traffic_signal_images / traffic_signal_images.py
Sayali9141's picture
Rename signals.py to traffic_signal_images.py
c7e2404 verified
raw
history blame
5.28 kB
import csv
import json
import os
from typing import List
import datasets
import logging
from datetime import datetime, timedelta
import pandas as pd
import requests
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This dataset contains traffic images from traffic signal cameras of singapore. The images are captured at 1.5 minute interval from 6 pm to 7 pm everyday for the month of January 2024.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://beta.data.gov.sg/collections/354/view"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
# _URL = "https://raw.githubusercontent.com/Sayali-pingle/HuggingFace--Traffic-Image-Dataset/main/camera_data.csv"
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class TrafficImages(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
# _URLS = _URLS
VERSION = datasets.Version("1.1.0")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"timestamp": datasets.Value("string"),
"camera_id": datasets.Value("string"),
"latitude": datasets.Value("float"),
"longitude": datasets.Value("float"),
"image_url": datasets.Image(),
"image_metadata": datasets.Value("string")
}
),
homepage=_HOMEPAGE,
citation=_CITATION,
)
# def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
# urls_to_download = self._URL
# downloaded_files = dl_manager.download_and_extract(urls_to_download)
# return [
# datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
# datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
# ]
def _split_generators(self, dl_manager: datasets.DownloadManager):
# The URLs should be the paths to the raw files in the Hugging Face dataset repository
urls_to_download = {
"csv_file": "https://raw.githubusercontent.com/Sayali-pingle/HuggingFace--Traffic-Image-Dataset/main/camera_data.csv"
}
downloaded_files = dl_manager.download_and_extract(urls_to_download['csv_file'])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"csv_file_path": downloaded_files,
},
),
]
def _generate_examples(self, csv_file_path):
# This method will yield examples from your dataset
# start_date = datetime(2024, 1, 1, 18, 0, 0)
# end_date = datetime(2024, 1, 2, 19, 0, 0)
# interval_seconds = 240
# date_time_strings = [
# (current_date + timedelta(seconds=seconds)).strftime('%Y-%m-%dT%H:%M:%S+08:00')
# for current_date in pd.date_range(start=start_date, end=end_date, freq='D')
# for seconds in range(0, 3600, interval_seconds)
# ]
# url = 'https://api.data.gov.sg/v1/transport/traffic-images'
# camera_data = []
# for date_time in date_time_strings:
# params = {'date_time': date_time}
# response = requests.get(url, params=params)
# if response.status_code == 200:
# data = response.json()
# camera_data.extend([
# {
# 'timestamp': item['timestamp'],
# 'camera_id': camera['camera_id'],
# 'latitude': camera['location']['latitude'],
# 'longitude': camera['location']['longitude'],
# 'image_url': camera['image'],
# 'image_metadata': camera['image_metadata']
# }
# for item in data['items']
# for camera in item['cameras']
# ])
# else:
# print(f"Error: {response.status_code}")
camera_data= pd.read_csv(csv_file_path)
for idx, example in camera_data.iterrows():
yield idx, {
"timestamp": example["timestamp"],
"camera_id": example["camera_id"],
"latitude": example["latitude"],
"longitude": example["longitude"],
"image_url": example["image_url"],
"image_metadata": example["image_metadata"]
}