+
VTKM_LOG_F(vtkm::cont::LogLevel::MemExec,
|
199 |
+
"Deferring free of CUDA allocation at %p of %s.",
|
200 |
+
ptr,
|
201 |
+
vtkm::cont::GetSizeString(numBytes).c_str());
|
202 |
+
}
|
203 |
+
|
204 |
+
std::vector<void*> toFree;
|
205 |
+
// critical section
|
206 |
+
{
|
207 |
+
std::lock_guard<std::mutex> lock(deferredMutex);
|
208 |
+
deferredPointers.push_back(ptr);
|
209 |
+
deferredSize += numBytes;
|
210 |
+
if (deferredSize >= bufferLimit)
|
211 |
+
{
|
212 |
+
toFree.swap(deferredPointers);
|
213 |
+
deferredSize = 0;
|
214 |
+
}
|
215 |
+
}
|
216 |
+
|
217 |
+
for (auto&& p : toFree)
|
218 |
+
{
|
219 |
+
VTKM_LOG_F(vtkm::cont::LogLevel::MemExec, "Freeing deferred CUDA allocation at %p.", p);
|
220 |
+
VTKM_CUDA_CALL(cudaFree(p));
|
221 |
+
}
|
222 |
+
}
|
223 |
+
|
224 |
+
void CudaAllocator::PrepareForControl(const void* ptr, std::size_t numBytes)
|
225 |
+
{
|
226 |
+
if (IsManagedPointer(ptr) && numBytes >= Threshold)
|
227 |
+
{
|
228 |
+
#if CUDART_VERSION >= 8000
|
229 |
+
// TODO these hints need to be benchmarked and adjusted once we start
|
230 |
+
// sharing the pointers between cont/exec
|
231 |
+
VTKM_CUDA_CALL(cudaMemAdvise(ptr, numBytes, cudaMemAdviseSetAccessedBy, cudaCpuDeviceId));
|
232 |
+
VTKM_CUDA_CALL(cudaMemPrefetchAsync(ptr, numBytes, cudaCpuDeviceId, cudaStreamPerThread));
|
233 |
+
#endif // CUDA >= 8.0
|
234 |
+
}
|
235 |
+
}
|
236 |
+
|
237 |
+
void CudaAllocator::PrepareForInput(const void* ptr, std::size_t numBytes)
|
238 |
+
{
|
239 |
+
if (IsManagedPointer(ptr) && numBytes >= Threshold)
|
240 |
+
{
|
241 |
+
#if CUDART_VERSION >= 8000
|
242 |
+
vtkm::Id dev;
|
243 |
+
vtkm::cont::RuntimeDeviceInformation()
|
244 |
+
.GetRuntimeConfiguration(vtkm::cont::DeviceAdapterTagCuda())
|
245 |
+
.GetDeviceInstance(dev);
|
246 |
+
// VTKM_CUDA_CALL(cudaMemAdvise(ptr, numBytes, cudaMemAdviseSetPreferredLocation, dev));
|
247 |
+
// VTKM_CUDA_CALL(cudaMemAdvise(ptr, numBytes, cudaMemAdviseSetReadMostly, dev));
|
248 |
+
VTKM_CUDA_CALL(cudaMemAdvise(ptr, numBytes, cudaMemAdviseSetAccessedBy, dev));
|
249 |
+
VTKM_CUDA_CALL(cudaMemPrefetchAsync(ptr, numBytes, dev, cudaStreamPerThread));
|
250 |
+
#endif // CUDA >= 8.0
|
251 |
+
}
|
252 |
+
}
|
253 |
+
|
254 |
+
void CudaAllocator::PrepareForOutput(const void* ptr, std::size_t numBytes)
|
255 |
+
{
|
256 |
+
if (IsManagedPointer(ptr) && numBytes >= Threshold)
|
257 |
+
{
|
258 |
+
#if CUDART_VERSION >= 8000
|
259 |
+
vtkm::Id dev;
|
260 |
+
vtkm::cont::RuntimeDeviceInformation()
|
261 |
+
.GetRuntimeConfiguration(vtkm::cont::DeviceAdapterTagCuda())
|
262 |
+
.GetDeviceInstance(dev);
|
263 |
+
// VTKM_CUDA_CALL(cudaMemAdvise(ptr, numBytes, cudaMemAdviseSetPreferredLocation, dev));
|
264 |
+
// VTKM_CUDA_CALL(cudaMemAdvise(ptr, numBytes, cudaMemAdviseUnsetReadMostly, dev));
|
265 |
+
VTKM_CUDA_CALL(cudaMemAdvise(ptr, numBytes, cudaMemAdviseSetAccessedBy, dev));
|
266 |
+
VTKM_CUDA_CALL(cudaMemPrefetchAsync(ptr, numBytes, dev, cudaStreamPerThread));
|
267 |
+
#endif // CUDA >= 8.0
|
268 |
+
}
|
269 |
+
}
|
270 |
+
|
271 |
+
void CudaAllocator::PrepareForInPlace(const void* ptr, std::size_t numBytes)
|
272 |
+
{
|
273 |
+
if (IsManagedPointer(ptr) && numBytes >= Threshold)
|
274 |
+
{
|
275 |
+
#if CUDART_VERSION >= 8000
|
276 |
+
vtkm::Id dev;
|
277 |
+
vtkm::cont::RuntimeDeviceInformation()
|
278 |
+
.GetRuntimeConfiguration(vtkm::cont::DeviceAdapterTagCuda())
|
279 |
+
.GetDeviceInstance(dev);
|
280 |
+
// VTKM_CUDA_CALL(cudaMemAdvise(ptr, numBytes, cudaMemAdviseSetPreferredLocation, dev));
|
281 |
+
// VTKM_CUDA_CALL(cudaMemAdvise(ptr, numBytes, cudaMemAdviseUnsetReadMostly, dev));
|
282 |
+
VTKM_CUDA_CALL(cudaMemAdvise(ptr, numBytes, cudaMemAdviseSetAccessedBy, dev));
|
283 |
+
VTKM_CUDA_CALL(cudaMemPrefetchAsync(ptr, numBytes, dev, cudaStreamPerThread));
|
284 |
+
#endif // CUDA >= 8.0
|
285 |
+
}
|
286 |
+
}
|
287 |
+
|
288 |
+
void CudaAllocator::Initialize()
|
289 |
+
{
|
290 |
+
#if CUDART_VERSION >= 8000
|
291 |
+
std::call_once(IsInitialized, []() {
|
292 |
+
auto cudaDeviceConfig = dynamic_cast<
|
293 |
+
vtkm::cont::internal::RuntimeDeviceConfiguration<vtkm::cont::DeviceAdapterTagCuda>&>(
|
294 |
+
vtkm::cont::RuntimeDeviceInformation{}.GetRuntimeConfiguration(
|
295 |
+
vtkm::cont::DeviceAdapterTagCuda()));
|
296 |
+
vtkm::Id numDevices;
|
297 |
+
cudaDeviceConfig.GetMaxDevices(numDevices);
|
298 |
+
|
299 |
+
if (numDevices == 0)
|
300 |
+
{
|
301 |
+
return;
|
302 |
+
}
|
303 |
+
|
304 |
+
// Check all devices, use the feature set supported by all
|
305 |
+
bool managedMemorySupported = true;
|
306 |
+
std::vector<cudaDeviceProp> cudaProp;
|
307 |
+
cudaDeviceConfig.GetCudaDeviceProp(cudaProp);
|
308 |
+
for (int i = 0; i < numDevices && managedMemorySupported; ++i)
|
309 |
+
{
|
310 |
+
// We check for concurrentManagedAccess, as devices with only the
|
311 |
+
// managedAccess property have extra synchronization requirements.
|
312 |
+
managedMemorySupported = managedMemorySupported && cudaProp[i].concurrentManagedAccess;
|
313 |
+
}
|
314 |
+
|
315 |
+
HardwareSupportsManagedMemory = managedMemorySupported;
|
316 |
+
ManagedMemoryEnabled = managedMemorySupported;
|
317 |
+
|
318 |
+
VTKM_LOG_F(vtkm::cont::LogLevel::Info,
|
319 |
+
"CudaAllocator hardware %s managed memory",
|
320 |
+
HardwareSupportsManagedMemory ? "supports" : "doesn't support");
|
321 |
+
|
322 |
+
// Check if users want to disable managed memory
|
323 |
+
#pragma warning(push)
|
324 |
+
// getenv is not thread safe on windows but since it's inside a call_once block so
|
325 |
+
// it's fine to suppress the warning here.
|
326 |
+
#pragma warning(disable : 4996)
|
327 |
+
const char* buf = std::getenv(NO_VTKM_MANAGED_MEMORY);
|
328 |
+
#pragma warning(pop)
|
329 |
+
if (managedMemorySupported && buf != nullptr)
|
330 |
+
{ //only makes sense to disable managed memory if the hardware supports it
|
331 |
+
//in the first place
|
332 |
+
ManagedMemoryEnabled = false;
|
333 |
+
VTKM_LOG_F(
|
334 |
+
vtkm::cont::LogLevel::Info,
|
335 |
+
"CudaAllocator disabling managed memory due to NO_VTKM_MANAGED_MEMORY env variable");
|
336 |
+
}
|
337 |
+
});
|
338 |
+
#endif
|
339 |
+
}
|
340 |
+
}
|
341 |
+
}
|
342 |
+
}
|
343 |
+
} // end namespace vtkm::cont::cuda::internal
|
cuda_code/CudaKernel.cu
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
typedef struct KernelData
|
2 |
+
{
|
3 |
+
float a;
|
4 |
+
float b;
|
5 |
+
float result;
|
6 |
+
} KernelData;
|
7 |
+
|
8 |
+
__global__ void vectorAddition(KernelData* data)
|
9 |
+
{
|
10 |
+
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
11 |
+
data[index].result = data[index].a + data[index].b;
|
12 |
+
}
|
cuda_code/CudaKernel_11.cu
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include<cuda.h>
|
2 |
+
#include<iostream>
|
3 |
+
#include "CudaKernel.h"
|
4 |
+
|
5 |
+
using namespace std;
|
6 |
+
|
7 |
+
#define CudaSafeCall( err ) __cudaSafeCall( err, __FILE__, __LINE__ )
|
8 |
+
#define CudaCheckError() __cudaCheckError( __FILE__, __LINE__ )
|
9 |
+
#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__)
|
10 |
+
|
11 |
+
|
12 |
+
texture <float,2,cudaReadModeElementType> tex1;
|
13 |
+
|
14 |
+
static cudaArray *cuArray = NULL;
|
15 |
+
|
16 |
+
//Kernel for x direction sobel
|
17 |
+
__global__ void implement_x_sobel(float* output,int width,int height,int widthStep)
|
18 |
+
{
|
19 |
+
int x = blockIdx.x * blockDim.x + threadIdx.x;
|
20 |
+
int y = blockIdx.y * blockDim.y + threadIdx.y;
|
21 |
+
|
22 |
+
//Make sure that thread is inside image bounds
|
23 |
+
if(x<width && y<height)
|
24 |
+
{
|
25 |
+
float output_value = (-1*tex2D(tex1,x-1,y-1)) + (0*tex2D(tex1,x,y-1)) + (1*tex2D(tex1,x+1,y-1))
|
26 |
+
+ (-2*tex2D(tex1,x-1,y)) + (0*tex2D(tex1,x,y)) + (2*tex2D(tex1,x+1,y))
|
27 |
+
+ (-1*tex2D(tex1,x-1,y+1)) + (0*tex2D(tex1,x,y+1)) + (1*tex2D(tex1,x+1,y+1));
|
28 |
+
|
29 |
+
output[y*widthStep+x]=output_value;
|
30 |
+
}
|
31 |
+
|
32 |
+
}
|
33 |
+
|
34 |
+
|
35 |
+
inline void __checkCudaErrors( cudaError err, const char *file, const int line )
|
36 |
+
{
|
37 |
+
if( cudaSuccess != err) {
|
38 |
+
fprintf(stderr, "%s(%i) : CUDA Runtime API error %d: %s.\n",
|
39 |
+
file, line, (int)err, cudaGetErrorString( err ) );
|
40 |
+
exit(-1);
|
41 |
+
}
|
42 |
+
}
|
43 |
+
|
44 |
+
//Host Code
|
45 |
+
inline void __cudaSafeCall( cudaError err, const char *file, const int line )
|
46 |
+
{
|
47 |
+
#ifdef CUDA_ERROR_CHECK
|
48 |
+
if ( cudaSuccess != err )
|
49 |
+
{
|
50 |
+
printf("cudaSafeCall() failed at %s:%i : %s\n",
|
51 |
+
file, line, cudaGetErrorString( err ) );
|
52 |
+
exit( -1 );
|
53 |
+
}
|
54 |
+
#endif
|
55 |
+
|
56 |
+
return;
|
57 |
+
}
|
58 |
+
inline void __cudaCheckError( const char *file, const int line )
|
59 |
+
{
|
60 |
+
#ifdef CUDA_ERROR_CHECK
|
61 |
+
cudaError err = cudaGetLastError();
|
62 |
+
if ( cudaSuccess != err )
|
63 |
+
{
|
64 |
+
printf("cudaCheckError() failed at %s:%i : %s\n",
|
65 |
+
file, line, cudaGetErrorString( err ) );
|
66 |
+
exit( -1 );
|
67 |
+
}
|
68 |
+
#endif
|
69 |
+
|
70 |
+
return;
|
71 |
+
}
|
72 |
+
|
73 |
+
void kernelcall(float* input,float* output,int width,int height,int widthStep)
|
74 |
+
{
|
75 |
+
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<float>();
|
76 |
+
|
77 |
+
CudaSafeCall(cudaMallocArray(&cuArray,&channelDesc,width,height));
|
78 |
+
|
79 |
+
//Never use 1D memory copy if host and device pointers have different widthStep.
|
80 |
+
// You don't know the width step of CUDA array, so its better to use cudaMemcpy2D...
|
81 |
+
cudaMemcpy2DToArray(cuArray,0,0,input,widthStep,width * sizeof(float),height,cudaMemcpyHostToDevice);
|
82 |
+
|
83 |
+
cudaBindTextureToArray(tex1,cuArray,channelDesc);
|
84 |
+
|
85 |
+
float * D_output_x;
|
86 |
+
CudaSafeCall(cudaMalloc(&D_output_x,widthStep*height));
|
87 |
+
|
88 |
+
dim3 blocksize(16,16);
|
89 |
+
dim3 gridsize;
|
90 |
+
gridsize.x=(width+blocksize.x-1)/blocksize.x;
|
91 |
+
gridsize.y=(height+blocksize.y-1)/blocksize.y;
|
92 |
+
|
93 |
+
implement_x_sobel<<<gridsize,blocksize>>>(D_output_x,width,height,widthStep/sizeof(float));
|
94 |
+
|
95 |
+
cudaThreadSynchronize();
|
96 |
+
CudaCheckError();
|
97 |
+
|
98 |
+
//Don't forget to unbind the texture
|
99 |
+
cudaUnbindTexture(tex1);
|
100 |
+
|
101 |
+
CudaSafeCall(cudaMemcpy(output,D_output_x,height*widthStep,cudaMemcpyDeviceToHost));
|
102 |
+
|
103 |
+
cudaFree(D_output_x);
|
104 |
+
cudaFreeArray(cuArray);
|
105 |
+
}
|
cuda_code/CudnnMaxPool_2.cu
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include "gpu_runtime.h"
|
2 |
+
|
3 |
+
int CuDNN_DLGpuMax_Pooling2d(const DLArrayHandle input,const size_t kernel_H, const size_t kernel_W, DLArrayHandle output, const size_t padding, const size_t stride, DLStreamHandle stream_handle = NULL, ProfilerHandle p = NULL){
|
4 |
+
// create handle
|
5 |
+
// CUDNN_CALL(cudnnCreate(&cudnn));
|
6 |
+
int dev_id = (input->ctx).device_id;
|
7 |
+
cudnn_init(dev_id, stream_handle);
|
8 |
+
|
9 |
+
// input
|
10 |
+
size_t input_N = input->shape[0];
|
11 |
+
size_t input_C = input->shape[1];
|
12 |
+
size_t input_H = input->shape[2];
|
13 |
+
size_t input_W = input->shape[3];
|
14 |
+
const float * input_data = (const float*) input->data;
|
15 |
+
|
16 |
+
//output
|
17 |
+
size_t output_H = output->shape[2];
|
18 |
+
size_t output_W = output->shape[3];
|
19 |
+
float *output_data = (float *) output->data;
|
20 |
+
if(p != NULL){
|
21 |
+
int size_input = 1, size_output = 1;
|
22 |
+
for(int i = 0; i < input -> ndim; i++)
|
23 |
+
size_input *= input -> shape[i];
|
24 |
+
for(int i = 0; i < output -> ndim; i++)
|
25 |
+
size_output *= output -> shape[i];
|
26 |
+
p -> input_memory = 1.0 * (size_input) * sizeof(float) / 1024 / 1024;
|
27 |
+
p -> output_memory = 1.0 * size_output * sizeof(float) / 1024 / 1024;
|
28 |
+
p -> workspace_memory = 0;
|
29 |
+
cudaEvent_t start, stop;
|
30 |
+
cudaEventCreate(&start);
|
31 |
+
cudaEventRecord(start,0);
|
32 |
+
//pooling descriptor
|
33 |
+
cudnnPoolingDescriptor_t maxpool_desc;
|
34 |
+
CUDNN_CALL(cudnnCreatePoolingDescriptor(&maxpool_desc));
|
35 |
+
// std::cout<<"padding = "<<padding<<" stride = "<<stride<<std::endl;
|
36 |
+
// CUDNN_CALL(cudnnSetPooling2dDescriptor(maxpool_desc,CUDNN_POOLING_MAX,
|
37 |
+
// CUDNN_PROPAGATE_NAN, kernel_H, kernel_W, padding, padding, stride, stride));
|
38 |
+
CUDNN_CALL(cudnnSetPooling2dDescriptor(maxpool_desc,CUDNN_POOLING_MAX_DETERMINISTIC,
|
39 |
+
CUDNN_PROPAGATE_NAN, kernel_H, kernel_W, padding, padding, stride, stride));
|
40 |
+
|
41 |
+
//input descriptor
|
42 |
+
cudnnTensorDescriptor_t input_desc;
|
43 |
+
CUDNN_CALL(cudnnCreateTensorDescriptor(&input_desc));
|
44 |
+
CUDNN_CALL(cudnnSetTensor4dDescriptor(input_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, input_N, input_C, input_H, input_W));
|
45 |
+
|
46 |
+
//output descriptor
|
47 |
+
cudnnTensorDescriptor_t output_desc;
|
48 |
+
CUDNN_CALL(cudnnCreateTensorDescriptor(&output_desc));
|
49 |
+
CUDNN_CALL(cudnnSetTensor4dDescriptor(output_desc,CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, input_N, input_C, output_H, output_W));
|
50 |
+
|
51 |
+
float alpha = 1.0f;
|
52 |
+
float beta = 0.0f;
|
53 |
+
|
54 |
+
CUDNN_CALL(cudnnPoolingForward(cudnn_map[dev_id], maxpool_desc,
|
55 |
+
&alpha, input_desc, input_data, &beta, output_desc, output_data));
|
56 |
+
|
57 |
+
CUDNN_CALL(cudnnDestroyTensorDescriptor(input_desc));
|
58 |
+
CUDNN_CALL(cudnnDestroyTensorDescriptor(output_desc));
|
59 |
+
CUDNN_CALL(cudnnDestroyPoolingDescriptor(maxpool_desc));
|
60 |
+
|
61 |
+
float elapsedTime;
|
62 |
+
cudaEventCreate(&stop);
|
63 |
+
cudaEventRecord(stop,0);
|
64 |
+
cudaEventSynchronize(stop);
|
65 |
+
cudaEventElapsedTime(&elapsedTime, start,stop);
|
66 |
+
cudaEventDestroy(start);
|
67 |
+
cudaEventDestroy(stop);
|
68 |
+
p->time = elapsedTime;
|
69 |
+
}
|
70 |
+
else{
|
71 |
+
//pooling descriptor
|
72 |
+
cudnnPoolingDescriptor_t maxpool_desc;
|
73 |
+
CUDNN_CALL(cudnnCreatePoolingDescriptor(&maxpool_desc));
|
74 |
+
// std::cout<<"padding = "<<padding<<" stride = "<<stride<<std::endl;
|
75 |
+
// CUDNN_CALL(cudnnSetPooling2dDescriptor(maxpool_desc,CUDNN_POOLING_MAX,
|
76 |
+
// CUDNN_PROPAGATE_NAN, kernel_H, kernel_W, padding, padding, stride, stride));
|
77 |
+
CUDNN_CALL(cudnnSetPooling2dDescriptor(maxpool_desc,CUDNN_POOLING_MAX_DETERMINISTIC,
|
78 |
+
CUDNN_PROPAGATE_NAN, kernel_H, kernel_W, padding, padding, stride, stride));
|
79 |
+
|
80 |
+
//input descriptor
|
81 |
+
cudnnTensorDescriptor_t input_desc;
|
82 |
+
CUDNN_CALL(cudnnCreateTensorDescriptor(&input_desc));
|
83 |
+
CUDNN_CALL(cudnnSetTensor4dDescriptor(input_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, input_N, input_C, input_H, input_W));
|
84 |
+
|
85 |
+
//output descriptor
|
86 |
+
cudnnTensorDescriptor_t output_desc;
