File size: 8,450 Bytes
d90d2fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import os
import json
import argparse
from datetime import datetime
from datasets import Dataset
from huggingface_hub import HfApi, upload_file
import shutil
import math
def clean_jsonl_data(file_path):
"""Clean and validate JSONL file data."""
cleaned_data = []
with open(file_path, "r", encoding="utf-8") as f:
for line_number, line in enumerate(f, start=1):
try:
data = json.loads(line)
# Validate 'timestamp' field
if "timestamp" in data:
if not data["timestamp"] or not isinstance(data["timestamp"], str):
data["timestamp"] = None
else:
try:
datetime_obj = datetime.fromisoformat(
data["timestamp"].replace("Z", "+00:00")
)
data["timestamp"] = datetime_obj.isoformat()
except ValueError:
data["timestamp"] = None
# Ensure 'text' is a string
if "text" in data and not isinstance(data["text"], str):
data["text"] = str(data["text"]) if data["text"] is not None else None
# Validate 'url' and 'source'
if "url" in data and not isinstance(data["url"], str):
data["url"] = str(data["url"]) if data["url"] is not None else None
if "source" in data and not isinstance(data["source"], str):
data["source"] = str(data["source"]) if data["source"] is not None else None
cleaned_data.append(data)
except json.JSONDecodeError as e:
print(f"JSON decode error at line {line_number}: {e}")
except Exception as e:
print(f"Error processing line {line_number}: {e}")
return cleaned_data
def estimate_num_shards(file_path, target_shard_size_gb=1):
"""Estimate the number of shards needed based on file size."""
file_size_gb = os.path.getsize(file_path) / (1024 ** 3) # Bytes to GB
num_shards = max(1, math.ceil(file_size_gb / target_shard_size_gb))
return num_shards
def split_jsonl_file(input_file, output_prefix, max_size_gb=45):
"""Split large JSONL files into smaller shards."""
file_size_gb = os.path.getsize(input_file) / (1024 ** 3) # Convert bytes to GB
if file_size_gb <= max_size_gb:
return [input_file] # No need to split if below limit
# Calculate lines per shard
with open(input_file, "r", encoding="utf-8") as f:
lines = f.readlines()
num_lines = len(lines)
num_shards = math.ceil(file_size_gb / max_size_gb)
lines_per_shard = math.ceil(num_lines / num_shards)
shard_files = []
for i in range(num_shards):
shard_file = f"{output_prefix}_part{i+1}.jsonl"
with open(shard_file, "w", encoding="utf-8") as f:
f.writelines(lines[i * lines_per_shard:(i + 1) * lines_per_shard])
shard_files.append(shard_file)
return shard_files
def upload_large_file(file_path, repo_id, path_in_repo, repo_type="dataset"):
"""Upload large files with multi-part upload handling."""
file_size_mb = os.path.getsize(file_path) / (1024 ** 2) # Convert bytes to MB
# Use multi-part upload for files > 5MB
if file_size_mb > 5:
upload_file(
path_or_fileobj=file_path,
path_in_repo=path_in_repo,
repo_id=repo_id,
repo_type=repo_type,
use_auth_token=True,
)
print(f"Uploaded '{path_in_repo}' with multi-part upload.")
else:
# Direct upload for smaller files
with open(file_path, 'rb') as f:
api = HfApi()
api.upload_file(
path_or_fileobj=f,
path_in_repo=path_in_repo,
repo_id=repo_id,
repo_type=repo_type,
use_auth_token=True,
)
print(f"Uploaded '{path_in_repo}' with direct upload.")
