Datasets:
Sayali9141
commited on
Commit
•
f2b317c
1
Parent(s):
a4171d3
Update signals.py
Browse files- signals.py +62 -43
signals.py
CHANGED
@@ -4,7 +4,9 @@ import os
|
|
4 |
from typing import List
|
5 |
import datasets
|
6 |
import logging
|
7 |
-
|
|
|
|
|
8 |
# TODO: Add BibTeX citation
|
9 |
# Find for instance the citation on arxiv or on the dataset repo/website
|
10 |
_CITATION = """\
|
@@ -31,13 +33,13 @@ _LICENSE = ""
|
|
31 |
# TODO: Add link to the official dataset URLs here
|
32 |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
33 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
34 |
-
_URL = "https://
|
35 |
|
36 |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
37 |
class TrafficImages(datasets.GeneratorBasedBuilder):
|
38 |
"""TODO: Short description of my dataset."""
|
39 |
|
40 |
-
#_URLS = _URLS
|
41 |
VERSION = datasets.Version("1.1.0")
|
42 |
|
43 |
def _info(self):
|
@@ -49,7 +51,7 @@ class TrafficImages(datasets.GeneratorBasedBuilder):
|
|
49 |
"camera_id": datasets.Value("string"),
|
50 |
"latitude": datasets.Value("float"),
|
51 |
"longitude": datasets.Value("float"),
|
52 |
-
"image_url": datasets.
|
53 |
"image_metadata": datasets.Value("string")
|
54 |
}
|
55 |
),
|
@@ -57,52 +59,70 @@ class TrafficImages(datasets.GeneratorBasedBuilder):
|
|
57 |
citation=_CITATION,
|
58 |
)
|
59 |
|
60 |
-
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
61 |
-
|
62 |
-
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
|
69 |
-
def
|
70 |
-
#
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
79 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
response = requests.get(url, params=params)
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
{
|
92 |
-
'timestamp': item['timestamp'],
|
93 |
-
'camera_id': camera['camera_id'],
|
94 |
-
'latitude': camera['location']['latitude'],
|
95 |
-
'longitude': camera['location']['longitude'],
|
96 |
-
'image_url': camera['image'],
|
97 |
-
'image_metadata': camera['image_metadata']
|
98 |
-
}
|
99 |
-
for item in data['items']
|
100 |
-
for camera in item['cameras']
|
101 |
-
])
|
102 |
-
else:
|
103 |
-
print(f"Error: {response.status_code}")
|
104 |
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
yield idx, {
|
107 |
"timestamp": example["timestamp"],
|
108 |
"camera_id": example["camera_id"],
|
@@ -111,4 +131,3 @@ class TrafficImages(datasets.GeneratorBasedBuilder):
|
|
111 |
"image_url": example["image_url"],
|
112 |
"image_metadata": example["image_metadata"]
|
113 |
}
|
114 |
-
|
|
|
4 |
from typing import List
|
5 |
import datasets
|
6 |
import logging
|
7 |
+
from datetime import datetime, timedelta
|
8 |
+
import pandas as pd
|
9 |
+
import requests
|
10 |
# TODO: Add BibTeX citation
|
11 |
# Find for instance the citation on arxiv or on the dataset repo/website
|
12 |
_CITATION = """\
|
|
|
33 |
# TODO: Add link to the official dataset URLs here
|
34 |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
35 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
36 |
+
# _URL = "https://raw.githubusercontent.com/Sayali-pingle/HuggingFace--Traffic-Image-Dataset/main/camera_data.csv"
|
37 |
|
38 |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
39 |
class TrafficImages(datasets.GeneratorBasedBuilder):
|
40 |
"""TODO: Short description of my dataset."""
|
41 |
|
42 |
+
# _URLS = _URLS
|
43 |
VERSION = datasets.Version("1.1.0")
|
44 |
|
45 |
def _info(self):
|
|
|
51 |
"camera_id": datasets.Value("string"),
|
52 |
"latitude": datasets.Value("float"),
|
53 |
"longitude": datasets.Value("float"),
|
54 |
+
"image_url": datasets.Image(),
|
55 |
"image_metadata": datasets.Value("string")
|
56 |
}
|
57 |
),
|
|
|
59 |
citation=_CITATION,
|
60 |
)
|
61 |
|
62 |
+
# def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
63 |
+
# urls_to_download = self._URL
|
64 |
+
# downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
65 |
|
66 |
+
# return [
|
67 |
+
# datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
68 |
+
# datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
|
69 |
+
# ]
|
70 |
|
71 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
72 |
+
# The URLs should be the paths to the raw files in the Hugging Face dataset repository
|
73 |
+
urls_to_download = {
|
74 |
+
"csv_file": "https://raw.githubusercontent.com/Sayali-pingle/HuggingFace--Traffic-Image-Dataset/main/camera_data.csv"
|
75 |
+
}
|
76 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download['csv_file'])
|
77 |
|
78 |
+
return [
|
79 |
+
datasets.SplitGenerator(
|
80 |
+
name=datasets.Split.TRAIN,
|
81 |
+
gen_kwargs={
|
82 |
+
"csv_file_path": downloaded_files,
|
83 |
+
},
|
84 |
+
),
|
85 |
]
|
86 |
+
|
87 |
+
def _generate_examples(self, csv_file_path):
|
88 |
+
# This method will yield examples from your dataset
|
89 |
+
# start_date = datetime(2024, 1, 1, 18, 0, 0)
|
90 |
+
# end_date = datetime(2024, 1, 2, 19, 0, 0)
|
91 |
+
# interval_seconds = 240
|
92 |
|
93 |
+
# date_time_strings = [
|
94 |
+
# (current_date + timedelta(seconds=seconds)).strftime('%Y-%m-%dT%H:%M:%S+08:00')
|
95 |
+
# for current_date in pd.date_range(start=start_date, end=end_date, freq='D')
|
96 |
+
# for seconds in range(0, 3600, interval_seconds)
|
97 |
+
# ]
|
98 |
|
99 |
+
# url = 'https://api.data.gov.sg/v1/transport/traffic-images'
|
100 |
+
# camera_data = []
|
|
|
101 |
|
102 |
+
# for date_time in date_time_strings:
|
103 |
+
# params = {'date_time': date_time}
|
104 |
+
# response = requests.get(url, params=params)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
+
# if response.status_code == 200:
|
107 |
+
# data = response.json()
|
108 |
+
# camera_data.extend([
|
109 |
+
# {
|
110 |
+
# 'timestamp': item['timestamp'],
|
111 |
+
# 'camera_id': camera['camera_id'],
|
112 |
+
# 'latitude': camera['location']['latitude'],
|
113 |
+
# 'longitude': camera['location']['longitude'],
|
114 |
+
# 'image_url': camera['image'],
|
115 |
+
# 'image_metadata': camera['image_metadata']
|
116 |
+
# }
|
117 |
+
# for item in data['items']
|
118 |
+
# for camera in item['cameras']
|
119 |
+
# ])
|
120 |
+
# else:
|
121 |
+
# print(f"Error: {response.status_code}")
|
122 |
+
|
123 |
+
camera_data= pd.read_csv(csv_file_path)
|
124 |
+
|
125 |
+
for idx, example in camera_data.iterrows():
|
126 |
yield idx, {
|
127 |
"timestamp": example["timestamp"],
|
128 |
"camera_id": example["camera_id"],
|
|
|
131 |
"image_url": example["image_url"],
|
132 |
"image_metadata": example["image_metadata"]
|
133 |
}
|
|