|
87 |
+
CUDNN_CALL(cudnnCreateTensorDescriptor(&output_desc));
|
88 |
+
CUDNN_CALL(cudnnSetTensor4dDescriptor(output_desc,CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, input_N, input_C, output_H, output_W));
|
89 |
+
|
90 |
+
float alpha = 1.0f;
|
91 |
+
float beta = 0.0f;
|
92 |
+
|
93 |
+
CUDNN_CALL(cudnnPoolingForward(cudnn_map[dev_id], maxpool_desc,
|
94 |
+
&alpha, input_desc, input_data, &beta, output_desc, output_data));
|
95 |
+
|
96 |
+
CUDNN_CALL(cudnnDestroyTensorDescriptor(input_desc));
|
97 |
+
CUDNN_CALL(cudnnDestroyTensorDescriptor(output_desc));
|
98 |
+
CUDNN_CALL(cudnnDestroyPoolingDescriptor(maxpool_desc));
|
99 |
+
}
|
100 |
+
return 0;
|
101 |
+
}
|
102 |
+
|
103 |
+
int CuDNN_DLGpuMax_Pooling2d_gradient(const DLArrayHandle output_Y,const DLArrayHandle gradient_Y,const DLArrayHandle input_X, const size_t kernel_H, const size_t kernel_W, DLArrayHandle gradient_X, const size_t padding, const size_t stride, DLStreamHandle stream_handle = NULL, ProfilerHandle p = NULL){
|
104 |
+
// create handle
|
105 |
+
// CUDNN_CALL(cudnnCreate(&cudnn));
|
106 |
+
int dev_id = (input_X->ctx).device_id;
|
107 |
+
cudnn_init(dev_id, stream_handle);
|
108 |
+
|
109 |
+
// input
|
110 |
+
size_t input_N = input_X->shape[0];
|
111 |
+
size_t input_C = input_X->shape[1];
|
112 |
+
size_t input_H = input_X->shape[2];
|
113 |
+
size_t input_W = input_X->shape[3];
|
114 |
+
const float * input_data = (const float*) input_X->data;
|
115 |
+
float * gradient_x_data = (float *) gradient_X->data;
|
116 |
+
//output
|
117 |
+
size_t output_H = output_Y->shape[2];
|
118 |
+
size_t output_W = output_Y->shape[3];
|
119 |
+
const float *output_data = (const float *) output_Y->data;
|
120 |
+
const float *gradient_Y_data = (const float *) gradient_Y -> data;
|
121 |
+
if(p != NULL){
|
122 |
+
int size_input1 = 1, size_input2 = 1, size_input3 = 1, size_output = 1;
|
123 |
+
for(int i = 0; i < output_Y -> ndim; i++)
|
124 |
+
size_input1 *= output_Y -> shape[i];
|
125 |
+
for(int i = 0; i < gradient_Y -> ndim; i++)
|
126 |
+
size_input2 *= gradient_Y -> shape[i];
|
127 |
+
for(int i = 0; i < input_X -> ndim; i++)
|
128 |
+
size_input3 *= input_X -> shape[i];
|
129 |
+
for(int i = 0; i < gradient_X -> ndim; i++)
|
130 |
+
size_output *= gradient_X -> shape[i];
|
131 |
+
p -> input_memory = 1.0 * (size_input1 + size_input2 + size_input3) * sizeof(float) / 1024 / 1024;
|
132 |
+
p -> output_memory = 1.0 * size_output * sizeof(float) / 1024 / 1024;
|
133 |
+
p -> workspace_memory = 0;cudaEvent_t start, stop;
|
134 |
+
cudaEventCreate(&start);
|
135 |
+
cudaEventRecord(start,0);
|
136 |
+
|
137 |
+
//pooling descriptor
|
138 |
+
cudnnPoolingDescriptor_t maxpool_desc;
|
139 |
+
CUDNN_CALL(cudnnCreatePoolingDescriptor(&maxpool_desc));
|
140 |
+
// std::cout<<"padding = "<<padding<<" stride = "<<stride<<std::endl;
|
141 |
+
// CUDNN_CALL(cudnnSetPooling2dDescriptor(maxpool_desc,CUDNN_POOLING_MAX,
|
142 |
+
// CUDNN_PROPAGATE_NAN, kernel_H, kernel_W, padding, padding, stride, stride));
|
143 |
+
CUDNN_CALL(cudnnSetPooling2dDescriptor(maxpool_desc,CUDNN_POOLING_MAX_DETERMINISTIC,
|
144 |
+
CUDNN_PROPAGATE_NAN, kernel_H, kernel_W, padding, padding, stride, stride));
|
145 |
+
|
146 |
+
//input descriptor
|
147 |
+
cudnnTensorDescriptor_t input_desc;
|
148 |
+
CUDNN_CALL(cudnnCreateTensorDescriptor(&input_desc));
|
149 |
+
CUDNN_CALL(cudnnSetTensor4dDescriptor(input_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, input_N, input_C, input_H, input_W));
|
150 |
+
|
151 |
+
//output descriptor
|
152 |
+
cudnnTensorDescriptor_t output_desc;
|
153 |
+
CUDNN_CALL(cudnnCreateTensorDescriptor(&output_desc));
|
154 |
+
CUDNN_CALL(cudnnSetTensor4dDescriptor(output_desc,CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, input_N, input_C, output_H, output_W));
|
155 |
+
|
156 |
+
float alpha = 1.0f;
|
157 |
+
float beta = 0.0f;
|
158 |
+
|
159 |
+
CUDNN_CALL(cudnnPoolingBackward(cudnn_map[dev_id], maxpool_desc,
|
160 |
+
&alpha, output_desc, output_data,
|
161 |
+
output_desc, gradient_Y_data,
|
162 |
+
input_desc, input_data,
|
163 |
+
&beta, input_desc,gradient_x_data));
|
164 |
+
CUDNN_CALL(cudnnDestroyTensorDescriptor(input_desc));
|
165 |
+
CUDNN_CALL(cudnnDestroyTensorDescriptor(output_desc));
|
166 |
+
CUDNN_CALL(cudnnDestroyPoolingDescriptor(maxpool_desc));
|
167 |
+
|
168 |
+
float elapsedTime;
|
169 |
+
cudaEventCreate(&stop);
|
170 |
+
cudaEventRecord(stop,0);
|
171 |
+
cudaEventSynchronize(stop);
|
172 |
+
cudaEventElapsedTime(&elapsedTime, start,stop);
|
173 |
+
cudaEventDestroy(start);
|
174 |
+
cudaEventDestroy(stop);
|
175 |
+
p->time = elapsedTime;
|
176 |
+
}
|
177 |
+
else{
|
178 |
+
//pooling descriptor
|
179 |
+
cudnnPoolingDescriptor_t maxpool_desc;
|
180 |
+
CUDNN_CALL(cudnnCreatePoolingDescriptor(&maxpool_desc));
|
181 |
+
// std::cout<<"padding = "<<padding<<" stride = "<<stride<<std::endl;
|
182 |
+
// CUDNN_CALL(cudnnSetPooling2dDescriptor(maxpool_desc,CUDNN_POOLING_MAX,
|
183 |
+
// CUDNN_PROPAGATE_NAN, kernel_H, kernel_W, padding, padding, stride, stride));
|
184 |
+
CUDNN_CALL(cudnnSetPooling2dDescriptor(maxpool_desc,CUDNN_POOLING_MAX_DETERMINISTIC,
|
185 |
+
CUDNN_PROPAGATE_NAN, kernel_H, kernel_W, padding, padding, stride, stride));
|
186 |
+
|
187 |
+
//input descriptor
|
188 |
+
cudnnTensorDescriptor_t input_desc;
|
189 |
+
CUDNN_CALL(cudnnCreateTensorDescriptor(&input_desc));
|
190 |
+
CUDNN_CALL(cudnnSetTensor4dDescriptor(input_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, input_N, input_C, input_H, input_W));
|
191 |
+
|
192 |
+
//output descriptor
|
193 |
+
cudnnTensorDescriptor_t output_desc;
|
194 |
+
CUDNN_CALL(cudnnCreateTensorDescriptor(&output_desc));
|
195 |
+
CUDNN_CALL(cudnnSetTensor4dDescriptor(output_desc,CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, input_N, input_C, output_H, output_W));
|
196 |
+
|
197 |
+
float alpha = 1.0f;
|
198 |
+
float beta = 0.0f;
|
199 |
+
|
200 |
+
CUDNN_CALL(cudnnPoolingBackward(cudnn_map[dev_id], maxpool_desc,
|
201 |
+
&alpha, output_desc, output_data,
|
202 |
+
output_desc, gradient_Y_data,
|
203 |
+
input_desc, input_data,
|
204 |
+
&beta, input_desc,gradient_x_data));
|
205 |
+
CUDNN_CALL(cudnnDestroyTensorDescriptor(input_desc));
|
206 |
+
CUDNN_CALL(cudnnDestroyTensorDescriptor(output_desc));
|
207 |
+
CUDNN_CALL(cudnnDestroyPoolingDescriptor(maxpool_desc));
|
208 |
+
}
|
209 |
+
return 0;
|
210 |
+
}
|
cuda_code/CustomPi.cu
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#ifdef __cplusplus
|
2 |
+
extern "C" {
|
3 |
+
#endif
|
4 |
+
|
5 |
+
struct point{
|
6 |
+
float x;
|
7 |
+
float y;
|
8 |
+
};
|
9 |
+
|
10 |
+
|
11 |
+
__global__ void pi(const struct point* A, int* res, const int nbPoint, const float ray){
|
12 |
+
const int idx = 32*blockDim.x * blockIdx.x + threadIdx.x;
|
13 |
+
if (idx < nbPoint-32*blockDim.x)
|
14 |
+
#pragma unroll 16
|
15 |
+
for (int j = 0; j < 32; j++) {
|
16 |
+
int i = idx + blockDim.x * j;
|
17 |
+
res[i] = (A[i].x*A[i].x + A[i].y*A[i].y <= ray);
|
18 |
+
}
|
19 |
+
}
|
20 |
+
|
21 |
+
|
22 |
+
struct point2{
|
23 |
+
double x;
|
24 |
+
double y;
|
25 |
+
};
|
26 |
+
|
27 |
+
|
28 |
+
__global__ void pi_double(const struct point2* A, int* res, const int nbPoint, const float ray){
|
29 |
+
const int idx = 32*blockDim.x * blockIdx.x + threadIdx.x;
|
30 |
+
if (idx < nbPoint-32*blockDim.x)
|
31 |
+
if (idx < (int)(nbPoint-32*blockDim.x))
|
32 |
+
#pragma unroll 16
|
33 |
+
for (int j = 0; j < 32; j++) {
|
34 |
+
int i = idx + blockDim.x * j;
|
35 |
+
res[i] = (A[i].x*A[i].x + A[i].y*A[i].y <= (double)ray);
|
36 |
+
}
|
37 |
+
}
|
38 |
+
|
39 |
+
|
40 |
+
#ifdef __cplusplus
|
41 |
+
}
|
42 |
+
#endif
|
cuda_code/DReductor.cu
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Zhihua Ban all rights reserved.
|
2 |
+
// If you have questions, please contact me at [email protected]
|
3 |
+
|
4 |
+
#include "AMatrix.hpp"
|
5 |
+
#include <cuda.h>
|
6 |
+
#include "common.h"
|
7 |
+
|
8 |
+
// dim3(GS)
|
9 |
+
// dim3(BS)
|
10 |
+
// /*number of layers*/
|
11 |
+
template<unsigned int GS, unsigned int BS, unsigned int N, class T>
|
12 |
+
__global__ void kernel_reduction(
|
13 |
+
T *odata, T *idata,
|
14 |
+
const unsigned int width,
|
15 |
+
const unsigned int height,
|
16 |
+
const unsigned int steps,
|
17 |
+
const unsigned int layer /*layer size = steps*height*/
|
18 |
+
){
|
19 |
+
__shared__ T smem[BS];
|
20 |
+
const unsigned int tid = threadIdx.x;
|
21 |
+
const unsigned int ty = blockIdx.x;
|
22 |
+
unsigned int i = 0;
|
23 |
+
unsigned int y = 0;
|
24 |
+
unsigned int x = 0;
|
25 |
+
T sumv = 0;
|
26 |
+
|
27 |
+
// for each layer
|
28 |
+
for (; i < N; i++){
|
29 |
+
sumv = 0;
|
30 |
+
for (y = ty; y < height; y+=GS){
|
31 |
+
for (x = tid; x < width; x+=BS){
|
32 |
+
sumv += idata[y*steps + x];
|
33 |
+
}
|
34 |
+
}
|
35 |
+
|
36 |
+
smem[tid] = sumv;
|
37 |
+
__syncthreads();
|
38 |
+
|
39 |
+
if (BS >= 512){ if (tid < 256) smem[tid] = sumv = sumv + smem[tid + 256]; __syncthreads(); }
|
40 |
+
if (BS >= 256){ if (tid < 128) smem[tid] = sumv = sumv + smem[tid + 128]; __syncthreads(); }
|
41 |
+
if (BS >= 128){ if (tid < 64) smem[tid] = sumv = sumv + smem[tid + 64]; __syncthreads(); }
|
42 |
+
if (BS >= 64){ if (tid < 32) smem[tid] = sumv = sumv + smem[tid + 32]; __syncthreads(); }
|
43 |
+
if (BS >= 32){ if (tid < 16) smem[tid] = sumv = sumv + smem[tid + 16]; __syncthreads(); }
|
44 |
+
if (BS >= 16){ if (tid < 8) smem[tid] = sumv = sumv + smem[tid + 8]; __syncthreads(); }
|
45 |
+
if (BS >= 8){ if (tid < 4) smem[tid] = sumv = sumv + smem[tid + 4]; __syncthreads(); }
|
46 |
+
if (BS >= 4){ if (tid < 2) smem[tid] = sumv = sumv + smem[tid + 2]; __syncthreads(); }
|
47 |
+
if (BS >= 2){ if (tid < 1){ odata[i*GS + ty] = sumv + smem[1]; } }
|
48 |
+
idata += layer;
|
49 |
+
}
|
50 |
+
}
|
51 |
+
// dim3(N) /*number of layers*/
|
52 |
+
// dim3(BS)
|
53 |
+
template<unsigned int BS, unsigned int N, class T>
|
54 |
+
__global__ void kernel_reduction(T* odata, const T* idata){
|
55 |
+
|
56 |
+
__shared__ T smem[BS];
|
57 |
+
T sumv = 0;
|
58 |
+
unsigned int tid = threadIdx.x;
|
59 |
+
unsigned int i = blockIdx.x;
|
60 |
+
smem[tid] = sumv = idata[i*BS + tid];
|
61 |
+
__syncthreads();
|
62 |
+
if (BS >= 512){ if (tid < 256) smem[tid] = sumv = sumv + smem[tid + 256]; __syncthreads(); }
|
63 |
+
if (BS >= 256){ if (tid < 128) smem[tid] = sumv = sumv + smem[tid + 128]; __syncthreads(); }
|
64 |
+
if (BS >= 128){ if (tid < 64) smem[tid] = sumv = sumv + smem[tid + 64]; __syncthreads(); }
|
65 |
+
if (BS >= 64){ if (tid < 32) smem[tid] = sumv = sumv + smem[tid + 32]; __syncthreads(); }
|
66 |
+
if (BS >= 32){ if (tid < 16) smem[tid] = sumv = sumv + smem[tid + 16]; __syncthreads(); }
|
67 |
+
if (BS >= 16){ if (tid < 8) smem[tid] = sumv = sumv + smem[tid + 8]; __syncthreads(); }
|
68 |
+
if (BS >= 8){ if (tid < 4) smem[tid] = sumv = sumv + smem[tid + 4]; __syncthreads(); }
|
69 |
+
if (BS >= 4){ if (tid < 2) smem[tid] = sumv = sumv + smem[tid + 2]; __syncthreads(); }
|
70 |
+
if (BS >= 2){ if (tid < 1) { odata[i] = sumv + smem[1]; } }
|
71 |
+
}
|
72 |
+
|
73 |
+
// dim3(N) /*number of layers*/
|
74 |
+
// dim3(BS)
|
75 |
+
template<unsigned int BS, unsigned int N, class T>
|
76 |
+
__global__ void kernel_reduction_factor(T* odata, const T* idata, const float factor){
|
77 |
+
|
78 |
+
__shared__ T smem[BS];
|
79 |
+
T sumv = 0;
|
80 |
+
unsigned int tid = threadIdx.x;
|
81 |
+
unsigned int i = blockIdx.x;
|
82 |
+
smem[tid] = sumv = idata[i*BS + tid];
|
83 |
+
__syncthreads();
|
84 |
+
if (BS >= 512){ if (tid < 256) smem[tid] = sumv = sumv + smem[tid + 256]; __syncthreads(); }
|
85 |
+
if (BS >= 256){ if (tid < 128) smem[tid] = sumv = sumv + smem[tid + 128]; __syncthreads(); }
|
86 |
+
if (BS >= 128){ if (tid < 64) smem[tid] = sumv = sumv + smem[tid + 64]; __syncthreads(); }
|
87 |
+
if (BS >= 64){ if (tid < 32) smem[tid] = sumv = sumv + smem[tid + 32]; __syncthreads(); }
|
88 |
+
if (BS >= 32){ if (tid < 16) smem[tid] = sumv = sumv + smem[tid + 16]; __syncthreads(); }
|
89 |
+
if (BS >= 16){ if (tid < 8) smem[tid] = sumv = sumv + smem[tid + 8]; __syncthreads(); }
|
90 |
+
if (BS >= 8){ if (tid < 4) smem[tid] = sumv = sumv + smem[tid + 4]; __syncthreads(); }
|
91 |
+
if (BS >= 4){ if (tid < 2) smem[tid] = sumv = sumv + smem[tid + 2]; __syncthreads(); }
|
92 |
+
if (BS >= 2){ if (tid < 1) { odata[i] = (sumv + smem[1])*factor; } }
|
93 |
+
}
|
94 |
+
|
95 |
+
template<unsigned int GS, unsigned int BS, unsigned int N, class T> void
|
96 |
+
run_sum_(T *odata, T *idata, const unsigned int width, const unsigned int height, const unsigned int steps)
|
97 |
+
{
|
98 |
+
if (GS > N){
|
99 |
+
kernel_reduction<GS, BS, N, T> <<<GS, BS>>>(odata + GS, idata, width, height, steps, steps*height);
|
100 |
+
kernel_reduction<GS, N, T> <<<N, GS>>>(odata, odata + GS);
|
101 |
+
}
|
102 |
+
else{
|
103 |
+
cerr << "not support yet." << endl;
|
104 |
+
exit(EXIT_FAILURE);
|
105 |
+
}
|
106 |
+
}
|
107 |
+
|
108 |
+
template void run_sum_<REDUCTOR_GS__, REDUCTOR_BS__, NN_FEATURES__, float>
|
109 |
+
(float *odata, float *idata, const unsigned int width, const unsigned int height, const unsigned int steps);
|
110 |
+
template void run_sum_<REDUCTOR_GS__, REDUCTOR_BS__, NN_FEATURES__, int >
|
111 |
+
(int *odata, int *idata, const unsigned int width, const unsigned int height, const unsigned int steps);
|
112 |
+
|
113 |
+
|
114 |
+
template<unsigned int GS, unsigned int BS, unsigned int N, class T> void
|
115 |
+
run_mean_(T *odata, T *idata, const unsigned int width, const unsigned int height, const unsigned int steps)
|
116 |
+
{
|
117 |
+
if (GS > N){
|
118 |
+
kernel_reduction<GS, BS, N, T> << <GS, BS >> >(odata + GS, idata, width, height, steps, steps*height);
|
119 |
+
kernel_reduction_factor<GS, N, T> << <N, GS >> >(odata, odata + GS, 1.f/float(width*height));
|
120 |
+
}
|
121 |
+
else{
|
122 |
+
cerr << "not support yet." << endl;
|
123 |
+
exit(EXIT_FAILURE);
|
124 |
+
}
|
125 |
+
}
|
126 |
+
|
127 |
+
template void run_mean_<REDUCTOR_GS__, REDUCTOR_BS__, NN_FEATURES__, float>
|
128 |
+
(float *odata, float *idata, const unsigned int width, const unsigned int height, const unsigned int steps);
|
129 |
+
template void run_mean_<REDUCTOR_GS__, REDUCTOR_BS__, NN_FEATURES__, int >
|
130 |
+
(int *odata, int *idata, const unsigned int width, const unsigned int height, const unsigned int steps);
|
cuda_code/DepthmapDenoiseWeightedHuber.cu
ADDED
@@ -0,0 +1,942 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*M///////////////////////////////////////////////////////////////////////////////////////
|
2 |
+
//
|
3 |
+
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
4 |
+
//
|
5 |
+
// By downloading, copying, installing or using the software you agree to this license.