def create_and_upload_dataset(language):
# Define constants
org_name = "ScandLM"
dataset_name = f"{language}_culturax"
repo_id = f"{org_name}/{dataset_name}"
jsonl_file = f"{language}_culturax.jsonl"
temp_folder = f"temp_{language}"
jsonl_folder = os.path.join(temp_folder, "jsonl")
data_folder = os.path.join(temp_folder, "data")
src_folder = os.path.join(temp_folder, "src")
# Language codes
language_codes = {"danish": "da", "swedish": "sv", "norwegian": "no", "nynorsk": "nn"}
language_code = language_codes.get(language, "unknown")
# YAML front matter
yaml_tags = (
f"---\n"
f"language: [{language_code}]\n"
f"---\n\n"
f"# {language.capitalize()} Culturax Dataset\n\n"
f"This dataset is simply a reformatting of uonlp/CulturaX. "
f"Some minor formatting errors have been corrected.\n\n"
f"## Usage\n\n"
f"```python\n"
f"from datasets import load_dataset\n\n"
f"dataset = load_dataset(\"ScandLM/{language}_culturax\")\n"
f"```\n"
)
# Verify JSONL file
if not os.path.exists(jsonl_file):
raise FileNotFoundError(f"The file '{jsonl_file}' was not found.")
# Clean data and create a temporary JSONL file
cleaned_data = clean_jsonl_data(jsonl_file)
os.makedirs(jsonl_folder, exist_ok=True)
cleaned_jsonl_file = os.path.join(jsonl_folder, f"cleaned_{jsonl_file}")
with open(cleaned_jsonl_file, "w", encoding="utf-8") as f:
for entry in cleaned_data:
json.dump(entry, f)
f.write("\n")
# Split JSONL if too large
jsonl_shards = split_jsonl_file(cleaned_jsonl_file, os.path.join(jsonl_folder, language), max_size_gb=45)
# Load data into Dataset
dataset = Dataset.from_json(cleaned_jsonl_file)
# Estimate and create Parquet shards
num_shards = estimate_num_shards(cleaned_jsonl_file, target_shard_size_gb=1)
print(f"Number of Parquet shards: {num_shards}")
os.makedirs(data_folder, exist_ok=True)
parquet_files = []
for shard_id in range(num_shards):
shard = dataset.shard(num_shards=num_shards, index=shard_id)
parquet_file = os.path.join(data_folder, f"train-{shard_id:05d}-of-{num_shards:05d}.parquet")
shard.to_parquet(parquet_file)
parquet_files.append(parquet_file)
print(f"Parquet file created: {parquet_file}")
# Authenticate with Hugging Face
api = HfApi()
# Create dataset repo
api.create_repo(repo_id=repo_id, repo_type="dataset", private=False, exist_ok=True)
print(f"Dataset repository '{repo_id}' created successfully.")
# Upload Parquet files
for parquet_file in parquet_files:
upload_large_file(
file_path=parquet_file,
repo_id=repo_id,
path_in_repo=f"data/{os.path.basename(parquet_file)}",
)
# Upload JSONL shards
for shard_file in jsonl_shards:
upload_large_file(
file_path=shard_file,
repo_id=repo_id,
path_in_repo=f"jsonl/{os.path.basename(shard_file)}",
)
# Upload README
readme_path = os.path.join(temp_folder, "README.md")
with open(readme_path, "w", encoding="utf-8") as f:
f.write(yaml_tags)
upload_file(
path_or_fileobj=readme_path,
path_in_repo="README.md",
repo_id=repo_id,
repo_type="dataset",
use_auth_token=True
)
print("README.md uploaded successfully.")
# Upload scripts
os.makedirs(src_folder, exist_ok=True)
for script in ["download_culturax.py", "upload_culturax.py"]:
if os.path.exists(script):
upload_large_file(
file_path=script,
repo_id=repo_id,
path_in_repo=f"src/{script}",
)
# Clean up temporary files
if os.path.exists(readme_path):
os.remove(readme_path)
# Remove directories
shutil.rmtree(temp_folder, ignore_errors=True)
print("Dataset setup complete!")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Upload a cultural dataset to Hugging Face.")
parser.add_argument("language", type=str, help="The language for the dataset (e.g., danish, swedish, norwegian, nynorsk).")
args = parser.parse_args()
create_and_upload_dataset(args.language)
|