|
6 |
+
// If you do not agree to this license, do not download, install,
|
7 |
+
// copy or use the software.
|
8 |
+
//
|
9 |
+
//
|
10 |
+
// License Agreement
|
11 |
+
// For Open Source Computer Vision Library
|
12 |
+
//
|
13 |
+
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
14 |
+
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
15 |
+
// Third party copyrights are property of their respective owners.
|
16 |
+
//
|
17 |
+
// Redistribution and use in source and binary forms, with or without modification,
|
18 |
+
// are permitted provided that the following conditions are met:
|
19 |
+
//
|
20 |
+
// * Redistribution's of source code must retain the above copyright notice,
|
21 |
+
// this list of conditions and the following disclaimer.
|
22 |
+
//
|
23 |
+
// * Redistribution's in binary form must reproduce the above copyright notice,
|
24 |
+
// this list of conditions and the following disclaimer in the documentation
|
25 |
+
// and/or other materials provided with the distribution.
|
26 |
+
//
|
27 |
+
// * The name of the copyright holders may not be used to endorse or promote products
|
28 |
+
// derived from this software without specific prior written permission.
|
29 |
+
//
|
30 |
+
// This software is provided by the copyright holders and contributors "as is" and
|
31 |
+
// any express or implied warranties, including, but not limited to, the implied
|
32 |
+
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
33 |
+
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
34 |
+
// indirect, incidental, special, exemplary, or consequential damages
|
35 |
+
// (including, but not limited to, procurement of substitute goods or services;
|
36 |
+
// loss of use, data, or profits; or business interruption) however caused
|
37 |
+
// and on any theory of liability, whether in contract, strict liability,
|
38 |
+
// or tort (including negligence or otherwise) arising in any way out of
|
39 |
+
// the use of this software, even if advised of the possibility of such damage.
|
40 |
+
//
|
41 |
+
//M*/
|
42 |
+
|
43 |
+
//! OpenDTAM Variant of Chambolle & Pock denoising
|
44 |
+
//!
|
45 |
+
//! The complicated half of the DTAM algorithm's mapping core,
|
46 |
+
//! but can be used independently to refine depthmaps.
|
47 |
+
//!
|
48 |
+
//! Written by Paul Foster for GSoC 2014 OpenDTAM project.
|
49 |
+
//! High level algorithm described by Richard Newcombe, Steven J. Lovegrove, and Andrew J. Davison.
|
50 |
+
//! "DTAM: Dense tracking and mapping in real-time."
|
51 |
+
//! Which was in turn based on Chambolle & Pock's
|
52 |
+
//! "A first-order primal-dual algorithm for convex problems with applications to imaging."
|
53 |
+
|
54 |
+
#include <opencv2/core/cuda/common.hpp>//for cudaSafeCall,CV_Assert
|
55 |
+
|
56 |
+
#include "DepthmapDenoiseWeightedHuber.cuh"
|
57 |
+
|
58 |
+
namespace cv { namespace cuda { namespace device {
|
59 |
+
namespace dtam_denoise{
|
60 |
+
|
61 |
+
|
62 |
+
static unsigned int arows;//TODO:make sure this is still reentrant
|
63 |
+
|
64 |
+
void loadConstants(uint h_rows, uint, uint , uint ,
|
65 |
+
float* , float* , float* , float* , float* ,
|
66 |
+
float*) {
|
67 |
+
|
68 |
+
arows=h_rows;
|
69 |
+
}
|
70 |
+
|
71 |
+
cudaStream_t localStream=0;
|
72 |
+
|
73 |
+
const int BLOCKX2D=32;
|
74 |
+
const int BLOCKY2D=32;
|
75 |
+
#define GENERATE_CUDA_FUNC2D(funcName,arglist,notypes) \
|
76 |
+
static __global__ void funcName arglist; \
|
77 |
+
void funcName##Caller arglist{ \
|
78 |
+
dim3 dimBlock(BLOCKX2D,BLOCKY2D); \
|
79 |
+
dim3 dimGrid((acols + dimBlock.x - 1) / dimBlock.x, \
|
80 |
+
(arows + dimBlock.y - 1) / dimBlock.y); \
|
81 |
+
funcName<<<dimGrid, dimBlock,0,localStream>>>notypes; \
|
82 |
+
cudaSafeCall( cudaGetLastError() );\
|
83 |
+
};static __global__ void funcName arglist
|
84 |
+
|
85 |
+
|
86 |
+
#define GENERATE_CUDA_FUNC2DROWS(funcName,arglist,notypes) \
|
87 |
+
static __global__ void funcName arglist; \
|
88 |
+
void funcName##Caller arglist{ \
|
89 |
+
dim3 dimBlock(BLOCKX2D,BLOCKY2D); \
|
90 |
+
dim3 dimGrid(1, \
|
91 |
+
(arows + dimBlock.y - 1) / dimBlock.y); \
|
92 |
+
funcName<<<dimGrid, dimBlock,0,localStream>>>notypes; \
|
93 |
+
cudaSafeCall( cudaGetLastError() );\
|
94 |
+
};static __global__ void funcName arglist
|
95 |
+
|
96 |
+
|
97 |
+
static __global__ void computeG1 (float* pp, float* g1p, float* gxp, float* gyp, int cols);
|
98 |
+
static __global__ void computeG2 (float* pp, float* g1p, float* gxp, float* gyp, int cols);
|
99 |
+
void computeGCaller (float* pp, float* g1p, float* gxp, float* gyp, int cols){
|
100 |
+
// dim3 dimBlock(BLOCKX2D,BLOCKY2D);
|
101 |
+
dim3 dimBlock(BLOCKX2D,4);
|
102 |
+
dim3 dimGrid(1,
|
103 |
+
(arows + dimBlock.y - 1) / dimBlock.y);
|
104 |
+
|
105 |
+
computeG1<<<dimGrid, dimBlock,0,localStream>>>(pp, g1p, gxp, gyp, cols);
|
106 |
+
cudaDeviceSynchronize();
|
107 |
+
computeG2<<<dimGrid, dimBlock,0,localStream>>>(pp, g1p, gxp, gyp, cols);
|
108 |
+
cudaDeviceSynchronize();
|
109 |
+
|
110 |
+
cudaSafeCall( cudaGetLastError() );
|
111 |
+
};
|
112 |
+
|
113 |
+
GENERATE_CUDA_FUNC2DROWS(computeG1,
|
114 |
+
(float* pp, float* g1p, float* gxp, float* gyp, int cols),
|
115 |
+
(pp, g1p, gxp, gyp, cols)) {
|
116 |
+
#if __CUDA_ARCH__>300
|
117 |
+
//TODO: make compatible with cuda 2.0 and lower (remove shuffles). Probably through texture fetch
|
118 |
+
|
119 |
+
//Original pseudocode for this function:
|
120 |
+
// //subscripts u,d,l,r mean up,down,left,right
|
121 |
+
// void computeG(){
|
122 |
+
// // g0 is the strongest nearby gradient (excluding point defects)
|
123 |
+
// g0x=fabsf(pr-pl);//|dx|
|
124 |
+
// g0y=fabsf(pd-pu);//|dy|
|
125 |
+
// g0=max(g0x,g0y);
|
126 |
+
// // g1 is the scaled g0 through the g function exp(-alpha*x^beta)
|
127 |
+
// g1=sqrt(g0); //beta=0.5
|
128 |
+
// alpha=3.5;
|
129 |
+
// g1=exp(-alpha*g1);
|
130 |
+
// //hard to explain this without a picture, but breaks are where both neighboring pixels are near a change
|
131 |
+
// gx=max(g1r,g1);
|
132 |
+
// gy=max(g1d,g1);
|
133 |
+
// gu=gyu; //upper spring is the lower spring of the pixel above
|
134 |
+
// gd=gy; //lower spring
|
135 |
+
// gr=gx; //right spring
|
136 |
+
// gl=gxl; //left spring is the right spring of the pixel to the left
|
137 |
+
// }
|
138 |
+
const float alpha=3.5f;
|
139 |
+
int x = threadIdx.x;
|
140 |
+
int y = blockIdx.y * blockDim.y + threadIdx.y;
|
141 |
+
int upoff=-(y!=0)*cols;
|
142 |
+
int dnoff=(y<gridDim.y*blockDim.y-1)*cols;
|
143 |
+
//itr0
|
144 |
+
int pt=x+y*cols;
|
145 |
+
float ph,pn,pu,pd,pl,pr;
|
146 |
+
float g0x,g0y,g0,g1,gt,gsav;
|
147 |
+
float tmp;
|
148 |
+
ph=pp[pt];
|
149 |
+
pn=pp[pt+blockDim.x];
|
150 |
+
|
151 |
+
pr=__shfl_down(ph,2);
|
152 |
+
tmp=__shfl_up(pn,30);
|
153 |
+
if(threadIdx.x>=30){
|
154 |
+
pr=tmp;
|
155 |
+
}
|
156 |
+
pl=ph;
|
157 |
+
pu=pp[pt+upoff];
|
158 |
+
pd=pp[pt+dnoff];
|
159 |
+
|
160 |
+
|
161 |
+
// g0 is the strongest nearby gradient (excluding point defects)
|
162 |
+
gt=fabsf(pr-pl);
|
163 |
+
g0x=__shfl_up(gt,1);//?xxxxxx no prior val
|
164 |
+
gsav=__shfl_down(gt,31);//x000000 for next time
|
165 |
+
g0x=threadIdx.x>0?g0x:0.0f;//0xxxxxx
|
166 |
+
g0y=fabsf(pd-pu);
|
167 |
+
|
168 |
+
g0=fmaxf(g0x,g0y);
|
169 |
+
// g1 is the scaled g0 through the g function
|
170 |
+
g1=sqrt(g0);
|
171 |
+
g1=exp(-alpha*g1);
|
172 |
+
//save
|
173 |
+
g1p[pt]=g1;
|
174 |
+
|
175 |
+
x+=32;
|
176 |
+
//itr 1:n-2
|
177 |
+
for(;x<cols-32;x+=32){
|
178 |
+
pt=x+y*cols;
|
179 |
+
ph=pn;
|
180 |
+
pn=pp[pt+blockDim.x];
|
181 |
+
pr=__shfl_down(ph,2);
|
182 |
+
tmp=__shfl_up(pn,30);
|
183 |
+
pr=threadIdx.x>=30?tmp:pr;
|
184 |
+
|
185 |
+
pl=ph;
|
186 |
+
pu=pp[pt+upoff];
|
187 |
+
pd=pp[pt+dnoff];
|
188 |
+
|
189 |
+
// g0 is the strongest nearby gradient (excluding point defects)
|
190 |
+
gt=fabsf(pr-pl);
|
191 |
+
g0x=__shfl_up(gt,1);//?xxxxxx
|
192 |
+
g0x=threadIdx.x>0?g0x:gsav;//xxxxxxx
|
193 |
+
gsav=__shfl_down(gt,31);//x000000 for next time
|
194 |
+
g0y=fabsf(pd-pu);
|
195 |
+
|
196 |
+
g0=fmaxf(g0x,g0y);
|
197 |
+
|
198 |
+
// g1 is the scaled g0 through the g function
|
199 |
+
g1=sqrt(g0);
|
200 |
+
g1=exp(-alpha*g1);
|
201 |
+
//save
|
202 |
+
g1p[pt]=g1;
|
203 |
+
}
|
204 |
+
|
205 |
+
//itr n-1
|
206 |
+
pt=x+y*cols;
|
207 |
+
ph=pn;
|
208 |
+
pr=__shfl_down(ph,2);
|
209 |
+
pl=ph;
|
210 |
+
pu=pp[pt+upoff];
|
211 |
+
pd=pp[pt+dnoff];
|
212 |
+
|
213 |
+
// g0 is the strongest nearby gradient (excluding point defects)
|
214 |
+
gt=fabsf(pr-pl);
|
215 |
+
g0x=__shfl_up(gt,1);//?xxxxxx
|
216 |
+
g0x=threadIdx.x>0?g0x:gsav;//xxxxxxx
|
217 |
+
g0y=fabsf(pd-pu);
|
218 |
+
|
219 |
+
g0=fmaxf(g0x,g0y);
|
220 |
+
// g1 is the scaled g0 through the g function
|
221 |
+
g1=sqrt(g0);
|
222 |
+
g1=exp(-alpha*g1);
|
223 |
+
//save
|
224 |
+
g1p[pt]=g1;
|
225 |
+
#endif
|
226 |
+
}
|
227 |
+
GENERATE_CUDA_FUNC2DROWS(computeG2,
|
228 |
+
(float* pp, float* g1p, float* gxp, float* gyp, int cols),
|
229 |
+
(pp, g1p, gxp, gyp, cols)) {
|
230 |
+
#if __CUDA_ARCH__>300
|
231 |
+
int x = threadIdx.x;
|
232 |
+
int y = blockIdx.y * blockDim.y + threadIdx.y;
|
233 |
+
int dnoff=(y<gridDim.y*blockDim.y-1)*cols;
|
234 |
+
//itr0
|
235 |
+
int pt=x+y*cols;
|
236 |
+
float g1h,g1n,g1u,g1d,g1r,g1l,gx,gy;
|
237 |
+
float tmp;
|
238 |
+
//part2, find gx,gy
|
239 |
+
x = threadIdx.x;
|
240 |
+
y = blockIdx.y * blockDim.y + threadIdx.y;
|
241 |
+
//itr0
|
242 |
+
pt=x+y*cols;
|
243 |
+
|
244 |
+
g1h=g1p[pt];
|
245 |
+
g1n=g1p[pt+blockDim.x];
|
246 |
+
g1r=__shfl_down(g1h,1);
|
247 |
+
tmp=__shfl_up(g1n,31);
|
248 |
+
if(threadIdx.x>=31){
|
249 |
+
g1r=tmp;
|
250 |
+
}
|
251 |
+
g1l=g1h;
|
252 |
+
g1u=g1h;
|
253 |
+
g1d=g1p[pt+dnoff];
|
254 |
+
|
255 |
+
gx=fmaxf(g1l,g1r);
|
256 |
+
gy=fmaxf(g1u,g1d);
|
257 |
+
|
258 |
+
//save
|
259 |
+
gxp[pt]=gx;
|
260 |
+
gyp[pt]=gy;
|
261 |
+
x+=32;
|
262 |
+
//itr 1:n-2
|
263 |
+
for(;x<cols-32;x+=32){
|
264 |
+
pt=x+y*cols;
|
265 |
+
g1h=g1n;
|
266 |
+
g1n=g1p[pt+blockDim.x];
|
267 |
+
g1r=__shfl_down(g1h,1);
|
268 |
+
tmp=__shfl_up(g1n,31);
|
269 |
+
g1r=threadIdx.x>=31?tmp:g1r;
|
270 |
+
|
271 |
+
g1l=g1h;
|
272 |
+
g1u=g1h;
|
273 |
+
g1d=g1p[pt+dnoff];
|
274 |
+
|
275 |
+
gx=fmaxf(g1l,g1r);
|
276 |
+
gy=fmaxf(g1u,g1d);
|
277 |
+
//save
|
278 |
+
gxp[pt]=gx;
|
279 |
+
gyp[pt]=gy;
|
280 |
+
}
|
281 |
+
|
282 |
+
//itr n-1
|
283 |
+
pt=x+y*cols;
|
284 |
+
g1h=g1n;
|
285 |
+
g1r=__shfl_down(g1h,1);
|
286 |
+
g1l=g1h;
|
287 |
+
g1u=g1h;
|
288 |
+
g1d=g1p[pt+dnoff];
|
289 |
+
|
290 |
+
gx=fmaxf(g1l,g1r);
|
291 |
+
gy=fmaxf(g1u,g1d);
|
292 |
+
|
293 |
+
|
294 |
+
//save
|
295 |
+
gxp[pt]=gx;
|
296 |
+
gyp[pt]=gy;
|
297 |
+
#endif
|
298 |
+
}
|
299 |
+
|
300 |
+
|
301 |
+
//This version is faster, but makes synchronization errors at the lines between parts 1 and 2.
|
302 |
+
//Could be fixed by a second pass for part 2 over the stitch lines, but I don't have time to figure that out
|
303 |
+
//right now.
|
304 |
+
GENERATE_CUDA_FUNC2DROWS(computeGunsafe,
|
305 |
+
(float* pp, float* g1p, float* gxp, float* gyp, int cols),
|
306 |
+
(pp, g1p, gxp, gyp, cols)) {
|
307 |
+
#if __CUDA_ARCH__>300
|
308 |
+
//TODO: make compatible with cuda 2.0 and lower (remove shuffles). Probably through texture fetch
|
309 |
+
//TODO: rerun kernel on lines with y%32==31 or y%32==0 to fix stitch lines
|
310 |
+
|
311 |
+
//Original pseudocode for this function:
|
312 |
+
// //subscripts u,d,l,r mean up,down,left,right
|
313 |
+
// void computeG(){
|
314 |
+
// // g0 is the strongest nearby gradient (excluding point defects)
|
315 |
+
// g0x=fabsf(pr-pl);//|dx|
|
316 |
+
// g0y=fabsf(pd-pu);//|dy|
|
317 |
+
// g0=max(g0x,g0y);
|
318 |
+
// // g1 is the scaled g0 through the g function exp(-alpha*x^beta)
|
319 |
+
// g1=sqrt(g0); //beta=0.5
|
320 |
+
// alpha=3.5;
|
321 |
+
// g1=exp(-alpha*g1);
|
322 |
+
// //hard to explain this without a picture, but breaks are where both neighboring pixels are near a change
|
323 |
+
// gx=max(g1r,g1);
|
324 |
+
// gy=max(g1d,g1);
|
325 |
+
// gu=gyu; //upper spring is the lower spring of the pixel above
|
326 |
+
// gd=gy; //lower spring
|
327 |
+
// gr=gx; //right spring
|
328 |
+
// gl=gxl; //left spring is the right spring of the pixel to the left
|
329 |
+
// }
|
330 |
+
const float alpha=3.5f;
|
331 |
+
int x = threadIdx.x;
|
332 |
+
int y = blockIdx.y * blockDim.y + threadIdx.y;
|
333 |
+
int upoff=-(y!=0)*cols;
|
334 |
+
int dnoff=(y<gridDim.y*blockDim.y-1)*cols;
|
335 |
+
//itr0
|
336 |
+
int pt=x+y*cols;
|
337 |
+
float ph,pn,pu,pd,pl,pr;
|
338 |
+
float g0x,g0y,g0,g1,g1h,g1n,g1u,g1d,g1r,g1l,gx,gy,gt,gsav;
|
339 |
+
float tmp;
|
340 |
+
ph=pp[pt];
|
341 |
+
pn=pp[pt+blockDim.x];
|
342 |
+
|
343 |
+
pr=__shfl_down(ph,2);
|
344 |
+
tmp=__shfl_up(pn,30);
|
345 |
+
if(threadIdx.x>=30){
|
346 |
+
pr=tmp;
|
347 |
+
}
|
348 |
+
pl=ph;
|
349 |
+
pu=pp[pt+upoff];
|
350 |
+
pd=pp[pt+dnoff];
|
351 |
+
|
352 |
+
|
353 |
+
// g0 is the strongest nearby gradient (excluding point defects)
|
354 |
+
gt=fabsf(pr-pl);
|
355 |
+
g0x=__shfl_up(gt,1);//?xxxxxx no prior val
|
356 |
+
gsav=__shfl_down(gt,31);//x000000 for next time
|
357 |
+
g0x=threadIdx.x>0?g0x:0.0f;//0xxxxxx
|
358 |
+
g0y=fabsf(pd-pu);
|
359 |
+
|
360 |
+
g0=fmaxf(g0x,g0y);
|
361 |
+
// g1 is the scaled g0 through the g function
|
362 |
+
g1=sqrt(g0);
|
363 |
+
g1=exp(-alpha*g1);
|
364 |
+
//save
|
365 |
+
g1p[pt]=g1;
|
366 |
+
|
367 |
+
x+=32;
|
368 |
+
//itr 1:n-2
|
369 |
+
for(;x<cols-32;x+=32){
|
370 |
+
pt=x+y*cols;
|
371 |
+
ph=pn;
|
372 |
+
pn=pp[pt+blockDim.x];
|
373 |
+
pr=__shfl_down(ph,2);
|
374 |
+
tmp=__shfl_up(pn,30);
|
375 |
+
pr=threadIdx.x>=30?tmp:pr;
|
376 |
+
|
377 |
+
pl=ph;
|
378 |
+
pu=pp[pt+upoff];
|
379 |
+
pd=pp[pt+dnoff];
|
380 |
+
|
381 |
+
// g0 is the strongest nearby gradient (excluding point defects)
|
382 |
+
gt=fabsf(pr-pl);
|
383 |
+
g0x=__shfl_up(gt,1);//?xxxxxx
|
384 |
+
g0x=threadIdx.x>0?g0x:gsav;//xxxxxxx
|
385 |
+
gsav=__shfl_down(gt,31);//x000000 for next time
|
386 |
+
g0y=fabsf(pd-pu);
|
387 |
+
|
388 |
+
g0=fmaxf(g0x,g0y);
|
389 |
+
|
390 |
+
// g1 is the scaled g0 through the g function
|
391 |
+
g1=sqrt(g0);
|
392 |
+
g1=exp(-alpha*g1);
|
393 |
+
//save
|
394 |
+
g1p[pt]=g1;
|
395 |
+
}
|
396 |
+
|
397 |
+
//itr n-1
|
398 |
+
pt=x+y*cols;
|
399 |
+
ph=pn;
|
400 |
+
pr=__shfl_down(ph,2);
|
401 |
+
pl=ph;
|
402 |
+
pu=pp[pt+upoff];
|
403 |
+
pd=pp[pt+dnoff];
|
404 |
+
|
405 |
+
// g0 is the strongest nearby gradient (excluding point defects)
|
406 |
+
gt=fabsf(pr-pl);
|
407 |
+
g0x=__shfl_up(gt,1);//?xxxxxx
|
408 |
+
g0x=threadIdx.x>0?g0x:gsav;//xxxxxxx
|
409 |
+
g0y=fabsf(pd-pu);
|
410 |
+
|
411 |
+
g0=fmaxf(g0x,g0y);
|
412 |
+
// g1 is the scaled g0 through the g function
|
413 |
+
g1=sqrt(g0);
|
414 |
+
g1=exp(-alpha*g1);
|
415 |
+
//save
|
416 |
+
g1p[pt]=g1;
|
417 |
+
|
418 |
+
//part2, find gx,gy
|
419 |
+
x = threadIdx.x;
|
420 |
+
y = blockIdx.y * blockDim.y + threadIdx.y;
|
421 |
+
//itr0
|
422 |
+
pt=x+y*cols;
|
423 |
+
|
424 |
+
g1h=g1p[pt];
|
425 |
+
g1n=g1p[pt+blockDim.x];
|
426 |
+
g1r=__shfl_down(g1h,1);
|
427 |
+
tmp=__shfl_up(g1n,31);
|
428 |
+
if(threadIdx.x>=31){
|
429 |
+
g1r=tmp;
|
430 |
+
}
|
431 |
+
g1l=g1h;
|
432 |
+
g1u=g1h;
|
433 |
+
g1d=g1p[pt+dnoff];
|
434 |
+
|
435 |
+
gx=fmaxf(g1l,g1r);
|
436 |
+
gy=fmaxf(g1u,g1d);
|
437 |
+
|
438 |
+
//save
|
439 |
+
gxp[pt]=gx;
|
440 |
+
gyp[pt]=gy;
|
441 |
+
x+=32;
|
442 |
+
//itr 1:n-2
|
443 |
+
for(;x<cols-32;x+=32){
|
444 |
+
pt=x+y*cols;
|
445 |
+
g1h=g1n;
|
446 |
+
g1n=g1p[pt+blockDim.x];
|
447 |
+
g1r=__shfl_down(g1h,1);
|
448 |
+
tmp=__shfl_up(g1n,31);
|
449 |
+
g1r=threadIdx.x>=31?tmp:g1r;
|
450 |
+
|
451 |
+
g1l=g1h;
|
452 |
+
g1u=g1h;
|
453 |
+
g1d=g1p[pt+dnoff];
|
454 |
+
|
455 |
+
gx=fmaxf(g1l,g1r);
|
456 |
+
gy=fmaxf(g1u,g1d);
|
457 |
+
//save
|
458 |
+
gxp[pt]=gx;
|
459 |
+
gyp[pt]=gy;
|
460 |
+
}
|
461 |
+
|
462 |
+
//itr n-1
|
463 |
+
pt=x+y*cols;
|
464 |
+
g1h=g1n;
|
465 |
+
g1r=__shfl_down(g1h,1);
|
466 |
+
g1l=g1h;
|
467 |
+
g1u=g1h;
|
468 |
+
g1d=g1p[pt+dnoff];
|
469 |
+
|
470 |
+
gx=fmaxf(g1l,g1r);
|
471 |
+
gy=fmaxf(g1u,g1d);
|
472 |
+
|
473 |
+
|
474 |
+
//save
|
475 |
+
gxp[pt]=gx;
|
476 |
+
gyp[pt]=gy;
|
477 |
+
#endif
|
478 |
+
|
479 |
+
}
|
480 |
+
__device__ inline float saturate(float x){
|
481 |
+
//return x;
|
482 |
+
return x/fmaxf(1.0f,fabsf(x));
|
483 |
+
}
|
484 |
+
// static __global__ void updateQD (float* gqxpt, float* gqypt, float *dpt, float * apt,
|
485 |
+
// float *gxpt, float *gypt, float sigma_q, float sigma_d, float epsilon,
|
486 |
+
// float theta);//DANGER, no interblock synchronization = weird instability
|
487 |
+
static __global__ void updateQ (float* gqxpt, float* gqypt, float *dpt, float * apt,
|
488 |
+
float *gxpt, float *gypt, int cols, float sigma_q, float sigma_d, float epsilon,
|
489 |
+
float theta);
|
490 |
+
static __global__ void updateD (float* gqxpt, float* gqypt, float *dpt, float * apt,
|
491 |
+
float *gxpt, float *gypt, int cols, float sigma_q, float sigma_d, float epsilon,
|
492 |
+
float theta);
|
493 |
+
|
494 |
+
void updateQDCaller(float* gqxpt, float* gqypt, float *dpt, float * apt,
|
495 |
+
float *gxpt, float *gypt, int cols, float sigma_q, float sigma_d, float epsilon,
|
496 |
+
float theta) {
|
497 |
+
|
498 |
+
dim3 dimBlock(BLOCKX2D, BLOCKY2D);
|
499 |
+
dim3 dimGrid(1, (arows + dimBlock.y - 1) / dimBlock.y);
|
500 |
+
CV_Assert(dimGrid.y>0);
|
501 |
+
cudaSafeCall( cudaGetLastError() );
|
502 |
+
updateQ<<<dimGrid, dimBlock,0,localStream>>>( gqxpt, gqypt, dpt, apt,
|
503 |
+
gxpt, gypt, cols, sigma_q, sigma_d, epsilon, theta);
|
504 |
+
cudaSafeCall( cudaGetLastError() );
|
505 |
+
updateD<<<dimGrid, dimBlock,0,localStream>>>( gqxpt, gqypt, dpt, apt,
|
506 |
+
gxpt, gypt, cols, sigma_q, sigma_d, epsilon, theta);
|
507 |
+
cudaSafeCall( cudaGetLastError() );
|
508 |
+
};
|
509 |
+
|
510 |
+
// static __global__ void updateQD (float* gqxpt, float* gqypt, float *dpt, float * apt,
|
511 |
+
// float *gxpt, float *gypt, float sigma_q, float sigma_d, float epsilon,
|
512 |
+
// float theta) {
|
513 |
+
// //TODO: make compatible with cuda 2.0 and lower (remove shuffles). Probably through texture fetch
|
514 |
+
//
|
515 |
+
// //Original pseudocode for this function:
|
516 |
+
// //void updateQD(){
|
517 |
+
// // //shifts are shuffles!
|
518 |
+
// // for (all x in blocks of warpsize;;){
|
519 |
+
// // //qx update
|
520 |
+
// // float dh,dn,qxh,gx,gqx,qyh,gy,gqy;
|
521 |
+
// // //load(dh,dn,gxh,gqx);//load here, next(the block to the right), local constant, old x force(with cached multiply)
|
522 |
+
// // dr=dh<<1;
|
523 |
+
// // tmp=dn>>31;
|
524 |
+
// // if (rt)
|
525 |
+
// // dr=tmp;
|
526 |
+
// // qxh=gqx/gxh;
|
527 |
+
// // qxh = (qxh+sigma_q*gxh*(dr-dh))/(1+sigma_q*epsilon);//basic spring force equation f=k(x-x0)
|
528 |
+
// // gqx = saturate(gxh*qxh);//spring saturates (with cached multiply), saturation force proportional to prob. of not an edge.
|
529 |
+
// // gqxpt[pt]=gqx;
|
530 |
+
// //
|
531 |
+
// // //qy update
|
532 |
+
// // s[bpt]=dn;
|
533 |
+
// // if(!btm){
|
534 |
+
// // dd=s[bpt+bdnoff];
|
535 |
+
// // }else{
|
536 |
+
// // dd=dpt[pt+dnoff];
|
537 |
+
// // }
|
538 |
+
// // qyh=gqy/gy;
|
539 |
+
// // qyh=(qyh+sigma_q*gyh*(dd-dh))/(1+sigma_q*epsilon);
|
540 |
+
// // gqy=saturate(gyh*qyh);
|
541 |
+
// // gqypt[pt]=gqy;
|
542 |
+
// //
|
543 |
+
// // //dx update
|
544 |
+
// // gqr=gqx;
|
545 |
+
// // gql=gqx>>1;
|
546 |
+
// // if (lf)
|
547 |
+
// // gql=gqsave;
|
548 |
+
// // gqsave=gqx<<31;//save for next iter
|
549 |
+
// // dacc = gqr - gql;//dx part
|
550 |
+
// //
|
551 |
+
// // //dy update and d store
|
552 |
+
// // gqd=gqy;
|
553 |
+
// // s[bpt]=gqy;
|
554 |
+
// // if(!top)
|
555 |
+
// // gqu=s[bpt+bupoff];
|
556 |
+
// // else
|
557 |
+
// // gqu=gqxpt[pt + upoff];
|
558 |
+
// // dacc += gqd-gqu; //dy part
|
559 |
+
// // d = (d + sigma_d*(dacc+1/theta*ah))/(1+sigma_d/theta);
|
560 |
+
// // dpt[pt]=d;
|
561 |
+
// // }
|
562 |
+
// //}
|
563 |
+
// __shared__ float s[32*BLOCKY2D];
|
564 |
+
// int x = threadIdx.x;
|
565 |
+
// int y = blockIdx.y * blockDim.y + threadIdx.y;
|
566 |
+
// bool rt=x==31;
|
567 |
+
// bool lf=x==0;
|
568 |
+
// bool top=y==0;
|
569 |
+
// bool btm=y==rows-1;
|
570 |
+
// bool btop=threadIdx.y==0;
|
571 |
+
// bool bbtm=threadIdx.y==blockDim.y-1;
|
572 |
+
// int pt, bpt,bdnoff ,dnoff, bupoff, upoff;
|
573 |
+
//
|
574 |
+
//
|
575 |
+
// float tmp,gqsave;
|
576 |
+
// gqsave=0;
|
577 |
+
// bpt = threadIdx.x+threadIdx.y*blockDim.x;
|
578 |
+
// bdnoff=blockDim.x;
|
579 |
+
// dnoff=(!btm)*cols;
|
580 |
+
// bupoff=-blockDim.x;
|
581 |
+
// upoff=-(!top)*cols;
|
582 |
+
//
|
583 |
+
// pt=x+y*cols;
|
584 |
+
//
|
585 |
+
// float dh,dn;
|
586 |
+
// dn=dpt[pt];
|
587 |
+
//
|
588 |
+
// for(;x<cols;x+=32){
|
589 |
+
// float qx,gx,gqx,qy,gy,gqy;
|
590 |
+
// pt=x+y*cols;
|
591 |
+
//
|
592 |
+
//
|
593 |
+
// //qx update
|
594 |
+
// {
|
595 |
+
// float dr;
|
596 |
+
// //load(dh,dn,gxh,gqx);//load here, next(the block to the right), local constant, old x force(with cached multiply)
|
597 |
+
//
|
598 |
+
// //load
|
599 |
+
// {
|
600 |
+
// dh=dn;
|
601 |
+
// if(x<cols-32){
|
602 |
+
// dn=dpt[pt+32];
|
603 |
+
//
|
604 |
+
// }
|
605 |
+
// gqx=gqxpt[pt];
|
606 |
+
// gx=gxpt[pt];
|
607 |
+
// // gx=1.0f;
|
608 |
+
//
|
609 |
+
// }
|
610 |
+
//
|
611 |
+
// dr=__shfl_down(dh,1);
|
612 |
+
// tmp=__shfl_up(dn,31);
|
613 |
+
// if (rt && x<cols-32)
|
614 |
+
// dr=tmp;
|
615 |
+
// qx = gqx/gx;
|
616 |
+
// qx = (qx+sigma_q*gx*(dr-dh))/(1+sigma_q*epsilon);//basic spring force equation f=k(x-x0)
|
617 |
+
// gqx = saturate(gx*qx);//spring saturates (with cached multiply), saturation force proportional to prob. of not an edge.
|
618 |
+
// //gqxpt[pt]=gqx;
|
619 |
+
// }
|
620 |
+
// dpt[pt] = dh;
|
621 |
+
// //qy update
|
622 |
+
// {
|
623 |
+
// float dd;
|
624 |
+
// //load
|
625 |
+
// {
|
626 |
+
// gqy=gqypt[pt];
|
627 |
+
// gy=gypt[pt];
|
628 |
+
// // gy=1.0f;
|
629 |
+
// }
|
630 |
+
// s[bpt]=dh;
|
631 |
+
// __syncthreads();
|
632 |
+
// if(!bbtm){
|
633 |
+
// dd=s[bpt+bdnoff];
|
634 |
+
// }else{
|
635 |
+
// dd=dpt[pt+dnoff];
|
636 |
+
// }
|
637 |
+
// qy = gqy/gy;
|
638 |
+
// qy = (qy+sigma_q*gy*(dd-dh))/(1+sigma_q*epsilon);
|
639 |
+
// gqy = saturate(gy*qy);
|
640 |
+
// //gqypt[pt]=gqy;
|
641 |
+
// }
|
642 |
+
// float dacc;
|
643 |
+
// //dx update
|
644 |
+
// {
|
645 |
+
// float gqr,gql;
|
646 |
+
// gqr=gqx;
|
647 |
+
// gql=__shfl_up(gqx,1);
|
648 |
+
// if (lf)
|
649 |
+
// gql=gqsave;
|
650 |
+
// gqsave=__shfl_down(gqx,31);//save for next iter
|
651 |
+
// dacc = gqr - gql;//dx part
|
652 |
+
// }
|
653 |
+
// float d=dh;
|
654 |
+
// //dy update and d store
|
655 |
+
// {
|
656 |
+
// float a;
|
657 |
+
// //load
|
658 |
+
// {
|
659 |
+
// a=apt[pt];
|
660 |
+
// }
|
661 |
+
// float gqu,gqd;
|
662 |
+
//
|
663 |
+
// gqd=gqy;
|
664 |
+
// s[bpt]=gqy;
|
665 |
+
// __syncthreads();
|
666 |
+
// if(!btop)
|
667 |
+
// gqu=s[bpt+bupoff];
|
668 |
+
// else
|
669 |
+
// gqu=gqypt[pt + upoff];
|
670 |
+
// if(y==0)
|
671 |
+
// gqu=0.0f;
|
672 |
+
// dacc += gqd-gqu; //dy part
|
673 |
+
// d = ( d + sigma_d*(dacc + a/theta) ) / (1 + sigma_d/theta);
|
674 |
+
// //dpt[pt] = d;
|
675 |
+
// }
|
676 |
+
// __syncthreads();
|
677 |
+
// gqxpt[pt]=gqx;
|
678 |
+
// gqypt[pt]=gqy;
|
679 |
+
// dpt[pt] = d;
|
680 |
+
// __syncthreads();
|
681 |
+
// }
|
682 |
+
// }
|
683 |
+
|
684 |
+
|
685 |
+
GENERATE_CUDA_FUNC2DROWS(updateQ,
|
686 |
+
(float* gqxpt, float* gqypt, float *dpt, float * apt,
|
687 |
+
float *gxpt, float *gypt, int cols, float sigma_q, float sigma_d, float epsilon,
|
688 |
+
float theta),
|
689 |
+
( gqxpt, gqypt, dpt, apt,
|
690 |
+
gxpt, gypt, cols, sigma_q, sigma_d, epsilon, theta)) {
|
691 |
+
//TODO: make compatible with cuda 2.0 and lower (remove shuffles). Probably through texture fetch
|
692 |
+
|
693 |
+
//Original pseudocode for this function:
|
694 |
+
//void updateQD(){
|
695 |
+
// //shifts are shuffles!
|
696 |
+
// for (all x in blocks of warpsize;;){
|
697 |
+
// //qx update
|
698 |
+
// float dh,dn,qxh,gx,gqx,qyh,gy,gqy;
|
699 |
+
// //load(dh,dn,gxh,gqx);//load here, next(the block to the right), local constant, old x force(with cached multiply)
|
700 |
+
// dr=dh<<1;
|
701 |
+
// tmp=dn>>31;
|
702 |
+
// if (rt)
|
703 |
+
// dr=tmp;
|
704 |
+
// qxh=gqx/gxh;
|
705 |
+
// qxh = (qxh+sigma_q*gxh*(dr-dh))/(1+sigma_q*epsilon);//basic spring force equation f=k(x-x0)
|
706 |
+
// gqx = saturate(gxh*qxh);//spring saturates (with cached multiply), saturation force proportional to prob. of not an edge.
|
707 |
+
// gqxpt[pt]=gqx;
|
708 |
+
//
|
709 |
+
// //qy update
|
710 |
+
// s[bpt]=dn;
|
711 |
+
// if(!btm){
|
712 |
+
// dd=s[bpt+bdnoff];
|
713 |
+
// }else{
|
714 |
+
// dd=dpt[pt+dnoff];
|
715 |
+
// }
|
716 |
+
// qyh=gqy/gy;
|
717 |
+
// qyh=(qyh+sigma_q*gyh*(dd-dh))/(1+sigma_q*epsilon);
|
718 |
+
// gqy=saturate(gyh*qyh);
|
719 |
+
// gqypt[pt]=gqy;
|
720 |
+
//
|
721 |
+
// //dx update
|
722 |
+
// gqr=gqx;
|
723 |
+
// gql=gqx>>1;
|
724 |
+
// if (lf)
|
725 |
+
// gql=gqsave;
|
726 |
+
// gqsave=gqx<<31;//save for next iter
|
727 |
+
// dacc = gqr - gql;//dx part
|
728 |
+
//
|
729 |
+
// //dy update and d store
|
730 |
+
// gqd=gqy;
|
731 |
+
// s[bpt]=gqy;
|
732 |
+
// if(!top)
|
733 |
+
// gqu=s[bpt+bupoff];
|
734 |
+
// else
|
735 |
+
// gqu=gqxpt[pt + upoff];
|
736 |
+
// dacc += gqd-gqu; //dy part
|
737 |
+
// d = (d + sigma_d*(dacc+1/theta*ah))/(1+sigma_d/theta);
|
738 |
+
// dpt[pt]=d;
|
739 |
+
// }
|
740 |
+
//}
|
741 |
+
#if __CUDA_ARCH__>300
|
742 |
+
__shared__ float s[32*BLOCKY2D];
|
743 |
+
int x = threadIdx.x;
|
744 |
+
int y = blockIdx.y * blockDim.y + threadIdx.y;
|
745 |
+
bool rt=x==31;
|
746 |
+
|
747 |
+
bool bbtm=threadIdx.y==blockDim.y-1;
|
748 |
+
int pt, bpt,bdnoff ,dnoff;
|
749 |
+
|
750 |
+
float tmp;
|
751 |
+
bpt = threadIdx.x+threadIdx.y*blockDim.x;
|
752 |
+
bdnoff=blockDim.x;
|
753 |
+
dnoff=(y<gridDim.y*blockDim.y-1)*cols;
|
754 |
+
|
755 |
+
pt=x+y*cols;
|
756 |
+
|
757 |
+
float dh,dn;
|
758 |
+
dn=dpt[pt];
|
759 |
+
|
760 |
+
|
761 |
+
for(;x<cols;x+=32){
|
762 |
+
float qx,gx,gqx,qy,gy,gqy;
|
763 |
+
pt=x+y*cols;
|
764 |
+
|
765 |
+
|
766 |
+
//qx update
|
767 |
+
{
|
768 |
+
float dr;
|
769 |
+
//load(dh,dn,gxh,gqx);//load here, next(the block to the right), local constant, old x force(with cached multiply)
|
770 |
+
|
771 |
+
//load
|
772 |
+
{
|
773 |
+
dh=dn;
|
774 |
+
if(x<cols-32){
|
775 |
+
dn=dpt[pt+32];
|
776 |
+
|
777 |
+
}
|
778 |
+
gqx=gqxpt[pt];
|
779 |
+
gx=gxpt[pt]+.01f;
|
780 |
+
// gx=1.0f;
|
781 |
+
}
|
782 |
+
|
783 |
+
dr=__shfl_down(dh,1);
|
784 |
+
tmp=__shfl_up(dn,31);
|
785 |
+
if (rt && x<cols-32)
|
786 |
+
dr=tmp;
|
787 |
+
qx = gqx/gx;
|
788 |
+
//qx+=(gx*(dr-dh)-epsilon*qx)*.5f;//simplified step
|
789 |
+
qx = (qx+sigma_q*gx*(dr-dh))/(1+sigma_q*epsilon);//basic spring force equation f=k(x-x0)
|
790 |
+
gqx = saturate(gx*qx);//spring saturates (with cached multiply), saturation force proportional to prob. of not an edge.
|
791 |
+
gqxpt[pt]=gqx;
|
792 |
+
}
|
793 |
+
|
794 |
+
//qy update
|
795 |
+
{
|
796 |
+
float dd;
|
797 |
+
//load
|
798 |
+
{
|
799 |
+
gqy=gqypt[pt];
|
800 |
+
gy=gypt[pt]+.01f;
|
801 |
+
// gy=1.0f;
|
802 |
+
}
|
803 |
+
s[bpt]=dh;
|
804 |
+
__syncthreads();
|
805 |
+
if(!bbtm)
|
806 |
+
dd=s[bpt+bdnoff];
|
807 |
+
else
|
808 |
+
dd=dpt[pt+dnoff];
|
809 |
+
__syncthreads();
|
810 |
+
qy = gqy/gy;
|
811 |
+
//qy+=(gy*(dd-dh)-epsilon*qy)*.5f;//simplified step
|
812 |
+
qy = (qy+sigma_q*gy*(dd-dh))/(1+sigma_q*epsilon);
|
813 |
+
gqy = saturate(gy*qy);
|
814 |
+
|
815 |
+
gqypt[pt]=gqy;
|
816 |
+
}
|
817 |
+
//__syncthreads();
|
818 |
+
}
|
819 |
+
#endif
|
820 |
+
}
|
821 |
+
|
822 |
+
GENERATE_CUDA_FUNC2DROWS(updateD,
|
823 |
+
(float* gqxpt, float* gqypt, float *dpt, float * apt,
|
824 |
+
float *gxpt, float *gypt,int cols, float sigma_q, float sigma_d, float epsilon,
|
825 |
+
float theta),
|
826 |
+
( gqxpt, gqypt, dpt, apt,
|
827 |
+
gxpt, gypt, cols, sigma_q, sigma_d, epsilon, theta)) {
|
828 |
+
#if __CUDA_ARCH__>300
|
829 |
+
//TODO: make compatible with cuda 2.0 and lower (remove shuffles). Probably through texture fetch
|
830 |
+
|
831 |
+
//Original pseudocode for this function:
|
832 |
+
//void updateQD(){
|
833 |
+
// //shifts are shuffles!
|
834 |
+
// for (all x in blocks of warpsize){
|
835 |
+
// //qx update
|
836 |
+
// float dh,dn,qxh,gx,gqx,qyh,gy,gqy;
|
837 |
+
// //load(dh,dn,gxh,gqx);//load here, next(the block to the right), local constant, old x force(with cached multiply)
|
838 |
+
// dr=dh<<1;
|
839 |
+
// tmp=dn>>31;
|
840 |
+
// if (rt)
|
841 |
+
// dr=tmp;
|
842 |
+
// qxh=gqx/gxh;
|
843 |
+
// qxh = (qxh+sigma_q*gxh*(dr-dh))/(1+sigma_q*epsilon);//basic spring force equation f=k(x-x0)
|
844 |
+
// gqx = saturate(gxh*qxh);//spring saturates (with cached multiply), saturation force proportional to prob. of not an edge.
|
845 |
+
// gqxpt[pt]=gqx;
|
846 |
+
//
|
847 |
+
// //qy update
|
848 |
+
// s[bpt]=dn;
|
849 |
+
// if(!btm){
|
850 |
+
// dd=s[bpt+bdnoff];
|
851 |
+
// }else{
|
852 |
+
// dd=dpt[pt+dnoff];
|
853 |
+
// }
|
854 |
+
// qyh=gqy/gy;
|
855 |
+
// qyh=(qyh+sigma_q*gyh*(dd-dh))/(1+sigma_q*epsilon);
|
856 |
+
// gqy=saturate(gyh*qyh);
|
857 |
+
// gqypt[pt]=gqy;
|
858 |
+
//
|
859 |
+
// //dx update
|
860 |
+
// gqr=gqx;
|
861 |
+
// gql=gqx>>1;
|
862 |
+
// if (lf)
|
863 |
+
// gql=gqsave;
|
864 |
+
// gqsave=gqx<<31;//save for next iter
|
865 |
+
// dacc = gqr - gql;//dx part
|
866 |
+
//
|
867 |
+
// //dy update and d store
|
868 |
+
// gqd=gqy;
|
869 |
+
// s[bpt]=gqy;
|
870 |
+
// if(!top)
|
871 |
+
// gqu=s[bpt+bupoff];
|
872 |
+
// else
|
873 |
+
// gqu=gqxpt[pt + upoff];
|
874 |
+
// dacc += gqd-gqu; //dy part
|
875 |
+
// d = (d + sigma_d*(dacc+1/theta*ah))/(1+sigma_d/theta);
|
876 |
+
// dpt[pt]=d;
|
877 |
+
// }
|
878 |
+
//}
|
879 |
+
__shared__ float s[32*BLOCKY2D];
|
880 |
+
int x = threadIdx.x;
|
881 |
+
int y = blockIdx.y * blockDim.y + threadIdx.y;
|
882 |
+
bool lf=x==0;
|
883 |
+
bool top=y==0;
|
884 |
+
bool btop=threadIdx.y==0;
|
885 |
+
int pt, bpt, bupoff, upoff;
|
886 |
+
|
887 |
+
|
888 |
+
float gqsave=0;
|
889 |
+
bpt = threadIdx.x+threadIdx.y*blockDim.x;
|
890 |
+
|
891 |
+
bupoff=-blockDim.x;
|
892 |
+
upoff=-(!top)*cols;
|
893 |
+
|
894 |
+
pt=x+y*cols;
|
895 |
+
|
896 |
+
for(;x<cols;x+=32){
|
897 |
+
float gqx,gqy;
|
898 |
+
pt=x+y*cols;
|
899 |
+
|
900 |
+
|
901 |
+
float dacc;
|
902 |
+
//dx update
|
903 |
+
{
|
904 |
+
float gqr,gql;
|
905 |
+
gqr=gqx=gqxpt[pt];
|
906 |
+
gql=__shfl_up(gqx,1);
|
907 |
+
if (lf)
|
908 |
+
gql=gqsave;
|
909 |
+
gqsave=__shfl_down(gqx,31);//save for next iter
|
910 |
+
dacc = gqr - gql;//dx part
|
911 |
+
}
|
912 |
+
//dy update and d store
|
913 |
+
{
|
914 |
+
float a;
|
915 |
+
//load
|
916 |
+
{
|
917 |
+
a=apt[pt];
|
918 |
+
}
|
919 |
+
float gqu,gqd;
|
920 |
+
float d=dpt[pt];
|
921 |
+
gqd=gqy=gqypt[pt];
|
922 |
+
s[bpt]=gqy;
|
923 |
+
__syncthreads();
|
924 |
+
if(!btop)
|
925 |
+
gqu=s[bpt+bupoff];
|
926 |
+
else
|
927 |
+
gqu=gqypt[pt + upoff];
|
928 |
+
if(y==0)
|
929 |
+
gqu=0.0f;
|
930 |
+
dacc += gqd-gqu; //dy part
|
931 |
+
//d += dacc*.5f;//simplified step
|
932 |
+
d = ( d + sigma_d*(dacc + a/theta) ) / (1 + sigma_d/theta);
|
933 |
+
|
934 |
+
dpt[pt] = d;
|
935 |
+
}
|
936 |
+
__syncthreads();//can't figure out why this is needed, but it is to avoid subtle errors in Qy at the ends of the warp
|
937 |
+
}
|
938 |
+
#endif
|
939 |
+
}
|
940 |
+
|
941 |
+
|
942 |
+
}}}}
|
cuda_code/DepthwiseGEMM_64.cu
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/********************************************************
|
2 |
+
* Author: Zhao Mingxin
|
3 |
+
* Date: 2018/12/11
|
4 |
+
* Description: CUDA Kernel for DepthwiseGEMM. As GPU is good at
|
5 |
+
* dealing with 32 bits computation and gets performance degradation
|
6 |
+
* when bit-width is longer than 32, so the current DepthwiseGEMM
|
7 |
+
* version can't give right outputs when fixed point is more than 32 bits.
|
8 |
+
*
|
9 |
+
* NOTE: If you have any issues about this code, please
|
10 |
+
* feedback.
|
11 |
+
* Homepage: https://jackgittes.github.io
|
12 |
+
*********************************************************/
|
13 |
+
__global__ void DepthwiseGEMM_64(const long long *A,const long long *B,
|
14 |
+
const int Aheight,const int Awidth,const int Bwidth,
|
15 |
+
const long long up_bound,const long long low_bound,long long *C)
|
16 |
+
{
|
17 |
+
long long Cvalue = 0;
|
18 |
+
long long prod_tmp;
|
19 |
+
int Bheight = Awidth;
|
20 |
+
|
21 |
+
int chn = blockIdx.z;
|
22 |
+
int row = blockIdx.x * blockDim.x + threadIdx.x;
|
23 |
+
int col = blockIdx.y * blockDim.y + threadIdx.y;
|
24 |
+
|
25 |
+
for (int e = 0; e < Awidth; ++e){
|
26 |
+
prod_tmp = A[chn * Aheight * Awidth + Aheight * e + row]*B[chn*Bheight*Bwidth + col * Bheight+ e];
|
27 |
+
if(prod_tmp>up_bound)
|
28 |
+
prod_tmp = up_bound;
|
29 |
+
if(prod_tmp<low_bound)
|
30 |
+
prod_tmp = low_bound;
|
31 |
+
Cvalue += prod_tmp;
|
32 |
+
if(Cvalue>up_bound)
|
33 |
+
Cvalue=up_bound;
|
34 |
+
if(Cvalue<low_bound)
|
35 |
+
Cvalue=low_bound;
|
36 |
+
}
|
37 |
+
C[chn*Aheight*Bwidth + Aheight*col + row] = Cvalue;
|
38 |
+
}
|
cuda_code/DeviceMemory_2.cu
ADDED
@@ -0,0 +1,650 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <cassert>
|
2 |
+
#include <math.h>
|
3 |
+
#include <stdlib.h>
|
4 |
+
#include <stdio.h>
|
5 |
+
#include <cuda.h>
|
6 |
+
#include <cuda_runtime_api.h>
|
7 |
+
#include "cudacommon.h"
|
8 |
+
#include "OptionParser.h"
|
9 |
+
#include "ResultDatabase.h"
|
10 |
+
#include "Timer.h"
|
11 |
+
#include "support.h"
|
12 |
+
|
13 |
+
// Forward declarations for texture memory test and benchmark kernels
|
14 |
+
void TestTextureMem(ResultDatabase &resultDB, OptionParser &op, double scalet);
|
15 |
+
__global__ void
|
16 |
+
readGlobalMemoryCoalesced(float *data, float *output, int size, int repeat);
|
17 |
+
__global__ void readGlobalMemoryUnit(float *data, float *output, int size, int repeat);
|
18 |
+
__global__ void readLocalMemory(const float *data, float *output, int size, int repeat);
|
19 |
+
__global__ void writeGlobalMemoryCoalesced(float *output, int size, int repeat);
|
20 |
+
__global__ void writeGlobalMemoryUnit(float *output, int size, int repeat);
|
21 |
+
__global__ void writeLocalMemory(float *output, int size, int repeat);
|
22 |
+
__device__ int getRand(int seed, int mod);
|
23 |
+
__global__ void readTexels(int n, float *d_out, int width);
|
24 |
+
__global__ void readTexelsInCache(int n, float *d_out);
|
25 |
+
__global__ void readTexelsRandom(int n, float *d_out, int width, int height);
|
26 |
+
// Texture to use for the benchmarks
|
27 |
+
texture<float4, 2, cudaReadModeElementType> texA;
|
28 |
+
|
29 |
+
// ****************************************************************************
|
30 |
+
// Function: addBenchmarkSpecOptions
|
31 |
+
//
|
32 |
+
// Purpose:
|
33 |
+
// Add benchmark specific options parsing. Note that device memory has no
|
34 |
+
// benchmark specific options, so this is just a stub.
|
35 |
+
//
|
36 |
+
// Arguments:
|
37 |
+
// op: the options parser / parameter database
|
38 |
+
//
|
39 |
+
// Returns: nothing
|
40 |
+
//
|
41 |
+
// Programmer: Kyle Spafford
|
42 |
+
// Creation: December 11, 2009
|
43 |
+
//
|
44 |
+
// Modifications:
|
45 |
+
//
|
46 |
+
// ****************************************************************************
|
47 |
+
void addBenchmarkSpecOptions(OptionParser &op)
|
48 |
+
{
|
49 |
+
;
|
50 |
+
}
|
51 |
+
|
52 |
+
// ****************************************************************************
|
53 |
+
// Function: runBenchmark
|
54 |
+
//
|
55 |
+
// Purpose:
|
56 |
+
// This benchmark measures the device memory bandwidth for several areas
|
57 |
+
// of memory including global, shared, and texture memories for several
|
58 |
+
// types of access patterns.
|
59 |
+
//
|
60 |
+
// Arguments:
|
61 |
+
// resultDB: the benchmark stores its results in this ResultDatabase
|
62 |
+
// op: the options parser / parameter database
|
63 |
+
//
|
64 |
+
// Returns: nothing
|
65 |
+
//
|
66 |
+
// Programmer: Kyle Spafford
|
67 |
+
// Creation: September 08, 2009
|
68 |
+
//
|
69 |
+
// Modifications:
|
70 |
+
// Gabriel Marin, 06/09/2010: Change memory access patterns to eliminate
|
71 |
+
// data reuse. Add auto-scaling factor.
|
72 |
+
//
|
73 |
+
// ****************************************************************************
|
74 |
+
void RunBenchmark(ResultDatabase &resultDB,
|
75 |
+
OptionParser &op)
|
76 |
+
{
|
77 |
+
int npasses = op.getOptionInt("passes");
|
78 |
+
size_t minGroupSize = 32;
|
79 |
+
size_t maxGroupSize = 512;
|
80 |
+
size_t globalWorkSize = 32768; // 64 * maxGroupSize = 64 * 512;
|
81 |
+
unsigned int memSize = 64*1024*1024; // 64MB buffer
|
82 |
+
const long availMem = findAvailBytes();
|
83 |
+
while (memSize*2 > availMem)
|
84 |
+
memSize >>= 1; // keep it a power of 2
|
85 |
+
|
86 |
+
const unsigned int numWordsFloat = memSize / sizeof(float);
|
87 |
+
|
88 |
+
// Initialize host memory
|
89 |
+
float *h_in = new float[numWordsFloat];
|
90 |
+
float *h_out = new float[numWordsFloat];
|
91 |
+
srand48(8650341L);
|
92 |
+
for (int i = 0; i < numWordsFloat; ++i)
|
93 |
+
{
|
94 |
+
h_in[i] = (float)(drand48()*numWordsFloat);
|
95 |
+
}
|
96 |
+
|
97 |
+
// Allocate some device memory
|
98 |
+
float *d_mem1, *d_mem2;
|
99 |
+
char sizeStr[128];
|
100 |
+
|
101 |
+
cudaMalloc((void**)&d_mem1, sizeof(float)*(numWordsFloat));
|
102 |
+
CHECK_CUDA_ERROR();
|
103 |
+
cudaMalloc((void**)&d_mem2, sizeof(float)*(numWordsFloat));
|
104 |
+
CHECK_CUDA_ERROR();
|
105 |
+
|
106 |
+
cudaEvent_t start, stop;
|
107 |
+
cudaEventCreate(&start);
|
108 |
+
cudaEventCreate(&stop);
|
109 |
+
CHECK_CUDA_ERROR();
|
110 |
+
|
111 |
+
cudaEventRecord(start, 0);
|
112 |
+
readGlobalMemoryCoalesced<<<512, 64>>>
|
113 |
+
(d_mem1, d_mem2, numWordsFloat, 256);
|
114 |
+
cudaEventRecord(stop, 0);
|
115 |
+
cudaEventSynchronize(stop);
|
116 |
+
CHECK_CUDA_ERROR();
|
117 |
+
float t = 0.0f;
|
118 |
+
cudaEventElapsedTime(&t, start, stop);
|
119 |
+
t /= 1.e3;
|
120 |
+
double scalet = 0.15 / t;
|
121 |
+
|
122 |
+
const unsigned int maxRepeatsCoal = 256*scalet;
|
123 |
+
const unsigned int maxRepeatsUnit = 16*scalet;
|
124 |
+
const unsigned int maxRepeatsLocal = 300*scalet;
|
125 |
+
|
126 |
+
for (int p = 0; p < npasses; p++)
|
127 |
+
{
|
128 |
+
// Run the kernel for each group size
|
129 |
+
cout << "Running benchmarks, pass: " << p << "\n";
|
130 |
+
for (int threads=minGroupSize; threads<=maxGroupSize ; threads*=2)
|
131 |
+
{
|
132 |
+
const unsigned int blocks = globalWorkSize / threads;
|
133 |
+
double bdwth;
|
134 |
+
sprintf (sizeStr, "blockSize:%03d", threads);
|
135 |
+
|
136 |
+
// Test 1
|
137 |
+
cudaEventRecord(start, 0);
|
138 |
+
readGlobalMemoryCoalesced<<<blocks, threads>>>
|
139 |
+
(d_mem1, d_mem2, numWordsFloat, maxRepeatsCoal);
|
140 |
+
cudaEventRecord(stop, 0);
|
141 |
+
cudaEventSynchronize(stop);
|
142 |
+
CHECK_CUDA_ERROR();
|
143 |
+
t = 0.0f;
|
144 |
+
cudaEventElapsedTime(&t, start, stop);
|
145 |
+
t /= 1.e3;
|
146 |
+
bdwth = ((double) globalWorkSize * maxRepeatsCoal * 16 * sizeof(float))
|
147 |
+
/ (t * 1000. * 1000. * 1000.);
|
148 |
+
resultDB.AddResult("readGlobalMemoryCoalesced", sizeStr, "GB/s",
|
149 |
+
bdwth);
|
150 |
+
|
151 |
+
// Test 2
|
152 |
+
cudaEventRecord(start, 0);
|
153 |
+
readGlobalMemoryUnit<<<blocks, threads>>>
|
154 |
+
(d_mem1, d_mem2, numWordsFloat, maxRepeatsUnit);
|
155 |
+
cudaEventRecord(stop, 0);
|
156 |
+
cudaEventSynchronize(stop);
|
157 |
+
CHECK_CUDA_ERROR();
|
158 |
+
cudaEventElapsedTime(&t, start, stop);
|
159 |
+
t /= 1.e3;
|
160 |
+
bdwth = ((double) globalWorkSize * maxRepeatsUnit * 16 * sizeof(float))
|
161 |
+
/ (t * 1000. * 1000. * 1000.);
|
162 |
+
resultDB.AddResult("readGlobalMemoryUnit", sizeStr, "GB/s", bdwth);
|
163 |
+
|
164 |
+
// Test 3
|
165 |
+
cudaEventRecord(start, 0);
|
166 |
+
readLocalMemory<<<blocks, threads>>>
|
167 |
+
(d_mem1, d_mem2, numWordsFloat, maxRepeatsLocal);
|
168 |
+
cudaEventRecord(stop, 0);
|
169 |
+
cudaEventSynchronize(stop);
|
170 |
+
CHECK_CUDA_ERROR();
|
171 |
+
cudaEventElapsedTime(&t, start, stop);
|
172 |
+
t /= 1.e3;
|
173 |
+
bdwth = ((double) globalWorkSize * maxRepeatsLocal * 16 * sizeof(float))
|
174 |
+
/ (t * 1000. * 1000. * 1000.);
|
175 |
+
resultDB.AddResult("readLocalMemory", sizeStr, "GB/s", bdwth);
|
176 |
+
|
177 |
+
// Test 4
|
178 |
+
cudaEventRecord(start, 0);
|
179 |
+
writeGlobalMemoryCoalesced<<<blocks, threads>>>
|
180 |
+
(d_mem2, numWordsFloat, maxRepeatsCoal);
|
181 |
+
cudaEventRecord(stop, 0);
|
182 |
+
cudaEventSynchronize(stop);
|
183 |
+
CHECK_CUDA_ERROR();
|
184 |
+
cudaEventElapsedTime(&t, start, stop);
|
185 |
+
t /= 1.e3;
|
186 |
+
bdwth = ((double) globalWorkSize * maxRepeatsCoal * 16 * sizeof(float))
|
187 |
+
/ (t * 1000. * 1000. * 1000.);
|
188 |
+
resultDB.AddResult("writeGlobalMemoryCoalesced", sizeStr, "GB/s",
|
189 |
+
bdwth);
|
190 |
+
|
191 |
+
// Test 5
|
192 |
+
cudaEventRecord(start, 0);
|
193 |
+
writeGlobalMemoryUnit<<<blocks, threads>>>
|
194 |
+
(d_mem2, numWordsFloat, maxRepeatsUnit);
|
195 |
+
cudaEventRecord(stop, 0);
|
196 |
+
cudaEventSynchronize(stop);
|
197 |
+
CHECK_CUDA_ERROR();
|
198 |
+
cudaEventElapsedTime(&t, start, stop);
|
199 |
+
t /= 1.e3;
|
200 |
+
bdwth = ((double) globalWorkSize * maxRepeatsUnit * 16 * sizeof(float))
|
201 |
+
/ (t * 1000. * 1000. * 1000.);
|
202 |
+
resultDB.AddResult("writeGlobalMemoryUnit", sizeStr, "GB/s",
|
203 |
+
bdwth);
|
204 |
+
|
205 |
+
// Test 6
|
206 |
+
cudaEventRecord(start, 0);
|
207 |
+
writeLocalMemory<<<blocks, threads>>>
|
208 |
+
(d_mem2, numWordsFloat, maxRepeatsLocal);
|
209 |
+
cudaEventRecord(stop, 0);
|
210 |
+
cudaEventSynchronize(stop);
|
211 |
+
CHECK_CUDA_ERROR();
|
212 |
+
cudaEventElapsedTime(&t, start, stop);
|
213 |
+
t /= 1.e3;
|
214 |
+
bdwth = ((double) globalWorkSize * maxRepeatsLocal * 16 * sizeof(float))
|
215 |
+
/ (t * 1000. * 1000. * 1000.);
|
216 |
+
resultDB.AddResult("writeLocalMemory", sizeStr, "GB/s", bdwth);
|
217 |
+
}
|
218 |
+
}
|
219 |
+
cudaFree(d_mem1);
|
220 |
+
cudaFree(d_mem2);
|
221 |
+
delete[] h_in;
|
222 |
+
delete[] h_out;
|
223 |
+
cudaEventDestroy(start);
|
224 |
+
cudaEventDestroy(stop);
|
225 |
+
TestTextureMem(resultDB, op, scalet);
|
226 |
+
}
|
227 |
+
|
228 |
+
// ****************************************************************************
|
229 |
+
// Function: TestTextureMem
|
230 |
+
//
|
231 |
+
// Purpose:
|
232 |
+
// Measures the bandwidth of texture memory for several access patterns
|
233 |
+
// using a 2D texture including sequential, "random", and repeated access to
|
234 |
+
// texture cache. Texture memory is often a viable alternative to global
|
235 |
+
// memory, especially when data access patterns prevent good coalescing.
|
236 |
+
//
|
237 |
+
// Arguments:
|
238 |
+
// resultDB: results from the benchmark are stored to this resultd database
|
239 |
+
// op: the options parser / parameter database
|
240 |
+
// scalet: auto-scaling factor for the number of repetitions
|
241 |
+
//
|
242 |
+
// Returns: nothing
|
243 |
+
//
|
244 |
+
// Programmer: Kyle Spafford
|
245 |
+
// Creation: December 11, 2009
|
246 |
+
//
|
247 |
+
// Modifications:
|
248 |
+
// Gabriel Marin 06/09/2010: add auto-scaling factor
|
249 |
+
//
|
250 |
+
// Jeremy Meredith, Tue Nov 23 13:45:54 EST 2010
|
251 |
+
// Change data sizes to be larger, and textures to be 2D to match OpenCL
|
252 |
+
// variant. Dropped #iterations to compensate. Had to remove validation
|
253 |
+
// for now, which also matches the current OpenCL variant's behavior.
|
254 |
+
//
|
255 |
+
// ****************************************************************************
|
256 |
+
void TestTextureMem(ResultDatabase &resultDB, OptionParser &op, double scalet)
|
257 |
+
{
|
258 |
+
// Number of times to repeat each test
|
259 |
+
const unsigned int passes = op.getOptionInt("passes");
|
260 |
+
// Sizes of textures tested (in kb)
|
261 |
+
const unsigned int nsizes = 5;
|
262 |
+
const unsigned int sizes[] = { 16, 64, 256, 1024, 4096 };
|
263 |
+
// Number of texel accesses by each kernel
|
264 |
+
const unsigned int kernelRepFactor = 1024;
|
265 |
+
// Number of times to repeat each kernel per test
|
266 |
+
const unsigned int iterations = 1*scalet;
|
267 |
+
|
268 |
+
cudaEvent_t start, stop;
|
269 |
+
cudaEventCreate(&start);
|
270 |
+
cudaEventCreate(&stop);
|
271 |
+
CHECK_CUDA_ERROR();
|
272 |
+
|
273 |
+
// make sure our texture behaves like we want....
|
274 |
+
texA.normalized = false;
|
275 |
+
texA.addressMode[0] = cudaAddressModeClamp;
|
276 |
+
texA.addressMode[1] = cudaAddressModeClamp;
|
277 |
+
texA.filterMode = cudaFilterModePoint;
|
278 |
+
|
279 |
+
for (int j = 0; j < nsizes; j++)
|
280 |
+
{
|
281 |
+
cout << "Benchmarking Texture Memory, Test: " << j+1 << " / 5\n";
|
282 |
+
const unsigned int size = 1024 * sizes[j];
|
283 |
+
const unsigned int numFloat = size / sizeof(float);
|
284 |
+
const unsigned int numFloat4 = size / sizeof(float4);
|
285 |
+
size_t width, height;
|
286 |
+
|
287 |
+
// Image memory sizes should be power of 2.
|
288 |
+
size_t sizeLog = lround(log2(double(numFloat4)));
|
289 |
+
height = 1 << (sizeLog >> 1); // height is the smaller size
|
290 |
+
width = numFloat4 / height;
|
291 |
+
|
292 |
+
const dim3 blockSize(16, 8);
|
293 |
+
const dim3 gridSize(width/blockSize.x, height/blockSize.y);
|
294 |
+
|
295 |
+
float *h_in = new float[numFloat];
|
296 |
+
float *h_out = new float[numFloat4];
|
297 |
+
float *d_out;
|
298 |
+
cudaMalloc((void**) &d_out, numFloat4 * sizeof(float));
|
299 |
+
CHECK_CUDA_ERROR();
|
300 |
+
|
301 |
+
// Fill input data with some pattern
|
302 |
+
for (unsigned int i = 0; i < numFloat; i++)
|
303 |
+
{
|
304 |
+
h_in[i] = (float) i;
|
305 |
+
if (i < numFloat4)
|
306 |
+
{
|
307 |
+
h_out[i] = 0.0f;
|
308 |
+
}
|
309 |
+
}
|
310 |
+
|
311 |
+
// Allocate a cuda array
|
312 |
+
cudaArray* cuArray;
|
313 |
+
cudaMallocArray(&cuArray, &texA.channelDesc, width, height);
|
314 |
+
CHECK_CUDA_ERROR();
|
315 |
+
|
316 |
+
// Copy in source data
|
317 |
+
cudaMemcpyToArray(cuArray, 0, 0, h_in, size, cudaMemcpyHostToDevice);
|
318 |
+
CHECK_CUDA_ERROR();
|
319 |
+
|
320 |
+
// Bind texture to the array
|
321 |
+
cudaBindTextureToArray(texA, cuArray);
|
322 |
+
CHECK_CUDA_ERROR();
|
323 |
+
|
324 |
+
for (int p = 0; p < passes; p++)
|
325 |
+
{
|
326 |
+
// Test 1: Repeated Linear Access
|
327 |
+
float t = 0.0f;
|
328 |
+
|
329 |
+
cudaEventRecord(start, 0);
|
330 |
+
// read texels from texture
|
331 |
+
for (int iter = 0; iter < iterations; iter++)
|
332 |
+
{
|
333 |
+
readTexels<<<gridSize, blockSize>>>(kernelRepFactor, d_out,
|
334 |
+
width);
|
335 |
+
}
|
336 |
+
cudaEventRecord(stop, 0);
|
337 |
+
CHECK_CUDA_ERROR();
|
338 |
+
cudaEventSynchronize(stop);
|
339 |
+
CHECK_CUDA_ERROR();
|
340 |
+
cudaEventElapsedTime(&t, start, stop);
|
341 |
+
t /= 1.e3;
|
342 |
+
|
343 |
+
// Calculate speed in GB/s
|
344 |
+
double speed = (double)kernelRepFactor * (double)iterations *
|
345 |
+
(double)(size/(1000.*1000.*1000.)) / (t);
|
346 |
+
|
347 |
+
char sizeStr[256];
|
348 |
+
sprintf(sizeStr, "% 6dkB", size / 1024);
|
349 |
+
resultDB.AddResult("TextureRepeatedLinearAccess", sizeStr, "GB/sec",
|
350 |
+
speed);
|
351 |
+
|
352 |
+
// Verify results
|
353 |
+
cudaMemcpy(h_out, d_out, numFloat4*sizeof(float),
|
354 |
+
cudaMemcpyDeviceToHost);
|
355 |
+
|
356 |
+
// Test 2 Repeated Cache Access
|
357 |
+
cudaEventRecord(start, 0);
|
358 |
+
for (int iter = 0; iter < iterations; iter++)
|
359 |
+
{
|
360 |
+
readTexelsInCache<<<gridSize, blockSize>>>
|
361 |
+
(kernelRepFactor, d_out);
|
362 |
+
}
|
363 |
+
cudaEventRecord(stop, 0);
|
364 |
+
cudaEventSynchronize(stop);
|
365 |
+
CHECK_CUDA_ERROR();
|
366 |
+
cudaEventElapsedTime(&t, start, stop);
|
367 |
+
t /= 1.e3;
|
368 |
+
|
369 |
+
// Calculate speed in GB/s
|
370 |
+
speed = (double)kernelRepFactor * (double)iterations *
|
371 |
+
((double)size/(1000.*1000.*1000.)) / (t);
|
372 |
+
|
373 |
+
sprintf(sizeStr, "% 6dkB", size / 1024);
|
374 |
+
resultDB.AddResult("TextureRepeatedCacheHit", sizeStr, "GB/sec",
|
375 |
+
speed);
|
376 |
+
|
377 |
+
// Verify results
|
378 |
+
cudaMemcpy(h_out, d_out, numFloat4*sizeof(float),
|
379 |
+
cudaMemcpyDeviceToHost);
|
380 |
+
|
381 |
+
// Test 3 Repeated "Random" Access
|
382 |
+
cudaEventRecord(start, 0);
|
383 |
+
|
384 |
+
// read texels from texture
|
385 |
+
for (int iter = 0; iter < iterations; iter++)
|
386 |
+
{
|
387 |
+
readTexelsRandom<<<gridSize, blockSize>>>
|
388 |
+
(kernelRepFactor, d_out, width, height);
|
389 |
+
}
|
390 |
+
|
391 |
+
cudaEventRecord(stop, 0);
|
392 |
+
cudaEventSynchronize(stop);
|
393 |
+
CHECK_CUDA_ERROR();
|
394 |
+
cudaEventElapsedTime(&t, start, stop);
|
395 |
+
t /= 1.e3;
|
396 |
+
|
397 |
+
// Calculate speed in GB/s
|
398 |
+
speed = (double)kernelRepFactor * (double)iterations *
|
399 |
+
((double)size/(1000.*1000.*1000.)) / (t);
|
400 |
+
|
401 |
+
sprintf(sizeStr, "% 6dkB", size / 1024);
|
402 |
+
resultDB.AddResult("TextureRepeatedRandomAccess", sizeStr,
|
403 |
+
"GB/sec", speed);
|
404 |
+
}
|
405 |
+
delete[] h_in;
|
406 |
+
delete[] h_out;
|
407 |
+
cudaFree(d_out);
|
408 |
+
cudaFreeArray(cuArray);
|
409 |
+
cudaUnbindTexture(texA);
|
410 |
+
}
|
411 |
+
cudaEventDestroy(start);
|
412 |
+
cudaEventDestroy(stop);
|
413 |
+
}
|
414 |
+
|
415 |
+
// Begin benchmark kernels
|
416 |
+
__global__ void
|
417 |
+
readGlobalMemoryCoalesced(float *data, float *output, int size, int repeat)
|
418 |
+
{
|
419 |
+
int gid = threadIdx.x + (blockDim.x * blockIdx.x), j = 0;
|
420 |
+
float sum = 0;
|
421 |
+
int s = gid;
|
422 |
+
for (j=0 ; j<repeat ; ++j)
|
423 |
+
{
|
424 |
+
float a0 = data[(s+0)&(size-1)];
|
425 |
+
float a1 = data[(s+32768)&(size-1)];
|
426 |
+
float a2 = data[(s+65536)&(size-1)];
|
427 |
+
float a3 = data[(s+98304)&(size-1)];
|
428 |
+
float a4 = data[(s+131072)&(size-1)];
|
429 |
+
float a5 = data[(s+163840)&(size-1)];
|
430 |
+
float a6 = data[(s+196608)&(size-1)];
|
431 |
+
float a7 = data[(s+229376)&(size-1)];
|
432 |
+
float a8 = data[(s+262144)&(size-1)];
|
433 |
+
float a9 = data[(s+294912)&(size-1)];
|
434 |
+
float a10 = data[(s+327680)&(size-1)];
|
435 |
+
float a11 = data[(s+360448)&(size-1)];
|
436 |
+
float a12 = data[(s+393216)&(size-1)];
|
437 |
+
float a13 = data[(s+425984)&(size-1)];
|
438 |
+
float a14 = data[(s+458752)&(size-1)];
|
439 |
+
float a15 = data[(s+491520)&(size-1)];
|
440 |
+
sum += a0+a1+a2+a3+a4+a5+a6+a7+a8+a9+a10+a11+a12+a13+a14+a15;
|
441 |
+
s = (s+524288)&(size-1);
|
442 |
+
}
|
443 |
+
output[gid] = sum;
|
444 |
+
}
|
445 |
+
|
446 |
+
__global__ void
|
447 |
+
readGlobalMemoryUnit(float *data, float *output, int size, int repeat)
|
448 |
+
{
|
449 |
+
int gid = threadIdx.x + (blockDim.x * blockIdx.x), j = 0;
|
450 |
+
float sum = 0;
|
451 |
+
int s = gid*512;
|
452 |
+
for (j=0 ; j<repeat ; ++j)
|
453 |
+
{
|
454 |
+
float a0 = data[(s+0)&(size-1)];
|
455 |
+
float a1 = data[(s+1)&(size-1)];
|
456 |
+
float a2 = data[(s+2)&(size-1)];
|
457 |
+
float a3 = data[(s+3)&(size-1)];
|
458 |
+
float a4 = data[(s+4)&(size-1)];
|
459 |
+
float a5 = data[(s+5)&(size-1)];
|
460 |
+
float a6 = data[(s+6)&(size-1)];
|
461 |
+
float a7 = data[(s+7)&(size-1)];
|
462 |
+
float a8 = data[(s+8)&(size-1)];
|
463 |
+
float a9 = data[(s+9)&(size-1)];
|
464 |
+
float a10 = data[(s+10)&(size-1)];
|
465 |
+
float a11 = data[(s+11)&(size-1)];
|
466 |
+
float a12 = data[(s+12)&(size-1)];
|
467 |
+
float a13 = data[(s+13)&(size-1)];
|
468 |
+
float a14 = data[(s+14)&(size-1)];
|
469 |
+
float a15 = data[(s+15)&(size-1)];
|
470 |
+
sum += a0+a1+a2+a3+a4+a5+a6+a7+a8+a9+a10+a11+a12+a13+a14+a15;
|
471 |
+
s = (s+16)&(size-1);
|
472 |
+
}
|
473 |
+
output[gid] = sum;
|
474 |
+
}
|
475 |
+
|
476 |
+
__global__ void
|
477 |
+
readLocalMemory(const float *data, float *output, int size, int repeat)
|
478 |
+
{
|
479 |
+
int gid = threadIdx.x + (blockDim.x * blockIdx.x), j = 0;
|
480 |
+
float sum = 0;
|
481 |
+
int tid=threadIdx.x, localSize=blockDim.x, grpid=blockIdx.x,
|
482 |
+
litems=2048/localSize, goffset=localSize*grpid+tid*litems;
|
483 |
+
int s = tid;
|
484 |
+
__shared__ float lbuf[2048];
|
485 |
+
for ( ; j<litems && j<(size-goffset) ; ++j)
|
486 |
+
lbuf[tid*litems+j] = data[goffset+j];
|
487 |
+
for (int i=0 ; j<litems ; ++j,++i)
|
488 |
+
lbuf[tid*litems+j] = data[i];
|
489 |
+
__syncthreads();
|
490 |
+
for (j=0 ; j<repeat ; ++j)
|
491 |
+
{
|
492 |
+
float a0 = lbuf[(s+0)&(2047)];
|
493 |
+
float a1 = lbuf[(s+1)&(2047)];
|
494 |
+
float a2 = lbuf[(s+2)&(2047)];
|
495 |
+
float a3 = lbuf[(s+3)&(2047)];
|
496 |
+
float a4 = lbuf[(s+4)&(2047)];
|
497 |
+
float a5 = lbuf[(s+5)&(2047)];
|
498 |
+
float a6 = lbuf[(s+6)&(2047)];
|
499 |
+
float a7 = lbuf[(s+7)&(2047)];
|
500 |
+
float a8 = lbuf[(s+8)&(2047)];
|
501 |
+
float a9 = lbuf[(s+9)&(2047)];
|
502 |
+
float a10 = lbuf[(s+10)&(2047)];
|
503 |
+
float a11 = lbuf[(s+11)&(2047)];
|
504 |
+
float a12 = lbuf[(s+12)&(2047)];
|
505 |
+
float a13 = lbuf[(s+13)&(2047)];
|
506 |
+
float a14 = lbuf[(s+14)&(2047)];
|
507 |
+
float a15 = lbuf[(s+15)&(2047)];
|
508 |
+
sum += a0+a1+a2+a3+a4+a5+a6+a7+a8+a9+a10+a11+a12+a13+a14+a15;
|
509 |
+
s = (s+16)&(2047);
|
510 |
+
}
|
511 |
+
output[gid] = sum;
|
512 |
+
}
|
513 |
+
|
514 |
+
__global__ void
|
515 |
+
writeGlobalMemoryCoalesced(float *output, int size, int repeat)
|
516 |
+
{
|
517 |
+
int gid = threadIdx.x + (blockDim.x * blockIdx.x), j = 0;
|
518 |
+
int s = gid;
|
519 |
+
for (j=0 ; j<repeat ; ++j)
|
520 |
+
{
|
521 |
+
output[(s+0)&(size-1)] = gid;
|
522 |
+
output[(s+32768)&(size-1)] = gid;
|
523 |
+
output[(s+65536)&(size-1)] = gid;
|
524 |
+
output[(s+98304)&(size-1)] = gid;
|
525 |
+
output[(s+131072)&(size-1)] = gid;
|
526 |
+
output[(s+163840)&(size-1)] = gid;
|
527 |
+
output[(s+196608)&(size-1)] = gid;
|
528 |
+
output[(s+229376)&(size-1)] = gid;
|
529 |
+
output[(s+262144)&(size-1)] = gid;
|
530 |
+
output[(s+294912)&(size-1)] = gid;
|
531 |
+
output[(s+327680)&(size-1)] = gid;
|
532 |
+
output[(s+360448)&(size-1)] = gid;
|
533 |
+
output[(s+393216)&(size-1)] = gid;
|
534 |
+
output[(s+425984)&(size-1)] = gid;
|
535 |
+
output[(s+458752)&(size-1)] = gid;
|
536 |
+
output[(s+491520)&(size-1)] = gid;
|
537 |
+
s = (s+524288)&(size-1);
|
538 |
+
}
|
539 |
+
}
|
540 |
+
|
541 |
+
__global__ void
|
542 |
+
writeGlobalMemoryUnit(float *output, int size, int repeat)
|
543 |
+
{
|
544 |
+
int gid = threadIdx.x + (blockDim.x * blockIdx.x), j = 0;
|
545 |
+
int s = gid*512;
|
546 |
+
for (j=0 ; j<repeat ; ++j)
|
547 |
+
{
|
548 |
+
output[(s+0)&(size-1)] = gid;
|
549 |
+
output[(s+1)&(size-1)] = gid;
|
550 |
+
output[(s+2)&(size-1)] = gid;
|
551 |
+
output[(s+3)&(size-1)] = gid;
|
552 |
+
output[(s+4)&(size-1)] = gid;
|
553 |
+
output[(s+5)&(size-1)] = gid;
|
554 |
+
output[(s+6)&(size-1)] = gid;
|
555 |
+
output[(s+7)&(size-1)] = gid;
|
556 |
+
output[(s+8)&(size-1)] = gid;
|
557 |
+
output[(s+9)&(size-1)] = gid;
|
558 |
+
output[(s+10)&(size-1)] = gid;
|
559 |
+
output[(s+11)&(size-1)] = gid;
|
560 |
+
output[(s+12)&(size-1)] = gid;
|
561 |
+
output[(s+13)&(size-1)] = gid;
|
562 |
+
output[(s+14)&(size-1)] = gid;
|
563 |
+
output[(s+15)&(size-1)] = gid;
|
564 |
+
s = (s+16)&(size-1);
|
565 |
+
}
|
566 |
+
}
|
567 |
+
|
568 |
+
__global__ void
|
569 |
+
writeLocalMemory(float *output, int size, int repeat)
|
570 |
+
{
|
571 |
+
int gid = threadIdx.x + (blockDim.x * blockIdx.x), j = 0;
|
572 |
+
int tid=threadIdx.x, localSize=blockDim.x, litems=2048/localSize;
|
573 |
+
int s = tid;
|
574 |
+
__shared__ float lbuf[2048];
|
575 |
+
for (j=0 ; j<repeat ; ++j)
|
576 |
+
{
|
577 |
+
lbuf[(s+0)&(2047)] = gid;
|
578 |
+
lbuf[(s+1)&(2047)] = gid;
|
579 |
+
lbuf[(s+2)&(2047)] = gid;
|
580 |
+
lbuf[(s+3)&(2047)] = gid;
|
581 |
+
lbuf[(s+4)&(2047)] = gid;
|
582 |
+
lbuf[(s+5)&(2047)] = gid;
|
583 |
+
lbuf[(s+6)&(2047)] = gid;
|
584 |
+
lbuf[(s+7)&(2047)] = gid;
|
585 |
+
lbuf[(s+8)&(2047)] = gid;
|
586 |
+
lbuf[(s+9)&(2047)] = gid;
|
587 |
+
lbuf[(s+10)&(2047)] = gid;
|
588 |
+
lbuf[(s+11)&(2047)] = gid;
|
589 |
+
lbuf[(s+12)&(2047)] = gid;
|
590 |
+
lbuf[(s+13)&(2047)] = gid;
|
591 |
+
lbuf[(s+14)&(2047)] = gid;
|
592 |
+
lbuf[(s+15)&(2047)] = gid;
|
593 |
+
s = (s+16)&(2047);
|
594 |
+
}
|
595 |
+
__syncthreads();
|
596 |
+
for (j=0 ; j<litems ; ++j)
|
597 |
+
output[gid] = lbuf[tid];
|
598 |
+
}
|
599 |
+
|
600 |
+
// Simple Repeated Linear Read from texture memory
|
601 |
+
__global__ void readTexels(int n, float *d_out, int width)
|
602 |
+
{
|
603 |
+
int idx_x = (blockIdx.x * blockDim.x) + threadIdx.x;
|
604 |
+
int idx_y = (blockIdx.y * blockDim.y) + threadIdx.y;
|
605 |
+
int out_idx = idx_y * gridDim.x + idx_x;
|
606 |
+
float sum = 0.0f;
|
607 |
+
int width_bits = width-1;
|
608 |
+
for (int i = 0; i < n; i++)
|
609 |
+
{
|
610 |
+
float4 v = tex2D(texA, float(idx_x), float(idx_y));
|
611 |
+
idx_x = (idx_x+1) & width_bits;
|
612 |
+
sum += v.x;
|
613 |
+
}
|
614 |
+
d_out[out_idx] = sum;
|
615 |
+
}
|
616 |
+
|
617 |
+
// Repeated read of only 4kb of texels (should fit in texture cache)
|
618 |
+
__global__ void readTexelsInCache(int n, float *d_out)
|
619 |
+
{
|
620 |
+
int idx_x = (blockIdx.x * blockDim.x) + threadIdx.x;
|
621 |
+
int idx_y = (blockIdx.y * blockDim.y) + threadIdx.y;
|
622 |
+
int out_idx = idx_y * gridDim.x + idx_x;
|
623 |
+
float sum = 0.0f;
|
624 |
+
for (int i = 0; i < n; i++)
|
625 |
+
{
|
626 |
+
float4 v = tex2D(texA, float(idx_x), float(idx_y));
|
627 |
+
sum += v.x;
|
628 |
+
}
|
629 |
+
d_out[out_idx] = sum;
|
630 |
+
}
|
631 |
+
|
632 |
+
// Read "random" texels
|
633 |
+
__global__ void readTexelsRandom(int n, float *d_out, int width, int height)
|
634 |
+
{
|
635 |
+
int idx_x = (blockIdx.x * blockDim.x) + threadIdx.x;
|
636 |
+
int idx_y = (blockIdx.y * blockDim.y) + threadIdx.y;
|
637 |
+
int out_idx = idx_y * gridDim.x + idx_x;
|
638 |
+
float sum = 0.0f;
|
639 |
+
int width_bits = width-1;
|
640 |
+
int height_bits = height-1;
|
641 |
+
for (int i = 0; i < n; i++)
|
642 |
+
{
|
643 |
+
float4 v = tex2D(texA, float(idx_x), float(idx_y));
|
644 |
+
idx_x = (idx_x*3+29)&(width_bits);
|
645 |
+
idx_y = (idx_y*5+11)&(height_bits);
|
646 |
+
sum += v.x;
|
647 |
+
}
|
648 |
+
d_out[out_idx] = sum;
|
649 |
+
}
|
650 |
+
|
cuda_code/Distance_14.cu
ADDED
@@ -0,0 +1,472 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/**
|
2 |
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3 |
+
*
|
4 |
+
* This source code is licensed under the MIT license found in the
|
5 |
+
* LICENSE file in the root directory of this source tree.
|
6 |
+
*/
|
7 |
+
|
8 |
+
#include <faiss/gpu/GpuResources.h>
|
9 |
+
#include <faiss/gpu/utils/DeviceUtils.h>
|
10 |
+
#include <faiss/impl/AuxIndexStructures.h>
|
11 |
+
#include <faiss/impl/FaissAssert.h>
|
12 |
+
#include <faiss/gpu/impl/BroadcastSum.cuh>
|
13 |
+
#include <faiss/gpu/impl/Distance.cuh>
|
14 |
+
#include <faiss/gpu/impl/DistanceUtils.cuh>
|
15 |
+
#include <faiss/gpu/impl/L2Norm.cuh>
|
16 |
+
#include <faiss/gpu/impl/L2Select.cuh>
|
17 |
+
#include <faiss/gpu/utils/BlockSelectKernel.cuh>
|
18 |
+
#include <faiss/gpu/utils/DeviceDefs.cuh>
|
19 |
+
#include <faiss/gpu/utils/Limits.cuh>
|
20 |
+
#include <faiss/gpu/utils/MatrixMult.cuh>
|
21 |
+
|
22 |
+
#include <thrust/device_ptr.h>
|
23 |
+
#include <thrust/execution_policy.h>
|
24 |
+
#include <thrust/fill.h>
|
25 |
+
#include <thrust/for_each.h>
|
26 |
+
#include <algorithm>
|
27 |
+
#include <memory>
|
28 |
+
|
29 |
+
namespace faiss {
|
30 |
+
namespace gpu {
|
31 |
+
|
32 |
+
template <typename T>
|
33 |
+
void runDistance(
|
34 |
+
bool computeL2,
|
35 |
+
GpuResources* res,
|
36 |
+
Tensor<T, 2, true>& centroids,
|
37 |
+
bool centroidsRowMajor,
|
38 |
+
Tensor<float, 1, true>* centroidNorms,
|
39 |
+
Tensor<T, 2, true>& queries,
|
40 |
+
bool queriesRowMajor,
|
41 |
+
int k,
|
42 |
+
Tensor<float, 2, true>& outDistances,
|
43 |
+
Tensor<int, 2, true>& outIndices,
|
44 |
+
bool ignoreOutDistances) {
|
45 |
+
// The # of centroids in `centroids` based on memory layout
|
46 |
+
auto numCentroids = centroids.getSize(centroidsRowMajor ? 0 : 1);
|
47 |
+
|
48 |
+
// The # of queries in `queries` based on memory layout
|
49 |
+
auto numQueries = queries.getSize(queriesRowMajor ? 0 : 1);
|
50 |
+
|
51 |
+
// The dimensions of the vectors to consider
|
52 |
+
auto dim = queries.getSize(queriesRowMajor ? 1 : 0);
|
53 |
+
FAISS_ASSERT(
|
54 |
+
(numQueries == 0 || numCentroids == 0) ||
|
55 |
+
dim == centroids.getSize(centroidsRowMajor ? 1 : 0));
|
56 |
+
|
57 |
+
FAISS_ASSERT(outDistances.getSize(0) == numQueries);
|
58 |
+
FAISS_ASSERT(outIndices.getSize(0) == numQueries);
|
59 |
+
FAISS_ASSERT(outDistances.getSize(1) == k);
|
60 |
+
FAISS_ASSERT(outIndices.getSize(1) == k);
|
61 |
+
|
62 |
+
auto defaultStream = res->getDefaultStreamCurrentDevice();
|
63 |
+
|
64 |
+
// If we're querying against a 0 sized set, just return empty results
|
65 |
+
if (centroids.numElements() == 0) {
|
66 |
+
thrust::fill(
|
67 |
+
thrust::cuda::par.on(defaultStream),
|
68 |
+
outDistances.data(),
|
69 |
+
outDistances.end(),
|
70 |
+
Limits<float>::getMax());
|
71 |
+
|
72 |
+
thrust::fill(
|
73 |
+
thrust::cuda::par.on(defaultStream),
|
74 |
+
outIndices.data(),
|
75 |
+
outIndices.end(),
|
76 |
+
-1);
|
77 |
+
|
78 |
+
return;
|
79 |
+
}
|
80 |
+
|
81 |
+
// L2: If ||c||^2 is not pre-computed, calculate it
|
82 |
+
DeviceTensor<float, 1, true> cNorms;
|
83 |
+
if (computeL2 && !centroidNorms) {
|
84 |
+
cNorms = DeviceTensor<float, 1, true>(
|
85 |
+
res,
|
86 |
+
makeTempAlloc(AllocType::Other, defaultStream),
|
87 |
+
{numCentroids});
|
88 |
+
runL2Norm(centroids, centroidsRowMajor, cNorms, true, defaultStream);
|
89 |
+
centroidNorms = &cNorms;
|
90 |
+
}
|
91 |
+
|
92 |
+
//
|
93 |
+
// Prepare norm vector ||q||^2; ||c||^2 is already pre-computed
|
94 |
+
//
|
95 |
+
DeviceTensor<float, 1, true> queryNorms(
|
96 |
+
res,
|
97 |
+
makeTempAlloc(AllocType::Other, defaultStream),
|
98 |
+
{(int)numQueries});
|
99 |
+
|
100 |
+
// ||q||^2
|
101 |
+
if (computeL2) {
|
102 |
+
runL2Norm(queries, queriesRowMajor, queryNorms, true, defaultStream);
|
103 |
+
}
|
104 |
+
|
105 |
+
// By default, aim to use up to 512 MB of memory for the processing, with
|
106 |
+
// both number of queries and number of centroids being at least 512.
|
107 |
+
int tileRows = 0;
|
108 |
+
int tileCols = 0;
|
109 |
+
chooseTileSize(
|
110 |
+
numQueries,
|
111 |
+
numCentroids,
|
112 |
+
dim,
|
113 |
+
sizeof(T),
|
114 |
+
res->getTempMemoryAvailableCurrentDevice(),
|
115 |
+
tileRows,
|
116 |
+
tileCols);
|
117 |
+
|
118 |
+
int numColTiles = utils::divUp(numCentroids, tileCols);
|
119 |
+
|
120 |
+
// We can have any number of vectors to query against, even less than k, in
|
121 |
+
// which case we'll return -1 for the index
|
122 |
+
FAISS_ASSERT(k <= GPU_MAX_SELECTION_K); // select limitation
|
123 |
+
|
124 |
+
// Temporary output memory space we'll use
|
125 |
+
DeviceTensor<float, 2, true> distanceBuf1(
|
126 |
+
res,
|
127 |
+
makeTempAlloc(AllocType::Other, defaultStream),
|
128 |
+
{tileRows, tileCols});
|
129 |
+
DeviceTensor<float, 2, true> distanceBuf2(
|
130 |
+
res,
|
131 |
+
makeTempAlloc(AllocType::Other, defaultStream),
|
132 |
+
{tileRows, tileCols});
|
133 |
+
DeviceTensor<float, 2, true>* distanceBufs[2] = {
|
134 |
+
&distanceBuf1, &distanceBuf2};
|
135 |
+
|
136 |
+
DeviceTensor<float, 2, true> outDistanceBuf1(
|
137 |
+
res,
|
138 |
+
makeTempAlloc(AllocType::Other, defaultStream),
|
139 |
+
{tileRows, numColTiles * k});
|
140 |
+
DeviceTensor<float, 2, true> outDistanceBuf2(
|
141 |
+
res,
|
142 |
+
makeTempAlloc(AllocType::Other, defaultStream),
|
143 |
+
{tileRows, numColTiles * k});
|
144 |
+
DeviceTensor<float, 2, true>* outDistanceBufs[2] = {
|
145 |
+
&outDistanceBuf1, &outDistanceBuf2};
|
146 |
+
|
147 |
+
DeviceTensor<int, 2, true> outIndexBuf1(
|
148 |
+
res,
|
149 |
+
makeTempAlloc(AllocType::Other, defaultStream),
|
150 |
+
{tileRows, numColTiles * k});
|
151 |
+
DeviceTensor<int, 2, true> outIndexBuf2(
|
152 |
+
res,
|
153 |
+
makeTempAlloc(AllocType::Other, defaultStream),
|
154 |
+
{tileRows, numColTiles * k});
|
155 |
+
DeviceTensor<int, 2, true>* outIndexBufs[2] = {
|
156 |
+
&outIndexBuf1, &outIndexBuf2};
|
157 |
+
|
158 |
+
auto streams = res->getAlternateStreamsCurrentDevice();
|
159 |
+
streamWait(streams, {defaultStream});
|
160 |
+
|
161 |
+
int curStream = 0;
|
162 |
+
bool interrupt = false;
|
163 |
+
|
164 |
+
// Tile over the input queries
|
165 |
+
for (int i = 0; i < numQueries; i += tileRows) {
|
166 |
+
if (interrupt || InterruptCallback::is_interrupted()) {
|
167 |
+
interrupt = true;
|
168 |
+
break;
|
169 |
+
}
|
170 |
+
|
171 |
+
int curQuerySize = std::min(tileRows, numQueries - i);
|
172 |
+
|
173 |
+
auto outDistanceView = outDistances.narrow(0, i, curQuerySize);
|
174 |
+
auto outIndexView = outIndices.narrow(0, i, curQuerySize);
|
175 |
+
|
176 |
+
auto queryView =
|
177 |
+
queries.narrow(queriesRowMajor ? 0 : 1, i, curQuerySize);
|
178 |
+
auto queryNormNiew = queryNorms.narrow(0, i, curQuerySize);
|
179 |
+
|
180 |
+
auto outDistanceBufRowView =
|
181 |
+
outDistanceBufs[curStream]->narrow(0, 0, curQuerySize);
|
182 |
+
auto outIndexBufRowView =
|
183 |
+
outIndexBufs[curStream]->narrow(0, 0, curQuerySize);
|
184 |
+
|
185 |
+
// Tile over the centroids
|
186 |
+
for (int j = 0; j < numCentroids; j += tileCols) {
|
187 |
+
if (InterruptCallback::is_interrupted()) {
|
188 |
+
interrupt = true;
|
189 |
+
break;
|
190 |
+
}
|
191 |
+
|
192 |
+
int curCentroidSize = std::min(tileCols, numCentroids - j);
|
193 |
+
int curColTile = j / tileCols;
|
194 |
+
|
195 |
+
auto centroidsView = sliceCentroids(
|
196 |
+
centroids, centroidsRowMajor, j, curCentroidSize);
|
197 |
+
|
198 |
+
auto distanceBufView = distanceBufs[curStream]
|
199 |
+
->narrow(0, 0, curQuerySize)
|
200 |
+
.narrow(1, 0, curCentroidSize);
|
201 |
+
|
202 |
+
auto outDistanceBufColView =
|
203 |
+
outDistanceBufRowView.narrow(1, k * curColTile, k);
|
204 |
+
auto outIndexBufColView =
|
205 |
+
outIndexBufRowView.narrow(1, k * curColTile, k);
|
206 |
+
|
207 |
+
// L2: distance is ||c||^2 - 2qc + ||q||^2, we compute -2qc
|
208 |
+
// IP: just compute qc
|
209 |
+
// (query id x dim) x (centroid id, dim)' = (query id, centroid id)
|
210 |
+
runMatrixMult(
|
211 |
+
distanceBufView,
|
212 |
+
false, // not transposed
|
213 |
+
queryView,
|
214 |
+
!queriesRowMajor, // transposed MM if col major
|
215 |
+
centroidsView,
|
216 |
+
centroidsRowMajor, // transposed MM if row major
|
217 |
+
computeL2 ? -2.0f : 1.0f,
|
218 |
+
0.0f,
|
219 |
+
res->getBlasHandleCurrentDevice(),
|
220 |
+
streams[curStream]);
|
221 |
+
|
222 |
+
if (computeL2) {
|
223 |
+
// For L2 distance, we use this fused kernel that performs both
|
224 |
+
// adding ||c||^2 to -2qc and k-selection, so we only need two
|
225 |
+
// passes (one write by the gemm, one read here) over the huge
|
226 |
+
// region of output memory
|
227 |
+
//
|
228 |
+
// If we aren't tiling along the number of centroids, we can
|
229 |
+
// perform the output work directly
|
230 |
+
if (tileCols == numCentroids) {
|
231 |
+
// Write into the final output
|
232 |
+
runL2SelectMin(
|
233 |
+
distanceBufView,
|
234 |
+
*centroidNorms,
|
235 |
+
outDistanceView,
|
236 |
+
outIndexView,
|
237 |
+
k,
|
238 |
+
streams[curStream]);
|
239 |
+
|
240 |
+
if (!ignoreOutDistances) {
|
241 |
+
// expand (query id) to (query id, k) by duplicating
|
242 |
+
// along rows top-k ||c||^2 - 2qc + ||q||^2 in the form
|
243 |
+
// (query id, k)
|
244 |
+
runSumAlongRows(
|
245 |
+
queryNormNiew,
|
246 |
+
outDistanceView,
|
247 |
+
true, // L2 distances should not go below zero
|
248 |
+
// due to roundoff error
|
249 |
+
streams[curStream]);
|
250 |
+
}
|
251 |
+
} else {
|
252 |
+
auto centroidNormsView =
|
253 |
+
centroidNorms->narrow(0, j, curCentroidSize);
|
254 |
+
|
255 |
+
// Write into our intermediate output
|
256 |
+
runL2SelectMin(
|
257 |
+
distanceBufView,
|
258 |
+
centroidNormsView,
|
259 |
+
outDistanceBufColView,
|
260 |
+
outIndexBufColView,
|
261 |
+
k,
|
262 |
+
streams[curStream]);
|
263 |
+
|
264 |
+
if (!ignoreOutDistances) {
|
265 |
+
// expand (query id) to (query id, k) by duplicating
|
266 |
+
// along rows top-k ||c||^2 - 2qc + ||q||^2 in the form
|
267 |
+
// (query id, k)
|
268 |
+
runSumAlongRows(
|
269 |
+
queryNormNiew,
|
270 |
+
outDistanceBufColView,
|
271 |
+
true, // L2 distances should not go below zero
|
272 |
+
// due to roundoff error
|
273 |
+
streams[curStream]);
|
274 |
+
}
|
275 |
+
}
|
276 |
+
} else {
|
277 |
+
// For IP, just k-select the output for this tile
|
278 |
+
if (tileCols == numCentroids) {
|
279 |
+
// Write into the final output
|
280 |
+
runBlockSelect(
|
281 |
+
distanceBufView,
|
282 |
+
outDistanceView,
|
283 |
+
outIndexView,
|
284 |
+
true,
|
285 |
+
k,
|
286 |
+
streams[curStream]);
|
287 |
+
} else {
|
288 |
+
// Write into the intermediate output
|
289 |
+
runBlockSelect(
|
290 |
+
distanceBufView,
|
291 |
+
outDistanceBufColView,
|
292 |
+
outIndexBufColView,
|
293 |
+
true,
|
294 |
+
k,
|
295 |
+
streams[curStream]);
|
296 |
+
}
|
297 |
+
}
|
298 |
+
}
|
299 |
+
|
300 |
+
// As we're finished with processing a full set of centroids, perform
|
301 |
+
// the final k-selection
|
302 |
+
if (tileCols != numCentroids) {
|
303 |
+
// The indices are tile-relative; for each tile of k, we need to add
|
304 |
+
// tileCols to the index
|
305 |
+
runIncrementIndex(
|
306 |
+
outIndexBufRowView, k, tileCols, streams[curStream]);
|
307 |
+
|
308 |
+
runBlockSelectPair(
|
309 |
+
outDistanceBufRowView,
|
310 |
+
outIndexBufRowView,
|
311 |
+
outDistanceView,
|
312 |
+
outIndexView,
|
313 |
+
computeL2 ? false : true,
|
314 |
+
k,
|
315 |
+
streams[curStream]);
|
316 |
+
}
|
317 |
+
|
318 |
+
curStream = (curStream + 1) % 2;
|
319 |
+
}
|
320 |
+
|
321 |
+
// Have the desired ordering stream wait on the multi-stream
|
322 |
+
streamWait({defaultStream}, streams);
|
323 |
+
|
324 |
+
if (interrupt) {
|
325 |
+
FAISS_THROW_MSG("interrupted");
|
326 |
+
}
|
327 |
+
}
|
328 |
+
|
329 |
+
template <typename T>
|
330 |
+
void runL2Distance(
|
331 |
+
GpuResources* res,
|
332 |
+
Tensor<T, 2, true>& centroids,
|
333 |
+
bool centroidsRowMajor,
|
334 |
+
Tensor<float, 1, true>* centroidNorms,
|
335 |
+
Tensor<T, 2, true>& queries,
|
336 |
+
bool queriesRowMajor,
|
337 |
+
int k,
|
338 |
+
Tensor<float, 2, true>& outDistances,
|
339 |
+
Tensor<int, 2, true>& outIndices,
|
340 |
+
bool ignoreOutDistances = false) {
|
341 |
+
runDistance<T>(
|
342 |
+
true, // L2
|
343 |
+
res,
|
344 |
+
centroids,
|
345 |
+
centroidsRowMajor,
|
346 |
+
centroidNorms,
|
347 |
+
queries,
|
348 |
+
queriesRowMajor,
|
349 |
+
k,
|
350 |
+
outDistances,
|
351 |
+
outIndices,
|
352 |
+
ignoreOutDistances);
|
353 |
+
}
|
354 |
+
|
355 |
+
template <typename T>
|
356 |
+
void runIPDistance(
|
357 |
+
GpuResources* res,
|
358 |
+
Tensor<T, 2, true>& centroids,
|
359 |
+
bool centroidsRowMajor,
|
360 |
+
Tensor<T, 2, true>& queries,
|
361 |
+
bool queriesRowMajor,
|
362 |
+
int k,
|
363 |
+
Tensor<float, 2, true>& outDistances,
|
364 |
+
Tensor<int, 2, true>& outIndices) {
|
365 |
+
runDistance<T>(
|
366 |
+
false, // IP
|
367 |
+
res,
|
368 |
+
centroids,
|
369 |
+
centroidsRowMajor,
|
370 |
+
nullptr, // no centroid norms provided
|
371 |
+
queries,
|
372 |
+
queriesRowMajor,
|
373 |
+
k,
|
374 |
+
outDistances,
|
375 |
+
outIndices,
|
376 |
+
false);
|
377 |
+
}
|
378 |
+
|
379 |
+
//
|
380 |
+
// Instantiations of the distance templates
|
381 |
+
//
|
382 |
+
|
383 |
+
void runIPDistance(
|
384 |
+
GpuResources* res,
|
385 |
+
Tensor<float, 2, true>& vectors,
|
386 |
+
bool vectorsRowMajor,
|
387 |
+
Tensor<float, 2, true>& queries,
|
388 |
+
bool queriesRowMajor,
|
389 |
+
int k,
|
390 |
+
Tensor<float, 2, true>& outDistances,
|
391 |
+
Tensor<int, 2, true>& outIndices) {
|
392 |
+
runIPDistance<float>(
|
393 |
+
res,
|
394 |
+
vectors,
|
395 |
+
vectorsRowMajor,
|
396 |
+
queries,
|
397 |
+
queriesRowMajor,
|
398 |
+
k,
|
399 |
+
outDistances,
|
400 |
+
outIndices);
|
401 |
+
}
|
402 |
+
|
403 |
+
void runIPDistance(
|
404 |
+
GpuResources* res,
|
405 |
+
Tensor<half, 2, true>& vectors,
|
406 |
+
bool vectorsRowMajor,
|
407 |
+
Tensor<half, 2, true>& queries,
|
408 |
+
bool queriesRowMajor,
|
409 |
+
int k,
|
410 |
+
Tensor<float, 2, true>& outDistances,
|
411 |
+
Tensor<int, 2, true>& outIndices) {
|
412 |
+
runIPDistance<half>(
|
413 |
+
res,
|
414 |
+
vectors,
|
415 |
+
vectorsRowMajor,
|
416 |
+
queries,
|
417 |
+
queriesRowMajor,
|
418 |
+
k,
|
419 |
+
outDistances,
|
420 |
+
outIndices);
|
421 |
+
}
|
422 |
+
|
423 |
+
void runL2Distance(
|
424 |
+
GpuResources* res,
|
425 |
+
Tensor<float, 2, true>& vectors,
|
426 |
+
bool vectorsRowMajor,
|
427 |
+
Tensor<float, 1, true>* vectorNorms,
|
428 |
+
Tensor<float, 2, true>& queries,
|
429 |
+
bool queriesRowMajor,
|
430 |
+
int k,
|
431 |
+
Tensor<float, 2, true>& outDistances,
|
432 |
+
Tensor<int, 2, true>& outIndices,
|
433 |
+
bool ignoreOutDistances) {
|
434 |
+
runL2Distance<float>(
|
435 |
+
res,
|
436 |
+
vectors,
|
437 |
+
vectorsRowMajor,
|
438 |
+
vectorNorms,
|
439 |
+
queries,
|
440 |
+
queriesRowMajor,
|
441 |
+
k,
|
442 |
+
outDistances,
|
443 |
+
outIndices,
|
444 |
+
ignoreOutDistances);
|
445 |
+
}
|
446 |
+
|
447 |
+
void runL2Distance(
|
448 |
+
GpuResources* res,
|
449 |
+
Tensor<half, 2, true>& vectors,
|
450 |
+
bool vectorsRowMajor,
|
451 |
+
Tensor<float, 1, true>* vectorNorms,
|
452 |
+
Tensor<half, 2, true>& queries,
|
453 |
+
bool queriesRowMajor,
|
454 |
+
int k,
|
455 |
+
Tensor<float, 2, true>& outDistances,
|
456 |
+
Tensor<int, 2, true>& outIndices,
|
457 |
+
bool ignoreOutDistances) {
|
458 |
+
runL2Distance<half>(
|
459 |
+
res,
|
460 |
+
vectors,
|
461 |
+
vectorsRowMajor,
|
462 |
+
vectorNorms,
|
463 |
+
queries,
|
464 |
+
queriesRowMajor,
|
465 |
+
k,
|
466 |
+
outDistances,
|
467 |
+
outIndices,
|
468 |
+
ignoreOutDistances);
|
469 |
+
}
|
470 |
+
|
471 |
+
} // namespace gpu
|
472 |
+
} // namespace faiss
|
cuda_code/DistributionExponentialKernel.cu
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <ATen/Dispatch.h>
|
2 |
+
#include <ATen/ExpandUtils.h>
|
3 |
+
#include <ATen/NativeFunctions.h>
|
4 |
+
#include <ATen/cuda/CUDAApplyUtils.cuh>
|
5 |
+
#include <ATen/AccumulateType.h>
|
6 |
+
#include <ATen/CUDAGeneratorImpl.h>
|
7 |
+
#include <ATen/native/UnaryOps.h>
|
8 |
+
#include <ATen/native/cuda/DistributionTemplates.h>
|
9 |
+
|
10 |
+
#include <curand.h>
|
11 |
+
#include <curand_kernel.h>
|
12 |
+
#include <curand_philox4x32_x.h>
|
13 |
+
#include <utility>
|
14 |
+
#include <functional>
|
15 |
+
|
16 |
+
#include <ATen/native/Distributions.h>
|
17 |
+
#include <ATen/native/cuda/Loops.cuh>
|
18 |
+
#include <ATen/native/TensorIterator.h>
|
19 |
+
|
20 |
+
#include <THC/THCGeneral.h>
|
21 |
+
#include <THC/THCDeviceUtils.cuh>
|
22 |
+
|
23 |
+
#include <cstdint>
|
24 |
+
#include <limits>
|
25 |
+
#include <utility>
|
26 |
+
#include <type_traits>
|
27 |
+
|
28 |
+
namespace at { namespace native {
|
29 |
+
|
30 |
+
void exponential_kernel(TensorIteratorBase& iter, double lambda, c10::optional<Generator> gen) {
|
31 |
+
auto generator = get_generator_or_default<CUDAGeneratorImpl>(gen, cuda::detail::getDefaultCUDAGenerator());
|
32 |
+
at::native::templates::cuda::exponential_kernel(iter, lambda, generator);
|
33 |
+
}
|
34 |
+
|
35 |
+
REGISTER_DISPATCH(exponential_stub, &exponential_kernel);
|
36 |
+
|
37 |
+
}} // namespace at::native
|
cuda_code/DistributionExponentialKernel_1.cu
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#define TORCH_ASSERT_NO_OPERATORS
|
2 |
+
#include <ATen/cuda/CUDAGeneratorImpl.h>
|
3 |
+
#include <ATen/native/UnaryOps.h>
|
4 |
+
#include <ATen/native/cuda/DistributionTemplates.h>
|
5 |
+
|
6 |
+
namespace at { namespace native {
|
7 |
+
|
8 |
+
void exponential_kernel(TensorIteratorBase& iter, double lambda, c10::optional<Generator> gen) {
|
9 |
+
auto generator = get_generator_or_default<CUDAGeneratorImpl>(gen, cuda::detail::getDefaultCUDAGenerator());
|
10 |
+
at::native::templates::cuda::exponential_kernel(iter, lambda, generator);
|
11 |
+
}
|
12 |
+
|
13 |
+
REGISTER_DISPATCH(exponential_stub, &exponential_kernel);
|
14 |
+
|
15 |
+
}} // namespace at::native
|
cuda_code/DnDHgels.cu
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <cuda_runtime_api.h> // cudaMalloc, cudaMemcpy, etc.
|
2 |
+
#include <cusolverDn.h> // cusolverDn
|
3 |
+
#include "../../cusolver_utils.h"
|
4 |
+
#include <stdio.h> // printf
|
5 |
+
#include <stdlib.h> // EXIT_FAILURE
|
6 |
+
|
7 |
+
int main(void) {
|
8 |
+
|
9 |
+
int m = 3;
|
10 |
+
int n = 3;
|
11 |
+
int nrhs = 3;
|
12 |
+
int lda = n;
|
13 |
+
int ldb = n;
|
14 |
+
int ldx = n;
|
15 |
+
double hA[] = {1, 2, 3, 2, 5, 5, 3, 5, 12};
|
16 |
+
double hB[] = {1, 2, 3, 2, 5, 5, 3, 5, 12};
|
17 |
+
double hX[] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
|
18 |
+
|
19 |
+
double hX_result[] = {1, 0, 0, 0, 1, 0, 0, 0, 1};
|
20 |
+
|
21 |
+
double *dA, *dB, *dX;
|
22 |
+
CUDA_CHECK( cudaMalloc((void**) &dA, m * n * sizeof(double)));
|
23 |
+
CUDA_CHECK( cudaMalloc((void**) &dB, m * nrhs * sizeof(double)));
|
24 |
+
CUDA_CHECK( cudaMalloc((void**) &dX, m * nrhs * sizeof(double)));
|
25 |
+
CUDA_CHECK( cudaMemcpy(dA, hA, m * n * sizeof(double), cudaMemcpyHostToDevice) );
|
26 |
+
CUDA_CHECK( cudaMemcpy(dB, hB, m * nrhs * sizeof(double), cudaMemcpyHostToDevice) );
|
27 |
+
CUDA_CHECK( cudaMemcpy(dX, hX, m * nrhs * sizeof(double), cudaMemcpyHostToDevice) );
|
28 |
+
|
29 |
+
cusolverDnHandle_t handle = NULL;
|
30 |
+
CUSOLVER_CHECK(cusolverDnCreate(&handle));
|
31 |
+
|
32 |
+
size_t lwork_bytes;
|
33 |
+
CUSOLVER_CHECK(cusolverDnDHgels_bufferSize(handle, m, n, nrhs, NULL, lda, NULL, ldb, NULL, ldx, NULL, &lwork_bytes));
|
34 |
+
//printf("%d\n", lwork_bytes);
|
35 |
+
|
36 |
+
void *dWorkspace;
|
37 |
+
cudaMalloc((void**)&dWorkspace, lwork_bytes);
|
38 |
+
|
39 |
+
int *devInfo;
|
40 |
+
int niter;
|
41 |
+
CUDA_CHECK( cudaMalloc((void**) &devInfo, sizeof(int)));
|
42 |
+
CUSOLVER_CHECK(cusolverDnDHgels(handle, m, n, nrhs, dA, lda, dB, ldb, dX, ldx, dWorkspace, lwork_bytes, &niter, devInfo));
|
43 |
+
int hdevInfo;
|
44 |
+
CUDA_CHECK( cudaMemcpy(&hdevInfo, devInfo, sizeof(int), cudaMemcpyDeviceToHost) );
|
45 |
+
double values[n*nrhs];
|
46 |
+
CUDA_CHECK( cudaMemcpy(values, dX, n * nrhs * sizeof(double), cudaMemcpyDeviceToHost) );
|
47 |
+
|
48 |
+
int correct = (hdevInfo == 0);
|
49 |
+
for (int i = 0; i < n * nrhs; i++) {
|
50 |
+
printf("%f == %f\n", values[i], hX_result[i]);
|
51 |
+
if (fabsf(values[i] - hX_result[i]) > 0.001) {
|
52 |
+
correct = 0;
|
53 |
+
//break;
|
54 |
+
}
|
55 |
+
}
|
56 |
+
|
57 |
+
if (correct == 1) {
|
58 |
+
printf("DnDHgels test PASSED\n");
|
59 |
+
} else {
|
60 |
+
printf("DnDHgels test FAILED\n");
|
61 |
+
}
|
62 |
+
|
63 |
+
CUSOLVER_CHECK(cusolverDnDestroy(handle));
|
64 |
+
|
65 |
+
return EXIT_SUCCESS;
|
66 |
+
|
67 |
+
}
|
cuda_code/DnSXgels.cu
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <cuda_runtime_api.h> // cudaMalloc, cudaMemcpy, etc.
|
2 |
+
#include <cusolverDn.h> // cusolverDn
|
3 |
+
#include "../../cusolver_utils.h"
|
4 |
+
#include <stdio.h> // printf
|
5 |
+
#include <stdlib.h> // EXIT_FAILURE
|
6 |
+
|
7 |
+
int main(void) {
|
8 |
+
|
9 |
+
int m = 3;
|
10 |
+
int n = 3;
|
11 |
+
int nrhs = 3;
|
12 |
+
int lda = n;
|
13 |
+
int ldb = n;
|
14 |
+
int ldx = n;
|
15 |
+
float hA[] = {1, 2, 3, 2, 5, 5, 3, 5, 12};
|
16 |
+
float hB[] = {1, 2, 3, 2, 5, 5, 3, 5, 12};
|
17 |
+
float hX[] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
|
18 |
+
|
19 |
+
float hX_result[] = {1, 0, 0, 0, 1, 0, 0, 0, 1};
|
20 |
+
|
21 |
+
float *dA, *dB, *dX;
|
22 |
+
CUDA_CHECK( cudaMalloc((void**) &dA, m * n * sizeof(float)));
|
23 |
+
CUDA_CHECK( cudaMalloc((void**) &dB, m * nrhs * sizeof(float)));
|
24 |
+
CUDA_CHECK( cudaMalloc((void**) &dX, m * nrhs * sizeof(float)));
|
25 |
+
CUDA_CHECK( cudaMemcpy(dA, hA, m * n * sizeof(float), cudaMemcpyHostToDevice) );
|
26 |
+
CUDA_CHECK( cudaMemcpy(dB, hB, m * nrhs * sizeof(float), cudaMemcpyHostToDevice) );
|
27 |
+
CUDA_CHECK( cudaMemcpy(dX, hX, m * nrhs * sizeof(float), cudaMemcpyHostToDevice) );
|
28 |
+
|
29 |
+
cusolverDnHandle_t handle = NULL;
|
30 |
+
CUSOLVER_CHECK(cusolverDnCreate(&handle));
|
31 |
+
|
32 |
+
size_t lwork_bytes;
|
33 |
+
CUSOLVER_CHECK(cusolverDnSXgels_bufferSize(handle, m, n, nrhs, NULL, lda, NULL, ldb, NULL, ldx, NULL, &lwork_bytes));
|
34 |
+
//printf("%d\n", lwork_bytes);
|
35 |
+
|
36 |
+
void *dWorkspace;
|
37 |
+
cudaMalloc((void**)&dWorkspace, lwork_bytes);
|
38 |
+
|
39 |
+
int *devInfo;
|
40 |
+
int niter;
|
41 |
+
CUDA_CHECK( cudaMalloc((void**) &devInfo, sizeof(int)));
|
42 |
+
CUSOLVER_CHECK(cusolverDnSXgels(handle, m, n, nrhs, dA, lda, dB, ldb, dX, ldx, dWorkspace, lwork_bytes, &niter, devInfo));
|
43 |
+
int hdevInfo;
|
44 |
+
CUDA_CHECK( cudaMemcpy(&hdevInfo, devInfo, sizeof(int), cudaMemcpyDeviceToHost) );
|
45 |
+
float values[n*nrhs];
|
46 |
+
CUDA_CHECK( cudaMemcpy(values, dX, n * nrhs * sizeof(float), cudaMemcpyDeviceToHost) );
|
47 |
+
|
48 |
+
int correct = (hdevInfo == 0);
|
49 |
+
for (int i = 0; i < n * nrhs; i++) {
|
50 |
+
printf("%f == %f\n", values[i], hX_result[i]);
|
51 |
+
if (fabsf(values[i] - hX_result[i]) > 0.001) {
|
52 |
+
correct = 0;
|
53 |
+
//break;
|
54 |
+
}
|
55 |
+
}
|
56 |
+
|
57 |
+
if (correct == 1) {
|
58 |
+
printf("DnSXgels test PASSED\n");
|
59 |
+
} else {
|
60 |
+
printf("DnSXgels test FAILED\n");
|
61 |
+
}
|
62 |
+
|
63 |
+
CUSOLVER_CHECK(cusolverDnDestroy(handle));
|
64 |
+
|
65 |
+
return EXIT_SUCCESS;
|
66 |
+
|
67 |
+
}
|